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Abstract

In the present paper we carry out a systematic study about the
flow of a spherical curve by the mean curvature flow with density in a
3-dimensional rotationally symmetric space with density (M3

w, gw, ξ)
where the density ξ decomposes as sum of a radial part ϕ and an angu-
lar part ψ. We analyse how either the parabolicity or the hyperbolicity
of (M3

w, gw) condition the behaviour of the flow when the solution goes
to infinity.
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1 Introduction

A n+1-dimensional manifold with density (M, g, ξ) is a Riemannian manifold
(M, g) and a function ξ : M → R. In this type of manifold we may calculate
the weighted volume or volume with density of the k-dimensional immersed
submanifolds ι : P k →Mn+1 as:

Vξ(P ) :=

∫
P
eξ◦ι dvgP , (1)

where gP ≡ ι?g is the induced metric over the manifold P by the immersion
ι. We shall denote by dvξ, P , dvξ or eξ dvgP the volume element associated
to a density.

In this context we have a natural generalization of the mean curvature
vector of a submanifold as the negative L2-gradient of the k-dimensional
functional of volume with density. We shall call to this vector field mean
curvature vector with density and it shall be denoted by ~Hξ. It has the form:

~Hξ := ~H −
(
∇Mξ

)⊥
, (2)
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where ~H is the mean curvature vector of the submanifold and
(
∇Mξ

)⊥
is

the orthogonal projection of the gradient ∇Mξ of ξ in (M, gM ) onto the
normal bundle. In the particular case where k = n = 1, which is the case of
curves on a surface, we shall change ~H by ~k the geodesic curvature vector
and we shall denote by ~kξ the new vector field, we shall call this vector field
the geodesic curvature vector with density.

This fact motivates us to study the following flow:
∂F

∂t
(p, t) =

(
~Hξ

)
F (p, t)

,

F (p, 0) = F0(p),
(3)

where F0 : P k → Mn+1 is a k-dimensional immersed submanifold. This is
the analogue of the mean curvature flow in the context of the geometry with
density. This flow is called the mean curvature flow with density (ξMCF for
short). In the particular case where k = 1, the case of curves, this problem
is also called the curve shortening flow with density. Some works performed
in this context are [19, 3, 15, 16]; let us remark that these authors did not
necessarily use this name for the flow. Other authors had indirectly explored
this problem to study the mean curvature flow of submanifolds with some
symmetries [13, 20]. All these works were done for hypersurfaces (k = n).

Given a n-dimensional immersed submanifold ι : Pn →Mn+1 with n ≥ 2
we shall define the mean curvature with density as:

Hξ := H − gM (∇Mξ, N),

where H is the mean curvature of the immersion, N is a unit normal field
to the hypersurface and we use the following sign convention:

AX = −∇MXN, α(X, Y ) = gM (∇MX Y, N)N = gM (AX, Y )N,

h(X, Y ) = gM (α(X, Y ), N), H = trA =
n∑
i=1

gM (A(ei), ei),

with A as the Weingarten map, α as the tensorial second fundamental form,
h as the scalar second fundamental form, ∇M as the Levi-Civita connection
on M and {ei}ni=1 a local orthonormal frame of the hypersurface. If n = 1
we define the geodesic curvature with density as:

kξ := k − gM (∇Mξ, N),

where k is the geodesic curvature of the immersed curve. Given an immersion
such that Hξ = 0 or kξ = 0, depending on the dimension, we shall call this
immersion ξ-minimal.
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In the present paper we work on the manifold with density (M3
w, gw, ξ)

that we describe below. Let (M3
w, gw) be a 3-dimensional smooth rotation-

ally symmetric space:

M3
w ≡ [0, ∞)× S2,

gw ≡ π?dr2 + (w ◦ π)2σ?gS2 , (4)

where w : [0, ∞) → R, w = w(r), is a smooth map such that w|(0,∞) > 0
and w(0) = 0, gS2 is the metric over the 2-sphere with Gauss curvature equal
to one and π : M3

w → [0, ∞), σ : M3
w → S2 are the natural projections. As

the manifold is smooth, we may prove that the function w satisfies:

w′(0) = 1

(see pag. 179-183 in [22]). Also, o ≡ {0} × S2 is a pole for the Riemannian
manifold (M3

w, gw). Regarding the density, let ξ : M3
w − {o} → R be a

smooth map such that:

ξ(x) = ϕ ◦ π(x) + ψ ◦ σ(x), (5)

with ϕ ∈ C∞((0, ∞)) and ψ ∈ C∞(S2). We note that ξ is not defined in
the pole o.

In this manifold we are able to study the evolution of a closed smooth
embedded spherical curve by the mean curvature flow with density. We shall
denote by A the set of curves that is given by

A :=
⋃

r∈(0,∞)

Ar

where

Ar :=
{
γ : S1 →M3

w | γ is a smooth embedded curve such that π(Im γ) = {r}
}

for all r ∈ (0, ∞).
Actually, the aim of this paper is to make a systematic study of the

following problem:
If we consider the Riemannian manifold with density (M3

w, gw, ξ) given
by (4) and (5) then, in this space, we may study the following initial value
problem: {

∂

∂t
γ(p, t) = (

−→
H ξ)γ(p, t),

γ(·, 0) = γ0 ∈ A,
(6)

where (
−→
H ξ)γ(·, t) denotes the mean curvature vector with density of the curve

γ(·, t).
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Other previous works in the field about curve shortening flow in codi-
mension greater than or equal to two are [14, 24]. In these two works the
ambient manifold is compact and the authors assume some restrictions on
the initial curve to guarantee that the maximal time of the solution is in-
finite. In [14] the initial curve is a ramp and in [24] the initial curve is a
graphical curve. Also in [14] we can find some more general results.

Regarding the ξMCF, we note that most of the results in the literature
about ξMCF concern radial densities in the Euclidean space [19, 3, 15], thus
(M3

w, gw, ξ) is a good manifold to keep increasing the understanding of this
type of problems. On the other hand, the choice of A as set of initial con-
dition for the problem (6) is motived because this family of curves is good
enough to guarantee that if the solution has finite maximal time then the
curve collapses to a point, moreover, the property of being embedded is pre-
served throughout the flow. In general, when we study the evolution of a
curve in codimension greater than or equal to two, the properties above de-
scribed are false. An interesting problem would be to look for other families
of curves with these good properties in codimension greater than or equal
to two.

It is equally important to remark that these types of flows (6) had been
indirectly and partially studied in the 3-dimensional Euclidean space with-
out density (ξ = 0). This situation was studied to understand the mean
curvature flow of lagrangian spherical surfaces in C2 in [4]. This fact is mo-
tivated by the link between the mean curvature flow and the ξMCF, which
is explicitly detailed in the article [16].

In our situation we may look the geodesic spheres

Sr := {p ∈M3
w| π(p) = r}

as Riemannian manifolds with density (Sr, gSr , ψ) with gSr ≡ w2(r)gS2 and
ψ ≡ ψ ◦ σ, with a slight overuse in notation about the density. Further,
when considering γ ∈ Ar as a curve in Sr, we denote it by γ̃.

With the selection of a spherical curve as initial condition, it becomes
natural to consider the following problem:

Let γ0 ∈ Ar0 and let γ̃ : S1 × [0, T̃ ) → Sr0 , γ̃ = γ̃(p, t̃), be a smooth
function such that: 

∂

∂t̃
γ̃(p, t̃) = (

−→
k Sr0 , ψ)γ̃(p, t̃),

γ̃(·, 0) = γ̃0,
(7)

where
−→
k Sr0 , ψ denotes the geodesic curvature vector with density of the

curve in the Riemannian manifold (Sr0 , gSr0 , ψ). This problem is included
in the theory [1, 2, 17], as well as the behaviour when the curve collapses
to a point is included in the work [25] and the behaviour when the solution
exists for all time is in [15].
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In the present work, we study in which way we could use the results
known for (7) to understand the solution of (6). On the other hand, we also
note that the problem (6) is a generalization of the problem (7).

In [15] it was shown that in the study of the ζMCF of a curve in the
Euclidean plane R2 with a radial density ζ = ζ(r), a very relevant fact is

that the sign and the zeros of the function r 7→ 1

r
+ ζ ′(r) determine the

dynamics of the solution. Analogously, in our situation the dynamics of the
solution are influenced by the function:

~B : M3
w − {o} −→ TM3

w

p 7−→ ~B(p) :=
(
− w′(π(p))

w(π(p))
− ϕ′(π(p))

)
∂r|p, (8)

whose scalar version is

B : (0, ∞) −→ R

r 7−→ B(r) :=
w′(r)

w(r)
+ ϕ′(r), (9)

that is ~B(p) = −B(π(p))∂r|p. This scalar version generalizes the function
given in [15].

