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ABSTRACT 

Deficits in arginine-vasopressin (AVP) and oxytocin (OT), two neuropeptides closely implicated in the 

modulation of social behaviours, have been reported in some early developmental disorders and autism 

spectrum disorders. Mutations in the X-linked methyl CpG binding protein 2 (MECP2) gene are associated 

to Rett syndrome and other neuropsychiatric conditions. Thus, we first analysed AVP and OT expression 

in the brain of Mecp2-mutant mice by immunohistochemistry. Our results reveal no significant differences 

in these systems in young adult Mecp2-heterozygous females, as compared to WT littermates. By contrast, 

we found a significant reduction in the sexually dimorphic, testosterone-dependent, vasopressinergic 

innervation in several nuclei of the social brain network and of oxytocinergic innervation in the lateral 

habenula of Mecp2-null males, as compared to WT littermates. Analysis of urinary production of 

pheromones show that Mecp2-null males lack the testosterone-dependent pheromone darcin, strongly 

suggesting low levels of androgens in these males. In addition, resident-intruder tests revealed lack of 

aggressive behaviour in Mecp2-null males and decreased chemoinvestigation of the intruder. By contrast, 

Mecp2-null males exhibited enhanced social approach, as compared to WT animals, in a 3-chamber social 

interaction test. In summary, Mecp2-null males, which display internal testicles, display a significant 

reduction of some male-specific features such as vasopressinergic innervation within the social brain 

network, male pheromone production and aggressive behaviour. Thus, atypical social behaviours in Mecp2-

null males may be caused, at least in part, by the effect of lack of MeCP2 over sexual differentiation. 

Keywords: Aggression; Autism Spectrum Disorders; Methyl-CpG binding protein 2; Nonapeptides; Rett 

syndrome; Social behaviour 
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ABBREVIATIONS 

AC/ADP: nucleus of the anterior commissure / anterodorsal preoptic nucleus region 

AcbC: nucleus accumbens, core 

AcbSh: nucleus accumbens, shell 

BST: bed nucleus of the stria terminalis 

BSTMPI: bed nucleus of the stria terminalis, medial division, posterointermediate part 

Ce: central amygdaloid nucleus 

dEn: dorsal endopiriform cortex 

dlPAG: dorsolateral periaqueductal grey  

DMH: dorsomedial hypothalamic nucleus 

DR: dorsal raphe nucleus 

LHb: lateral habenular nucleus 

LS: lateral septum 

Me: medial amygdaloid nucleus 

MeA: medial amygdaloid nucleus, anterior part 

MePD: medial amygdaloid nucleus, posterodorsal part 

Opt: optic tract 

Pa: paraventricular hypothalamic nucleus 

Pe: periventricular hypothalamic nucleus 

SCh: suprachiasmatic nucleus 

SON: supraoptic nucleus 

SOR: retroquiasmatic part of the supraoptic nucleus 

St: striatum 
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vHip: ventral hippocampus 

vlPAG: ventrolateral periaqueductal grey 

vmStP: ventromedial striatopallidum  
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INTRODUCTION 

Arginine-vasopressin (AVP) and oxytocin (OT) are two related nonapeptides mainly synthesized in the 

hypothalamic paraventricular (Pa) and supraoptic nuclei (SON). In addition, AVP is present in the 

suprachiasmatic nucleus (SCh), and AVP-containing neurons in the bed nucleus of the stria terminalis 

(BST) and medial amygdala (Me), display a marked sexual dimorphism in favour of males (Rood et al. 

2013; Otero-Garcia et al. 2014, 2016). Central projections of the nonapeptide-synthesising groups to brain 

nodes of the social brain network possess relevant roles in the control of social, sexual and parental 

behaviours in mammals (Goodson 2008). Interestingly some of the target regions of AVP neurons, such as 

the ventral lateral septum (LS), medioventral striato-pallidum (vmStP), posterodorsal medial amygdala 

(MePD) or lateral habenula (LHb) display significantly higher density of AVP-immunoreactive (ir) fibres 

in males than in females (Otero-Garcia et al. 2014). 

This sexually-dimorphic AVP innervation is dependent on testosterone (Rood et al. 2013; Otero-Garcia et 

al. 2014), which aromatized to estradiol acts on estradiol receptor α (ERα) (Scordalakes and Rissman 2004). 

In turn, transcriptional regulators such as the methyl CpG-binding protein 2 (MeCP2) are involved in the 

regulation of both AVP and ERα (Murgatroyd et al. 2009; Westberry et al. 2010; Forbes-Lorman et al. 

2012), suggesting a complex interplay between gonadal hormones and epigenetics. This interplay would 

contribute to the shaping and functioning of the social brain nuclei (Newman 1999), key for the 

development and expression of social behaviour (Auger et al. 2011; Romano et al. 2016).  

Mutations in the MECP2 gene, located on the Xq28 chromosome, underlie 95% of the classic cases of Rett 

syndrome [RTT, OMIM #312750; (Zoghbi et al. 1999)], a rare neurodevelopmental disorder first described 

by Andreas Rett in 1966 [(Rett 2016) translation of the original article (Rett 1966)]. Although considered 

as a rare disease, which affects 1 in 10.000 girls, RTT represents the second cause of intellectual disability 

of genetic origin in females (Christodoulou 2001). Girls affected with RTT show normal development until 

the age of 6 to 18 months, when they start to manifest the typical symptomatology such as loss of previously 

acquired speech and motor abilities, breathing abnormalities, stereotypic hand movements, seizures, 

intellectual disability, and autistic features (Hagberg 2002). In the case of boys, they usually die from severe 

neonatal encephalopathy before the first year of life [reviewed in (Santos et al. 2009)]. By contrast, boys 

with MECP2-duplication syndrome display intellectual disability and autism, whereas girls are either 

asymptomatic carriers or display some neuropsychiatric symptoms (Ramocki et al. 2010). The wide variety 
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of neurological and neuropsychiatric symptoms caused by either lack or excess of MeCP2 protein is related 

to its important expression in the mature neurons of the central nervous system (LaSalle et al. 2001).  

Deficits in vasopressinergic (AVP-ergic) and oxytocinergic (OT-ergic) systems have been involved in 

neurodevelopmental, autistic and psychiatric disorders in both humans and rodents (Waterhouse et al. 1996; 

Modahl et al. 1998; Winslow and Insel 2004; Domes et al. 2007; Lukas and Neumann 2013; Miller et al. 

2013; Francis et al. 2014; Menon et al. 2018; Freeman et al. 2018). However, AVP-ergic and OT-ergic 

systems have not been analysed in mouse models of MECP2-related syndromes. 

On this basis, our first aim was to analyse the consequences of MeCP2 deficit on AVP and OT distribution 

in the brain of young adult male and female mice, using an established Mecp2-mutant mouse model, the 

Mecp2tm1.1Bird (Guy et al. 2001). In this strain, hemizygous males (Mecp2-null) are infertile, so the breeding 

pairs are established with Mecp2-heterozygous (Mecp2-het) females paired to WT males. This impedes the 

production of Mecp2-null females in this strain, and hence, in this study, we compare males and females 

separately, as we did in a previous study (Martínez-Rodríguez et al. 2019).  

Given that our results showed that lack of MeCP2 affects mainly the testosterone-dependent AVP-ergic 

innervation in male mice, we next analysed the production of masculine urinary pheromones, also 

dependent on testosterone levels, in the Mecp2-null males. Finally, since gonadal steroids influence 

agonistic and social behaviour, we analysed the behavioural profile of Mecp2-null males in the resident-

intruder and in the three-chamber social interaction tests. 

