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Abstract 

Motherhood entails increased motivation for pups, which become strong reinforcers and guide 

maternal behaviours. This depends on steroids and lactogens acting on the brain of females during 

pregnancy and postpartum. Since virgin female mice exposed to pups are nearly spontaneously 

maternal, the specific roles of endocrine and pup-derived signals in the induction of maternal 

motivation remain unclear. This work investigates maternal motivation in dams and virgin female 

mice, using a novel variant of the pup retrieval paradigm, the Motivated Pup Retrieval Test. We also 

analyse the role of prolactin and of stimuli derived from a litter of pups and its mother, in the 

acquisition of maternal motivation. 

Experimental design included female mice in three conditions: lactating dams, comothers (virgins 

housed and sharing pup care with dams) and pup-naïve virgins. Females underwent three motivated-

pup-retrieval trials, with pups displaced behind a 10 cm high wire-mesh barrier. Dams retrieved with 

significantly lower latencies than comothers or virgins, indicating that full maternal motivation 

appears only after pregnancy. Although initially comothers and virgins showed no retrieval, 

comothers significantly improved throughout the experiment, suggesting an induced sensitisation 

process. Lengthening exposure of comothers to the dyad pups-dam (from 2 to 5 days at the 

beginning of testing) had no strong effects on maternal sensitisation.  

Prolactin responsiveness was analysed in these animals using immunohistochemical detection of 

pSTAT5 (prolactin-derived signalling marker). As expected, dams showed significantly higher pSTAT5 

expression in most of the analysed nuclei. Moreover, comothers displayed significantly higher 

prolactin responsiveness than pup-naïve virgins in the medial preoptic nucleus, even if they display 

similar circulating PRL levels, which are significantly lower than those of dams. Given the 

instrumental role of this nucleus in the relay and integration of pup-derived stimuli to facilitate 

proactive maternal responses, this increase in PRL responsiveness likely reflects the mechanism 

underlying the maternal sensitisation process reported in this work.  

Since the analyses of maternal motivation and PRL signalling in the brain were performed in the 

same animals, we were able to explore correlation between both set of data. The results shed light 

on the neuroendocrine mechanisms underlying maternal motivation and other aspects of maternal 

behaviour.
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Introduction 

Maternal behaviour includes species-specific social interactions aimed at facilitating infant survival 

until its reproductive maturity [1]. These behaviours also promote correct development that ensures 

physical and mental health of the offspring [2–4]. In rodents, which are common models for the 

neurobiological study of maternal behaviour, maternal behaviours are classified in pup-directed 

behaviours and non-pup-directed ones. The former, also known as maternal care, include pup 

retrieval to the nest, crouching over the pups, nursing and licking/grooming them. Non-pup-directed 

behaviours consist of building and maintaining the nest and defending it against potentially 

threatening conspecifics, e.g. maternal aggression [5].  

Maternal behaviours can also be classified in automatic (reflexive), elicited by proximal pup 

stimulation and largely dependent on brainstem/spinal cord circuits (e.g. nursing), and proactive 

maternal responses [6], motivated search for pups and retrieval behaviours that are likely dependent 

on forebrain circuits. In fact, most pup-directed maternal behaviours require a high level of 

motivation towards pups in order to be expressed properly. In line with this, rat dams bar-press at a 

significantly higher rate than virgin females if rewarded with a pup they are able to interact with [7], 

whereas early postpartum rats significantly prefer pup-associated versus cocaine-associated 

environments in a conditioned place-preference task [8]. Thus, motherhood entails a specific 

motivational state maintained during the peripartum period, when pups and their associated stimuli 

acquire a strong incentive salience and elicit proactive maternal responses [9].  

Maternal behaviours typically emerge around parturition, prompted by profound functional changes 

in the female brain. The major agents regulating these changes are endocrine signals of pregnancy 

(and lactation), including mainly gonadal steroids (estradiol and progesterone) together with 

lactogenic hormones (prolactin and placental lactogens) [10]. These changes start during late 

pregnancy, thus assuring proper expression of maternal behaviours by the time of delivery, whereas 

during the postpartum period, pup-derived stimuli seem to trigger, guide and maintain maternal 

behaviours [11]. 

In contrast to rats, where virgin females initially avoid pups and only display a certain degree of 

maternal care [12] after 6-8 days of daily exposure to pups [13], virgin female mice lack this initial 

avoidance of pups. In fact, using different models of pup-sensitised virgin females, our lab [14] and 

others [15,16] have found that virgin female mice do not differ significantly from dams when facing a 

conventional pup retrieval test (classical paradigm to measure maternal motivation), as they retrieve 
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pups as quickly as lactating dams after only one or two days of experience, and many of them even 

retrieve pups in their first test. Although this might suggest that in mice, maternal care would be 

largely independent of pregnancy-related endocrine signals, few previous studies regard maternal 

motivation specifically [15]. Their results suggest that some motivational aspects of maternal 

behaviour can be induced in virgin females in comparable levels to dams without the need of 

hormones (oestradiol) acting on the brain. Here, we specifically analyse the motivational component 

of maternal behaviour and the role of pup stimuli and prolactin in its induction.  

To do so, we have first designed a test for assessing maternal motivation, the motivated pup retrieval 

test (MPRT), in which experimental animals must perform a physically demanding task in order to 

successfully retrieve pups to the nest (climb a barrier back and forth; for more details, see Material 

and Methods section). The test is based on the fact that goal-directed tasks requiring a high effort 

are performed only for highly rewarding stimuli [17,18]. Using this MPRT, we have compared the 

motivation of four experimental groups of female mice for retrieving pups: lactating dams, short-

term and long-term comothers and pup-naïve virgins. Lactating dams are under the influence of both 

pregnancy-lactation-related endocrine signals and pup-derived stimuli. The comother model of 

maternal sensitisation [14,19] consists of virgin females which are cohoused with a (non-

experimental) pregnant female through parturition and postpartum, and thus are granted 

continuous interaction with pups since their birth. Comothers are thus exposed to infant- and dam-

derived sensory stimulation, but seemingly not to pregnancy- or lactation-related hormones. In order 

to evaluate the dynamics of maternal sensitisation, we included two groups of comothers having 

experienced 2 days (short-term comothers) or 5 days (long-term comothers) of exposure to pups 

prior to the MPRT. Finally, pup-naïve virgin controls lack both pup-derived and motherhood 

hormonal stimulation. The comparison of these groups allowed us to assess the relative contribution 

of endocrine signals and pup-derived (or dam-derived) stimuli to the onset of maternal motivation. 

In the second part of this work, we focused on the neuroendocrine substrate of maternal 

sensitisation. In the rat, evidence shows that this process has a clear endocrine component, since 

either blood transfusions from dams [20] or the administration of prolactin (PRL) under a proper 

gonadal steroid background [21], drastically shorten sensitisation latency. However, the exact role of 

endocrine inputs on the induction of maternal motivation has not been analysed in mice yet. In this 

regard, we hypothesize that endocrine signals of motherhood, specifically lactogenic hormones [22], 

might play a significant role in maternal sensitisation, paralleling its instrumental role in rats [23,24]. 

However, although this causal relationship between PRL/lactogenic action and maternal behaviour is 
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well established, it is still unknown where in the brain this hormonal action is promoting maternal 

behaviours and, specifically, maternal motivation. To address this issue, we have analysed the 

expression of phosphorylated signal transducer and activator of transcription 5 (pSTAT5, a reliable 

indicator of PRL-derived signal transduction [25–27]) in specific nuclei of the sociosexual brain 

network of females subject to the MPRT. By comparing the central patterns of pSTAT5 expression of 

comothers with those of dams and virgin females (positive and negative controls, respectively), we 

expect to gain a deeper insight on the putative role of PRL in the regulation of maternal sensitisation 

and maternal behaviour in female mice. A correlational analysis of the levels of pSTAT5 with the 

score in the MPRT might further contribute to clarify: a) whether motivated maternal behaviour in 

dams and virgin females (comothers) is related to PRL action in the brain; b) the key locations where 

PRL action might promote maternal motivation in dams and, eventually, in comothers. In addition, 

we also analyse correlation between PRL signalling (density of pSTAT5 immunoreactivity) in the 

different brain centres under scrutiny, to explore whether the different nuclei are responding in the 

same way to the circulating levels of PRL.  

Finally, in an additional experiment, we checked if a hormonal change occurs in virgin females 

because of exposure to pups and a pregnant/lactating female (the dam), which might explain 

changes in motivation for pups. To do so, we compared the circulating levels of PRL in pup-naïve 

virgins and comothers (pup-sensitised virgin females) by means of ELISA.  

The results suggest that pup-derived stimuli and maybe cohabitation with a pregnant female, are 

able to induce maternal sensitisation through a process not mediated by circulating PRL but 

seemingly involving changes in central PRL signalling in specific brain centres. Our results also suggest 

possible brain structures mediating the influence of PRL in the induction of maternal motivation for 

pups and in other aspects of maternal behaviour.  

Materials and Methods 

Animals and Experimental Design 

Animals were treated throughout according to the European Union Council Directive of June 3rd, 

2010 (6106/1/10 REV1) and procedures were approved by the Committee of Ethics on Animal 

Experimentation of the Jaume I University of Castellón (UJI), where the experiments were 

performed. 
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In this experiment, a total of n=105 female CD1 mice of 10 weeks of age were used (Janvier, France). 

Of these, 33 animals arrived on pregnancy day 10 to our animal facility, together with 72 virgin 

females. At the moment of arrival females were pair-housed in polypropylene cages (145 mm wide, 

465 mm long and 215 mm high; Panlab) under controlled temperature (24 ± 2 ºC) and lighting 

conditions (12h:12h; lights ON at 8 am), with ad libitum access to food and water.  

Experiment 1: Motivated pup-retrieval and prolactin signalling 

For the first experiment, at arrival females were randomly distributed into four experimental groups 

(Fig 1): lactating dams (n=10), short-term comothers (pup-sensitised virgin females, see below, 

n=10), long-term comothers (n=8) and pup-naïve virgins (n=10). In order to balance the housing 

conditions, experimental comothers were cohoused with a non-experimental dam, experimental 

dams were cohoused with a non-experimental comother, and virgins were housed in pairs (Fig 1). 

The morning after parturition, litters were culled down to 8 pups to ensure homogeneous interaction 

of the experimental animals with pups, as some aspects of maternal behaviour are influenced by 

litter size [28]. One of the pregnant females was removed from the experiment due to problems 

during labour, leaving n=9 lactating dams. Females underwent the Motivated Pup Retrieval Test 

(MPRT) daily for three consecutive days (Fig 1). The next day they were perfused and brain tissue was 

collected and processed for the immunohistochemical detection of pSTAT5.  

a. Behavioural Testing – The Motivated Pup Retrieval Test 

The motivated pup retrieval test was a modified pup retrieval in which the experimental females had 

to retrieve the pups off the nest site by climbing a 10 cm high wire-mesh barrier (Fig 1), similar to the 

one used by Kohl et al., (2018) [37]. The actual height of the barrier was validated on previous pilot 

tests (data not shown) to provide the proper difficulty to the task. At the beginning of the test, the 

experimental female and her non-experimental partner were removed from their home cage, and 

two barriers were glued to the walls, one in each corner of the cage distal to the nest. Then, 4 pups 

were removed from the nest and two of them were carefully placed behind each of the barriers. The 

remaining four pups were left on the nest site, in order to prevent the experimental females from 

building a new nest site behind either of the barriers during the test. Finally, the experimental female 

was placed back in the home cage and her behaviour was video-recorded for 10 minutes.  

Experimental dams, short-term comothers (STC) and virgins underwent three 10-minute trials in the 

morning of postpartum days 2 (PPD2), PPD3 and PPD4 (Fig 1). Long-term comothers (LTC) were 
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tested in the MPRT on days PPD4 to PPD6 of their companion dams. To avoid a bias on the test due 

to the higher weight of pups, these comothers were given fresh pups of donor mothers in each of the 

experiment trials, of ages matching the pups used for short-term comothers, dams and virgins (ages 

2, 3 and 4 days).  

On the morning of postpartum day 5, dams, short-term comothers and pup-naïve virgins received an 

overdose of sodium pentobarbital (Vetoquinol, Madrid, Spain) and were perfused transcardially with 

4% paraformaldehyde in 0.1M phosphate buffer (PB), pH 7.4 for histology. Since short-term and 

long-term comothers displayed similar behaviours (see Results), only the brains of short-term 

comothers were processed and long-term comothers were not sacrificed.  

b. Histological procedure 

After perfusion, brains of dams, short-term comothers and pup-naïve virgins were carefully 

extracted, post-fixed overnight in the same fixative, and cryoprotected in 30% sucrose in 0.01M PB 

under gentle agitation until sinking (2-3 days). Then, brains were cut using a freezing microtome 

(Microm HM-450, Walldorf, Germany) in four parallel series of 40 µm thick coronal sections and 

stored thereafter in PB-30% sucrose at -20ºC.  