We note that the function (9) has the following interpretation: Let
(R2, gw, ϕ) be the Riemannian manifold where gw := dr2 + w2(r) gS1 and
ϕ = ϕ ◦ π is the density that appears in (5). Then, B(r) is the geodesic
curvature with density ϕ of the Cr circle centered at the origin whose radius
is r, if we consider −∂r as unit normal vector to Cr. Therefore, if B(r) = 0,
this means that the circle Cr is ϕ-minimal. For this reason, given a geodesic
sphere Sr such that B(r) = 0 we shall say that it is B-minimal.

Once proven the existence and uniqueness of the solution for the problem
(6), we get that, if the maximal time of the solution of (6) is finite and the
solution is bounded, then:

Theorem A. Let γ0 ∈ Ar0 and let γ : S1 × [0, T ) → M3
w be the unique

maximal solution for the initial value problem (6) with γ0 as initial condition.
If the solution is bounded and the maximal time T is finite, then, the curve
collapses to a point p ∈M3

w and

i) if p 6= o the curve collapses to a spherical round point in the geodesic
sphere Sπ(p).

ii) if p = o and there exists ϕ̃ ∈ C1([0, ∞)) such that ϕ̃|(0,∞) = ϕ then,
a blow-up centered at this point gives a limit flow by the ψMCF in
(Sr0 , gSr0 , ψ) that C∞-subconverges, after a reparametrization of the
curves, to a closed ψ-minimal curve.
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The next important goal is to study the behaviour of the flow when the
solution exists for all time and it is bounded:

Theorem B. Let γ0 ∈ A and let γ : S1×[0, T )→M3
w be the unique maximal

solution of the initial value problem (6) with γ0 as initial condition. If the
solution exists for all t, that is, T = ∞, it is bounded and it does not go
to the pole o, then the flow C∞-subconverges, after a reparametrization of
the curves γ(·, t), to a closed ψ-minimal spherical curve contained in the
B-minimal geodesic sphere Slimt→∞ π(Im γ(·, t)).

However, if ϕ̃ ∈ C1([0, ∞)) with ϕ̃|(0,∞) = ϕ exists and the flow reaches
the pole o, then the maximal time is finite. But, generally, if the function
ϕ does not have a C1-extension to the pole o, it is possible that the flow
collapses to the pole for T =∞.

On the other hand, the B-minimal geodesic spheres are barriers for the
flow. Thus, given a spherical curve between two B-minimal geodesic spheres
then, the flow is contained between these two spheres. Taking this into
account, it is not difficult to find situations in which the solution is bounded.

We note that in the previous works [14, 24] the ambient manifold is
compact so the solution always is bounded. However, in our setting it is not
compact and allows the solution to go off to infinity. A required condition
here is that the function B is negative for all r ∈ [r0, ∞) with r0 = π(γ0)
where γ0 ∈ A is the initial condition of (6).

In this last situation, the key for understanding the behaviour of the
solution is given by a relation between the area of the geodesic spheres Sr
and the function B. More accurately, the behaviour of the flow at infinity
is given by the integral: ∫ ∞

r0

1

B(r)Area(Sr)
dr (10)

If this integral converges or diverges then, the behaviour of the flow is dif-
ferent.

Here, we need two new definitions. Let (M, gM ) be a Riemannian man-
ifold, we say that (M, gM ) is non-parabolic or hyperbolic if it admits a non-
constant positive superharmonic function. Otherwise, we say that (M, gM )
is parabolic. The parabolicity and hyperbolicity of a smooth rotationally
symmetric space are characterized by the divergence or convergence, re-
spectively, of the integral (see Prop. 3.1 in [11]):∫ ∞

ρ

1

Area(Sr)
dr

Therefore, we take up the last case, if:∫ ∞
r0

1

B(r)Area(Sr)
dr ∼

∫ ∞
r0

1

Area(Sr)
dr (11)
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the behaviour of the flow is given by the parabolicity or hyperbolicity of the
manifold M3

w. Following this trend, the result that we have obtained in this
way is:

Theorem C. Let γ0 ∈ Ar0 and let γ : S1 × [0, T ) → M3
w be the unique

maximal solution of the initial value problem (6) with γ0 as initial condition.
If the solution is not bounded:

a) If M3
w is parabolic and lim infr→∞B(r) is finite then, the flow topo-

logically subconverges to γ∞ : S1 → [0, ∞] × S2, p 7→ (∞, χ(p)),
where χ : S1 → S2 is a smooth embedded closed ψ-minimal curve in
(Sr0 , gSr0 , ψ).

b) If M3
w is hyperbolic and lim supr→∞B(r) 6= 0 then, the flow either

– topologically converges to γ∞ : S1 → [0,∞]×S2, p 7→ (∞, γ̃(p, T̃ )),

– or topologically converges to a point p∞ ∈ S∞ ≡ {∞} × S2 ⊂
[0, ∞]× S2 in the infinite radius sphere,

where γ̃ is the solution of (7) with initial condition γ̃0 and T̃ shall be
defined in (19).

Let us remind that to achieve the situation of the last theorem, having
an unbounded solution, we need that B|[r?,∞) < 0 for some r? ∈ (0, ∞).

The case b) of the last theorem is satisfied in the Euclidean space R3

with a Gaussian density ξ(x) = e−µ
2r2/2. This case shall be fully studied in

the section 6 expanding our understanding of the Gaussian mean curvature
flow [3, 15].

In the paper [16] the link between MCF and the ξMCF was detailed.
This relation gives us an equivalence between the flows that in our situation
is the following: the ξMCF γ : S1 × [0, T ) → M3

w of a curve γ0 ∈ A is

equivalent to the MCF F : N × [0, T )→ M̂ of a submanifold F0 : N → M̂

in the (m+3)-dimensional smooth Riemannian manifold (M̂, ĝ) given by:

M̂ := M3
w ×Q = [0, ∞)× S2 ×Q,

ĝ := π̂?gw +
( eξ◦π̂

V olgQ(Q)

)2/m
σ̂? gQ, (12)

where (Q, gQ) is a m-dimensional smooth compact Riemannian manifold

and π̂ : M̂ → M3
w, σ̂ : M̂ → Q are the natural projections. The initial

submanifold F0 is a (m+1)-dimensional smooth submanifold such that

F0 : N = S1 ×Q→ M̂, F0(α, q) := (γ0(α), q). (13)

Therefore, this work leads us to expand our understanding about the MCF
of submanifolds in codimension two. Some works in this area are [5, 23].
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This paper is structured in the following way. In section 2, we introduce
the basic results about the curve shortening flow with density on a surface.
In section 3, we give the existence and uniqueness result for solutions to the
problem (6) and we show the relation between the solutions of (6) and (7).
In section 4, we analyse the situation where the solution is bounded. In
section 5, we study the situation where the solution is not bounded. Finally,
in section 6, we carry out a detailed study of the problem (6) with the
Gaussian density in the 3-dimensional Euclidean space.

2 Preliminaries

2.1 Curve shortening flow with density

Let (M, g, ψ) be a 2-dimensional smooth Riemannian manifold with density
and let γ0 : S1 → M be a smooth curve. Then we shall call the curve
shortening flow with density (ψMCF) of γ0 the solution γ : S1× [0, T )→M
of the problem: {

∂

∂t
γ(p, t) =

(−→
k ψ
)
γ(p, t)

,

γ(·, 0) = γ0,
(14)

where ~kψ is the geodesic curvature vector with density of the curve.
In the particular case where the density is ψ = 0, then the problem is

the classic curve shortening flow widely studied [8, 7, 10, 9, 6].
As already remarked in [15], we may use the theory of S. Angenent [1, 2]

to guarantee the existence and uniqueness of solution for the problem (14).
This theory, together with the later work of Oaks [17], allows us to formulate
the following theorem:

Theorem 1. [1, 2, 17] Let γ0 : S1 → M be a simple C2 curve. Then,
there exists a unique solution to (14) with initial condition γ0. Moreover,
the solution either collapses to a point on M in finite time or exists for
infinite time.