MATERIAL AND METHODS 

Mice 

For this study, we used a total of 50 Mecp2-mutant mice (Guy et al. 2001) and 82 of their wild-type (WT) 

siblings as controls, purchased from The Jackson Laboratory (B6.129(C)-Mecp2tm1.1Bird). Of those, we used 

23 mice for the analysis of AVP and OT distribution (WT females, n=5; WT males, n=7; Mecp2-het 

females, n= 6; Mecp2-null males, n=5). We obtained urine from 8 males to study the presence of Major 

Urinary Proteins (MUPs), pheromones released in the urine (WT male, n=4; Mecp2-null males, n=4). 

Finally, 45 male mice were used for the resident intruder test (RI-test) for intermale aggression (male WT, 

n=32; male Mecp2-null, n=13), 16 were used for the habituation-dishabituation test of olfactory function 
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(male WT, n=7; Mecp2-null male, n=9), and 40 for the social preference test (male WT, n=27; Mecp2-null 

male, n=13). All animals were 8 weeks old when tested.  

Mice were housed in groups of 2-5 animals in standard laboratory cages with controlled humidity and 

temperature (22ºC), a 12:12-h light/dark cycle, and water and food available ad libitum. All the procedures 

were carried out in strict accordance with the EU directive 2010/63/EU. The protocols were approved by 

the local veterinary office of the University Otto-von-Guericke and the Animal Experimentation Ethics 

Committee of the University of Valencia.  

Genotyping 

For genotyping, we applied the protocol supplied by the Jackson Laboratory for this strain after the 

extraction of the DNA from the tail tips of the mice at weaning. 

Histology 

Animals for anatomical studies were deeply anaesthetized using a mixture of ketamine (75 mg/Kg) and 

medetomidine (1 mg/Kg) and transcardially perfused with saline solution followed by 4% formaldehyde in 

0.1M phosphate buffer pH 7.4. Brains were carefully removed from the skull, postfixed in the same fixative 

for 4 h and placed into 30% sucrose (in 0.01M phosphate buffered saline, pH 7.6, PBS) until they sank. 

The brains were then frozen and cut in five series of 40-μm-thick coronal sections with a freezing 

microtome. Free-floating sections were stored in the freezer in phosphate buffered 30% sucrose (0.1 M pH 

7.4) until they were used. 

Double immunofluorescence for arginine-vasopressin and oxytocin 

We employed combined immunofluorescence for simultaneous immunolabelling of AVP and OT following 

Otero-García et al., (2016). For this experiment we used one out of five parallel series obtained of mice 

sacrificed at the age of 8 weeks (female WT, n=6; male WT, n=7; Mecp2-het female, n=5; Mecp2-null 

male, n=5).  

Sections were incubated sequentially in: (i) 1% sodium borohydride in TRIS buffered (TB) saline (TBS, 

0.9% NaCl in TB) at room temperature (RT, approximately 25ºC) for 30 minutes (min); (ii) 0.05M TBS 

pH 7.6 with 0.3% Triton X-100, and 4% normal goat serum (NGS) at RT for 1 hour. (iii) Next, sections 

were incubated with TBS with 0.2% Triton X-100, 4% NGS for 48h at 4ºC with the following antibodies: 

rabbit anti-vasopressin IgG (1:2500; Millipore, AB1565) and mouse anti-oxytocin, monoclonal IgG (1:200; 
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Dr. Harold Gainer, NIH, PS38). (iv) After incubation with primary antibodies, sections were incubated with 

fluorescent-labelled secondary antibodies for 90 min at RT in TBS with 0.2% Triton X-100: Alexa Fluor 

488-conjugated Goat anti-rabbit IgG (1:250; Jackson ImmunoResearch, 111-545- 003) and Rhodamine Red 

X-conjugated goat anti-mouse IgG (1:250; Invitrogen R6393). Between each step, sections were washed in 

TBS (except between step ii and iii). To reveal the cytoarchitecture of the brain in the same sections, prior 

to mounting, sections were counterstained in DAPI for 45 seconds (4’,6-diamino- 2-fenilindol, 600nM) at 

RT. Sections were finally rinsed thoroughly in TB, mounted onto gelatinized slides and cover-slipped with 

fluorescence mounting medium (Dako, Glosrup, Denmark). Immunofluorescent staining of the samples to 

be directly compared (i.e. WT males vs Mecp2-null and WT females vs Mecp2-het) were performed at the 

same time, and all the material was processed by the same experimenter. 

Permanent arginine-vasopressin immunohistochemistry with NADPH-diaphorase staining  

We performed a permanent immunostaining for AVP combined with NADPH-diaphorase histochemistry 

in one of the five parallel sets of 12 males used above (male WT, n=7; Mecp2-null, n=5) as in Otero-Garcia 

et al., (2014). For AVP immunostaining, sections were incubated sequentially in: (i) 1% H2O2 in 0.05M 

TBS pH 7.6 for 30 min at RT for endogenous peroxidase inactivation; (ii) blocking solution, 0.05M TBS 

pH 7.6 with 0.3% Triton X-100 and 2% NGS; (iii) primary antibody (1:10000, rabbit anti-vasopressin IgG, 

Chemicon, AB1565) overnight at 4 ºC; (iv) diluted biotinylated secondary antibody (1:200, goat anti-rabbit 

IgG, Vector Labs, BA-1000) in TBS for 90 min at RT; (v) avidin–biotin-peroxidase complex (ABC Elite 

kit; Vector Labs, PK-6200) in TBS for 90 min at RT. Between each step, sections were washed in TBS 

(3x10 min). After ABC incubation, sections were rinsed in TBS (3x10min) and TRIS buffer (TB) 0.05 M, 

pH 8 (3x10min). The histochemical detection of the resulting peroxidase activity was performed by 

incubation in 0.003% H2O2 and 0.025% 3,3- diaminobenzidine (Sigma) in TB for about 17 min. See 

Supplementary information for NADPH-diaphorase histochemistry. The sections were finally rinsed 

thoroughly in TB, mounted onto gelatinized slides, dehydrated in ethanol, cleared with xylene and 

coverslipped with Entellan. Immunostaining of all the samples was performed at the same time by the same 

experimenter. 

Analysis and quantification  

An experimenter blind to genotype and sex of mice took pictures of both hemispheres of previously selected 

levels of Bregma (following Paxinos and Franklin, (2012); Table 1) in several brain nuclei in which either 
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AVP-ergic or OT-ergic innervation have been previously demonstrated in the brain of mice (Otero-Garcia 

et al. 2014; Otero-García et al. 2015). Pictures were taken with a digital Leica DFC495 camera attached to 

a microscope equipped with both conventional light and fluorescent lamps (Leica Leitz DMRB) and 

software LAS v4.3. We adjusted the most accurate conditions of exposition, gamma and saturation for each 

brain region. Pictures from both genotypes were taken under the same scan settings. Because some nuclei 

are heterogeneous in the density of AVP-immunoreactive (AVP-ir) and OT-ir along the rostro-caudal axis, 

extra levels of Bregma we selected for those, and we calculated the average density of AVP-ir and OT-ir 

cells for each nucleus. Pictures were obtained by using the green channel for Alexa Fluor 488 (AVP) and 

then changing to the red channel for Red Rhodamine-X (OT). Both images were taken at exactly the same 

location when co-localization analysis was required. All the subsequent steps were performed using ImageJ 

free software (NIH).  

Quantification of AVP and OT cells: single and double staining 

AVP-ir and OT-ir somata were analysed in different brain areas at previously selected Bregma levels (see 

Table 1). Those nuclei include the posterointermediate part of the medial division of the bed nucleus of the 

stria terminalis (BSTMPI) and the anterior and posterodorsal parts of the medial amygdaloid nucleus (MeA, 

MePD). We also analysed AVP-ir and OT-ir cells in the hypothalamic region between the anterodorsal 

preoptic nucleus and the nucleus of the anterior commissure (AC/ADP), as well as other hypothalamic 

nuclei such as Pa, SCh, SON, and the retrochisamatic region of the supraoptic nucleus (SOR). An observer 

blind to the experimental conditions took pictures from both hemispheres at specific objective 

magnification and counted manually the number of AVP-ergic and OT-ergic cells with the multipoint 

plugin of the ImageJ software. We also analysed co-localization of AVP and OT in the AC/ADP and Pa, 

using ImageJ software. 