A series of these coronal sections was processed for the immunohistochemical detection of 

phosphorylated signal transducer and activator of transcription 5 (pSTAT5), which constitutes a key 

element of PRL signalling. Immunohistochemistry was conducted as in previous works[29,30]. Free-

floating sections underwent an initial antigen retrieval step (2 sequential 6 minutes incubations in 

0.01 M TRIS buffer (TB), pH 10 at 85oC) and were then incubated in: (a) 1% hydrogen peroxide (H2O2) 

for 30 minutes, for endogenous peroxidase inhibition; (b) 2% BSA, 2% goat serum and 0.3% Triton X-

100 in TBS for 1h, in order to block unspecific labelling; (c) rabbit anti-pSTAT5 primary antibody 

(pSTAT5 Tyr694; Cell Signalling Technology, Beverly, MA) diluted 1:500 in TBS plus Triton X-100 0.1% 

for 72 h at 4ºC; d) biotinylated goat anti-rabbit IgG (Vector Laboratories, Peterborough, UK) 1:200 in 

TBS for 90 minutes; and e) avidin-biotin-peroxidase complex (ABC Elite kit; Vector Laboratories) in 

TBS for 90 minutes. The resulting peroxidase label was developed using 0.005% 3-3’-

diaminobenzidine (Sigma) and 0.01% H2O2 in TB pH 7.6 for about 15 minutes, obtaining thereby a 

brown nuclear staining. Sections were rinsed in TB and mounted onto gelatinized slides, dehydrated 

in alcohols, cleared with xylene and coverslipped with Entellan. 

c. Image acquisition and quantitative analysis of pSTAT5 immunoreactivity 
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We assessed the density of cells showing pSTAT5 immunoreactivity (pSTAT5-ir) in a selection of brain 

nuclei involved in maternal behaviour expression or relevant for sociosexual behaviour regulation, 

where pSTAT5-immunoreactivity had been described previously in virgin and lactating females 

[29,31]: the lateral septum (ventral part, LSV), the medial amygdala (posterodorsal division, MePD), 

the central amygdala (medial division, CeM), the medial division of the bed nucleus of the stria 

terminalis (posteromedial part, BSTMPM), the anteroventral periventricular nucleus (AVPe), the 

medial preoptic nucleus (MPO), the region located between the nucleus of the anterior commissure 

and anterodorsal preoptic nucleus (AC/ADP), the paraventricular hypothalamic nucleus (Pa), the 

supraoptic nucleus (SO), the arcuate nucleus (Arc), the posterior intralaminar thalamic nucleus (PIL) 

and the lateral periaqueductal grey (LPAG) . To do so, we selected representative frames of the 

chosen nuclei using the stereotaxic atlas of Paxinos and Franklin [32], at the anteroposterior levels 

(relative to Bregma) indicated in Fig. 2. Thus, we obtained photomicrographs of these frames in both 

hemispheres (in a single section corresponding to the Bregma level indicated) using an optical 

microscope Leica DM 750 attached to a Leica DFC 450C digital camera (Leica AG, Germany). To do so, 

we adjusted gamma=1 and light intensity/exposure just high enough as to avoid white saturation in 

void areas of the preparation. Image processing and analysis was conducted on Image J software 

(NIH). Briefly, we subtracted background light and converted the RGB colour image to greyscale by 

selecting the green channel. Then, we binarised the greyscale image setting the threshold at 75% of 

the mode of the grey histogram, thus including every pixel below this threshold as positively labelled. 

We filtered smaller noise particles by an additional processing consisting of the following Image J 

commands: “fill holes”; “open” (3 iterations) and “watershed”. Particles were additionally filtered by 

area (discarding those smaller than 35 µm2, corresponding to an approximate diameter of 6,6 µm) 

and finally counted automatically. With this figure we calculated the mean (interhemispheric) density 

of pSTAT5-imunoreactive cell nuclei for each specimen by dividing the total number of particles by 

the total area of all the frames analysed.  

Experiment 2. Prolactin circulating levels in dams, virgins and comothers 

Since data from experiment 1 suggest a certain differential PRL signalling in some nuclei between 

pup-naïve virgin females and comothers, we decided to compare their circulating PRL levels. We 

used dams (postpartum day 5, PPD5) as positive controls for enhanced circulating levels and pup-

naïve virgins as control group (n=7). We obtained blood from groups of comothers, co-housed with 

pregnant females since postconception day 9-10. These comothers were sampled at dams’ 

postconception days 14 (n=6) and 18 (n=6), or postpartum days PPD1 (n=4), PPD5 (n=7) and PPD9 
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(n=7). This allowed us to check whether interaction with the dam during pregnancy, and/or with the 

dam and pups after parturition, resulted in PRL hypophyseal release in comothers (as reported for 

males of some mammalian species, [33]).  

Prolactin is released from the pituitary gland within a few minutes after the animals experiment a 

stressing stimulus [34] and i.p. administration of pentobarbital is known to alter systemic PRL levels 

[35]. Therefore, we avoided collecting blood samples of the experimental females of Experiment 1, 

after euthanasic injection during perfusion (see below). Instead, sampled animals were sacrificed by 

cervical dislocation and trunk blood collected, allowed to clot for 30 minutes and left at 4ºC 

temperature. Then, serum was separated from the clot by centrifugation for 10 minutes at 2000 rpm 

at 4ºC and stored subsequently at -80ºC. To assess serum PRL levels of dams, comothers and virgins, 

we performed a commercially available Sandwich ELISA assay for prolactin (AbCam #ab100736). All 

samples and standards were run simultaneously in duplicate. Absorbance values were determined at 

450nm using a micro-plate reader (Thermo Multiskan FC). Serum PRL concentrations were 

interpolated from the standard curve following a 4-point logistic regression.  

Statistical analyses 

Quantitative data obtained in both experiments were statistically analysed using SPSS software 

package (IBM).  

a. Behaviour 

Concerning data on the MPRT, we first searched for possible inter-group differences (dams, short-

term comothers, long-term comothers and virgins) in locomotion, anxiety, and interaction with pups, 

by statistically comparing the following variables: number of crossing across three parallel lines 

dividing the cage in four sectors, time in the centre of the cage, latency to first contact with pups, 

total time of pup contact and number of barrier crossings. Since data for these variables were not 

normally distributed even after logarithmic transformation, we performed separate Kruskal Wallis 

ANOVAs for each trial. This allowed us to discard differences between dams, comothers and virgin 

females relative to pup approach/avoidance and motor abilities.  

Then, we performed log rank (Kaplan-Meier) tests in search for significant differences in the 

distribution of the latencies to retrieve the first and the fourth pups of each of the three trials. This 

allowed comparing the performance of different females (dams, short-term comothers, long-term 

comothers and virgins) in the MPRT. Finally, we were interested in assessing the improvement of the 
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experimental groups in the task (e.g. motor learning or increased motivation). Since latencies were 

not normally distributed among our experimental groups, we ran separate Wilcoxon signed-rank 

tests for matched pairs. To do so, we considered the latencies of each experimental animal to 

retrieve the first pup and compared the distributions of these latencies during the first trial with 

those in the second and third trials, respectively. 

b. Differences in PRL signalling in the analysed brain centres 

Differences in the density of pSTAT5-ir cells were statistically analysed independently for each one of 

the sampled nuclei. Whenever normality and homoscedasticity were fulfilled, we applied a one-way 

ANOVA. Otherwise, a Kruskall-Wallis non-parametric test was carried out. When these tests 

rendered significant differences, we further explored these differences using Dunnet’s post-hoc 

comparisons. We aimed at understanding the relative role of exposure to pregnancy hormones and 

to outer stimuli (mainly pup-derived ones), in PRL signalling revealed by pSTAT5 immunoreactivity. 

Therefore, we used comothers as a reference group, to which dams and virgins are compared. The 

comparison of comothers with dams (both exposed to pup-derived stimuli) allows checking the 

effects of previous exposure to pregnancy hormones (occurring in dams, not in comothers). On the 

other hand, the comparison of comothers with pup-naïve virgins (neither of them exposed to 

pregnancy hormones), allows testing the role of pup-derived stimuli, to which comothers but not 

virgins are exposed. 

c. Correlation analysis  

Besides the statistical analysis described above, we also explored the correlation between motivated 

maternal behaviour (cumulative latency to retrieve the first pups in the three trials; number of pups 

retrieved through the three sessions of MPRT) and the density of pSTAT5-ir cells. We did so globally 

for all the experimental females (dams plus comothers and virgins), as well as separately for each 

group, by means of Spearman correlation (behavioural data lacked normality), independently for 

each brain centre. This way we checked where in the brain PRL signalling correlates with maternal 

motivation in dams and comothers.  

In addition, we also performed a cross-correlation analysis of the density of pSTAT5-ir cells between 

the different sampled nuclei in the brain of dams, short-term comothers and virgins. This allowed us 

to check whether pSTAT5 immunoreactivity was coherently increased or decreased in the different 

brain centres in the different groups of females, as expected if it is reflecting circulating levels of PRL.   
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d. Circulating PRL levels in comothers 

In the absence of variance homogeneity, serum PRL values of the samples of experiment 2 were 

statistically compared through a non-parametric Kruskal-Wallis ANOVA with multiple post-hoc 

comparisons. 

 

Results  

Experiment 1. Maternal motivation and PRL signalling  

Motivated pup retrieval test 

First, we checked for possible differences in locomotion, barrier crossings. time in the centre of the 

cage, latency to approach pups and time that the experimental animals interacted with the pups 

behind the barriers. Locomotion and time in the centre of the cage showed no differences among 

groups (Supplementary Fig 1). Regarding the interaction with pups, Kruskal Wallis tests (data did not 

fulfil criteria for parametric ANOVA), revealed no significant differences during any of the three trials 

among experimental groups in the latency to cross the barrier (p=0.126; p=0.518 and p=0.101 for the 

three trials, respectively), the number of barrier crossings (p=0.247; p=0.843; p=0.197), or the total 

time in contact with pups behind the barriers (p=0.929; p=0.463; p=0.137) (Fig 3). These results 

indicate that all three groups of females had equivalent access and interaction with pups, with no 

evidence of differential aversion or neophobia induced by the barriers (or the pups). They also 

indicate that dams, virgins and comothers are equally able to climb the barriers back and forth.  

Then, using the Kaplan Meier “survival” analysis, we explored differences in the distribution of the 

retrieval latencies for the first and the fourth pups in each trial between dams, comothers and virgins 

(Fig 4). During the first trial, the survival distributions of the latency to retrieve the first pup (Fig 4A) 

significantly differed between dams and short-term comothers (χ2(2)=4.194, p=0.041) as well as 

between dams and virgins (χ2(2)=6.389, p=0.011), but not between dams and long-term comothers 

(χ2(2)= 1.556, p=0.212), comothers and virgins (χ2(2)=1.0, p=0.317 for STC; χ2(2)= 2.675, p=0.102 for 

LTC), or both kinds of comothers (χ2(2)=0.678, p=0.410). Regarding retrieval of the fourth pup (Fig 

4B), however, no significant differences between experimental groups were found (p=0.146).  

During the second trial, survival distributions of the latencies to retrieve the first (Fig 4C) and fourth 

pup (Fig 4D) were both significantly different between dams and comothers (short-term comothers: 
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χ2(2)=8.198, p=0.004 for pup 1 and χ2(2)=10.715, p=0.001 for pup 4; long-term comothers χ2(2)= 

4.965, p=0.026 for pup 1 and χ2(2)= 7.553, p=0.006), as well as between dams and virgins 

(χ2(2)=15.764, p<0.001 for pup 1; χ2(2)=16.989, p<0.001 for pup 4). Moreover, statistically significant 

differences appear between long-term comothers and virgins, only in latency to retrieve the fourth 

pup (χ2(2)=7.553, p=0.006) but no other significant differences were found between comothers and 

virgins (p>0.14 in every comparison), neither between both kinds of comothers (p>0.499). 