This theorem was already written for this flow in the article [15]. Moreover,
we can use the work of Xi-Ping Zhu [25] to obtain that:

Theorem 2. (Proof Cor. 4.2 in [25]) Let γ0 : S1 → M be a simple
C2 curve. Then, if the solution to (14) with initial condition γ0 has finite
maximal time, the solution collapses to a round point.

The case in which the solution exists for all time was studied in [15] by
V. Miquel and the author in a Riemannian manifold with density with the
following properties in the region where the curve moves. Here, K is the
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Gauss curvature of the surface (M, g) and ∇ is the covariant derivative of
(M, g):

i)
|∇jK| ≤ Cj , |∇

j
ψ| ≤ Pj , 0 < E ≤ eψ ≤ D,

for some constants Cj , Pj , E, D; j = 0, 1, 2, · · ·
(15)

ii) The isoperimetric profile I is a well defined continuous function

which satisfies lim
a→a0

I(a) = 0 implies a0 = 0. (16)

The authors obtained the following theorem:

Theorem 3. [15] Let (M, g, ψ) be an orientable 2-Riemannian manifold
with density satisfying (16). Let γ(·, t) be a solution of the ψMCF (14) with

initial condition an embedded curve γ0 : S1 → M
2
. If this solution exists

for every t ∈ [0, ∞), and γ(S1, t) is contained in a fixed compact domain
U where the conditions (15) are satisfied, then there is a reparametrization
γ̃(·, t) of γ(·, t) such that there is a sequence {γ̃(·, tk)}k∈N, tk →∞, which

Cm-converges to a closed ψ-minimal curve of M
2

for every m ∈ N.

In our particular case (7) the Riemannian manifold with density is (Sr0 , gSr0 , ψ).
This manifold is compact and the density is smooth thus, we have that the
properties (15) and (16) are satisfied, so we may use Theorem 3 in our
situation.

Other important properties that may be obtained from the work of S.
Angenent [1, 2] are:

Theorem 4. (Preservation of the embedded property) Let γ0 : S1 →
M be a smooth embedded curve and let γ : S1 × [0, T )→M be the solution
of (14) with initial condition γ0 then, γ(·, t) : S1 → M is embedded for all
t ∈ [0, T ).

Theorem 5. (Comparison principle) Let γ1 : S1 × [0, T1) → M , γ2 :
S1 × [0, T2) → M be solutions of the initial value problem (14) such that
γ1(·, 0) and γ2(·, 0) are immersed curves. If Im γ1(·, 0) ∩ Im γ2(·, 0) = ∅
then Im γ1(·, t) ∩ Im γ2(·, t) = ∅ for all t ∈ [0, min{T1, T2}).

3 The flow

In this section we prove the existence and uniqueness of the solution of
the problem (6). Also, we show the relation between the solutions of the
problems (6) and (7), as well as some properties of the problem (6).
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Theorem 6. (Existence and uniqueness) The initial value problem (6),
with γ0 ∈ Ar0 as initial condition, has a unique solution γ : S1×[0, T )→M3

w

given by

γ(p, t) := exp
(
γ̃(p, t̃(t)), (R(t)− r0)∂r

)
, (17)

where γ̃ is the unique solution for the initial value problem (7) with γ̃0 as
initial condition, R(t) is the unique solution for the ODE:{

R′(t) = −B(R(t)),
R(0) = r0,

(18)

and

t̃ : [0, T ) −→ [0, T̃ )

t 7−→ t̃(t) :=

∫ t

0

( w(r0)

w(R(β))

)2
dβ, (19)

with T̃ ≡
∫ T

0

( w(r0)

w(R(β))

)2
dβ.

Prior to the proof, we need some preparatory lemmas.
Given γ ∈ Ar we shall denote by ~kSr, ψ the geodesic curvature vector

with density of the curve γ̃, considered as a curve in (Sr, gSr , ψ).

Lemma 1. Given γ ∈ Ar:

~Hξ = ~kSr, ψ + ~B(γ) (20)

Proof. Let {τ, ν, ∂r} be an orthonormal frame over the curve with τ the unit
tangent vector to the curve, ν the unit normal of the curve that is tangent
to the geodesic sphere where the curve is contained, we note that {τ, ν} is
an orthonormal frame over the curve in the geodesic sphere (Sr, gSr) . Now
we may calculate the expression of the mean curvature vector with density:

~Hξ = ~H −
(
∇ξ
)⊥

=
〈
∇ττ, ν

〉
ν +

〈
∇ττ, ∂r

〉
∂r −

〈
∇ξ, ν

〉
ν −

〈
∇ξ, ∂r

〉
∂r

=
( 〈
∇ττ, ν

〉
−
〈
∇ξ, ν

〉 )
ν +

( 〈
∇ττ, ∂r

〉
−
〈
∇ξ, ∂r

〉 )
∂r

=
( 〈
∇Srτ τ + αSr(τ, τ), ν

〉
−
〈
∇(ψ ◦ σ), ν

〉 )
ν

+
(
− 〈τ, τ〉

w(r)

〈
∇w, ∂r

〉
−
〈
∇(ϕ ◦ π), ∂r

〉 )
∂r

=
( 〈
∇Srτ τ, ν

〉
−
〈
∇(ψ ◦ σ), ν

〉 )
ν +

(
− w′(r)

w(r)
− ϕ′(r)

)
∂r

= ~kSr, ψ + ~B(γ),

where ∇ is the covariant derivative of (M3
w, gw).
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Lemma 2. The function (19) is a diffeomorphism.

Proof. This function

• is smooth for being composed of smooth functions,

• t̃(0) = 0, t̃(T ) = T̃ ,

• its derivative is strictly positive for all t:

t̃′(t) =
( w(r0)

w(R(t))

)2
> 0 for all t ∈ [0, T ).

So by the inverse function theorem, it is a local diffeomorphism which, to-
gether the injectivity of the function, implies that it is a diffeomorphism.

Lemma 3. Let γ ∈ Ar and let γ̂ := exp(γ, −(r − r0)∂r) with r0 ∈ (0, ∞),
then:

~kγ̃, Sr, ψ =
w2(r0)

w2(r)
~kγ̂, Sr0 , ψ

as a vector field on S2.

Proof. We note that gSr =
w2(r)

w2(r0)
gSr0 , that is, gSr and gSr0 are conformally

equivalent, then:

~kγ̃, Sr, ψ = ~kγ̃, Sr −∇
Sr(ψ ◦ σ)⊥ =

1

w2(r)

w2(r0)

~kγ̂, Sr0 −
( 1

w2(r)

w2(r0)

∇Sr0 (ψ ◦ σ)
)⊥

=
w2(r0)

w2(r)

(
~kγ̂, Sr0 −∇

Sr0 (ψ ◦ σ)⊥
)

=
w2(r0)

w2(r)
~kγ̂, Sr0 , ψ.

Now, we are ready to give the proof of Theorem 6.

Proof. (Theorem 6) Problem (7) has a unique short-time solution by Theo-
rem 1. Further, since B is locally Lipschitz, (18) also has a unique short-time
solution. Then, since (19) is a diffeomorphism by Lemma 2, the expression
for γ given in (17) is well-defined on S1 × [0, T ). Let us remark that γ is
smooth being composed of smooth functions.

We will now show that (17) is a solution to (6). We will denote by
ηγ̃(p, t̃1), ∂r

the geodesic that starts at γ̃(p, t̃1) whose tangent vector at this
point is ∂r. Then:

γ(p, 0) = exp
(
γ̃(p, 0), (R(0)− r0)∂r

)
= exp

(
γ̃(p, 0), 0

)
= γ̃(p, 0) = γ̃0(p) = γ0(p), ∀ p ∈ S1,
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and

∂

∂t

∣∣∣
t1
γ(p, t) =

∂

∂t

∣∣∣
t1
exp
(
γ̃(p, t̃), (R(t)− r0)∂r

)
=

∂

∂t

∣∣∣
t1
exp
(
γ̃(p, t̃1), (R(t)− r0)∂r

)
+
∂

∂t

∣∣∣
t1
exp
(
γ̃(p, t̃), (R(t1)− r0)∂r

)
=

∂

∂t

∣∣∣
t1
ηγ̃(p, t̃1), ∂r

(
R(t)− r0

)
+ exp?

( ∂
∂t

∣∣∣
t1
γ̃(p, t̃), (R(t1)− r0)∂r

)
= η′

γ̃(p, t̃1), ∂r

(
R(t1)− r0

)
R′(t1) + exp?

(∂t̃
∂t

∂

∂t̃

∣∣∣
t̃1
γ̃(p, t̃), (R(t1)− r0)∂r

)
= R′(t1)∂r|γ(p, t1) + exp?