Analysis and quantification of AVP and OT immunoreactive terminal fields 

AVP-ergic and OT-ergic innervation was analysed in target regions following the protocol described in 

(Menon et al. 2018): we draw a Grid with the plugin of the ImageJ and counted the number of crossings of 

the fibres with the grid bars with the multi-point tool of the Image J. In the case of the AVPergic fibres in 

the LHb, due to intricate labelling found, we counted the total number of squares containing labelled puncta.  

Urine collection and analysis 
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Urine from 4 WT and 4 Mecp2-null males was collected by gently pressing the animal bladder manually, 

holding the animal over a Petri dish. We performed a mass separation of urinary proteins using 15% sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (Lanuza et al. 2014). First, we diluted 

the urine samples 1:1 with 20 mM Tris-HCL pH=8, 5% SDS, 10% mercaptoethanol, 2 mM EDTA and 

0.05% bromophenol blue. Samples were vortexed, boiled for 5 min and centrifuged for 5 min at 10.000 

rpm. Male urine was then further diluted 1:3 in 10 mM Tris-HCL pH=8, 2.5% SDS, 5% mercaptoethanol, 

1mM EDTA and 0.05% of bromophenol blue. 

We loaded 50 µg of total protein from the urine samples in a 15% SDS-PAGE and run at 200 V. Following 

electrophoresis, protein bands were visualized using PhastGel Blue (0.1%) solution at 50 ºC and 

differentiated in a solution of Coomassie brilliant.  

Behavioural testing and analysis 

All behavioural tests were performed between 10 am and 5 pm.  

Resident-intruder 

Animals were isolated in their home-cages for at least 1 week with no bedding changes. On the day of 

testing, an intruder male mouse (same strain WT or Mecp2-null male of 2-4 months old) was introduced in 

the home-cage of the test animal and the behaviour was registered for 5 min. After 1 week, the test was 

repeated, but now with the test animal as intruder. 

An observer blind to the experimental conditions manually scored several behavioural parameters using the 

plugging event recorder of SMART 2.5 (Panlab, Barcelona, Spain). The parameters were number and total 

time in seconds of attack from resident to intruder, time that the resident spent investigating the intruder 

(sniffing the face, body or anogenital zone), number of times that the resident chased the intruder, number 

of times that the resident escaped from the intruder, and time spent by the resident self-grooming.  

Habituation-dishabituation 

WT and Mecp2-null mice were placed in a new cage with fresh bedding for 3 min for habituation in the 

experimental room. Afterwards, we presented a clean cotton bud soaked with 10μl water to the mouse three 

times for 1 min, with a 30 seconds gap in between. This procedure was followed with rose (1:1000 dilution) 

and urine (collected from C57Bl/6J animals) odour presentations. For the analysis, we registered the time 

animals spent sniffing the cotton bud. 
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Three-chamber social preference interaction test 

The test consisted of 3 phases. (i) During the habituation phase, mice were put in the arena with the 2 

stimulus chambers empty and allowed to freely explore for 5 min. (ii) To test for social preference, a 

stimulus mouse (stranger 1) confined inside one wire-mesh cylinder was introduced in one of the stimulus 

chambers (counterbalanced). The second cylinder was left empty in the opposite chamber and the test 

mouse was placed in the arena and allowed to explore for 5 min. (iii) One hour after the social preference 

test, animals were tested for social recognition in a 5 min session. During this stage, a second stimulus 

mouse (stranger 2) was confined to the previously empty cylinder, while the familiar one (stranger 1) 

remained in its cylinder. Stranger 1 and Stranger 2 animals were 2-4 WT males of the C57Bl6/J strain. 

Behaviour was monitored automatically using a video tracking system (ANYMAZE). We recorded and 

analysed exploration for the familiar or the new subject, defined as the orientation of the nose towards the 

cylinder at a distance ≤ 2 cm. Sociability was measured as the time spent close to each cylinder (stranger 1 

vs. empty), whereas preference for social novelty was defined by the discrimination index for the novel 

subject [DI = (stranger 2 exploration time – stranger 1 exploration time)/total exploration time]. 

Statistical analysis 

Data were analysed using the software IBM SPSS Statistics 22.0. We first checked the data for normality 

(Shapiro-Wilk’s test) and homoscedasticity (Levene’s test). Next, we evaluated the differences between 

genotypes by using Student’s t-test or Mann-Whitney U test when appropriate. For the resident-intruder 

test, we also used Chi-square test to compare the number of resident mice displaying aggressive behaviours 

(attack and chase). Levels of MUPs and darcin were qualitative analysed with Image J from the bands 

obtained in the SDS-PAGE. Briefly, we draw a line through the middle of bands for individual samples and 

analysed the with and grey value of each band with the Plot Profile command. For social interaction test, 

we used two-way ANOVA to evaluate the differences with genotype and position as factors. Significance 

was set at p < 0.05.   

RESULTS 

Distribution of nonapeptidergic cells and fibres is not affected by MeCP2 deficiency  

Qualitatively, the distribution of AVP-ir and OT-ir somata and fibres in both Mecp2-mutant and WT mice 

males and females matched with previous reports analysing nonapeptidergic systems in WT mice of two 
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different strains (Rood et al. 2013; Otero-Garcia et al. 2014). We found abundant AVP-ir cells in the 

hypothalamic nuclei Pa, SCh, SON, and SOR (Figure 1), and few scattered AVP-ir cells in other areas of 

the brain such as the AC/ADP, BSTMPI, MeA, and MePD (Figure 2). Similarly, the population of OT-ir 

cells was abundant in AC/ADP, Pa, SON, and SOR, and sparse in BSTMPI, MeA, and MePD (see examples 

in Figure 1, 2). Additionally, we observed some co-localization of both neuropeptides in AC/ADP and Pa 

(not shown), as previously described by Otero-Garcia et al. (2016). In general, we did not find qualitative 

differences in the distribution of nonapeptidergic somata between males and females. 

Regarding AVP-innervation of the telencephalon, we found moderate to dense terminal fields in the LS, 

vmStP, BST (Figure 3) and Me, and scarce AVP-ir fibres in the ventral hippocampus in WT males, whereas 

this innervation was reduced in Mecp2-null males and both groups of females (see below). In the 

diencephalon, we found abundant AVP-ir in the periventricular and lateral compartments at preoptic and 

anterior levels, as well as in the dorsomedial hypothalamic nucleus (DMH) and the lateral habenula (LHb) 

(Figure 4A), being the latter only significant in WT males (see below). In the mesencephalon, we found 

AVP-ir in the periaqueductal gray (PAG) and dorsal raphe (DR). As for OT-ir in the telencephalon, we 

found only a few scattered OT-ir fibres in the nucleus accumbens core (AcbC) and in the shell (AcbSh). 

Modest OT-ergic innervation was also present in the vmStP, whereas only a few OT-ir terminal fields were 

present in LS. In the case of BSTMPI, MeA, MePD, central amygdala (Ce) and LHb (Figure 4B) we 

observed a scarce OT-ergic innervation. Conversely, there was an abundant OT-ergic innervation in the 

ventrolateral portion of PAG (vlPAG) and DR. 

Density of nonapeptidergic cells is not affected by deficits in MeCP2 

The analysis of AVP-ir and OT-ir somata revealed that there were no significant differences in cell density 

between Mecp2-het and WT female mice (p>0.05 in all cases, Table 2). Likewise, no significant differences 

were found between Mecp2-null and WT males (Figure 5A, B).  