Finally, during the third trial, dams, comothers and virgins differed significantly in many of the 

latencies to retrieve the first (Fig 4E) and fourth pups (Fig 4F). Dams showed statistically significant 

shorter retrieval latencies than virgins (χ2(2)=21.837 (p<0.001 for pup 1; χ2(2)=16.989, p<0.001 for 

pup 4). Dams also differed from short-term comothers (short-term, χ2(2)=9.591, p=0.002 for pup 1; 

χ2(2)=6.981, p=0.008 for pup 4) but when compared to long-term comothers they differ in the 

retrieval of the first pup (χ2(2)= 4.577, p=0.032) whereas difference in the retrieval of pup 4 between 

dams and LTC does not reach significance  (χ2(2)=3.422, p=0.064).  Finally, when comparing virgins 

with comothers in this session, significant differences are found between virgins and long-term 

comothers (χ2(2)= 6.272, p=0.012, pup 1; χ2(2)=6.272. p=0.012, pup 4), but differences with STC are 

restricted to retrieval of the first pup (χ2(2)=6.389, p=0.011) (for pup 4; χ2(2)=3.353, p=0.067). Thus, 

comparison of pup retrieval in the third session is suggestive a certain higher degree of sensitisation 

(e.g. maternal motivation) of long- as compared to short-term comothers, although both groups of 

comothers showed similar latency to retrieve pups (p>0.445). 

The effects of maternal sensitisation that occurred in comothers are illustrated by the results of the 

last trial, in which a 50% (Fig 4E) of the comothers of both groups retrieved the first pup, and 30-45% 

completed the whole task retrieving all four pups (Fig 4F). By contrast, only a naïve virgin female 

retrieved a single pup in the whole trial. 

Finally, we assessed the improvement of each experimental group in the motivated pup retrieval task 

by comparing first-pup retrieval latencies between trials 1 and 2, and 1 and 3, by means of a 

Wilcoxon signed-rank test for matched pairs. Since the previous analysis did not show any difference 

between short-term and long-term, their data were pooled for this analysis.  When matching trials 1 

and 2, only dams differed significantly in their latencies to retrieve the first pup (Z=-2.666, p=0.008), 

whereas comothers (Z=-1.604, p=0.109) and virgins (Z=-1.000 p=0.317) did not. On the other hand, 

when comparing trials 1 and 3, dams (Z=-2.803, p=0.005) and comothers (Z=-2.023, p=0.043), did 

show statistically significant differences in their retrieval latencies, whereas virgins did not (Z=0, 

p=1.0). These findings indicate that in a three-trial motivated pup retrieval test, dams rapidly 
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improve in the task of retrieving pups (already during trial 2), comothers display a slower and weaker 

improvement (significant only in trial 3) and virgins show no improvement at all.  

Assessment of pSTAT5 immunoreactivity in dams, comothers and virgins 

Like in previous studies [29,30], in our material immunohistochemistry for pSTAT5 produced a 

defined, specific staining in the examined brain tissue (see Fig 5), mostly restricted to the cell 

nucleus. To compare pSTAT5-ir cell density in the selected brain regions in the three groups of 

females (dams, short-term comothers and pup-naïve virgins), we first performed a one-way ANOVA if 

data fulfilled normality and homogeneous variance (Arc, AVPe, MePD, MPO, Pa, PIL, SO), and a 

Kruskal-Wallis nonparametric ANOVA if not (AC/ADP, BSTMPM, CeM, LPAG, LSV). When the ANOVA 

revealed significant differences between females, we compared comothers with dams and virgins 

using Dunnett post-hoc comparisons. The results of this analysis, illustrated in Figure 6, reveal 

significant intergroup differences in the density of pSTAT5-ir in telencephalic, amygdaloid, 

diencephalic and midbrain nuclei, indicating generally higher pSTAT5-ir densities in dams as 

compared to virgins.  

Within the telencephalon, the amygdala showed significant differences in pSTAT5-ir density in both 

the medial posterodorsal (MePD; F(2,26)=9.028; p=0.001) and central nuclei (medial division, CeM; 

p=0.039) (Fig 5N-P), but no differences in the medial extended amygdala (BSTMPM, p=0.220, Fig 5D-

I). Posthoc analysis of this findings using Dunnett’s test indicate that in both amygdaloid nuclei, 

comothers significantly differ from dams (p=0.038 for the MePD; p=0.047 for the CeM) but not 

virgins (p>0.1), thus indicating a crucial role of pregnancy hormones but not of outer social stimuli in 

PRL signalling. As for the septal region, the ventrolateral septum (LSV, Fig 5A-C) displayed significant 

differences (p=0.048), with no difference of comothers with either dams or virgins (p>0.1). This 

suggests that a combined effect of both stimuli (pregnancy hormones and pup stimuli) is shaping PRL 

signalling. 

In the preoptic hypothalamus, significant differences were observed in the region comprised 

between the anterior commissural and anterodorsal preoptic nuclei (AC/ADP; Fig 5D-F; 

F(2,29)=6.556; p=0.038) and in the medial preoptic nucleus (MPO; Fig 5G-I; F(2,29)=9.026; p=0.001), 

but not in the anteroventral periventricular nucleus of the preoptic hypothalamus (AVPe; 

F(2,29)=1.869; p=0.393). In the AC/ADP comothers do not differ significantly from either dams or 

virgins. In contrast, in the MPO comothers are similar to dams (p>0.15), but significantly differ from 
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virgins (p=0.038). This suggests that outer stimuli, more than pregnancy hormones, are shaping PRL 

signalling. 

In the anterior and tuberal hypothalamus, significant differences were found in the paraventricular 

nucleus (Pa; F(2,26)= 6.365; p=0.006), but not in the supraoptic (SO) (F(2,26)=0.830, p=0.447), and 

arcuate nuclei (Arc, F(2,26)=1.338; p=0.280). Dunnett’s posthoc analysis of the Pa reveals that 

comothers differ significantly from dams (p=0.019) but not from pup-naïve virgins (p>0.7), thus 

suggesting a crucial role of exposure to pregnancy hormones in shaping PRL signalling. 

Finally, in the posterior thalamus and midbrain, the ANOVA revealed significant differences in the 

posterior intralaminar complex of the posterior thalamus (PIL; F(2,26)=10.979; p<0.001) and 

periaqueductal grey (LPAG; p=0.019).  In the PIL comothers differ significantly from dams, but not 

from virgins, thus showing a crucial role of pregnancy hormones (but not pup- or dam’s-derived 

outer stimuli) in shaping PRL signalling. In contrast, in the LPAG comothers do not differ significantly 

with either dams or virgins (p>0.1 in both cases), thus suggesting again the need of a combined 

action of endocrine and outer stimulation in shaping of the response to PRL.  

Correlation analysis: pSTAT5-ir cell density and behaviour 

Data on the density of pSTAT5-ir cells in each of the nuclei and maternal motivated behaviour 

(accumulated latency to pup retrieval in the MPRT; total pups retrieved through the three session of 

MPRT) belong to the same animals. To explore the relationship between maternal motivation and 

prolactin signalling we carried out an analysis of correlation between these variables using Spearman 

test (behavioural data did not follow a normal distribution). This was done first using data of all the 

animals for which both kinds of data were obtained, namely dams, short-term comothers and pup-

naïve virgins.  

Table 1 shows the results of this correlation analysis. As expected, in those nuclei in which increased 

pSTAT-ir is observed in dams, pSTAT5-ir shows a mild, negative correlation with the cumulative 

latency to retrieve pups in all three tests, and a similarly mild positive correlation with the total 

number of pups retrieved throughout the three sessions of MPRT (CeM, MePD, MPO, Pa and PIL).  

There are, however, three relevant exceptions: no correlation was observed in the LSV, LPAG and 

AC/ADP. On the other hand, also as expected, in those nuclei showing no increase of pSTAT5-ir in 

dams, PRL signalling is not correlated with behaviour (SO, AVPe, Arc, BSTMPM).  
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We also performed this correlation analysis within the groups of those females showing pup-retrieval 

in the MPRT, namely in the group of dams and the group of comothers (separately). As Table 1 

shows, in comothers no behaviour-pSTAT5 correlations appear in any of the analysed nuclei. By 

contrast, in dams pSTAT5-ir cell density is strongly and significantly correlated with behaviour in the 

Pa and SO, and no correlation is observed in any of the remaining nuclei. Surprisingly, in the Pa and 

SO of dams, pSTAT5-ir cell density is positively correlated with latency and negatively with the 

number of retrieved pups. In other words, the higher the density of pSTAT5-ir cells in the Pa and SO, 

the slower is pup retrieval (higher latency, lower number of pups retrieved) in the MPRT. 

Correlation analysis: inter-nuclear cross correlation in pSTAT5-ir cell density  

Finally, we performed a correlation analysis between levels of pSTAT5-ir observed in the different 

nuclei analysed, independently in all three groups of females. Table 2 summarises the results 

obtained. The main output of this analysis is that in virgin females, most nuclei show positive, 

significant cross-correlation. The main exceptions are the Arc and the SO, which only show 

correlation with the AVPe. On the other hand, the AVPe shows correlations with the remaining 

nuclei, although in many instances there is a simple trend that does not reach significance. For the 

remaining nuclei (LSV, MePD, BSTMPM, AC/ADP, MPO, PIL and LPAG) pSTAT5-ir displays highly 

significant positive cross-correlation.  

These results in pup-naïve virgins contrast with those observed in comothers and, especially, in 

dams. The number of correlations observed is much lower in those females. In Table 2, significant 

correlations are highlighted in bright yellow (p<0.05), and it can be observed that whereas for pup-

naïve virgins (upper table) 40 out of 66 cells of the table show significant positive correlations, in 

comothers (middle) and dams (lower table) the number of correlations is reduced to 23 and 9 

respectively.    

Experiment 2. Serum prolactin in dams, comothers and virgins 

After logarithmic transformation, data on serum PRL levels in dams, comothers (E14, E18, PP1, PP6 

and PP9) and virgins (see Figure 7) achieved normality but not homoscedasticity. Therefore, a 

nonparametric Kruskal Wallis analysis revealed significant differences in serum PRL levels between 

females (χ2(6)=42.147, p<0.001). Post-hoc comparisons, showed that dams had significantly higher 

levels of serum PRL than comothers and virgins (p values between 0.042 and 0.000), whereas 

comothers and virgins did not differ significantly from each other (p≥0.259).  
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Discussion 

In the present work, we have analysed the importance of motivation in maternal behaviours in mice. 

For this purpose, we have designed a novel variant of the pup retrieval test that circumvents the 

limitations of the standard pup retrieval paradigm to evaluate motivational components of maternal 

behaviour, the motivation pup retrieval test (MPTR). We report a high motivation to retrieve pups in 

dams, as well as increased motivation for pups in sensitised virgin females. In addition, we have 

explored the role of PRL in the induction of maternal motivation in dams and sensitized virgin 

females, and the brain centres where this PRL action might occur.  

In this section, we first discuss the validity of the new pup retrieval paradigm employed in this work 

and comment on the findings resulting of this test. Then, we evaluate the putative role and 

interaction of pup-derived stimuli and endocrine signals (PRL) in the onset of proactive maternal 

responses, in the context of currently accepted models for the functional neuroanatomy of maternal 

behaviour. 

The Motivated Pup Retrieval Test, a novel paradigm to assess maternal motivation 

Assessment of maternal motivation requires the inclusion of activational aspects of motivation [36]. 

A limitation of conventional pup retrieval tests performed in the home cage in this sense is that they 

do not allow discriminating differences in motivation between dams and virgin females, as this task 

demands little effort and only moderate levels of motivation. This would explain the common 

occurrence of pup retrieval in unexperienced virgin females using the regular pup retrieval test 

(about 25% [16]) and its increase with further experience, reaching levels similar to those of dams 

after exposure to pups for a few hours [15,16], or as a consequence of cohabitation with a dam and 

its litter (comothers [14]).  

Previous works assessing maternal motivation [37] used alternative strategies in which access to 

pups posed a challenge, for instance facing a novel T-maze where the pups are placed [15,38–41], in 

which females have to overcome the anxiety associated to a new environment. Since anxiety is 

reduced in dams as compared to virgin females [42], the T maze paradigm might not allow properly 

discriminating anxiety-related and motivational components of maternal behaviour (but see 

Stolzenberg and Rissman [15], who discarded differences in anxiety between lactating dams and pup-

experienced virgins). 
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To circumvent these limitations, we have developed the MPRT, which confronts the tested animals 

with an additional effort-demanding task (climbing a barrier back and forth). The female has to 

choose between staying with the four pups that remain in the nest (low effort, low reward) or 

retrieving the displaced four pups to the nest (very high effort) to become in contact with the eight 

pups in the nest (high reward). The low effort/low reward vs high effort/high reward two-choice test, 

has been used before in rodents to assess motivational aspects of behaviour and their dependence 

on dopaminergic neurotransmission in the nucleus accumbens [18]. Drugs reducing motivation, such 

as tetrabenazine (an inhibitor of the vesicular monoamine transporter VMAT-2) disbalance this test 

in favour of the low effort/low reward option ([44]). Therefore, our results indicate that the 

motivation of dams for pups is very high, whereas maternal sensitisation occurring in comothers 

involves an increase of maternal motivation that, however, does not reach the levels of dams.  