(( w(r0)

w(R(t1))

)2(−→
k Sr0 , ψ

)
γ̃(p, t̃1)

, (R(t1)− r0)∂r

)
= −B(R(t1))∂r|γ(p, t1) +

( w(r0)

w(R(t1))

)2
exp?

((−→
k Sr0 , ψ

)
γ̃(p, t̃1)

, (R(t1)− r0)∂r

)
= ~B(γ(p, t1)) + (~kSR(t1), ψ

)γ(p, t1) = ( ~Hξ)γ(p, t1),

where we have used Lemma 3 and also Lemma 1, in the last equality, given
that from (17) we have that γ(·, t) ∈ AR(t) for all t ∈ [0, T ). Therefore (17)
is a solution for problem (6).

To guarantee that (17) is the unique solution of the problem (6) we may
use the existence and uniqueness theorem for the MCF in higher codimen-
sion. The statement of this theorem was presented as a special case of a
theorem by R. Hamilton [12] in the survey about this topic, Part II Chap.
3 in [21], by K. Smoczyk (see Prop. 3.2 page 248 in [21]). Let us remind
the link between the ξMCF and the MCF showed on (12) and (13).

Corollary 1. Im γ(·, t) ⊂ SR(t), ∀ t ∈ [0, T ).

Proof. By Theorem 6 the solution is

γ(p, t) = exp
(
γ̃(p, t̃(t)), (R(t)− r0)∂r

)
,

this expression implies that Im γ(·, t) ⊂ SR(t), ∀ t ∈ [0, T ).

Corollary 2. Let γ : S1 × [0, T ) → M3
w be the maximal solution of the

problem (6) with initial condition γ0 ∈ Ar0, then

γ̃(p, t̃) := exp
(
γ(p, t(t̃)), −(R(t(t̃))− r0)∂r

)
,

is the unique solution defined in S1 × [0, T̃ ) for the problem (7) with initial
condition γ̃0. The function t : [0, T̃ ) → [0, T ) is the inverse function of
(19).

Proof. From Theorem 6 and Lemma 2.
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Remark. It is highly relevant that T could be the maximal time of the
problem (6) and T̃ could not be the maximal time of the problem (7).

Theorem 7. (Preservation of the embedded property) Let γ : S1 ×
[0, T ) → M3

w be a solution of the problem (6) such that γ0 is an embedded
curve then, γ(·, t) is an embedded curve for all t ∈ [0, T ).

Proof. From Theorem 6 and Theorem 4.

Theorem 8. (Comparison Principle) Let γ1 : S1 × [0, T1) → M3
w, γ2 :

S1 × [0, T2) → M3
w be solutions of the initial value problem (6) with initial

conditions γ1(·, 0), γ2(·, 0) ∈ A, respectively. If Imγ1(·, 0)∩ Imγ2(·, 0) = ∅
then Im γ1(·, t) ∩ Im γ2(·, t) = ∅ for all t ∈ [0, min{T1, T2}).

Proof. From Theorem 6 and Theorem 5.

4 Bounded solution

4.1 Finite maximal time

In this section we analyse the different situations when the maximal time of
the solution is finite, obtaining a proof for Theorem A.

Theorem 9. Let γ0 ∈ A and let γ : S1×[0, T )→M3
w be the unique maximal

solution for the initial value problem (6) with γ0 as initial condition. If
the maximal time T is finite and the solution is bounded, then the solution
collapses to a point.

Proof. We note that the continuous function R(t) is either strictly decreas-
ing, strictly increasing or constant. Thus, the limt→T R(t) exists and it is
finite. Now, we have two possibilities:

• limt→T R(t) = R(T ) > 0: In this situation T̃ < ∞ and (17) only can
have problems coming from γ̃(·, t̃(t)). Then, the maximal time for
(7) is finite, moreover it is exactly T̃ , and by Theorem 1 the flow γ̃
collapses to a point. Therefore, the flow γ collapses to a point.

• limt→T R(t) = R(T ) = 0: By Corollary 1 Imγ(·, t) ⊂ SR(t), ∀t ∈ [0, T )
then, the flow collapses to the pole o.

Interestingly, we notice that in the second part of the proof, T̃ may not be
the maximal time of the flow γ̃.

Now that we know that the solution collapses to a point, let’s analyse
the shape of the singularity.

13



Theorem 10. Let γ0 ∈ Ar0 and let γ : S1 × [0, T ) → M3
w be the unique

maximal solution for the initial value problem (6) with γ0 as initial condition.
If the maximal time T is finite and the solution is bounded, then:

i) If limt→T R(t) 6= 0 the curve collapses to a spherical round point in
the geodesic sphere SR(T ).

ii) If limt→T R(t) = 0, that is, the curve collapses to the pole o of the
manifold M3

w, and there exists ϕ̃ ∈ C1([0, ∞)) such that ϕ̃|(0,∞) = ϕ
then, a blow-up centered at the pole o gives a limit flow by the ψMCF
in (Sr0 , gSr0 , ψ) that C∞-subconverges, after a reparametrization of
the curves, to a closed ψ-minimal curve.

Proof. By Theorem 9 the solution collapses to a point.

Case i) If limt→T R(t) 6= 0 then, the maximal time of the solution of the prob-
lem (7), with initial condition γ̃0, is finite due to the relation between
the flows. This, together with Theorem 2, proves i). We note that, in
this situation, the maximal time of (7) is T̃ .

Case ii) We need to study if T̃ is finite or infinite. For this, we note that:

T̃ =

∫ T

0

( w(r0)

w(R(t))

)2
dt ∼

∫ T

0

1

R(t)2
dt (21)

we shall check this fact:

lim
x→0+

1

w(x)2

1

x2

= lim
x→0+

x2

w(x)2
= lim

x→0+

2x

2w(x)w′(x)
= lim

x→0+

x

w(x)

= lim
x→0+

1

w′(x)
= 1 ∈ (0, ∞),

where we have used w(0) = 0, w′(0) = 1 and L’Hôpital’s rule twice.

Now, we are going to study the second integral of (21):∫ T

0

1

R(t)2
dt =

∫ T

0

R′(t)

R′(t)R(t)2
dt =

∫ T

0

R′(t)(
− w′(R(t))

w(R(t))
− ϕ′(R(t))

)
R(t)2

dt

=

∫ R(T )

R(0)

1(
− w′(x)

w(x)
− ϕ′(x)

)
x2

dx =

∫ 0

r0

1(
− w′(x)

w(x)
− ϕ′(x)

)
x2

dx

=

∫ r0

0

1(w′(x)

w(x)
+ ϕ′(x)

)
x2

dx,

14



we remark that R′(t) < 0 for all t ∈ [0, T ), as otherwise the hypothesis
limt→T R(t) = 0 is impossible. Going back to the integral:

lim
x→0+

1(w′(x)

w(x)
+ ϕ′(x)

)
x2

1

x

= lim
x→0+

1(w′(x)

w(x)
+ ϕ′(x)

)
x

= lim
x→0+

1
x

w(x)

= lim
x→0+

w(x)

x
= lim

x→0+
w′(x) = 1 ∈ (0, ∞),

we have used L’Hôpital’s rule and also that ϕ has a C1-extension to
[0, ∞), so ∫ r0

0

1(w′(x)

w(x)
+ ϕ′(x)

)
x2

dx ∼
∫ r0

0

1

x
dx. (22)

Therefore, from (21) and (22), T̃ = ∞ and if we perform a rescaling
at the singularity we obtain exactly the flow γ̃ as the rescaled flow of
γ, so the rescaled flow subconverges, in the sense of Theorem 3, to a
closed ψ-minimal curve in (Sr0 , gSr0 , ψ) by this theorem. Note that
the rescaled flow is given by

exp
(
γ(·, t), (r0 − R(t))∂r

)
,

and this flow is the flow γ̃ by Corollary 2.