Nonapeptidergic innervation is not affected by genotype in Mecp2-het females 

We did not find significant differences between Mecp2-het and WT females in any of the analysed areas, 

both in AVP-ir and in OT-ir innervation (p>0.05 in all cases, Table 3). Thus, the partial deficiency of 

MeCP2 that occurs in heterozygous individuals fails to affect both the pattern of distribution and the density 

of nonapeptidergic innervation in young adult female mice. 
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Testosterone-dependent AVP-ir innervation is reduced in the brain of Mecp2-null males 

The quantitative analysis of AVP-ir innervation showed significant reduction to absence of AVP-ergic 

fibres in several sexually dimorphic nuclei in the brain of Mecp2-null males (Figure 5C-E). Specifically, 

AVP-ir innervation was significantly reduced in Mecp2-null males in the vmStP (t=3.043, p=0.023), LS 

(t=2.794, p=0.019), BSTMPI (t=2.569, p=0.028), and LHb (Mann-Whitney, p=0.018). By contrast, 

immunofluorescent fibres in MeA, MePD and DMH were not significantly different between genotypes 

(all p>0.05, Figure 5C, D). Additionally, analysis of AVP-ir fibres from DAB immunostaining 

(Supplementary information, Figure S1) revealed a significant reduction in dorsal endopiriform cortex 

(dEn) (t=5.009, p=0.002) and ventral hippocampus (vHip) (Mann-Whitney test, p=0.02) of Mecp2-null 

males as compared to WT siblings, but not in dorsolateral PAG (dlPAG), vlPAG or DR (all p>0.05, Figure 

6A, B). In the MePD we found a significant effect of genotype in DAB samples (t=2.415, p=0.036) that 

was not observable in the immunofluorescent samples.  

In DAB immunostained samples, we also performed an histochemical detection of NADPH-diaphorase 

activity, as it helps delimitate the nuclei of interest (Otero-Garcia et al. 2014). Interestingly, NADPH-

diaphorase activity has been shown to increase with castration. Given that previous results suggest that the 

main effect of Mecp2 genotype was related to a deficit in testosterone-dependent AVP innervation, we 

checked the density of NADPHd+ cells in selected regions of the brain. In agreement with a deficit of 

testosterone in Mecp2-null males, we found a significant increase of NADPHd+ cell density in the dorsal 

and ventral striatum in Mecp2-null males as compared to WT, and a general tendency towards increase 

intensity of labelling in other areas (Supplementary information, Figure S2). 

OT-ir innervation is decreased in the lateral habenula of Mecp2-null mice 

In general, we did not find differences between genotypes in the density of OT-ir innervation (Table 4, all 

p>0.05) in males, except in the case of the LHb, where we found a significant decrease of OT-ir fibres in 

Mecp2-null males as compared to WT (p=0.02, Figure 4B, B’).  

Mecp2-null males do not secrete the male pheromone darcin 

Next we sought to analyse the production of masculine pheromones, dependent on testosterone levels, and 

specifically of the male pheromone darcin (Roberts et al. 2010, 2012). Indeed, female mice do not secrete 

darcin in urine (Supplementary information, Figure S3, Roberts et al. (2010)), and castration, but not some 
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infections, eliminates the production of darcin in WT adult mice (Supplementary information, Figure S3, 

Lanuza et al. (2014)). Protein electrophoresis of the urine of male mice revealed three to five bands in the 

urine of WT mice, one corresponding to the 16 kDa MUP darcin (Roberts et al. 2010). By contrast, urine 

samples of Mecp2-null males showed only one or two bands, lacking the band corresponding to darcin 

(Figure 7). Moreover, the 20 kDa band, that showed the highest amount of proteins in the urine, was thinner 

and less intense in Mecp2-null mice than in their WT siblings. Thus, Mecp2-null males, which have internal 

testicles, present a pattern of MUPs compatible with low testosterone levels (Roberts et al. 2010; Lanuza 

et al. 2014).  

Mecp2-null males do not attack and display reduced chemoinvestigation of intruders and increased 

self-grooming 

Aggressive behaviour is known to be influenced by testosterone (Brain and Haug 1992). First, we tested 

WT and Mecp2-null mice in a resident-intruder paradigm to evaluate aggressive behaviour against a WT 

intruder. Since the aggressiveness of our WT males was low, we combined attack and chase parameters 

and analysed them as one. We found that while 31% of WT resident mice attacked or chased the WT 

intruder, none of the Mecp2-null mice attacked or chased the WT intruder (Chi square test=4.97; p=0.026). 

However, since the WT resident animals were low aggressive, we did not find significant differences in 

time spent attacking/chasing the intruder (WT resident: 7.30±2.73 s, Mecp2-null resident: 0±0 s, Mann-

Whitney U test, p=0.083, Figure 8A).  

Additionally, we analysed the time spent by the resident in chemoinvestigation of the intruder, a socially-

directed behaviour. Here, Mecp2-null male residents spent significantly less time chemoinvestigating the 

WT intruders, as compared to the time WT residents do towards WT intruders (Mann-Whitney U test, 

p<0.018) (Figure 8B). All these results point to a lack of interest of Mecp2-null males towards their 

conspecific intruders, at least in the RI-test.  

Interestingly, we found that social and agonistic behaviours were apparently substituted in the Mecp2-null 

resident males by self-grooming, as they spent significantly more time grooming than WT residents (Mann-

Whitney U test, p=0.005; Figure 8C). Nevertheless, we cannot exclude that this behaviour is reflecting a 

stereotypic behaviour, similarly to what was reported previously in mouse models of ASD as compared to 

WT (Chang et al. 2016; Wu et al. 2019). 



17 
 

Since urine analysis has found that Mecp2-null males do not secrete the male pheromone darcin, we ought 

to investigate how WT residents would react towards Mecp2-null intruders. Thus, we studied aggressive 

behaviour and chemoinvestigation of an additional group of WT residents presented with Mecp2-null 

intruders, and compared them with the group of WT residents exposed to WT intruders. Data analysis 

revealed that WT residents investigated significantly more Mecp2-null intruders than WT intruders 

(Student’s T-test, t=-3.882, p<0.001; Figure 8B). By contrast, WT residents did not show significant 

differences in time spent attacking/chasing WT or Mecp2-null intruders (Mann-Whitney U test, p>0.05, 

Figure 8A). This suggests that WT residents “see” Mecp2-null animals as “novelty” that calls for their 

attention/investigation.  

Reduced chemoinvestigation of intruders exhibited by Mecp2-null males is not due to anosmia 

Since both chemoinvestigation and aggressive behaviours are heavily dependent on chemosignals in mice, 

we checked the olfactory ability of Mecp2-null mice in a habituation-dishabituation experiment. In this test, 

one of the WT animals spent the whole test freezing, whereas one of the Mecp2-null males displayed 

repetitive and aberrant continuous investigation of the cotton swab irrespectively of the presentation, hence 

both animals were not considered for further analysis. The curves of exploration for each group are depicted 

in Figure 9A.  

First, we checked whether the total time exploring the cotton swab across the whole experiment was 

affected by genotype. A Student-t test revealed that there was a significant difference between WT and 

Mecp2-null mice in total exploration time (t=3.863, p=0.002, Figure 9B), with Mecp2-null mice displaying 

a general reduced investigation. 

Next, we calculated a discrimination index (DI) as time exploring the first presentation of the odour (rose 

or urine) minus last presentation of water before each odour. DI for both odours were significantly different 

from 0 in both genotypes (WT, UrineDI, t=4.140, p=0.009; RoseDI, t=3.279, p=0.022; Mecp2-null, 

UrineDI, t=3.742, p=0.005; RoseDI, t=2.441, p=0.037), suggesting that both groups of animals were able 

to discriminate the odours. However, a Student’s t test revealed that both UrineDI and RoseDI were 

significantly different between genotypes (t=2.639, p=0.019 and t=3.321, p=0.005, respectively), 

suggesting that the increase in investigation elicited by both odours was reduced in Mecp2-null mice as 

compared to WT (Figure 9C).  
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Overall, Mecp2-null animals are not anosmic, though they display reduced investigation that could be 

related to either some degree of hiposmia or, more likely, to the motor demands of the task.  