In our paradigm, females do not leave their home cage to retrieve pups, minimizing anxiety. First, 

data presented in Fig. 3 support that the barriers introduced in the home cage of the females during 

the MPRT do not induce significant neophobia. In addition, when reintroduced in their home cage for 

the first session of the MPRT, we have not observed differences in behavioural measures commonly 

used to measure anxiety (Supplementary material, Figure 1) [43]. Thus, our data suggest that anxiety 

is not a relevant factor in the MPRT; pups are not apparently aversive for those animals having no 

previous experience with pups (pup-naïve virgins) or with these particular pups (long-term 

comothers that received “foster” pups); and all the experimental groups displayed equivalent motor 

performance or physical strength, thus discarding another potential bias for our results. Therefore, 

differences in retrieval performance found among experimental females can be attributed to 

motivation. Furhter, improvement of performance in the MPRT through the three sessions is also a 

proof of the reinforcing properties of pups to dams and, to a lesser extent, comothers.  

In summary, our data validates the MPRT as a suitable paradigm to study maternal motivation. The 

fastest and largest improvement displayed by dams, as compared to comothers, demonstrates that 

pups are more reinforcing to dams than to comothers whereas, comparatively, pups do not 

constitute a strongly rewarding stimulus for pup-naïve virgin females.  

Maternal motivation in dams, comothers and virgin females: role of hormones and outer stimuli  

The MPRT is a difficult task for an adult female. The first test day, only 50% of the dams retrieve the 

first pup and just a 20% of them are able to retrieve all four pups during the 10-minute session. Even 

so, they significantly differ from virgin females and STC already in this session (Fig. 4), evidencing that 
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endocrine inputs of pregnancy and lactation are essential for the development of full maternal 

motivation [10]. This is reinforced by the quicker and more complete learning displayed by dams 

through the second and third sessions. Concerning comothers, despite initially displaying no or 

delayed pup retrieval (Fig 4), they improved progressively in subsequent trials, and by trial 3 they 

displayed consistent retrieval performance, differing significantly from pup-naïve virgins which 

underwent short (10 min) exposure periods to pups only during the tests (Fig 4). This finding 

indicates that prolonged exposure to a dam and her pups is also able to induce certain levels of 

motivation for pups, which contributed to learning the task, although not as effectively as its 

synergistic action with endocrine signals of pregnancy and lactation (dams). Therefore, in contrast to 

what the use of regular pup-retrieval tests might suggest [13], virgin female mice are not 

spontaneously fully maternal but require a pup-induced maternal sensitisation to exhibit full 

maternal behaviour including enhanced motivation for pups [15,16]. 

Our model of maternal sensitisation, the comother, entails exposure of a virgin female to stimuli 

derived from pups and their mother (a pregnant, parturient and lactating female), so that stimuli of 

the accompanying mother might be relevant for the observed process of maternal sensitisation of 

comothers. This sensitisation could provoke endocrine changes, such as increases in PRL, similar to 

those occurring in fathers in biparental species [33] [45]. However, the results of our experiment 2 

indicate that comothers show no increased levels of circulating prolactin during either pregnancy or 

postpartum period of their mate. Nonetheless, we assume that even if stimuli emitted by the 

accompanying dam might be also relevant for maternal sensitisation of comothers, interaction of 

comothers with pups during postpartum has a pivotal role in sensitisation process, as demonstrated 

previously [15,16]. 

We also evaluate the effect of the length of exposure to pups in the sensitisation of comothers, by 

comparing two lengths of exposure to pups prior to the beginning of the MPRT (2 and 4 days, in STC 

and LTC, respectively). There are subtle differences between STC and LTC that may suggest a 

somewhat increased motivation in the latter. Thus, analysis of the retrieval of the fourth pups during 

the third session of the MPRT reveals that differences between dams and LTC do not reach 

significance (p=0.064), whereas STC and pup-naïve virgins do not differ significantly either (p=0.067). 

Similarly, LTC do not differ significantly from dams in the first session of the MPRT. However, when 

directly comparing LTC with STC, there are not significant differences in pup retrieval between both 

groups. This suggests a certain ceiling effect regarding the effects of stimuli of pups and/or the dam, 

with two days of postpartum prior to the onset of the MPRT being sufficient to significantly facilitate 
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the increase in motivation for pups. It also reveals that exposure to pups, even a long one, is not able 

to induce the high maternal motivation observed in dams, which clearly requires the action of 

hormones during pregnancy, parturition and/or lactation. 

Motivated maternal behaviour and PRL signalling 

In accordance with previous studies [29], our data indicate that most of the nuclei of the so-called 

sociosexual brain network, the circuitry encoding the expression of social behaviours [46], display 

increased pSTAT5-ir in dams, including the LSV, MePD, MPO, AC/ADP, CeM, Pa, and LPAG. As 

indicated in previous works, moreover, these data are consistent with the distribution of PRL 

receptors in the brain of mice [30][47]. Our data differ, however, from those of our previous study in 

showing no differences between dams and virgins in the levels of pSTAT5-ir in the SO, a conflicting 

result for which we have no clear explanation. In addition, in this work we have observed significantly 

increased pSTAT5-ir levels in the PIL of dams, not observed in our previous analysis [29], a difference 

that we attribute to the larger number of animals employed in this work. Even so, neither the AVPe 

nor the Arc display differences in PRL signalling between dams and virgin females. The Arc and AVPe 

include the tuberoinfundibular dopaminergic (TIDA) and periventricular hypothalamic dopaminergic 

(PHDA) participating in the negative feedback control of the hypophyseal PRL [48][49]. In this 

context, dams (showing higher levels of circulating PRL, see Figure 7) would be expected to have 

increased pSTAT5-ir. However, hyperprolactinaemia during lactation is due, at least in part, to 

reduced prolactin (PRL) negative feedback derived from a reduction of STAT5-PRL signalling in TIDA 

neurons [50] mediated by upregulation of the expression of CIS (cytokine-inducible SH2 domain-

containing protein). This might explain why, in spite of their hyperprolactinemia (see Fig. 7), dams 

show no higher levels of pSTAT5-ir than virgin females in the Arc and AVPe. 

The analysis of correlation between motivated maternal behaviour (number of pups retrieved and 

cumulative latency to retrieve the first pup) and the density of pSTAT5-ir in the nuclei under scrutiny 

allows mapping the brain centres where PRL action is critical for modulating motivational aspects of 

maternal behaviour. Our results reveal that only a fraction of the nuclei where pSTAT5-ir density is 

increased during postpartum [29,31], shows correlation between PRL signalling and behaviour. This 

occurs in the CeM, MePD, MPO, Pa and PIL. Even though different factors may influence PRL 

signalling in the female brain, our data specifically indicate that the more PRL-signalling occurs in 

these nuclei, the higher the motivation of the females for pups. Although correlation does not 

demonstrate causal relationships, evidence in rats and mice indicates a causal role of PRL in the 

induction of proactive maternal behaviours [21,51,52]. This evidence, together with our findings, 
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strongly suggest that action of PRL in these nuclei is part of the mechanisms underlying the increased 

motivation of dams for pups. By contrast, in the LSV and LPAG postpartum females display increased 

pSTAT-ir [29,31], but there is no correlation between PRL signalling and motivation to retrieve pups. 

This suggests that in these brain centres, PRL action is likely involved in other aspects of maternal 

behaviour and/or physiology not specifically related to motivation for pups (e.g. oxytocinergic 

neurotransmission in the LSV mediates the reduction of social anxiety occurring during motherhood 

in mice [53]). 

Our findings fit previous studies in rats indicating that PRL or placental lactogens infused 

intracerebroventricularly or locally in the preoptic area induce maternal care in steroid-primed virgin 

rats [21]. In addition, our findings also suggest that action of PRL in nuclei outside the preoptic area 

might be relevant for the expression of maternal motivation. In lactating rats, PIL cells show 

increased expression of a tuberoinfundibular peptide of 39 residues (TIP39) [54], and these TIP39-

expressing cells project to (among other targets) the preoptic region, where they activate 

parathyroid hormone 2 receptor (PTH2R), inducing maternal motivation for pups [55] as revealed by 

pup-induced place preference. The MePD is likely to be part of this circuitry, as it projects massively 

to the MPO [56] and receives ascending projections from PIL [57].  

The functional model by Numan and Woodside, based on evidence in the rat ([24], but see also 

[58][59]), proposed a specific neuroanatomical substrate of the influence of the medial preoptic area 

on maternal motivation. According to it, pup stimuli would activate the preoptic pathways to the 

ventral tegmental area, thus stimulating mesocorticolimbic dopaminergic pathway in the maternal 

female, triggering proactive maternal behaviours. In rats, this only happens if the preoptic area 

undergoes hormonal priming during pregnancy, which is induced by lactogenic hormones and other 

endocrine signals of motherhood [24,60,61].  

Recent data in mice have depicted a similar role of the medial preoptic area in motivation for pups.  

Using optogenetics, activation or inhibition of specific galaninergic preoptic cells projecting to the 

ventral tegmental area [37] has been shown to increase or reduce (respectively) motivation to be in 

touch with pups, using a behavioural paradigm similar to ours (a climbable barrier separating the 

female from the pups). There is solid evidence indicating that the medial preoptic area and some of 

its main inputs, such as the PIL and MePD [56], undergo a hormone-mediated priming process in the 

female mouse, involving the action of placental lactogens during prepartum [29] and of PRL during 

postpartum [29,31,62]. The circuit composed by the MPO, PIL and MePD shows a clear positive 

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



21 

 

correlation between pSTAT5-ir cell density and motivation for pups, thus strongly suggesting that PRL 

signalling at this level is critical for development and/or maintenance of maternal motivation. 

The remaining two nuclei where pSTAT5-ir is correlated with performance in the MPRT, Pa and CeM, 

probably participate also in aspects of maternal behaviour relevant for pup retrieval. Knobloch and 

her collaborators [63] demonstrated in the rat that Pa oxytocinergic cells projecting to CeM are 

involved in the downregulation of fear/anxiety characteristic of motherhood. Our data suggest a role 

of PRL in this effect of oxytocin in the Pa-CeM pathway, although its impact on performance on the 

MPRT is paradoxical. Thus, when the correlation between pSTAT5-ir and MPRT scores is analysed 

only in the group of dams, there is a highly significant negative correlation between pSTAT5-ir cell 

density in the Pa (and SO) and maternal motivation in the MPRT (see Table 1): the more PRL 

signalling in these nuclei, the higher the latency to retrieve pups in the MPRT and, consequently, the 

lower the total number of pups retrieved through the three test sessions. This fits the findings by 

Neumann and her group ([64]; reviewed by [65]) on the maternal behaviour displayed by dams of 

high- (HAB) vs low-anxiety (LAB) selected lines of rats. High-anxiety rat dams retrieve pups earlier 

and are able to retrieve more pups in a given test time than low-anxiety ones, and similar results 

were reported by the same group in CD1 mice [66]. This can be interpreted as anxious females 

displaying a more protective maternal style, as observed in primates [67]. Our data thus suggest that 

during motherhood, the action of PRL onto Pa (and SO) cells would promote a decrease in anxiety (an 

effect maybe mediated by oxytocin acting onto the CeM) and, consequently, the exhibition of a less 

protective maternal style, with longer latency to retrieve pups.  

Our correlation analysis has allowed mapping a series of nuclei where PRL signalling is relevant for 

the motivation to retrieve pups to the nest. Experimental studies altering PRL signalling locally in 

these nuclei are needed to clarify the role of PRL in tuning the brain for motherhood.  

Maternal sensitisation in comothers and PRL signalling in mice 

In mice, pup-naïve virgin females display no avoidance for pups (see Fig. 3) and, consequently, 

exhibit quasi-spontaneous maternal behaviour. However, full maternal behaviour in virgin female 

mice also requires a process of sensitisation [15,16] that leads to increased motivation for pups [15] 

(this work). One of the aims of this work was to understand whether maternal sensitisation in virgin 

females influences PRL signalling in the brain. To do so, we used the comother model of maternal 

sensitisation in which virgin females continuously interact with a dam (since postconception day 10) 

and her litter. This allows testing the relative role of stimuli provided by social interaction (mainly 
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pup-derived stimulation) and of exposure to hormones during pregnancy and postpartum. 

Differences between comothers and dams are to be attributed to the effects of hormones associated 

to motherhood, whereas differences between comothers and virgins are likely due to the effects of 

social stimuli.  