Remark. The case ii) of the previous theorem is not true if the density
ϕ does not have a C0-extension to [0, ∞). For example, if we consider

ϕ(r) := − lnw(r)− 1

r
then:

T̃ ∼
∫ r0

0

1(w′(x)

w(x)
+ ϕ′(x)

)
x2

dx =

∫ r0

0

1
1

x2
x2

dx = r0 <∞

Therefore, if the solution collapses to the origin, the rescaled flow of γ faces
two possibilities: either it converges to the curve γ̃(·, T̃ ), if T̃ is not the
maximal time of γ̃, or, if T̃ is the maximal time of γ̃, we need to make a
new rescaling in the sphere and with this second rescaling we obtain that the
curve converges to a round point by Theorem 2.
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4.2 Infinite maximal time

In this section we study the situation in which the maximal time of the
solution for the problem (6) is infinite, obtaining a proof for Theorem B.
In this situation, there is a delicate scenario: when the solution collapses
to the pole. This fact motivates splitting the study in two cases: when the
solution collapses to the pole and when the solution is in a bounded region
0 < C1 ≤ R(t) ≤ C2.

First, we are going to tackle the following question: Could the solution
collapse to the pole in infinite time?

Proposition 1. Let γ0 ∈ A and let γ : S1 × [0, T ) → M3
w be the unique

maximal solution of the initial value problem (6) with γ0 as initial condition.
If this solution collapses to the pole at the maximal time and there exists
ϕ̃ ∈ C1([0, ∞)) such that ϕ̃|(0,∞) = ϕ then, the maximal time of the flow is
finite.

Proof. As limt→T R(t) = 0 then limt→T w(R(t)) = 0, limt→T w
′(R(t)) = 1

and limt→T ϕ
′(R(t)) = ϕ′(0), the last equality relies on the hypothesis about

ϕ. So limt→T B(R(t)) = ∞ and therefore there are t? ∈ [0, T ) and C > 0
such that

R′(t) ≤ −C, ∀ t ∈ [t?, T ).

If we integrate this inequality, we obtain:

R(t2)−R(t1) ≤ −C(t2 − t1), ∀ t2 ≥ t1 ≥ t?,

so

C(t2 − t1) ≤ R(t2) + C(t2 − t1) ≤ R(t1) <∞, ∀ t2 ≥ t1 ≥ t?,

if we take t1 = t? and t2 → T :

C(T − t?) ≤ R(t?) <∞,

therefore T <∞.

Having this in mind, the answer to the question is: No if the density
ϕ has a C1-extension to [0, ∞). However, if the density ϕ does not have
a C1-extension to [0, ∞), the solution could collapse to the pole in infinite
time. For example, let (R3, gR3 , ξ) be the ambient manifold with ϕ(r) =

− ln(r) +
1

2
r2. In this situation, the derivative of R(t) satisfies:

R′(t) = − 1

R(t)
− ϕ′(R(t)) = − 1

R(t)
+

1

R(t)
−R(t) = −R(t)

⇒ R(t) = r0e
−t.
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Then, if the flow collapses to the pole, the maximal time of the solution is
infinite.

Now, we continue studying the other case. We need some preparatory
lemmas. Let s be the arc length parameter of γ(·, t) and let s̃ be the arc
length parameter of γ̃(·, t̃).

Lemma 4.

• ∂s =
w(r0)

w(R(t))
∂s̃,

• ∂ns
(
kγ(·, t), SR(t), ψ

)
=
( w(r0)

w(R(t))

)n+1
∂ns̃

(
kγ̃(·, t̃), Sr0 , ψ

)
.

Proof. The relation between ds and ds̃ is

ds = |∂αγ(α, t)|gSR(t)
dα =

w(R(t))

w(r0)
|∂αγ(α, t)|gSr0 dα =

w(R(t))

w(r0)
ds̃.

Therefore

∂s =
w(r0)

w(R(t))
∂s̃.

On the other hand, the relation between the mean curvature vectors with
density is given from Lemma 3 by

~kγ(·, t), SR(t), ψ =
w2(r0)

w2(R(t))
~kγ̃(·, t̃), Sr0 , ψ

and gSR(t)
=
w(R(t))2

w(r0)2
gSr0 , then

kγ(·, t), SR(t), ψ =
w(r0)

w(R(t))
kγ̃(·, t̃), Sr0 , ψ

.

So we obtain that

∂ns

(
kγ(·, t), SR(t), ψ

)
=
( w(r0)

w(R(t))

)n+1
∂ns̃

(
kγ̃(·, t̃), Sr0 , ψ

)
.

Also, we need an expression that links ∂ns
(
kγ(·, t), SR(t)

)
with ∂ns

(
kγ(·, t), SR(t), ψ

)
.

We may borrow the expression given in (51) of [15]:

∂ns
(
kγ(·, t), SR(t)

)
= ∂ns

(
kγ(·, t), SR(t), ψ

)
+∇n+1ψ(∂s, · · · , ∂s, ν)

+

1, n−1∑
n, 1

ci, J, K kiγ(·, t), SR(t), ψ
∂Js
(
kγ(·, t), SR(t), ψ

)
C(∇Kψ),

(23)

17



we denote by ∇ the covariant derivative in SR(t), which is independent of t.
J = (j1, · · · , jq), 0 < j1 ≤ j2 ≤ · · · ≤ jq is an ordered multi-index and we

denote by |J | := j1 + · · · + jq, d(J) := q, o(J) := jq, ∂
J
s x := ∂j1s x · · · ∂jqs x,

∇Jx := ∇j1x⊗ · · ·⊗∇jqx. About the summation notation, we only need to
know that given

∑s, t
m, r then i + |J | + d(J) + |K| = m + r and we consider

that if |J | = 0 then ∂Js
(
kγ(·, t), SR(t), ψ

)
do not appear. Also, 0 ≤ d(J) ≤

[(m+ r − s)/2], |K| ≥ s, o(J) ≤ t, 1 ≤ d(K) ≤ m+ 1. Finally, by C(∇Kψ)
we denote ∇Kψ acting on |K| copies of ∂s or/and ν.

We shall denote by ∇ the covariant derivative of the Riemannian mani-
fold (M3

w, gw).

Lemma 5. Given γ ∈ Ar
∇ττ = kν −w

′

w
∂r

∇τν = −kτ

∇τ∂r =
w′

w
τ

(24)

where {τ, ν, ∂r} is an orthonormal frame over the curve with τ , the unit
tangent vector to γ, ν, unit normal to γ and tangent to the geodesic sphere
Sr where the curve is contained, and with k, the geodesic curvature of the
curve γ as curve of the sphere (Sr, gr).

Proof. See Chap. 7, Prop. 35 in [18]:

∇ττ =
〈
∇ττ, ν

〉
ν +

〈
∇ττ, ∂r

〉
∂r =

〈
∇Srτ τ, ν

〉
ν +

〈
−〈τ, τ〉

w
∇w, ∂r

〉
∂r

= kν − w′

w
∂r,

∇τν =
〈
∇τν, τ

〉
τ +

〈
∇τν, ∂r

〉
∂r = −

〈
ν, ∇ττ

〉
τ +

〈
−〈τ, ν〉

w
∇w, ∂r

〉
∂r

= −kτ,

∇τ∂r =
∂r(w)

w
τ =

w′

w
τ.

Theorem 11. Let γ0 ∈ Ar0 and let γ : S1 × [0, T ) → M3
w be the unique

maximal solution of the initial value problem (6) with γ0 as initial condition.
If the solution exists for all t, that is, T =∞, and 0 < C1 ≤ R(t) ≤ C2 with
C1, C2 some constants for all t ∈ [0,∞), then the flow C∞-subconverges, af-
ter a reparametrization of the curves γ(·, t), to a closed ψ-minimal spherical
curve contained in the B-minimal geodesic sphere Slimt→∞R(t).
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Proof. If 0 < C1 ≤ R(t) ≤ C2 for all t ∈ [0, ∞) and the maximal time of
the solution of (6) is infinite then, T̃ =∞:
The limt→∞R(t) = R∞ ∈ R ⇒ limt→∞w(R(t)) = w(R∞) ∈ R, so ∀ ε >
0 ∃ tε > 0 such that |w(R(t))− w(R∞)| < ε for all t ≥ tε. Therefore

T̃ =

∫ ∞
0

( w(r0)

w(R(t))

)2
dt

≥
∫ tε

0

( w(r0)

w(R(t))

)2
dt+

∫ ∞
tε

( w(r0)

w(R∞) + ε

)2
dt =∞⇒ T̃ =∞.

As t̃ : [0,∞) −→ [0,∞) is a diffeomorphism by Lemma 2, we obtain that
the behaviour of the flows (6) and (7) is the same.