Mecp2-null animals show a preference for social contact and social novelty 

Finally, we checked for possible alteration in sociability and social memory by means of social interaction 

and social recognition tests. In the 3-chamber social interaction test, we first assessed social preference by 

measuring the time of exploration of each test animal towards a stranger animal (stranger 1) versus that of 

an empty cage. Using a two-way ANOVA we observed a significant type of stimulus in the cylinder effect 

(F1,76=103.225, p<0.001), genotype effect (F1,76=13.039, p=0.001), but also genotype x type of stimulus in 

the cylinder interaction effect (F1,76= 26.81, p < 0.0001, Figure 10A). Post-hoc comparisons showed that 

both WT and Mecp2-null animals have a social preference, as both spent more time exploring the animal 

than the empty cage (WTmouse vs. WTempty, t=4,370, p<0.001; Mecp2-null_mouse vs. Mecp2-

null_empty, t=9,334, p<0.001). Interestingly, Mecp2-null spent significantly more time than WT animals 

exploring the stranger mouse 1 (t = 6,214, p<0.001).  

Next, a novel animal (stranger 2) was placed in the previously empty cylinder and social recognition was 

evaluated. A statistically significant main effect of genotype (F1,76= 12.614, p=0.001; Figure 10B) was 

observed. Overall, both WT and Mecp2-null animals recognized stranger 2 as novelty since they spent more 

time investigating stranger 2 than stranger 1 (main effect of position; F1,76=11.205, p<0.001). Moreover, 

Mecp2-null animals explore for significantly more time strangers 1 and 2 than WT animals. Overall, data 

from these experiments suggest that Mecp2-null animals seek social contact when tested in a new 

environment. 

DISCUSSION 

In this study, we investigated the distribution and density of nonapeptidergic somata and innervation in 

young adult Mecp2-null males and Mecp2-het females, as compared to their WT siblings. Overall, females 

do not show significant differences between genotypes in either AVP-ergic or OT-ergic distribution. By 

contrast, we found a significant reduction in AVP innervation in Mecp2-null males, specifically in the 

sexually dimorphic nuclei of the social brain network. Additionally, we found in Mecp2-null males a 

significant reduction of OT innervation specifically in the LHb, which is not sexually dimorphic. 
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Since the main neuroanatomical changes found in the nonapeptidergic system were specific to the 

testosterone-dependent AVP-ergic innervation, we further analysed features that are dependent on the 

gonadal status of males. Specifically, we analysed the production of urinary pheromones as a proxy of 

testosterone level and aggressive and social behaviours, and found significant deficits in all of them that 

we discuss below. 

The distribution of AVP and OT cells is not affected by lack or deficit of MeCP2  

AVP and OT are both synthesised in the Pa and SON hypothalamic nuclei. Besides, AVP-ir somata are 

also present in the SCh and AVP-ir and scarce OT-ir somata in Me, BST and accessory nuclei. Distribution 

of AVP and OT in our sample of WT and Mecp2-mutant mice matched previous studies in mice by Otero-

Garcia et al., (2014; 2016) in CD1 strain and Rood et al (2013) in C57BL/6N strain. In general, neurons 

were either AVP-ir or OT-ir, although we found co-localization of both neuropeptides in AC/ADP and Pa, 

as previously described (Otero-Garcia et al. 2016). 

These results suggest that deletion of MeCP2, previously described as key in the regulation of AVP in the 

Pa (Murgatroyd et al. 2009), is not sufficient to produce a major deficit in AVP production. To our 

knowledge, a regulation of the OT gene by MeCP2 has not been described, however, the AVP and OT 

genes are located in adjacent regions of the same chromosome, separated only by 12 Kb (Summar et al. 

1990), and both peptides are co-expressed in some neuronal populations (Otero-Garcia et al., 2016), 

suggesting a close transcriptional regulation of both genes. As with AVP, no qualitative differences were 

observed in OT distribution between genotypes. However, a caveat in this study is that 

immunohistochemistry is not directly quantitative of the level of nonapeptides. Thus, future experiments 

should address the possibility that nonapeptidergic mRNA or protein levels are affected in Mecp2-mutant 

mice.  

Mecp2-heterozygous females show no deficits in the nonapeptidergic systems  

We did not find significant differences in nonapeptidergic distribution or innervation between Mecp2-het 

females and their WT littermates. Lack of differences between genotypes in females could be attributed to 

i) the presence of one Mecp2 allele in females that could be sufficient to prevent alterations in AVP or to 

ii) a lack of testosterone-dependent AVP innervation in females, assuming that absence of AVP in sexually 

dimorphic nuclei in Mecp2-null males is mainly testosterone-dependent. In addition, we must also consider 

possible age-effects in our mice, analysed at 8 weeks old. At this age, male Mecp2-null mice are already 
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manifesting the overt phenotype of the syndrome, whereas female Mecp2-het mice do not show the 

complete symptomatology until, at least, 3 months old (Guy et al. 2001). In this sense, further investigations 

of AVP/OT-ergic systems in older females are required to elucidate possible impairments in both 

nonapeptidergic systems. 

Mecp2-null males exhibit significant deficits in testosterone-dependent AVP-ergic innervation and 

OT-ir in LHb 

As described in previous reports (Rood et al. 2013; Otero-Garcia et al. 2014), AVP-ergic innervation is 

sexually dimorphic in some brain nuclei. Specifically, Rood et al., (2013) described that AVP-ergic 

innervation of LS, Me, BST, LHb, PAG, vHip, and DR nuclei was dependent on gonadal steroids and more 

abundant in males than in females, whereas AVP fibres in hypothalamic areas such as DMH were not 

dependent on gonadal steroids and did not show sex differences. Our data in Mecp2-null mice show that 

there is a specific decrease in AVP-ergic innervation in all the testosterone-dependent nuclei, but not in the 

DMH. Thus, our data is consistent with an effect of lack MeCP2 in AVP production through indirect 

testosterone-dependent mechanisms. In this sense, Auger and collaborators (2011) showed that circulating 

gonadal steroid hormones modify the methylation status of some steroid responsive gene promoters and, 

consequently their expression levels. In accordance, methylation of AVP promoter is regulated by 

testosterone signalling in the BST of adult male rats (Auger et al. 2011). Moreover, sexually-dimorphic 

AVP-ir innervation in the LS is dependent on the action of estradiol (presumably aromatised from 

testosterone) via ERα receptor (Scordalakes and Rissman 2004), which is also regulated by MeCP2 in the 

brain (Westberry et al. 2010). Mecp2-null males display internal testicles (Guy et al. 2001), a feature 

consistent with lower levels of testosterone production and possible deficits in signalling through ERα 

(Cederroth et al. 2007). Although future studies ought to directly measure androgen levels in Mecp2-null 

mice to prove a reduction in testosterone levels, our data showing that Mecp2-null males display a reduction 

of MUPs and lack the masculine pheromone darcin support this assumption. We acknowledge that other 

deficits displayed by Mecp2-null males, such as specific deficits in pheromonal production or impaired 

kidney function, could account for this physiological effect, but we think that the most likely explanation 

is that of reduced testosterone levels. Indeed, darcin production is absent in females and castrated males 

but present in “sick” males (see Supplementary information).  
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In addition to an indirect action through hormonal deficits, deficits in MeCP2 have been shown to directly 

regulate the sexually-dimorphic AVP-ir innervation in rats. Thus, a transient reduction of MeCP2 during 

the first three post-natal days via focal injections of siRNA in the Me, lead to a transient decrease of both 

androgen receptor (AR) and AVP mRNA in the Me of 14 days old rat males (Forbes-Lorman et al. 2012). 