This strategy reveals that, as expected, hormones have a relevant influence on PRL signalling in most 

of the studied nuclei, including the CeM, MePD, LSV, Pa, LPAG and PIL. This is mainly explained by the 

high PRL circulating levels observed in dams, as compared to virgin females (including comothers, see 

Fig, 7). In some of these nuclei, however, pSTAT5-ir cell density does not differ significantly between 

comothers and dams, namely the LSV, AC/ADP and MPO. This suggests that social stimuli might have 

an influence on PRL signalling at this level. In the case of the MPO, in addition, comothers show a 

significantly higher density of pSTAT5-ir cells than pup-naïve virgins. Therefore, our data provide 

evidence that maternal sensitisation involves changes in PRL signalling, at least in the MPO, and 

maybe also in a specific subset of its afferents (LSV [68] and PAG [69]). Globally, this reinforces the 

view that the MPO occupies a central position in a brain circuit in which the responsiveness to PRL 

seems is critical for the increased motivation for pups in dams and, also, in sensitised virgin females.  

Since increase in PRL signalling observed in comothers is restricted to a few specific regions of the 

brain, it is not likely that it is due to increased levels of circulating PRL. In fact, the results of 

Experiment 2 indicate that serum PRL levels are similar in virgins and comothers, and significantly 

lower than those observed in dams (Fig 7). Therefore, the observed effect on pSTAT5-ir is not a 

consequence of increased amounts of PRL accessing the brain from blood, but rather to a specific 

and localized increase in the sensitivity or responsiveness to the hormone.  

Two mechanisms might explain such an increase in responsiveness to PRL. First, it can be due to an 

up-regulation of PRL receptors or other proteins of the Jak/STAT signalling cascade [70]. In the same 

way as expression of the PRL receptor increases in female mice during specific phases of the estrous 

cycle, during pregnancy [71,72] or specifically in the medial preoptic region after reproductive 

experience [73], a similar increase might occur in comothers, triggered by sustained exposure to 

pups (and/or to a pregnant female). This effect would require that pup-derived stimuli reach the 

MPO and some of its afferents, where they may potentiate PRL signalling by modifying expression of 

PRL receptors or of elements of their signalling cascade. As discussed above, the pathway from the 

PIL to the MPO conveys somatosensory information of the ventral trunk (including suckling 

stimulation [55]), thus allowing such an effect of pup-derived somatosensory stimuli. Apparently 

comothers have not developed nipples, and they have PRL levels similar to pup-naïve virgins. In 
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addition, other models of maternal sensitisation in mice [15] also resulting in increased motivation 

for pups, are successful even in ovariectomised virgin females. These data suggest that nipple 

stimulation has a minor role in maternal sensitisation in mice, whereas other kinds of somatosensory 

stimulation plus pup-derived chemosensory stimuli converging in the MePD (which receives inputs 

from both, main and accessory olfactory nuclei [57]) might also be involved in the pup-induced 

changes in PRL signalling observed in the MPO of comothers.  

A second, alternative explanation of the increase in pSTAT5-ir cell density observed in the brain of 

comothers would be that pup-stimuli could induce local secretion of PRL or lactogens within the 

MPO, rather than changes in its signalling efficiency. This will be discussed below.  

Patterns of brain PRL signalling related to differences in maternal motivation 

It is generally assumed that PRL influence on behaviour is mediated by hypophyseal PRL or placental 

lactogens crossing the blood-brain-barrier by means of its active transport by the choroid plexuses 

probably mediated by PRL receptor [74] (but see [75]). Consequently, the intracerebral levels of PRL 

are correlated with the concentration of PRL in the CSF [76,77]. Therefore, one would expect a 

positive correlation between the levels of pSTAT5-ir cell density in most of the nuclei of the brain 

analysed. This, however, is only happening in virgin females, where pSTAT5-ir cell density is 

correlated in most cases (see Table 2A), whereas the number of correlations is much lower in 

comothers and very low in dams.  

A site-specific change in pSTAT5-ir cell density was already observed in lactating mice dams [31] and 

this was interpreted as due to local changes in the efficiency of PRL signalling. However, our finding 

does not easily fit a simple change in the efficiency of PRL signalling in some nuclei of dams and 

comothers. An increase or a decrease in the expression of PRL receptors or of the elements of its 

signalling cascade in a given nucleus would induce a change in the density of pSTAT5-ir cells in the 

nucleus, but the resulting density would still reflect the concentration of PRL reaching the nucleus. If 

this concentration is simply dependent on the circulating level of PRL and its transport into the brain 

through the choroid plexuses (as suggested by studies in primates and humans [76,77]), the different 

nuclei would still show positive correlation in their density of pSTAT5-ir.  

The most likely explanation for this loss of correlation between observed PRL signalling in the 

different nuclei is that local sources of PRL come into play during motherhood and, to a lesser extent, 

with pup-sensitization. Thus, PRL mRNA has been detected in the SO and Pa of the brain of rats [78], 
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and PRL protein is present in several areas of the hypothalamus of the rat [79]. In addition, PRL-like 

immunoreactive neurons are observed in the SO and Pa, and immunoreactive fibres innervate 

portions of the Pa, amygdala [80] and preoptic region. A similar pattern of immunoreactivity has 

recently been confirmed in the mouse brain by our group [81]. These data indicate that some 

neurons express and likely secrete PRL from axon terminals in specific sites of the brain, as 

demonstrated in the Pa and MPO of rats [82]. Interestingly, lactation is accompanied by an increase 

in the expression of PRL in the brain of female rats [83].  

Changes in the production and/or synaptic release of PRL induced during pregnancy and postpartum 

(dams) or interaction with pups during maternal sensitisation (comothers) might also explain the 

increase in PRL signalling observed in the MPO and PIL dams and comothers as compared to pup-

naïve virgin females. Given the critical role of PRL signalling in the MPO on the establishment of 

maternal behaviour [52], these changes might have a mechanistic role on the establishment of 

maternal motivation for pups in both dams and comothers. This idea does not fit, however, the lack 

of pSTAT5-ir cells observed in lactating mouse dams after bromocriptine injections blocking 

hypophysial PRL release [31]. Further experiments specifically addressing this issue should be 

performed to explore whether neural PRL, probably released in specific synapses in response to 

specific stimuli (e.g. pup-derived stimuli) might have a role in the induction of motivated maternal 

behaviour.  

Conclusions 

Summarizing, we have developed and validated a novel test for maternal motivation based on the 

pup retrieval test and the effort-based decision-making paradigm. This design has revealed clear 

differences in maternal motivation between dams, sensitised virgin females (comothers) and pup-

naïve virgins. According to this, although sensitised virgins apparently display full maternal behaviour 

[16], some aspects of maternal behaviour such as maternal aggression [14,19] and high maternal 

motivation (data in this work) are only observed in dams, indicating that endocrine signals of 

pregnancy are necessary for their development. However, in comothers, continuous pup exposure 

leads to a moderate increase in motivation for pups. In addition, comothers display increased 

responsiveness to PRL in the MPO and PIL, which belong, together with the medial amygdala, to a 

circuit involved in transmitting and integrating pup-derived stimuli to facilitate proactive (motivated) 

maternal responses. Altogether, this evidence supports the hypothesis that stimuli derived from 

pups (and a pregnant/postpartum female), selectively increase PRL responsiveness in discrete brain 

sites, enabling a priming action of the hormones to increase motivation for pups and facilitate 
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proactive maternal responses. This coordinated action of pup-derived stimuli (maybe also stimuli 

derived from the accompanying dam) and altered PRL signalling constitutes a putative mechanism 

underlying maternal sensitisation. Our correlation data also provide indirect evidence suggestive of a 

possible role of brain-secreted PRL in maternal motivation, and specifically in increased maternal 

sensitisation in comothers. 

Acknowledgement 

The authors are indebted to Dr. Mercè Correa for the enriching discussion on the design of the 

motivated pup retrieval test, and to Dr. M. Victoria Ibañez-Gual (associate professor of statistics) for 

her help with the analysis of the data on pSTAT5-ir cell density. We want also thank Dr. Manuela 

Barneo-Muñoz, Cinta Navarro-Moreno for their help and support during the experimental part of the 

work and the analysis of data.  

Statement of Ethics 

Animals were treated throughout according to the European Union Council Directive of June 3rd, 

2010 (6106/1/10 REV1). Accordingly, procedures were approved by the Committee of Ethics on 

Animal Experimentation of the Jaume I University of Castellón (UJI), where the experiments were 

performed, on behalf of the "Conselleria de Presidencia y Agricultura, Pesca, Alimentación y Agua" of 

the Valencian Government. Approval number: 2015/VSC/PEA/00055.  

Disclosure Statement 

The authors have no conflicts of interest to declare. 

Funding Sources 

F.M-G. C-A.-P. and E.L. were funded by the Spanish Ministry of Economy and Competitiveness-FEDER 

(BFU2016-77691-C2-2-P and C2-1-P) 

F.M-G, C. A-P and E.L. were funded by the Generalitat Valenciana (PROMETEO/2016/076) 

F.M-G was funded by the Universitat Jaume I de Castelló (UJI-B2016-45) 

H.S-L has been a predoctoral fellow of the FPU (Formación de Profesorado Universitario) programme 

of the Spanish Ministry of Education, Culture and Sport.  

The funders had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. 

 

Author Contributions 

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



26 

 

H.S-L, F.M.-G. and C.A-P. designed the study. F. M-G, E.L. and C.A-P obtained funding and supervised 

the study. 

H.S.L. performed most of the experiments, in collaboration with M. A-A. and M.B. for some of the 

experimental procedures.  

H.S-L and F.M.-G. analysed the material, obtained the data and prepared the manuscript draft. 

All six authors revised critically the manuscript, a process in which they contributed with important 

intellectual content to it. Finally, all six authors approved the version to be submitted and 

(eventually) published. 

 

References  

1  Numan M, Insel TR. The Neurobiology of Parental Behavior. New York: Springer-Verlag; 2003. DOI: 

10.1007/b97533 

2  Rutter M, Kumsta R, Schlotz W, Sonuga-Barke E. Longitudinal studies using a "natural experiment" design: the case 

of adoptees from Romanian institutions. J Am Acad Child Adolesc Psychiatry. 2012 Aug;51(8):762–70.  

3  Anacker C, O’Donnell KJ, Meaney MJ. Early life adversity and the epigenetic programming of hypothalamic-

pituitary-adrenal function. Dialogues Clin Neurosci. 2014 Sep;16(3):321–33.  

4  Mehta MA, Golembo NI, Nosarti C, Colvert E, Mota A, Williams SCR, et al. Amygdala, hippocampal and corpus 

callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. J 

Child Psychol Psychiatry. 2009 Aug;50(8):943–51.  

5  Gammie SC. Current models and future directions for understanding the neural circuitries of maternal behaviors in 

rodents. Behav Cogn Neurosci Rev. 2005;4:119–35.  

6  Numan M, Stolzenberg DS. Hypothalamic interaction with the mesolimbic dopamine system and the regulation of 

maternal responsiveness. Neurobiology of the Parental Brain. 2008; pp 3–22. 

7  Lee A, Clancy S, Fleming AS. Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on 

maternal behavior and operant responding for pup-reinforcement. Behav Brain Res. 2000 Mar;108(2):215–31.  

8  Pereira M, Morrell JI. Functional Mapping of the Neural Circuitry of Rat Maternal Motivation: Effects of Site-

Specific Transient Neural Inactivation. J Neuroendocrinol. 2011 Nov;23(11):1020–35.  

9  Olazábal DE, Pereira M, Agrati D, Ferreira A, Fleming AS, González-Mariscal G, et al. New theoretical and 

experimental approaches on maternal motivation in mammals. Neurosci Biobehav Rev. 2013;37(8):1860–74.  

10  Bridges RS. Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol. 2014;36:178–96.  

11  Numan M, Insel TR. The Neurobiology of Parental Behavior. 2003. 

12  Seip KM, Morrell JI. Exposure to pups influences the strength of maternal motivation in virgin female rats. Physiol 

Behav. 2008 Nov;95(4):599–608.  

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



27 

 

13  Bridges RS, DiBiase R, Loundes DD, Doherty PC. Prolactin stimulation of maternal behavior in female rats. Science. 

1985 Feb;227(4688):782–4.  

14  Martín-Sánchez A, Valera-Marín G, Hernández-Martínez A, Lanuza E, Martínez-García F, Agustín-Pavón C. Wired for 

motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice. Front Behav 

Neurosci. 2015 Jan;9:197.  

15  Stolzenberg DS, Rissman EF. Oestrogen-Independent, Experience-Induced Maternal Behaviour in Female Mice. J 

Neuroendocrinol. 2011;23:345–54.  