From Step 4 on page 23 of [15], Lemma 4 and the hypothesis about R(t),
we obtain that

∂ns

(
kγ(·, t), SR(t), ψ

)
converges uniformly to zero when t→∞

for every n ∈ N. (25)

On the other hand,

∂sγ = τ,

∂2
sγ = ∇ττ = kν − w′

w
∂r,

∂3
sγ = ∇τ

(
kν − w′

w
∂r

)
= ∂sk ν + k∇τν − ∂s

(w′
w

)
∂r −

w′

w
∇τ∂r

= ∂sk ν − k2τ −
(w′
w

)2
τ =

(
− k2 −

(w′
w

)2)
τ + ∂sk ν,

∂4
sγ = ∇τ

[(
− k2 −

(w′
w

)2)
τ + ∂sk ν

]
= −2k∂sk τ +

(
− k2 −

(w′
w

)2)∇ττ + ∂2
sk ν + ∂sk ∇τν

= −2k∂sk τ +
(
− k2 −

(w′
w

)2)(
kν − w′

w
∂r

)
+ ∂2

sk ν − k∂sk τ

= −3k∂sk τ +
(
− k3 − k

(w′
w

)2
+ ∂2

sk
)
ν +

(
k2w

′

w
+
(w′
w

)3)
∂r,

so that we can obtain an expression for ∂ns γ of the form:

∂ns γ = fn(
w′

w
, k, ∂sk, · · · , ∂n−3

s k)τ + gn(
w′

w
, k, ∂sk, · · · , ∂n−2

s k)ν

+ hn(
w′

w
, k, ∂sk, · · · , ∂n−4

s k)∂r, n ≥ 1, (26)

where fn, gn and hn are polynomials in
w′

w
, k, ∂sk, · · · , ∂jsk with j ≤ n− 2

where all monomials have degree n − 1, which is obtained counting ∂isk as
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i+ 1. Here, the map γ had the form γ = γ(st, t) where st is the arc-length
parameter of γ(·, t). Now, let Lt be the length without density of γ(·, t),
we consider the change of parameter:

[0, Lt] −→ [0, 1]

st 7−→ α :=
st
Lt

and we denote by γ̂ the reparametrization of the curves with the parameter
α, that is γ̂(α, t) = γ(st(α), t). We notice that

∂st
∂α

= Lt and
∂nst
∂α

= 0, ∀ n ≥ 2.

Then we have that:

∂nα γ̂ = Lnt ∂
n
stγ, ∀ n = 1, 2, · · ·

and therefore:

|∂nα γ̂| = |Lnt ∂nstγ| = Lnt |∂nstγ| = Lnt
√
f2
n + g2

n + h2
n, ∀ n = 1, 2, · · · (27)

We may also obtain the following bound for the length of the curves:

eξ(γt) = eϕ◦π(γt)+ψ◦σ(γt) = eϕ◦π(γt)eψ◦σ(γt) ≥ min
r∈[C1, C2]

eϕ(r) min
p∈S2

eψ(p),

we denote by D the last expression, then:

Lt =

∫
S1
dst =

∫
S1

eξ(γt)

eξ(γt)
dst ≤

1

D

∫
S1
eξ(γt)dst

=
1

D
Lξ(γt) ≤

1

D
Lξ(γ0), (28)

as Lξ(γt) decreases throughout the flow, so Lt is bounded independently of
t.

On the other hand, the hypothesis C1 ≤ R(t) ≤ C2 for all t ∈ [0, ∞)

implies that
w′

w
and w are bounded. This fact, together with (25) and (23),

imply that √
f2
n + g2

n + h2
n is bounded independently of t. (29)

Therefore, from (27), (28) and (29):

|∂nα γ̂(α, t)| ≤ Cn, ∀ (α, t) ∈ [0, 1]× [0, ∞), ∀ n = 1, 2, · · · (30)

with Cn independent of (α, t). The case n = 0 is immediate from the
hypothesis about R(t). We might use the Arzelà-Ascoli theorem to conclude
that there is a family {γ̂(·, tm)}m∈N, tm →∞, such that C∞-converges to a
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limit curve γ̂∞ which is closed and regular. To obtain this result, we use a
diagonal type argument.

The limit curve is regular because of Lemma 8 of [15]. This implies
that, in our situation, Lt ≥ c for all t ∈ [0, ∞) for some constant c, so
|∂αγ̂| = Lt ≥ c and the limit curve γ̂∞ is regular.

We note that the geodesic sphere whose radius is R∞ = limt→∞R(t)
is B-minimal and from (25) kγ(·, t), SR(t), ψ converges uniformly to zero when
t→∞, then γ̂∞ is a ψ-minimal curve contained in the B-minimal geodesic
sphere SR∞ .

We note that Proposition 1 together with Theorem 11 give us a proof
for Theorem B.

5 Unbounded solution

In this section we analyze the situation in which the solution of (6) is not
bounded, obtaining a proof for Theorem C. Further, the maximal time of
the solution of (6) can be finite or infinite.

Theorem 12. Let γ0 ∈ Ar0 and let γ : S1 × [0, T ) → M3
w be the unique

maximal solution of the initial value problem (6) with γ0 as initial condition.
If the solution is not bounded, limt→T R(t) =∞, then necessarily B(r) < 0
for all r ∈ [r0, ∞). Further:

a) If M3
w is parabolic and lim infr→∞B(r) is finite then, the flow topo-

logically subconverges to γ∞ : S1 → [0, ∞] × S2, p 7→ (∞, χ(p))
where χ : S1 → Sr0 is a smooth embedded closed ψ-minimal curve
in (Sr0 , gSr0 , ψ).

b) If M3
w is hyperbolic and lim supr→∞B(r) 6= 0 then, the flow either

– topologically converges to γ∞ : S1 → [0,∞]×S2, p 7→ (∞, γ̃(p, T̃ )),
which is a curve contained in S∞ ≡ {∞} × S2 ⊂ [0, ∞]× S2 the
infinite radius sphere,

– or topologically converges to a point p∞ in S∞ ≡ {∞} × S2 ⊂
[0, ∞]× S2 the infinite radius sphere.

Proof. As limt→T R(t) =∞, R′(t) > 0 for all t ∈ [0, T ). Otherwise, there is
t? ∈ [0, T ) such that SR(t?) is a B-minimal sphere and the solution γ(·, t)
is contained in BR(t?) for all t ∈ [0, T ), therefore limt→T R(t) ≤ R(t?).
As a consequence, we obtain that B(R) < 0 for all R ∈ [r0,∞), due to
R′(t) = −B(R(t)).

The hypothesis of the case a) about the function B implies that there
exists a constant C > 0 such that −C ≤ B(r) < 0 for all r ∈ [r0,∞).
Besides, the hypothesis of the case b) about the function B implies that

21



there exists a constant C > 0 such that B(r) ≤ −C < 0 for all r ∈ [r0,∞).
As a summary:

In the case a) − 1

B(r)
≥ 1

C
, for all r ∈ [r0, ∞).

In the case b)
1

C
≥ − 1

B(r)
, for all r ∈ [r0, ∞).

On the other hand, we could obtain the following expression for T̃ :

T̃ =

∫ T

0

( w(r0)

w(R(t))

)2
dt =

∫ T

0

Area(Sr0)

Area(SR(t))
dt

= Area(Sr0)

∫ T

0

R′(t)

R′(t)Area(SR(t))
dt

= −Area(Sr0)

∫ T

0

R′(t)

B(R(t))Area(SR(t))
dt

= −Area(Sr0)

∫ ∞
r0

1

B(r)Area(Sr)
dr, (31)

where we used that R : [0, T ) → [r0, ∞) defines a diffeomorphism on its
image.

Case a) M3
w is parabolic and − 1

B(r)
≥ 1

C
for all r ∈ [r0, ∞). Then

T̃ = −Area(Sr0)

∫ ∞
r0

1

B(r)Area(Sr)
dr

≥ Area(Sr0)

C

∫ ∞
r0

1

Area(Sr)
dr =∞,

where the last equality is true because the Riemannian manifold M3
w

is parabolic (see Prop. 3.1 in [11]).
As we have that t̃ : [0, T ) −→ [0,∞) is a diffeomorphism, we conclude
that the behaviour of the flow γ in t = T is the behaviour of the flow
γ̃ in infinite time. The behaviour of the flow γ̃, with infinite maximal
time, is given by Theorem 3.