Interestingly, rats subjected to this treatment at early postnatal days showed no lasting effects on the levels 

of AR at 7.5 months old, but a long-lasting deficit in the density of AVP-ir somata in centromedial amygdala 

and BST, and a reduction of LS innervation. In fact, the expression of Mecp2 gene is sexually dimorphic 

in the brain of rats during the steroid-sensitive period (Kurian et al. 2007), suggesting a key role of this 

gene in the development of sexually-dimorphic systems. In summary, the mechanism by which MeCP2 

regulates AVP production may be an indirect effect over gonadal hormone production, a direct gene 

regulation, or both. 

Surprisingly, we also found a significant decrease in the scarce OT innervation in LHb, a feature that, to 

our knowledge, has not been previously described as sexually dimorphic, in our Mecp2-null males 

compared to their WT siblings. Low levels of testosterone could also contribute to this deficit, since the 

metabolite of dihydrotestosterone, 5α-androstane-3β,17β-diol, is able to regulate OT expression through 

ER-β activation (Hiroi et al. 2013), a type of estrogenic receptor found in the LHb (Shughrue et al. 1997).  

Consequences of nonapeptidergic deficits for behaviour in Mecp2-null mice  

Alterations in AVP-ergic and OT-ergic signalling may impair the proper functioning of the social brain 

network. For instance, deficits in AVP-ergic innervation in BST/Me and nuclei to which they project, could 

be affecting social and aggressive behaviours in Mecp2-null males (Modi and Sahin 2018), which is 

consistent with our results obtained in the RI test (see below). The MePD is interconnected with BSTPM 

to control socio-sexual behaviours mediated by pheromones, as well as defensive behaviours against 

predators (Pardo-Bellver et al. 2012; Tong et al. 2019). Both MePD and BST are intimately modulated by 

circulating hormones such as progestogens, androgens and oestrogens (De Lorme et al. 2012; Pardo-Bellver 

et al. 2012; Zancan et al. 2017) due to the large number of cells that express steroid receptors. Despite the 

extensive innervation of AVP in MePD, the density of V1aR is sparse, and how the AVP could modulate 

social behaviour in adult males remains poorly understood (Smith et al. 2019). Finally, LS and vHip are 

connected to each other, allowing LS to integrate socio-sexual information from the amygdala with spatial 

and contextual information from the vHip (Campbell et al. 2009; Pardo-Bellver et al. 2012). This pathway 
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provides adequate responses to each social situation and, therefore, it has been proposed that its connectivity 

could be impaired in ASD patients.  

It was recently found that LHb is involved in the regulation of social preference in rats (Benekareddy et al. 

2018) and aggression in mice (Golden et al. 2016). Therefore, deficits of both AVP- and OT-ergic 

innervation in this structure could contribute to the social abnormalities displayed by Mecp2-null mice. 

LHb integrates information from the hypothalamus. In this sense, the LHb regulates the serotoninergic 

system between the DR and other nuclei such as the amygdala, BST, LS, hippocampus, and preoptic area 

(Rood et al. 2013). Serotonin, together with NO and AVP, modulate social and aggressive behaviours in 

rodents (Ferris et al. 1997; Agustín-Pavón et al. 2009; Angoa-Pérez and Kuhn 2015; Hashikawa et al. 2017). 

Whereas serotonin blocks aggression and territorial behaviour, AVP in the anterior hypothalamus promotes 

aggression in males. It has been described that serotonin agonists promote AVP and OT synthesis. 

Likewise, AVP administration stimulates synthesis and release of serotonin in some brain nuclei (Auerbach 

and Lipton 1982; Jørgensen et al. 2003). In support of this hypothesis, deficit in serotonin levels has 

previously been reported in Mecp2-null males (Santos et al. 2010; Vogelgesang et al. 2017). Likewise, 

treatments based on stimulation of the serotonin transmission are able to improve the phenotype of Mecp2-

null males (Ricceri et al. 2013) and Mecp2-het females (Filippis et al. 2015). Consequently, it is likely that 

lack of MeCP2, causing misbalances in the metabolism of NO and serotonin and production of gonadal 

hormones, could be affecting AVP- and OT-ergic innervation in a region-specific manner and, therefore, 

impairing social and aggressive behaviours in Mecp2-null mice.      

Abnormal aggression and social behaviour in Mecp2-null males 

In the RI test, Mecp2-null residents do not display aggressive behaviours against the intruder, which is 

consistent with a decreased AVP innervation and increased NADPHd+ (indicative of increased production 

of NO) found in those males. Both, AVP and NO have been long related with the  modulation of aggressive 

behaviours in male mice (Trainor et al. 2007; Robinson et al. 2012; Marie-Luce et al. 2013). Thus, 

decreased AVP innervation (in particular in the LS, Veenema et al., (2010)), and possibly an  increase in 

NO production in the brain of our Mecp2-null males, could contribute to the alterations found in Mecp2-

null behaviours in the RI test, such as reduced aggression of the intruder and territoriality. Interestingly, it 

has been shown that overexpression of MeCP2 can increase aggressive behaviour both in mice and humans 

(Tantra et al. 2014), in agreement with the lack of aggression that we found in Mecp2-null mice.  
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Of note, we cannot exclude the possibility that, being Mecp2-null mice smaller than the WT intruders, this 

can constitute a confounding factor in the results obtained, as the size of WT animals can be “intimidatory” 

towards the smaller Mecp2-null animals. In addition, we found a reduction in chemoinvestigation of the 

intruder by Mecp2-null males, which is not explained by anosmia, as results from the habituation-

dishabituation test showed that both WT and Mecp2-null males are able to detect both urine and rose odours. 

Instead, the reduced chemoinvestigation points towards a general lack of interest in the intruder by Mecp2-

null residents. Another possibility is that Mecp2-null animals exhibit behaviours such as self-grooming, an 

activity to which they devoted about a 13% of the time of the test, whereas WT residents devoted a mere 

1.6% of the time to this behaviour. Finally, we did not directly measure locomotion in these tasks, so 

potential locomotor deficits of Mecp2-null mice could influence the observed results.  

Curiously, Mecp2-null intruders were significantly more investigated by WT residents. Provided that male 

sexual pheromones give information about strain, sex and fertility of rodents (Brennan and Kendrick 2006), 

and that Mecp2-null males show low levels of MUPs and darcin in the urine, we suggest that increased 

investigation of Mecp2-null intruders by WT residents could be due to lack of information given by male 

pheromones. In this line it would be interesting in future studies to further explore the social dimension of 

Mecp2-null mice in social interaction tests, including the use of Mecp2-null mice as stimulus animals and 

exploring the behavioural features of and towards Mecp2-het females.   

The apparent lack of interest in the conspecific intruder displayed by Mecp2-null males in the RI test is in 

sharp contrast with the results of the social interaction/recognition test, where Mecp2-null males not only 

displayed a stronger social preference behaviour than their WT siblings, but also a significant social 

recognition. Regarding a possible increase in seeking social contact in our Mecp2-null males, this result 

was previously obtained with other models of RTT. Thus, Mecp21lox (Chen et al. 2001) and Mecp2308/y show 

increased social preference as compared to WT (Schaevitz et al. 2010; Pobbe et al. 2012). In agreement, 

whilst overexpression of Mecp2 promotes autistic-like behaviours in Mecp2 mutant mice (Peters et al. 