16  Alsina-Llanes M, De Brun V, Olazábal DE. Development and expression of maternal behavior in naïve female 

C57BL/6 mice. Dev Psychobiol. 2015;57(2):189–200.  

17  Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA, Correa M, et al. Not All Antidepressants Are 

Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior. 

Neuropsychopharmacology. 2016 Feb;41(3):686–94.  

18  Cousins MS, Atherton A, Turner L, Salamone JD. Nucleus accumbens dopamine depletions alter relative response 

allocation in a T-maze cost/benefit task. Behav Brain Res. 1996;74(1–2):189–97.  

19  Martín-Sánchez A, McLean L, Beynon RJ, Hurst JL, Ayala G, Lanuza E, et al. From sexual attraction to maternal 

aggression: When pheromones change their behavioural significance. Horm Behav. 2015 Feb;68C:65–76.  

20  Terkel J RJ. Humoral factors underlying maternal behavior at parturition: corss transfusion between freely moving 

rats. - PubMed - NCBI. J Comp Physiol Psychol. 1972;80(3):365–71.  

21  Bridges RS, Ronsheim PM. Prolactin (PRL) regulation of maternal behavior in rats: bromocriptine treatment delays 

and PRL promotes the rapid onset of behavior. Endocrinology. 1990 Feb;126(2):837–48.  

22  Soares MJ. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-

fetal interface. Reprod Biol Endocrinol. 2004 Jul;2:51.  

23  Bridges RS. The role of lactogenic hormones in maternal behavior in female rats. Acta Paediatr Suppl. 1994 Jun 

[cited 2015 Mar 3]. ;397:33–9.  

24  Numan M, Woodside B. Maternity: neural mechanisms, motivational processes, and physiological adaptations. 

Behav Neurosci. 2010;124(6):715–41.  

25  Brown RSE, Kokay IC, Herbison AE, Grattan DR. Distribution of prolactin-responsive neurons in the mouse 

forebrain. J Comp Neurol. 2010;518:92–102.  

26  Salais-López H. Mapping the actions of prolactin in the mouse brain. Sexual dimorphism, steroid regulation and the 

neuroendocrinology of maternal behaviour. València (Spain): Universitat de València; 2017.Available from: 

http://hdl.handle.net/10550/59359 

27  Salais-López H, Agustín-Pavón C, Lanuza E, Martínez-García F. The maternal hormone in the male brain: Sexually 

dimorphic distribution of prolactin signalling in the mouse brain. PLoS One. 2018;13(12):e0208960.  

28  Maestripieri D, Alleva E. Litter defence and parental investment allocation in house mice. Behav Processes. 1991 

May;23(3):223–30.  

29  Salais-López H, Lanuza E, Agustín-Pavón C, Martínez-García F. Tuning the brain for motherhood: prolactin-like 

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



28 

 

central signalling in virgin, pregnant, and lactating female mice. Brain Struct Funct. 2017;222(2):895–921.  

30  Salais-López H, Agustín-Pavón C, Lanuza E, Martínez-García F. The maternal hormone in the male brain: Sexually 

dimorphic distribution of prolactin signalling in the mouse brain. 2018 DOI: 10.1101/333161 

31  Brown RSE, Herbison  a E, Grattan DR. Differential changes in responses of hypothalamic and brainstem neuronal 

populations to prolactin during lactation in the mouse. Biol Reprod. 2011;84(December 2010):826–36.  

32  Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. San Diego, CA: Elsevier Academic Press; 2004. 

33  Saltzman W, Ziegler TE. Functional significance of hormonal changes in mammalian fathers. J Neuroendocrinol. 

2014;26(10):685–96.  

34  Armario A, Lopez-Calderón A, Jolin T, Castellanos JM. Sensitivity of anterior pituitary hormones to graded levels of 

psychological stress. Life Sci. 1986 Aug;39(5):471–5.  

35  Borrell J, Piva F, Martini L. Effect of Pentobarbital on Serum Levels of LH, FSH and Prolactin in Long-Term 

Ovariectomized Rats. Neuroendocrinology. 1978;27(5–6):239–46.  

36  Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M. Activational and effort-related aspects of motivation: 

neural mechanisms and implications for psychopathology. Brain. 2016 May;139(5):1325–47.  

37  Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V, et al. Functional circuit architecture 

underlying parental behaviour. Nature. 2018;556(7701):326–31.  

38  Bridges R, Zarrow MX, Gandelman R, Denenberg VH. Differences in maternal responsiveness between lactating and 

sensitized rats. Dev Psychobiol. 1972;5(2):123–7.  

39  Mayer AD, Freeman NCG, Rosenblatt JS. Ontogeny of maternal behavior in the laboratory rat: Factors underlying 

changes in responsiveness from 30 to 90 days. Dev Psychobiol. 1979 Sep;12(5):425–39.  

40  Mackinnon DA, Stern JM. Pregnancy duration and fetal number: effects on maternal behavior in rats. Physiol 

Behav. 1977 May;18(5):793–7.  

41  Stern JM, Mackinnon DA. Postpartum, hormonal, and nonhormonal induction of maternal behavior in rats: effects 

on T-maze retrieval of pups. Horm Behav. 1976 Sep;7(3):305–16.  

42  Neumann ID, Torner L, Wigger A. Brain oxytocin: differential inhibition of neuroendocrine stress responses and 

anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience. 2000 Jan [cited 2015 Mar 23]. 

;95(2):567–75.  

43  Crawley J, Bailey K. Anxiety-Related Behaviors in Mice. In: Buccafusco JJ, editor. Methods of Behavour Analysis in 

Neuroscience. , Second. Boca Raton (FL): CRC Press/Taylor & Francis; 2008; pp 77–101. 

44  Carratalá-Ros C, López-Cruz L, SanMiguel N, Ibáñez-Marín P, Martínez-Verdú A, Salamone JD, et al. Preference for 

Exercise vs. More Sedentary Reinforcers: Validation of an Animal Model of Tetrabenazine-Induced Anergia. Front 

Behav Neurosci. 2020;13(January):1–15.  

45  Bales KL, Saltzman W. Fathering in rodents: Neurobiological substrates and consequences for offspring. Horm 

Behav. 2016;77:249–59.  

46  Newman SW. The medial extended amygdala in male reproductive behavior. A node in the mammalian social 

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



29 

 

behavior network. Ann N Y Acad Sci. 1999;877:242–57.  

47  Kokay IC, Wyatt A, Phillipps HR, Aoki M, Ectors F, Boehm U, et al. Analysis of prolactin receptor expression in the 

murine brain using a novel prolactin receptor reporter mouse. J Neuroendocrinol. 2018;30(9):1–20.  

48  Goudreau JL, Lindley SE, Lookingland KJ, Moore KE. Evidence that hypothalamic periventricular dopamine neurons 

innervate the intermediate lobe of the rat pituitary. Neuroendocrinology. 1992 Jul;56(1):100–5.  

49  DeMaria JE, Lerant AA, Freeman ME. Prolactin activates all three populations of hypothalamic neuroendocrine 

dopaminergic neurons in ovariectomized rats. Brain Res. 1999 Aug;837(1–2):236–41.  

50  Anderson ST, Barclay JL, Fanning KJ, Kusters DHL, Waters MJ, Curlewis JD. Mechanisms underlying the diminished 

sensitivity to prolactin negative feedback during lactation: Reduced STAT5 signaling and up-regulation of cytokine-

inducible SH2 domain-containing protein (CIS) expression in tuberoinfundibular dopaminergic neurons. 

Endocrinology. 2006;147(3):1195–202.  

51  Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE. Central prolactin infusions stimulate maternal behavior 

in steroid-treated, nulliparous female rats. Proc Natl Acad Sci U S A. 1990;87(October):8003–7.  

52  Brown RSE, Aoki M, Ladyman SR, Phillipps HR, Wyatt A, Boehm U, et al. Prolactin action in the medial preoptic area 

is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A. 2017;114(40):10779–84.  

53  Menon R, Grund T, Zoicas I, Althammer F, Fiedler D, Biermeier V, et al. Oxytocin Signaling in the Lateral Septum 

Prevents Social Fear during Lactation. Curr Biol. 2018;28(7):1066-1078.e6.  

54  Cservenák M, Bodnár I, Usdin TB, Palkovits M, Nagy GM, Dobolyi A. Tuberoinfundibular peptide of 39 residues is 

activated during lactation and participates in the suckling-induced prolactin release in rat. Endocrinology. 

2010;151(December):5830–40.  

55  Cservenák M, Szabó ÉR, Bodnár I, Lékó A, Palkovits M, Nagy GM, et al. Thalamic neuropeptide mediating the 

effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology. 2013 Dec;38(12):3070–84.  

56  Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of 

the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat. 

2012;6(August):1–26.  

57  Cádiz-Moretti B, Otero-García M, Martínez-García F, Lanuza E. Afferent projections to the different medial 

amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct Funct. 2016;221(2):1033–65.  

58  Kohl J, Dulac C. Neural control of parental behaviors. Curr Opin Neurobiol. 2018 Apr;49:116–22.  

59  Lin R, Li Y, Luo M. A Neural Circuit Driving Maternal Behaviors. Neuron. 2018 Apr;98(1):6–8.  

60  Bridges RS, Freemark MS. Human placental lactogen infusions into the medial preoptic area stimulate maternal 

behavior in steroid-primed, nulliparous female rats. Horm Behav. 1995 Jun;29(2):216–26.  

61  Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE. Central prolactin infusions stimulate maternal behavior 

in steroid-treated, nulliparous female rats. Proc Natl Acad Sci U S A. 1990 Oct [cited 2015 Mar 3]. ;87(20):8003–7.  

62  Brown RSE, Aoki M, Ladyman SR, Phillipps HR, Wyatt A, Boehm U, et al. Prolactin action in the medial preoptic area 

is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A. 2017;114(40):10779–84.  

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



30 

 

63  Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, et al. Evoked axonal oxytocin release in the 

central amygdala attenuates fear response. Neuron. 2012;73(3):553–66.  

64  Neumann ID, Wigger A, Krömer S, Frank E, Landgraf R, Bosch OJ. Differential effects of periodic maternal 

separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience. 2005;132(3):867–77.  

65  Bosch OJ. Maternal nurturing is dependent on her innate anxiety: the behavioral roles of brain oxytocin and 

vasopressin. Horm Behav. 2011 Feb;59(2):202–12.  

66  Kessler MS, Bosch OJ, Bunck M, Landgraf R, Neumann ID. Maternal care differs in mice bred for high vs. low trait 

anxiety: impact of brain vasopressin and cross-fostering. Soc Neurosci. 2011 Jan;6(2):156–68.  

67  Fairbanks LA. Individual Differences in Maternal Style. 1996; pp 579–611. 

68  Risold PY, Swanson LW. Connections of the rat lateral septal complex. Brain Res Rev. 1997 Sep;24(2–3):115–95.  

69  Rizvi TA, Ennis M, Shipley MT. Reciprocal connections between the medial preoptic area and the midbrain 

periaqueductal gray in the rat: a WGA-HRP and PHA-L study. J Comp Neurol. 1992;315:1–15.  

70  Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 

2000 Oct;80(4):1523–631.  

71  Sugiyama T, Minoura H, Kawabe N, Tanaka M, Nakashima K. Preferential expression of long form prolactin 

receptor mRNA in the rat brain during the oestrous cycle, pregnancy and lactation: hormones involved in its gene 

expression. J Endocrinol. 1994 May [cited 2015 Mar 4]. ;141(2):325–33.  

72  Bridges RS, Hays LE. Steroid-induced alterations in mRNA expression of the long form of the prolactin receptor in 

the medial preoptic area of female rats: Effects of exposure to a pregnancy-like regimen of progesterone and 

estradiol. Mol Brain Res. 2005;140:10–6.  

73  Anderson GM, Grattan DR, Van Den Ancker W, Bridges RS. Reproductive experience increases prolactin 

responsiveness in the medial preoptic area and arcuate nucleus of female rats. Endocrinology. 2006;147(10):4688–

94.  

74  Mangurian LP, Walsh RJ, Posner BI. Prolactin enhancement of its own uptake at the choroid plexus. Endocrinology. 

1992 Aug;131(2):698–702.  

75  Brown RSE, Wyatt AK, Herbison RE, Knowles PJ, Ladyman SR, Binart N, et al. Prolactin transport into mouse brain is 

independent of prolactin receptor. FASEB J. 2016;30(2):1002–10.  

76  Martensz ND, Herbert J. Relationship between prolactin in the serum and cerebrospinal fluid of ovariectomized 

female rhesus monkeys. Neuroscience. 1982;7(11):2801–12.  