Case b) M3
w is hyperbolic and

1

C
≥ − 1

B(r)
for all r ∈ [r0, ∞). Then

T̃ = −Area(Sr0)

∫ ∞
r0

1

B(r)Area(Sr)
dr

≤ Area(Sr0)

C

∫ ∞
r0

1

Area(Sr)
dr <∞,
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where we note that the last equality is true because the Riemannian
manifold M3

w is hyperbolic (see Prop. 3.1 in [11]).
As we have that t̃ : [0, T ) −→ [0, T̃ ) is a diffeomorphism with T̃ <∞,
we get that the behaviour of the flow γ in t = T is the behaviour of
the flow γ̃ in finite time. This flow in t̃ = T̃ has two options: either
the flow is defined, γ̃(·, T̃ ) is a smooth curve, or the flow collapses to
a point by Theorem 1. We remark that in the first situation T̃ is not
the maximal time of the flow (7).

We note that Theorem 12 is essentially Theorem C.

Remark. The case a) is not true if we eliminate the condition on the func-
tion B. We may find situations where M3

w is parabolic, lim infr→∞B(r) =
−∞ and T̃ < ∞. For example, let (M3

w, gw, ξ) be a smooth rotation-
ally symmetric space such that w|[C,∞)(r) =

√
r with C > 0 and ϕ(r) =

−1

2
ln(r)− r2

2
. Then, M3

w is parabolic,∫ ∞
C

dr

Area(Sr)
=

∫ ∞
C

dr

4πw(r)2
=

∫ ∞
C

dr

4πr
=∞,

and

B(r) =
w′

w
+ ϕ′(r) =

1

2r
− 1

2r
− r = −r < 0, for all r ∈ (C, ∞),

so

lim inf
r→∞

B(r) = −∞.

Given γ0 ∈ Ar0, such that r0 > C, as initial condition then, the system for
R is as follows: {

R′(t) = R(t),
R(0) = r0,

thus

R(t) = r0e
t. (32)

On the other hand, if we assume that ψ ≡ 0, we note that the problem (7) is
the curve shortening flow with γ̃0 as initial condition. Then, it is known that
we can calculate the maximal time of the flow γ̃ from the variation formula
of enclosed area by the curve γ̃(·, t̃). We shall denote by Ω0 the region

enclosed by the curve γ̃0 in the sphere Sr0 such that
Area(Ω0)

Area(Sr0)
≤ 1/2. We
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also take the inward-pointing normal ν̃ to ∂Ω0. We shall denote by Ωt̃ the
region enclosed by the curve γ̃(·, t̃) in the sphere Sr0 where ν̃|γ̃(·, t̃) points
inwards to the set Ωt̃. This variation formula is given by

∂

∂t̃
Area(Ωt̃) = −

∫
S1
kγ̃(·, t̃), Sr0

ds̃ = −2π +

∫
Ωt̃

KSr0
daSr0

= −2π +
1

w(r0)2
Area(Ωt̃),

where the first equality is well-known and we have used the Gauss-Bonnet
theorem in the second equality. We obtain the following expression for the
enclosed area:

Area(Ωt̃) = 2πw(r0)2 − (2πw(r0)2 −Area(Ω0))et̃/w(r0)2 . (33)

Then, if we assume that the area enclosed by the curve γ̃0 is Area(Sr0)/2,
we obtain from (33) that Area(Ωt̃) = Area(Sr0)/2 for all t̃ ∈ [0, T̃max). So,
the flow γ̃ do not collapses to a point. Therefore, by Theorem 1, Theorem 6
and (32) we conclude that T̃max =∞, T =∞ and γ(·, t) is not bounded.
Bearing all this in mind, the value of T̃ is

T̃ =

∫ ∞
0

( w(r0)

w(R(t))

)2
dt =

∫ ∞
0

r0

r0et
dt <∞.

Therefore, the flow topologically converges to γ∞ : S1 → [0, ∞] × S2, p 7→
(∞, γ̃(p, T̃ )).

Remark. In the case b) the situation is analogous: it is not true if we
eliminate the condition on the function B. We may find situations where
M3
w is hyperbolic, lim supr→∞B(r) = 0 and T̃ = ∞. For example, let

(R3, gR3 , ξ) be the 3-dimensional Euclidean space with a density ξ such that
ϕ(r) = −2 ln(r), we note that w(r) = r. Then, R3 is a hyperbolic manifold
and

B(r) =
1

r
+ ϕ′(r) = −1

r
< 0, for all r ∈ (0, ∞),

so

lim sup
r→∞

B(r) = 0.

Given γ0 ∈ Ar0 as initial condition, we have that R(t) satisfies the system R′(t) =
1

R(t)
,

R(0) = r0,
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so

R(t) =
√
r2

0 + 2t. (34)

On the other hand, as in the last remark, if we assume that ψ ≡ 0 and
that the area enclosed by the curve γ̃0 is Area(Sr0)/2, then we can use (33),
Theorem 1, Theorem 6 and (34) to conclude that T̃max = ∞, T = ∞ and
the solution γ(·, t) is not bounded.
Now, we can calculate the value of T̃ :

T̃ =

∫ ∞
0

( r0

R(t)

)2
dt =

∫ ∞
0

r2
0

r2
0 + 2t

dt =
r2

0

2
ln(r2

0 + 2t)
∣∣∞
0

=∞.

Then, the flow topologically subconverges to γ∞ : S1 → [0, ∞] × S2, p 7→
(∞, χ(p)) with χ : S1 → Sr0 a smooth embedded ψ-minimal curve in
(Sr0 , gSr0 , ψ).

In the following result, we provide an equivalence to the hypothesis about
the function B in the cases a) and b) of the last theorem.

Let (R2, gw, ϕ) be the Riemannian manifold with density where gw :=
dr2 + w2(r)gS1 and ϕ = ϕ(r) then, B(r) is the geodesic curvature with
density of the Cr circle centered at the origin whose radius is r respect to
the normal field −∂r.

Proposition 2. Define

L : (0,∞) −→ R
r 7−→ L(r) := ln

(
Lengthϕ(Cr)

)
,

where Lengthϕ(Cr) is the length with density of the circle Cr with respect to
the manifold (R2, gw, ϕ). If we are in the situation of the last theorem, then:

a) The function L|[r0,∞) is Lipschitz if and only if lim infr→∞B(r) is
finite.

b) The function
(
L|[r0,∞)

)−1
is Lipschitz if and only if lim supr→∞B(r) 6=

0.

Proof. We note that L|[r0,∞) is a C1-function.

Case a) If L|[r0,∞) is Lipschitz then its derivative is bounded in [r0, ∞), that
is, there exists C > 0 such that |L|′[r0,∞)(r)| ≤ C for all r ∈ [r0, ∞).

As L|′[r0,∞)(r) = B(r) we obtain that lim infr→∞B(r) is finite.

Conversely, if we assume that lim infr→∞B(r) is finite as B(r) <
0 for all r ∈ [r0, ∞) then there exists C > 0 such that |B(r)| <
C for all r ∈ [r0,∞) and L|′[r0,∞)(r) = B(r) so |L|′[r0,∞)(r)| < C for all r ∈
[r0, ∞). Therefore, L|[r0,∞) is Lipschitz.
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Case b) We have that

L|′[r0,∞)(r) = B(r) < 0, for all r ∈ [r0, ∞),

so L|[r0,∞) has an inverse C1-function by the inverse function theorem,
moreover(
L|−1

[r0,∞)

)′
(s) =

1

L|′[r0,∞)(r(s))
=

1

B(r(s))
for all s ∈ (lim inf

r→∞
L(r), L(r0)]

where the link between r and s is s = L(r). Also we note that L|[r0,∞)

is a diffeomorphism. From this last equality we obtain the result, the
proof is analogous to the case a).

6 Gaussian density

In this section we aim to study a particular case where b) of Theorem 12
applies. We shall assume that ψ ≡ 0, in order to use the variation formula
for the area enclosed by the curve, which ultimately provides us a feasible
way to explicitly perform the calculus.