2013) and in MECP2 transgenic monkeys (Liu et al. 2016), the genetic deletion of Mecp2 in rodents might 

increase social preference. In this sense, even though traditionally RTT has been grouped under the 

umbrella of ASD, the recent revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM) 

removed RTT from the ASD category (Lai et al. 2013).  
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The increased social recognition that Mecp2-null males show is consistent with previous results from 

Schaevitz et al., (2010), and suggest that lack of MeCP2 does not impair social recognition. In this regard, 

previous reports attributed to oxytocinergic signalling a role in the modulation of social recognition memory 

in the rodent brain (Gur et al. 2014; Zalla 2014). In this line, the lack of differences we found in our 

experiments in the OT-ergic distribution and innervation in most of the social brain of our Mecp2-null 

males might support why social recognition is not impaired in these mice. Additionally, explorative 

behaviour in this second test was again significantly higher in Mecp2-null males compared to WT, 

reinforcing the hypothesis of elevated seeking of social contact in those males. This result could also be 

related to differences in anxiety when tested in a novel environment, which is reduced in Mecp2-null mice 

(Stearns et al., 2007) (and our own observations). However, it should be noted that our results on social 

behaviour and those by Schaevitz et al., (2010) contrast with several studies. For example, in a recent report, 

Phillips et al., (2019) found that Mecp2 KO displayed acute deficits in social memory, that could be rescued 

upon inactivation of a hyperactive vHip-PFC circuit in these mice. However, one can find several 

differences between this study and ours, among which are both the mouse model and the age of the animals 

(younger in the study by Phillips et al. (2019)). 

Conclusions and future directions 

Taken together, our results in Mecp2-null male mice reveal several abnormalities in sexually-dimorphic, 

testosterone-dependent, neuroanatomical (nonapeptidergic innervation), physiological (pheromone 

production) and behavioural features (aggression and sociality). These deficits could be due both to a direct 

involvement of MeCP2 in the regulation of expression of several genes (AVP, ERα) or to indirect effects 

due to the impact of lack MeCP2 in gonadal development, and consequently in the hormonal status of the 

mice. Thus, when studying neurodevelopmental disorders such as RTT and other MECP2 related 

conditions, it is important to consider possible effects in hormonal signalling that could account for some 

of the deficits observed. In this sense, differences in levels of gonadal hormones have been implicated in 

sexual differences in the incidence and severity of some diseases such as autism, and psychiatric and 

cognitive disorders (Romano et al. 2016; Akinola and Gabriel 2018). Future studies should study in depth 

the mechanism leading to the loss of sexually-dimorphic features in Mecp2-null males, and check the 

possible effect of pharmacological manipulations of nonapeptidergic systems in the amelioration of 

behavioural symptoms in this mouse model.   
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FIGURE LEGENDS 

Figure 1. Representative pictures of AVP- (green) and OT-ergic (red) somata in four hypothalamic regions 

of WT and Mecp2-null males. AVP and OT-ir somata in hypothalamic A, A’) paraventricular, B) 

suprachiasmatic, C) supraoptic and D, D’) the retroquiasmatic part of the supraoptic nucleus. The 

distribution and density of AVP and OT-ir somata in Mecp2-null or Mecp2-het mice do not differ from WT 

mice. Scale bar 100μm. Abbreviations: 3V: 3rd ventricle; Pa: paraventricular hypothalamic nucleus; Pe: 

periventricular hypothalamic nucleus; SCh: suprachiasmatic nucleus; SON: supraoptic nucleus; SOR: 

retroquiasmatic part of the supraoptic nucleus 

 Figure 2. Representative pictures of AVP- (green) and OT-ergic (red) immunofluorescence in three brain 

regions of WT and Mecp2-null males. AVP and OT-ir in A, A’) nucleus of the anterior commissure / 

anterodorsal preoptic nucleus region, B, B’) bed nucleus of the stria terminalis, medial division, and C, 

C’) medial amygdala. The distribution and density of AVP and OT-ir somata in Mecp2-null or Mecp2-het 

mice do not differ from WT mice. Scale bar 100μm. Abbreviations: 3V: 3rd ventricle; AC/ADP: nucleus 

of the anterior commissure / anterodorsal preoptic nucleus region; BSTMPI: bed nucleus of the stria 

terminalis, medial division; Me: medial amygdala; Opt: optic tract; Pe: periventricular hypothalamic 

nucleus. 

Figure 3. Representative pictures of AVP-immunofluorescence (green) and DAPI labelling (blue) in 

three brain regions of WT and Mecp2-null males. Arrows point to AVP-ir fibres. Testosterone-dependent 

AVP-ergic innervation in the lateral septum (A, A’), ventromedial striato-pallidum (B, B’) and bed 

nucleus of the stria terminalis (C, C’) was significantly reduced in Mecp2-null males as compared to WT 

males. Scale bar 100μm. Abbreviations: BSTMPI: bed nucleus of the stria terminalis, medial division; 

LS: lateral septum; vmStP: .ventromedial striatopallidum. 

Figure 4. Representative pictures of AVP- (green) and OT-ergic (red) immunofluorescence and DAPI 

labelling (blue) in the lateral habenula of WT and Mecp2-null males. Arrows point to immunofluorescent 

APV-ergic and OT-ergic fibres. Both AVP (A, A’) and OT-ir (B, B’) innervation was significantly 

reduced in Mecp2-null as compared to WT mice. Scale bar 100μm. Abbreviations: LHb: lateral habenular 

nucleus, MHb: medial habenular nucleus. 

Figure 5. Bar chart showing the density of AVP-immunofluorescent (cells/mm2) (A, B) and fibres crossings 

(C, D) in different brain nuclei of WT (black bars) and Mecp2-null males (white bars). Due to the intricate 
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mark of AVP found in the LHab, we represent the number of squares instead of crosses of fibres for this 

nucleus (E). Statistical analyses (Student’s T-test or Mann-Whitney U test) revealed no effect of genotype 

for AVP-ir cell density (A, B), but a significant reduction of testosterone-dependent AVP-ergic innervation 

in Mecp2-null males as compared WT siblings (C-E). Values are presented as mean ± SEM. *=p<0.05 

Figure 6. Bar chart showing AVP-ir innervation in samples immunostained with DAB, in WT (black bars) 

and Mecp2-null males (white bars). Similar to AVP-ir assayed by immunofluorescence, results from 

statistical analyses (Student’s T-test or Mann-Whitney U test) showed a significant decrease of 

testosterone-dependent AVP-ergic innervation in Mecp2-null males as compared to WT. Values are 

presented as mean ± SEM. *=p<0.05; **=p<0.01 

Figure 7. A. Protein electrophoresis of the urine of WT and Mecp2-null males. Approximately 50 μg of 

total protein were loaded (except in the WT male marked with *, for which we did not have enough sample). 

The band corresponding to darcin can be clearly appreciated in three of the four WT male samples, except 

in *. By contrast, none of the Mecp2-null males produce darcin. In addition, the band corresponding to 

MUPs is visibly narrower in Mecp2-null males than in WT, suggesting a general deficit in masculine, 

testosterone-dependent, release of urinary pheromones. B. Plot profile (yellow line) through individual 

samples of WT urine (black lines) and Mecp2-null urine (blue lines) shows that the intensity and the width 

of bands corresponding to MUPs is reduced in Mecp2-null mice and darcin is absent.  

Figure 8. Behavioural parameters analysed in the resident animals during the RI-test. First, we analysed 

aggressive behaviours (A), chemoinvestigation (B) and self-grooming (C) in the residents of the WTr vs 

WTi (black bars) and Mecp2-nullr vs WTi (dotted bars) conditions, and then we analysed the same 

parameters in the residents of WTr vs WTi (black bars) and WTr vs Mecp2-nulli (dotted bars). A) Time spent 

in attacking/chasing the intruder did not show any significant differences between the groups. However, it 

can be seen in the bar chart that none of the Mecp2-nullr engaged in aggressive interactions during the test. 