77  Markianos M, Koutsis G, Evangelopoulos ME, Mandellos D, Sfagos C. Serum and cerebrospinal fluid prolactin levels 

in male and female patients with clinically-isolated syndrome or relapsing-remitting multiple sclerosis. J 

Neuroendocrinol. 2010;22(6):503–8.  

78  Emanuele N V., Jurgens JK, Halloran MM, Tentler JJ, Lawrence AM, Kelley MR. The rat prolactin gene is expressed 

in brain tissue: Detection of normal and alternatively spliced prolactin messenger RNA. Mol Endocrinol. 

1992;6(1):35–42.  

79  Mejía S, Morales MA, Zetina ME, Martínez de la Escalera G, Clapp C. Immunoreactive prolactin forms colocalize 

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



31 

 

with vasopressin in neurons of the hypothalamic paraventricular and supraoptic nuclei. Neuroendocrinology. 1997 

Sep;66(3):151–9.  

80  Paut-Pagano L, Roky R, Valatx JL, Kitahama K, Jouvet M. Anatomical distribution of prolactin-like immunoreactivity 

in the rat brain. Neuroendocrinology. 1993 Dec [cited 2015 Mar 4]. ;58(6):682–95.  

81  Abellan-Álvaro M. The Medial Amygdala as a Key Neural Centre in Maternal Aggression: Genetic, Neural and 

Behavioural Analysis. Universitat de València; 2020. Available from: 

https://www.educacion.es/teseo/mostrarRef.do?ref=1837302 

82  Torner L, Maloumby R, Nava G, Aranda J, Clapp C, Neumann ID. In vivo release and gene upregulation of brain 

prolactin in response to physiological stimuli. Eur J Neurosci. 2004;19(6):1601–8.  

83  Torner L, Toschi N, Nava G, Clapp C, Neumann ID. Increased hypothalamic expression of prolactin in lactation: 

Involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci. 2002;15(January):1381–9.  

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f E
xe

te
r  

   
   

   
   

   
   

   
   

   
   

   
14

4.
17

3.
6.

94
 - 

7/
13

/2
02

0 
12

:3
6:

35
 A

M

Acc
ep

ted
 m

an
us

cri
pt



32 

 

Figure Legends 

Fig 1 Experimental Design for the motivated pup retrieval test 

The design included four experimental groups of females (coloured) plus accompanying females 

(white, not used for the experiments), as illustrated in A: dams (red, n=9), short-term comothers (i.e. 

pup-sensitised virgins, blue, n=10), long-term comothers (striped blue, n=8) and pup-naïve virgin 

females (green, n=10). Dams and virgins were cohoused with an accompanying non-experimental 

virgin, whereas comothers were cohoused with a non-experimental pregnant female, which later 

gave birth, and shared pup care with the comother for 2 days (short-term comothers) or 4 days 

(long-term comothers) prior to the beginning of the test. For testing, virgins and long-term 

comothers received fresh pups from donor dams. Litters were culled down to 8 pups. The test (B) 

consisted of three 10-minute trials, from PPD2 to PPD4 (dams, short-term comothers and virgins) or 

from PPD4 to PPD6 (long-term comothers). For the test (C), two 10 cm high barriers were placed in 

the corners of the cage distal to the nest, and two pups were left behind each barrier. Females 

(dams, short-term comothers and virgins) were perfused on the morning after the end of the test, 

and their brains processed for immunohistochemical detection of pSTAT5. 

Fig 2 Anatomical location of the sampling frames  

Location of the frames in the nuclei where we sampled the density of pSTAT5-ir cells, with indication 

of the Bregma level, according to [32]. Red squares indicate the approximate size and location of the 

region analyzed in each brain centre.  

Fig 3 Dams, Comothers and Virgins show equivalent interactions with the barriers and pups in the 

motivated pup retrieval test 

Bar histograms showing mean±SEM values (individual data are also plotted) of: A) the latency to 

establish the first contact with a pup (in seconds); B) the number of barrier crossings into the 

compartment where pups were placed; and C) the total time of contact with pups behind the 

barriers (in seconds). Kruskal Wallis ANOVAs of these measures revealed no statistically significant 

differences among Dams (red), short-term comothers (STC, blue), long-term comothers (LTC, striped 

blue) or pup-naïve virgins (green) in either of the three consecutive trials. This indicates equivalent 

access and interaction with pups, and absence of pup avoidance (e.g. pup-induced anxiety) in pup-

naïve virgins. 
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Fig 4 Dams, Comothers and Virgins perform differently in the motivated pup retrieval test 

“Survival” plots indicating the cumulative proportion of dams (D, red lines), short-term comothers 

(STC, blue solid lines), long-term comothers (LTC, blue dotted lines) and virgins (V, green lines) 

successfully retrieving the first (upper row) and fourth pup (lower row) through each of the three 10 

minute trials (columns). Significant differences between experimental groups as revealed by Log-rank 

(Kaplan Meier) statistics are indicated for each trial: *p<0.05; **p<0.01; ***p<0.001.  

Fig 5 Representative examples of pSTAT5 immunoreactivity in the brain of dams, comothers and 

virgins 

Photomicrographs showing pSTAT5 immunoreactivity in representative brain sections of dams (left), 

(short-term) comothers (centre) and pup-naïve virgin female mice (right). Sections correspond to the 

lateral septum (A-C, Bregma + 0.4 mm), medial posterior bed nucleus of the stria terminalis (BST) and 

preoptic area (D-F, Bregma – 0.2 mm), medial preoptic region (G-I, Bregma – 0.2 mm), 

paraventricular nucleus of the hypothalamus (J-L, Bregma – 0.85 mm), tuberal hypothalamus (K-M, 

Bregma – 1.80 mm), medial posterior amygdala (N-P, Bregma – 1.80 mm), posterior intralaminar 

nucleus (PIL, Bregma – 3.28 mm) of the thalamus (Q-S) and periaqueductal grey (T-V, Bregma -4.80 

mm). Scale bars represent 150 µm. 

Fig 6 Quantitative analysis of pSTAT5 immunoreactivity in dams, comothers and virgins 

Bar histograms showing mean pSTAT5-ir density (cells/mm2) ± SEM in selected brain regions of dams 

(red), short-term comothers (blue) and virgins (green). Individual data are also plotted. For each of 

the analysed nuclei, the location of the counting frames is indicated with red rectangles in figure 2. 

The results of the ANOVA (or nonparametric Kruskal-Wallis ANOVA; AC/ADP, BSTMPM, CeM, LPAG 

and LSV), are indicated with large asterisks above the histogram. Posthoc was done using Dunnett’s 

test comparing comothers with dams and with virgins (see text), and its results are indicated with 

small asterisks on the histogram.  These analyses were applied independently to each brain region. 

*P < 0.05; **P ≤ 0.01; *** P ≤ 0.001.  

Fig 7 Serum prolactin levels in dams, comothers and virgins 

Bar diagram (mean ± SEM) showing the values of serum PRL concentration in dams (red), comothers 

(blue) and virgins (green). Individual data are also plotted. The design included several groups of 

comothers subject to increasing periods of cohabitation with the accompanying maternal female and 
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(in some groups) with their pups. Accompanying pregnant females were cohoused with comothers in 

pregnancy day 10 (E10) and blood samples were taken from comothers (from separate groups) at 

E14, E18, postpartum day (PPD) 1, PPD5 and PPD9, respectively. A group of pup-naïve virgins is 

included as control, and a group of dams as a positive control (PPD5). All serum PRL measurements 

were conducted with a commercially available PRL Elisa kit (see Material and Methods section). Non-

parametric Kruskal-Wallis ANOVA revealed highly significant differences between females (p<0.001) 

and post-hoc comparisons revealed significantly higher serum PRL levels in lactating dams as 

compared to pup-naïve virgins or comothers. On the other hand, no significant differences appear 

between virgins and comothers. Differential letters indicate a significant difference among groups. 

Table 1 Brain-behaviour correlation 

Analysis of correlation between performance in the MPRT (cumulative latency to retrieve pups in the 

three tests; total number of pups retrieved) and the density of pSTAT5-ir cells in the different nuclei 

analysed. Global correlation analysis (all animals included) is followed by individual analysis of the 

three groups of females (dams, comothers and virgins). Bright yellow indicates a significant 

correlation (p<0.05). Spearman’s rank correlation coefficients (rho) and their associated p values are 

indicated in each cell of the table.  

Table 2. Correlation of PRL signalling between nuclei  

Analysis of the correlation between the levels of pSTAT5-ir in the different nuclei analysed, using 

Pearson’s correlation analysis. Table 2A shows the analysis for dams, 2B for comothers and 2C for 

pup-naïve virgins, as indicated. In the upper right corner of each table, cells showing significant 

correlations (p<0.05) are highlighted in bright yellow. Spearman’s rank correlation coefficients (rho)  

and their associated p values are indicated in each cell of the table. 
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AC_ADP Arc AVPe BSTMPM CeM LPAG LSV MePD MPOa MPO Pa PIL SO
Rho -0,330 -0,164 -0,005 -0,156 -0,395 -0,303 -0,301 -0,462 -0,398 -0,414 -0,374 -0,492 -0,063

Sig. (bilateral) 0,099 0,395 0,981 0,446 0,034 0,124 0,112 0,012 0,040 0,032 0,046 0,007 0,744

N 26 29 28 26 29 27 29 29 27 27 29 29 29

Rho 0,320 0,158 -0,010 0,182 0,39 0,303 0,305 0,474 0,431 0,443 0,382 0,505 0,060

Sig. (bilateral) 0,111 0,414 0,961 0,374 0,037 0,124 0,107 0,009 0,025 0,021 0,041 0,005 0,758

N 26 29 28 26 29 27 29 29 27 27 29 29 29

AC_ADP Arc AVPe BSTMPM CeM LPAG LSV MePD MPOa MPO Pa PIL SO
Rho 0,033 0,217 -0,083 -0,267 0,285 -0,167 0,117 0,283 -0,217 -0,133 ,717* 0,301 ,800**

Sig. (bilat) 0,932 0,576 0,831 0,488 0,458 0,693 0,765 0,460 0,576 0,732 0,030 0,431 0,010

N 9 9 9 9 9 8 9 9 9 9 9 9 9

Rho -0,209 -0,200 -0,139 0,418 -0,441 0,165 -0,226 -0,296 0,339 0,200 -,844** -0,328 -,896**

Sig. (bilat) 0,590 0,606 0,721 0,263 0,234 0,696 0,558 0,439 0,371 0,606 0,004 0,389 0,001

N 9 9 9 9 9 8 9 9 9 9 9 9 9

AC_ADP Arc AVPe BSTMPM CeM LPAG LSV MePD MPOa MPO Pa PIL SO
Rho 0,165 0,175 0,511 0,296 -0,188 0,187 0,123 0,071 0,339 0,226 -0,045 0,162 0,213

Sig. (bilat) 0,671 0,630 0,131 0,439 0,603 0,604 0,735 0,845 0,371 0,558 0,901 0,656 0,554

N 9 10 10 9 10 10 10 10 9 9 10 10 10

Rho -0,105 -0,162 -0,487 -0,271 0,241 -0,143 -0,091 -0,026 -0,297 -0,184 0,091 -0,123 -0,169

Sig. (bilat) 0,788 0,654 0,154 0,481 0,503 0,694 0,803 0,943 0,437 0,636 0,803 0,734 0,641

N 9 10 10 9 10 10 10 10 9 9 10 10 10

Total Pups 
Retrieved

Table 1. Correlation between maternal behaviour (cummulative latency to retrieve the first pup and number of pups retrieved) and pSTAT5-ir in the 

different nuclei 

pSTAT5 / Behaviour Correlation, Global (Spearman)

Cum Latency

Total Pups 
retrieved

pSTAT5 / Behaviour Correlation, Dams (Spearman)

Cum Latency 

Total Pups 
Retrieved

pSTAT5 / Behaviour Correlation, Comothers (Spearman)

Cum Latency 
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AC/ADP Arc AVPe BSTMPM CeM LPAG LSV MePD MPO Pa PIL SO
Corr 1 -0,073 0,214 -0,474 0,480 0,395 0,381 0,439 -0,063 0,318 -0,045 0,111
Sig. (bilat) 0,853 0,580 0,198 0,191 0,333 0,311 0,237 0,872 0,404 0,909 0,777
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr -0,073 1 0,071 -0,483 -0,333 -0,444 -0,185 -0,351 -0,238 0,554 0,055 0,246
Sig. (bilat) 0,853 0,857 0,187 0,381 0,271 0,634 0,355 0,537 0,122 0,888 0,523
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr 0,214 0,071 1 -0,321 0,446 -0,011 0,342 0,105 -0,091 0,424 0,601 ,695*