Let (R3, gR3 , ξ) be the 3-dimensional Euclidean space with a density

ξ such that ψ(r) ≡ 0 and ϕ(r) = −1

2
µ2r2, that is, the radial part of the

density is the Gaussian density. In this situation, given γ0 ∈ Ar0 as initial
condition of the problem (6), the system of ODE for R(t) is: R′(t) = − 1

R(t)
+ µ2R(t),

R(0) = r0.
(35)

Thus, R is:

R(t) =
1

µ

√
1 + (µ2r2

0 − 1)e2µ2t. (36)

Proposition 3. The link between the time parameters is given by

t̃ : [0, T ) −→ [0, T̃ )

t 7−→ t̃(t) =
r2

0

2
ln
( µ2r2

0e
2µ2t

1 + (µ2r2
0 − 1)e2µ2t

)
,

t : [0, T̃ ) −→ [0, T )

t̃ 7−→ t(t̃) =
1

2µ2
ln
( e2t̃/r20

µ2r2
0 − (µ2r2

0 − 1)e2t̃/r20

)
.
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Proof. From (19) the relation between times is given by

t̃(t1) =

∫ t1

0

( w(r0)

w(R(t))

)2
dt =

∫ t1

0

( r0

R(t)

)2
dt

= r2
0

∫ t1

0

µ2

1 + (µ2r2
0 − 1)e2µ2t

dt = r2
0

∫ e2µ
2t1

1

µ2

1 + (µ2r2
0 − 1)x

1

2µ2

dx

x

=
r2

0

2

∫ e2µ
2t1

1

(1

x
− (µ2r2

0 − 1)

1 + (µ2r2
0 − 1)x

)
dx =

r2
0

2

(
ln(x)− ln

(
1 + (µ2r2

0 − 1)x
)∣∣∣e2µ2t1

1

=
r2

0

2
ln
( x

1 + (µ2r2
0 − 1)x

)∣∣∣e2µ2t1
1

=
r2

0

2

(
ln
( e2µ2t1

1 + (µ2r2
0 − 1)e2µ2t1

)
− ln

( 1

1 + µ2r2
0 − 1

))
=
r2

0

2
ln
( µ2r2

0e
2µ2t1

1 + (µ2r2
0 − 1)e2µ2t1

)
,

where we have used the change of parameter t =
1

2µ2
lnx, dt =

1

2µ2

dx

x
.

Now, we move on calculating the inverse function:

t̃ =
r2

0

2
ln
( µ2r2

0e
2µ2t

1 + (µ2r2
0 − 1)e2µ2t

)
⇔ e2t̃/r20 =

µ2r2
0e

2µ2t

1 + (µ2r2
0 − 1)e2µ2t

⇔

(1 + (µ2r2
0 − 1)e2µ2t)e2t̃/r20 = µ2r2

0e
2µ2t ⇔ e2t̃/r20 =

(
µ2r2

0 − (µ2r2
0 − 1)e2t̃/r20

)
e2µ2t ⇔

e2t̃/r20

µ2r2
0 − (µ2r2

0 − 1)e2t̃/r20
= e2µ2t ⇔ t =

1

2µ2
ln
( e2t̃/r20

µ2r2
0 − (µ2r2

0 − 1)e2t̃/r20

)
.

Given γ0 ∈ Ar0 we shall denote by Ω0 to the region enclosed by the

curve γ̃0 in the sphere Sr0 such that
Area(Ω0)

Area(Sr0)
≤ 1/2. We also take the

inward-pointing normal ν̃ to ∂Ω0.

Theorem 13. Let γ0 ∈ Ar0 and let γ : S1 × [0, T ) → R3 be the unique
maximal solution of the initial value problem (6) with γ0 as initial condition,
then:

i) If r0 >
1

µ
:

– If
1

2

(
1 −

(µ2r2
0 − 1

µ2r2
0

)1/2)
<

Area(Ω0)

Area(Sr0)
≤ 1/2 the flow topologi-

cally converges to γ∞ : S1 → [0, ∞]× S2, p 7→ (∞, γ̃(p, T̃ )).
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– If
Area(Ω0)

Area(Sr0)
=

1

2

(
1−
(µ2r2

0 − 1

µ2r2
0

)1/2)
the flow topologically con-

verges to a point p∞ ∈ S∞ ≡ {∞} × S2 ⊂ [0, ∞] × S2 in the
infinite radius sphere.

– If
Area(Ω0)

Area(Sr0)
<

1

2

(
1 −

(µ2r2
0 − 1

µ2r2
0

)1/2)
the flow collapses to a

spherical round point in the Euclidean space R3.

ii) If r0 =
1

µ
:

– If
Area(Ω0)

Area(Sr0)
= 1/2 the flow C∞-subconverges, after a reparametriza-

tion of the curves γ(·, t), to a closed geodesic in (Sr0 , gr0).

– If
Area(Ω0)

Area(Sr0)
< 1/2 the flow collapses to a round point in (Sr0 , gr0).

iii) If r0 <
1

µ
:

– If
Area(Ω0)

Area(Sr0)
= 1/2 the flow collapses to the coordinate origin

in the Euclidean space R3. A blow-up centered at the origin co-
ordinate gives a limit flow by the curve shortening problem in
(Sr0 , gSr0 ) that C∞-subconverges, after a reparametrization of
the curves, to a closed geodesic.

– If
Area(Ω0)

Area(Sr0)
< 1/2 the flow collapses to a spherical round point

in R3 − {0}.

Proof.

Case i) We note that the problem (7) is the curve shortening problem. It is
known that we can calculate the maximal time of the flow γ̃ from the
variation formula of enclosed area by the curve γ̃(·, t̃). This formula
is given by

∂

∂t̃
Area(Ωt̃) = −

∫
S1
kγ̃(·, t̃), Sr0

ds̃ = −2π +

∫
Ωt̃

KSr0
daSr0

= −2π +
1

r2
0

Area(Ωt̃),

where the first equality is well-known and we have used the Gauss-
Bonnet theorem in the second equality, so we obtain the following
expression for the enclosed area:

Area(Ωt̃) = 2πr2
0 − (2πr2

0 −Area(Ω0))et̃/r
2
0 . (37)
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So, if Area(Ω0) = 2πr2
0 the maximal time of the solution γ̃ is infinite.

Let us remind that if the maximal time is finite, the curve collapses to
a point and, if Area(Ω0) < 2πr2

0, the maximal time is finite and it is
given by

T̃max = r2
0 ln

( 2πr2
0

2πr2
0 −Area(Ω0)

)
. (38)

From the hypothesis r0 > 1/µ and Proposition 3 we obtain that the

function t̃(t) is defined on [0,∞) and that limt→∞ t̃(t) =
r2

0

2
ln
( µ2r2

0

µ2r2
0 − 1

)
.

Then

– If T̃max <
r2

0

2
ln
( µ2r2

0

µ2r2
0 − 1

)
, the flow γ collapses to a point in the

Euclidean space R3, because there is t? ∈ [0,∞) such that t̃(t?) =
T̃max. Then, by the relation between the flows, t? = Tmax <∞.

– If T̃max =
r2

0

2
ln
( µ2r2

0

µ2r2
0 − 1

)
, the flow γ topologically converges to

a point p∞ in S∞ the infinite radius sphere.

– If T̃max >
r2

0

2
ln
( µ2r2

0

µ2r2
0 − 1

)
, the flow topologically converges to

γ∞ : S1 → [0, ∞] × S2, p 7→ (∞, γ̃(p, T̃ )), a curve contained in
S∞ the infinite radius sphere.

We can translate these inequalities in the following sense:

limt→∞ t̃(t) < (=) (>) T̃max ⇔
r2

0

2
ln
( µ2r2

0

µ2r2
0 − 1

)
< (=) (>) r2

0 ln
( 2πr2

0

2πr2
0 −Area(Ω0)

)
⇔( µ2r2

0

µ2r2
0 − 1

)1/2
< (=) (>)

2πr2
0

2πr2
0 −Area(Ω0)

⇔

( µ2r2
0

µ2r2
0 − 1

)1/2
< (=) (>)

1

2
1

2
− Area(Ω0)

Area(Sr0)

⇔

Area(Ω0)

Area(Sr0)
> (=) (<)

1

2

(
1−

(µ2r2
0 − 1

µ2r2
0

)1/2)
.

At this point, if we write the previous classification in these terms, we
obtain the statement of the theorem.

Case ii) In this situation, R(t) is constant for all t then, this case is the classic
curve shortening problem [7, 8, 10, 9].
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Case iii) We note that if r0 <
1

µ
then, T is the maximal time of the solution

and it is less than or equal to
1

2µ2
ln
( 1

1− µ2r2
0

)
. This time is the

first time such that R(
1

2µ2
ln
( 1

1− µ2r2
0

)
) = 0, so the maximal time is

finite. Then from Theorem 9, the curve collapses to a point; moreover,
from Theorem 10 we know the nature of the singularities. We also
notice that in this situation:

the flow collapses to the pole o⇔ T =
1

2µ2
ln
( 1

1− µ2r2
0

)
⇔ T̃ =∞,

and by the variation formula we obtain that

T̃ =∞⇔ Area(Ω0)

Area(Sr0)
= 1/2
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