B) Time devoted to chemoinvestigation of the intruder was significantly lower in Mecp2-nullr as compared 

to WTr encountering a WTi. By contrast, this parameter was significantly higher in cases in which the WTr 

was presented with a Mecp2-nulli C) Self-grooming was significantly higher in Mecp2-nullr as compared 

to WTr. Values are presented as mean ± SEM. *p<0.05, **p<0.01  

Figure 9. Habituation-dishabituation test revealed that Mecp2-null males are not anosmic, but display 

reduced olfactory investigation. A) Complete curve of exploration of the cotton-swab impregnated with 



35 
 

water, male urine and rose odour in WT (filled dots) and Mecp2-null males (empty dots). There were no 

significant differences in time spent investigating the cotton-swab, except for time investigating the first 

presentation of rose odour. B) Total exploration time during the test was significantly decreased in Mecp2-

null males (white bars) as compared to WT (black bars). C) Discrimination index was different from zero 

in animals of both genotypes (i.e. they were not anosmic), but it was significantly higher in WT as compared 

to Mecp2-null males. Values are presented as mean ± SEM. *p<0.05, **p<0.01, comparisons WT vs 

Mecp2-null; +p>0.05, ++p>0.01, comparison of DI against 0. 

Figure 10. Data from social interaction test. A) Time spent investigating a stranger mouse was significantly 

different from time spent investigating an empty compartment in both WT (black bars) and Mecp2-null 

males (white bars). However, Mecp2-null males showed higher exploration of the stranger mice than WT 

did. B) Mecp2-null males displayed enhanced preference for a stranger mouse in the social recognition test. 

Values are presented as mean ± SEM. **p<0.01, ***p<0.01, comparisons between stimuli; +p>0.05, 

++p>0.01, comparisons between genotypes. 
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Table 1. Nuclei and Bregma levels (following Paxinos & Franklin, 2012) selected for quantification of AVP and OT in Mecp2-mutant and WT mice.  

Nucleus AVP OT Bregma level (mm) 

dEn Fibres - -2.92 

vHip Fibres - -2.92 

AcbC - Fibres +1.10 

AcbSh - Fibres +1.18, +1.10, +0.98 

vmStP Fibres Fibres +1.10 

LS Fibres Fibres +0.38, +0.14 

BSTMPI Fibres, somata Fibres, somata -0.22 

MeA Fibres, somata Fibres, somata -1.22 

MePD Fibres, somata Fibres, somata -1.34 

Ce - Fibres -1.34 

LHb Fibres Fibres -1.46 

AC/ADP Somata Somata -0.22 

Pa Somata Somata -0.58, -0.70, -0.94 

SCh Somata - -0.82 

SON Somata Somata -0.82 

SOR Somata Somata -1.34 

DMH Fibres Fibres -1.46 

dlPAG Fibres - -4.24, -4.48, -4.72 

vlPAG Fibres Fibres -4.24, -4.48, -4.72 

DR Fibres - -4.72 

 

 

  

Table



Table 2: Quantitative analysis of average AVP and OT-ergic somata/mm2 in different brain nuclei of Mecp2-het females and their WT siblings. Values are presented as mean 

± SEM. We did not find statistically significant differences between genotypes in any of the brain nuclei analysed. Abbreviations: AC/ADP: nucleus of the anterior commissure 

/ anterodorsal preoptic nucleus; BSTMPI: bed nucleus of the stria terminalis, medial division, posterointermediate part; MeA: medial amygdaloid nucleus, anterior part; MePD: 

medial amygdaloid nucleus, posterodorsal part; Pa: paraventricular hypothalamic nucleus; SCh: suprachiasmatic nucleus; SON: supraoptic nucleus.  

 AVP-ir cells/mm2 OT-ir cells/mm2 

 WT Mecp2-het WT Mecp2-het 

AC/ADP 25.33 ± 13.89 8 ± 3.89 146.67 ± 49.98 162 ± 50.86 

BSTMPI 0 ± 0 0.56 ± 0.61 9.33 ± 3.06 9.44 ± 1.74 

MeA 5 ± 2.85 5.33 ± 3.74 7.5 ± 1.43 3.33 ± 1.05 

MePD 0 ± 0 2.5 ± 2.5 5 ± 5 2.08 ± 2.28 

Pa 13.99 ± 4.54 12.26 ± 2.53 59.74 ± 6.01 70.95 ± 4.15 

SCh 38.67 ±22.45 10.67 ± 4.52 - - 

SON 52 ± 10.73 50.56 ± 10.35 138 ± 19.54 130.56 ± 21.67 

 

  



Table 3: Quantitative analysis of AVP and OT-ergic innervation in different nuclei of Mecp2-het females and their WT controls. Values are presented as mean ± SEM. We did 

not find statistically significant differences between genotypes in any of the brain nuclei analysed. Abbreviations: AcbC: nucleus accumbens, core; AcbSh: nucleus accumbens, 

shell; BSTMPI: bed nucleus of the stria terminalis, medial division, posterointermediate part; Ce: central amygdaloid nucleus; DMH: dorsomedial hypothalamic nucleus; DR: 

dorsal raphe nucleus; LHb: lateral habenular nucleus; LS: lateral septum; MeA: medial amygdaloid nucleus, anterior part; MePD: medial amygdaloid nucleus, posterodorsal 

part; vlPAG: ventrolateral periaqueductal grey; vmStP: ventromedial striatopallidum. 

 AVP-ir crossing fibres OT-ir crossing fibres 

 WT Mecp2-het WT Mecp2-het 

AcbC - - 18.10 ± 2.4 13.1 ± 0.93 

AcbSh - - 5.6 ± 1.39 11.7 ± 2.93 

BSTMPI 2.3 ± 0.97 2.42 ± 1.36 57.9 ± 4.94 54.67 ± 10.18 

Ce   19.4 ± 4.3 9.83 ± 3.18 

DMH 44.2 ± 13.68 29 ± 11.67 101.5 ± 24.84 74 ± 17.94 

DR - - 28.8 ± 3.09 34.67 ± 7.82 

LHb - - 1.1 ± 0.58 0.08 ± 0.08 

LS 0.25 ± 0.11 0.25 ± 0.11 9.65 ± 1.73 11.8 ± 1.65 

MeA 8.38 ± 4.54 11.6 ± 2.59 17.13 ± 2.81 18 ± 4.62 

MePD 1 ± 0.73 1.85 ± 1.44 11 ± 2.5 10.22 ± 1.58 

vlPAG - - 32 ± 5.64 46.58 ± 10.96 

vmStP 2.3 ± 2.3 0 ± 0 10.4 ± 3.04 4.6 ± 1.6 

 

  



Table 4: Quantitative analysis of OT-ergic innervation in different nuclei of Mecp2-null males and their WT controls. Values are presented as mean ± SEM. We did not find 

statistically significant differences between genotypes in any of the brain nuclei analysed except for lateral habenula. Abbreviations: AcbC: nucleus accumbens, core; AcbSh: 

nucleus accumbens, shell; BSTMPI: bed nucleus of the stria terminalis, medial division, posterointermediate part; Ce: central amygdaloid nucleus; DMH: dorsomedial 

hypothalamic nucleus; DR: dorsal raphe nucleus; LHb: lateral habenular nucleus; LS: lateral septum; MeA: medial amygdaloid nucleus, anterior part; MePD: medial amygdaloid 

nucleus, posterodorsal part; vlPAG: ventrolateral periaqueductal grey; vmStP: ventromedial striatopallidum. 

OT-ir crossing fibres 

WT Mecp2-null 

AcbC 24.21 ± 6.33 21 ± 5.68 

AcbSh 9.64 ± 2.06 4.4± 1.66 

BSTMPI 67.29 ± 5.29 47.3 ± 11.98 

Ce 33.79 ± 6.74 20.3 ± 3.60 

DMH 121.71 ± 13.11 96.4 ± 14.16 

DR 42 ± 12.6 41 ± 8.2 

LHb 1.29 ± 0.32 0 ± 0** 

LS 12.96 ± 1.12 11.45 ± 2.13 

MeA 39.64 ± 7.39 20.9 ± 6.53 

MePD 14.86 ± 1.20 15.55 ± 2.22 

vlPAG 50.43 ± 15.12 39.50 ± 8.95 

vmStP 13.79 ± 1.78 12.60 ± 2.65 
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