Sig. (bilat) 0,580 0,857 0,399 0,229 0,979 0,368 0,789 0,815 0,256 0,087 0,038
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr -0,474 -0,483 -0,321 1 -0,117 0,284 0,321 0,168 -0,033 -,720* 0,131 -0,404
Sig. (bilat) 0,198 0,187 0,399 0,764 0,495 0,399 0,665 0,933 0,029 0,736 0,280
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr 0,480 -0,333 0,446 -0,117 1 0,692 ,686* 0,562 0,029 0,287 0,577 0,631
Sig. (bilat) 0,191 0,381 0,229 0,764 0,057 0,041 0,115 0,942 0,455 0,104 0,068
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr 0,395 -0,444 -0,011 0,284 0,692 1 ,746* ,792* 0,382 -0,312 0,446 0,145
Sig. (bilat) 0,333 0,271 0,979 0,495 0,057 0,034 0,019 0,351 0,451 0,268 0,733
N 8 8 8 8 8 8 8 8 8 8 8 8
Corr 0,381 -0,185 0,342 0,321 ,686* ,746* 1 ,670* -0,066 0,126 ,749* 0,443
Sig. (bilat) 0,311 0,634 0,368 0,399 0,041 0,034 0,048 0,866 0,746 0,020 0,233
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr 0,439 -0,351 0,105 0,168 0,562 ,792* ,670* 1 -0,118 0,050 0,346 0,141
Sig. (bilat) 0,237 0,355 0,789 0,665 0,115 0,019 0,048 0,762 0,898 0,362 0,718
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr -0,063 -0,238 -0,091 -0,033 0,029 0,382 -0,066 -0,118 1 -0,259 0,193 0,123
Sig. (bilat) 0,872 0,537 0,815 0,933 0,942 0,351 0,866 0,762 0,501 0,619 0,753
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr 0,318 0,554 0,424 -,720* 0,287 -0,312 0,126 0,050 -0,259 1 0,315 ,722*

Sig. (bilat) 0,404 0,122 0,256 0,029 0,455 0,451 0,746 0,898 0,501 0,409 0,028
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr -0,045 0,055 0,601 0,131 0,577 0,446 ,749* 0,346 0,193 0,315 1 ,813**

Sig. (bilat) 0,909 0,888 0,087 0,736 0,104 0,268 0,020 0,362 0,619 0,409 0,008
N 9 9 9 9 9 8 9 9 9 9 9 9
Corr 0,111 0,246 ,695* -0,404 0,631 0,145 0,443 0,141 0,123 ,722* ,813** 1
Sig. (bilat) 0,777 0,523 0,038 0,280 0,068 0,733 0,233 0,718 0,753 0,028 0,008
N 9 9 9 9 9 8 9 9 9 9 9 9

BSTMPM

Table 2A. Correlations between pSTAT5-ir densities between nuclei in Dams (Pearson)
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AC/ADP Arc AVPe BSTMPM CeM LPAG LSV MePD MPO Pa PIL SO
Corr 1 -0,058 0,080 ,695* 0,297 ,752* 0,549 ,865** 0,607 ,831** 0,649 0,184
Sig. (bilat) 0,883 0,838 0,038 0,438 0,019 0,126 0,003 0,083 0,006 0,058 0,636
N 9 9 9 9 9 9 9 9 9 9 9 9
Corr -0,058 1 0,393 -0,443 -0,118 0,183 -0,319 -0,288 -0,151 -0,215 0,003 ,646*

Sig. (bilat) 0,883 0,261 0,232 0,745 0,613 0,369 0,420 0,698 0,550 0,993 0,044
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr 0,080 0,393 1 0,106 0,259 0,349 0,236 0,098 0,142 -0,291 0,608 ,905**

Sig. (bilat) 0,838 0,261 0,787 0,471 0,323 0,512 0,788 0,716 0,414 0,062 0,000
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr ,695* -0,443 0,106 1 0,463 ,731* ,828** ,814** ,737* ,720* ,694* 0,013
Sig. (bilat) 0,038 0,232 0,787 0,209 0,025 0,006 0,008 0,023 0,029 0,038 0,974
N 9 9 9 9 9 9 9 9 9 9 9 9
Corr 0,297 -0,118 0,259 0,463 1 0,377 0,526 0,375 ,706* 0,404 0,265 0,364
Sig. (bilat) 0,438 0,745 0,471 0,209 0,283 0,118 0,286 0,034 0,247 0,458 0,301
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr ,752* 0,183 0,349 ,731* 0,377 1 ,688* ,764* ,858** 0,549 ,848** 0,381
Sig. (bilat) 0,019 0,613 0,323 0,025 0,283 0,028 0,010 0,003 0,100 0,002 0,278
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr 0,549 -0,319 0,236 ,828** 0,526 ,688* 1 ,857** ,830** 0,482 ,717* 0,150
Sig. (bilat) 0,126 0,369 0,512 0,006 0,118 0,028 0,002 0,006 0,158 0,020 0,680
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr ,865** -0,288 0,098 ,814** 0,375 ,764* ,857** 1 ,737* ,746* ,770** 0,088
Sig. (bilat) 0,003 0,420 0,788 0,008 0,286 0,010 0,002 0,023 0,013 0,009 0,809
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr 0,607 -0,151 0,142 ,737* ,706* ,858** ,830** ,737* 1 0,560 0,647 0,149
Corr 0,083 0,698 0,716 0,023 0,034 0,003 0,006 0,023 0,117 0,059 0,701
N 9 9 9 9 9 9 9 9 9 9 9 9
Corr ,831** -0,215 -0,291 ,720* 0,404 0,549 0,482 ,746* 0,560 1 0,333 -0,105
Sig. (bilat) 0,006 0,550 0,414 0,029 0,247 0,100 0,158 0,013 0,117 0,347 0,772
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr 0,649 0,003 0,608 ,694* 0,265 ,848** ,717* ,770** 0,647 0,333 1 0,480
Sig. (bilat) 0,058 0,993 0,062 0,038 0,458 0,002 0,020 0,009 0,059 0,347 0,160
N 9 10 10 9 10 10 10 10 9 10 10 10
Corr 0,184 ,646* ,905** 0,013 0,364 0,381 0,150 0,088 0,149 -0,105 0,480 1
º 0,636 0,044 0,000 0,974 0,301 0,278 0,680 0,809 0,701 0,772 0,160
N 9 10 10 9 10 10 10 10 9 10 10 10

BSTMPM

Table 2B. Correlations between pSTAT5-ir densities between nuclei in Comothers
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AC_ADP Arc AVPe BSTMPM CeM LPAG LSV MePD MPO Pa PIL SO
Corr 1 0,058 0,715 ,906** ,851** ,936** ,921** ,884** ,986** ,808* ,895** 0,185
Sig. (bilat) 0,891 0,071 0,002 0,007 0,002 0,001 0,004 0,000 0,015 0,003 0,661
N 8 8 7 8 8 7 8 8 8 8 8 8
Corr 0,058 1 0,222 0,201 0,455 0,202 0,061 0,155 0,059 0,338 0,468 0,608
Sig. (bilat) 0,891 0,566 0,633 0,186 0,602 0,866 0,670 0,880 0,340 0,173 0,062
N 8 10 9 8 10 9 10 10 9 10 10 10
Corr 0,715 0,222 1 0,526 0,656 ,752* 0,660 ,684* 0,646 0,637 ,758* ,753*

Sig. (bilat) 0,071 0,566 0,226 0,055 0,031 0,053 0,042 0,084 0,065 0,018 0,019
N 7 9 9 7 9 8 9 9 8 9 9 9
Corr ,906** 0,201 0,526 1 ,837** ,991** ,962** ,943** ,940** ,916** ,886** 0,188
Sig. (bilat) 0,002 0,633 0,226 0,009 0,000 0,000 0,000 0,001 0,001 0,003 0,655
N 8 8 7 8 8 7 8 8 8 8 8 8
Corr ,851** 0,455 0,656 ,837** 1 ,864** ,834** ,747* ,791* ,763* ,946** 0,366
Sig. (bilat) 0,007 0,186 0,055 0,009 0,003 0,003 0,013 0,011 0,010 0,000 0,299
N 8 10 9 8 10 9 10 10 9 10 10 10
Corr ,936** 0,202 ,752* ,991** ,864** 1 ,961** ,906** ,810* ,844** ,888** 0,384
Sig. (bilat) 0,002 0,602 0,031 0,000 0,003 0,000 0,001 0,015 0,004 0,001 0,307
N 7 9 8 7 9 9 9 9 8 9 9 9
Corr ,921** 0,061 0,660 ,962** ,834** ,961** 1 ,936** ,886** ,875** ,863** 0,123
Sig. (bilat) 0,001 0,866 0,053 0,000 0,003 0,000 0,000 0,001 0,001 0,001 0,735
N 8 10 9 8 10 9 10 10 9 10 10 10
Corr ,884** 0,155 ,684* ,943** ,747* ,906** ,936** 1 ,913** ,952** ,877** 0,277
Sig. (bilat) 0,004 0,670 0,042 0,000 0,013 0,001 0,000 0,001 0,000 0,001 0,438
N 8 10 9 8 10 9 10 10 9 10 10 10
Corr ,986** 0,059 0,646 ,940** ,791* ,810* ,886** ,913** 1 ,860** ,865** 0,171
Sig. (bilat) 0,000 0,880 0,084 0,001 0,011 0,015 0,001 0,001 0,003 0,003 0,660
N 8 9 8 8 9 8 9 9 9 9 9 9
Corr ,808* 0,338 0,637 ,916** ,763* ,844** ,875** ,952** ,860** 1 ,884** 0,379
Sig. (bilat) 0,015 0,340 0,065 0,001 0,010 0,004 0,001 0,000 0,003 0,001 0,280
N 8 10 9 8 10 9 10 10 9 10 10 10
Corr ,895** 0,468 ,758* ,886** ,946** ,888** ,863** ,877** ,865** ,884** 1 0,488
Sig. (bilat) 0,003 0,173 0,018 0,003 0,000 0,001 0,001 0,001 0,003 0,001 0,152
N 8 10 9 8 10 9 10 10 9 10 10 10
Corr 0,185 0,608 ,753* 0,188 0,366 0,384 0,123 0,277 0,171 0,379 0,488 1
Sig. (bilat) 0,661 0,062 0,019 0,655 0,299 0,307 0,735 0,438 0,660 0,280 0,152
N 8 10 9 8 10 9 10 10 9 10 10 10

BSTMPM

Table 2C. Correlations between pSTAT5-ir densities between nuclei in Virgins
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Supplementary Figure 1 

In order to analyse the levels of anxiety of the females of experiment 1 during the MPRT, we 

analysed two variables that are usually reduced by anxiety in the classical Open field test [1], 

namely locomotion and time in the centre of the cage. Through the MPRT, animals become 

habituated to the test conditions and anxiety gradually declines. Therefore, we restricted our 

analysis to the first 5 minutes of the first session of the MPRT.  

To evaluate locomotion, we used the open source software for behavioural analysis BORIS 

(https://www.boris.unito.it/, [2]). With this software we traced three evenly spaced lines onto 

the videos, parallel to the long axis of the cage of the females, and a person blind to the 

experimental conditions measured the number of line crossings in the first five minutes of the 

test for all the females (dams, LTC, STC and pup-naïve virgins). Upper figure shows a bar 

histogram (meanrSEM) of the results with the individual data. Differences among females were 

explored using a non-parametric Kruskal-Wallis test for independent samples, as data showed 

no homoscedasticity. The results indicate no statistically significant differences between females 

(p=0.108).  

We also used BORIS to trace a square occupying the centre of the home cage, and the same 

person measured the time that females spent in this central area of the cage. Data (meanrSEM) 

for the females of all four groups are shown in lower figure. Since data fulfilled both normality 

and homoscedasticity, we analysed possible differences with a one way parametric ANOVA. The 

results, however, revealed no significant differences between females (F3,33=2.324, p=0.091).  

This analysis suggest that anxiety is similar in all four groups of females, so that differences in 

pup retrieval latency and other variables cannot be attributed to anxiety but to differential 

motivation of the females to climb the barrier and retrieve the pups.  

  

1  Crawley J, Bailey K. Anxiety-Related Behaviors in Mice. In: Buccafusco JJ, editor. 

Methods of Behavour Analysis in Neuroscience. , Second. Boca Raton (FL): CRC Press/Taylor & 

Francis; 2008; pp 77–101. 

2  Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for 

video/audio coding and live observations. Methods Ecol Evol. 2016;7(11):1325–30.  
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