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Abstract: In this study, a new sampling strategy for networked control systems, called regular quantification with hysteresis
(RQH), is proposed. This alternative presents some benefits with respect to symmetric-send-on-delta sampling, which is one of
the most used strategies in the event-based proportional–integral–derivative (PID) control loops. The behaviour of the RQH is
defined by two parameters, the signal quantification and hysteresis, whose effect on the overall system performance is studied
and guidelines about its choice are given in terms of noise measurement and steady-state error. The limit cycle oscillations that
could be induced by this sampling strategy are studied and new robustness measures to avoid them are proposed based on the
describing function approach. The suitability of some tuning rules for continuous PI when applied to control systems with a RQH
sampling is evaluated using the proposed measures. The results show that these tuning rules can be applied under certain
conditions.

1 Introduction
In recent years, several works have been published about event-
based control (EBC) of continuous systems [1]. EBC allows to
economise the data flow through the digital networks on networked
control systems, reducing the data drop out in the form of packet
losses and decreasing the delays introduced by the communication
infrastructures. This is due to the fact that new data are only sent
when significant changes are detected on the state of the system,
instead of periodically as in the case of time-driven controllers.
That is why EBC may be considered as one of the most promising
control approaches in networked control systems, whose
importance in modern factory automation has been recently
recognised in [2]. An updated and extensive study about the main
contributions to EBC during the last twenty years can be found in
[3].

Among the control strategies adapted to the EBC paradigm, the
PID algorithm has caught a special attention. It is undeniable that
nowadays proportional–integral–derivative (PID) is used in most of
the industrial control applications. Some data about the prevalence
of PID in industry are given in [4] showing that >95% of the
controllers are of this type. In the same line, a survey conducted
among the industrial committee members' of the International
Federation of Automatic Control published in [5] shows the
dominant position of PID algorithms with respect to other
advanced control strategies as MPC. Recently, the primordial role
of PID in the context of Industry 4.0 has been highlighted in [6], as
well as the necessity of introducing new features to adapt this well
established control technology to this new paradigm, whose one of
the most distinctive signs is the high connectivity between devices
through wired and wireless communication networks. This fact,
jointly with the dominance of PID in industry mentioned before,
has encouraged the development of many researches about the
event-based PID controllers during the last decades.

To the authors' knowledge, one of the firsts works about event-
based PID (EBPID) was presented in [7]. In that paper, some issues
were addressed related to the error in the calculation of the integral
and derivative terms when the time between samples increases due
to the irregular sampling. This problem was extensively treated
some years later in the works of Durand and Marchand [8, 9] and
Vasyutynskyy and Kabitzsch [10, 11]. Even though the goal in [7]
was to use of the EBPID to reduce the use of CPU in embedded
control systems without significantly affecting the closed-loop
performance, the seminal ideas presented in that paper were

afterwards extended to the case of EBPID in networked control
systems.

As it was early shown [12], the sampling law determines the
performance and behaviour of sampled control systems. In event-
based control systems, the sampling strategies play an important
role because they are in charge of generating the events for the
execution of the controller's algorithm. Among these strategies, the
ones based on the signal quantification have gained more and more
relevance because of their ease of implementation. The most
representative example is the send-on-delta (SOD) sampling,
which is based on transmitting the value of a signal only when it
crosses levels or thresholds of magnitude δ. The effectiveness of
this strategy has been widely tested in terms of control
performance and communication reduction [13, 14].

Inspired on SOD, in [15] a sampling strategy known as
symmetric-send-on-delta (SSOD) was presented, which is
characterised by including a hysteresis of the same value than the
thresholds δ to the sampler. In the last years, several works have
been presented about SSOD-based PI controllers, concerning both
tuning procedures and application cases. In [16], the tuning of
SSOD-based PI controllers for FOPTD systems was addressed and
some rules were designed by minimising the 1% settling time of
the closed-loop response. An application of SSOD event-based
controllers to the inside air temperature control of the greenhouse
production process was presented in [17]. In [18, 19], tuning
methods for PI controllers with SSOD sampler have been
developed based on new robustness margins for avoiding limit
cycles that were obtained by applying the describing function (DF)
technique and entail with the classical concepts of phase and gain
margins. In [20], a unified design of a SSOD-based PID and Smith
predictor for self-regulating and integral processes was
investigated. A new system identification procedure based on the
oscillations induced by SSOD sampling strategy was proposed in
[21]. More recently, in [22] a procedure for tuning not only PI but
also PID controllers with SSOD sampling for FOPTD systems was
proposed. It is based on the definition of a new robustness measure
to avoid limit cycle oscillations called the Tsypkin margin,
presented in [23], which overcome the limitations of the DF
approach. All these works reveal the interest in the SSOD-based
controllers during the last decade.

Alternatively to the SSOD, another sampling strategy is the
regular quantification (RQ), in which new data are sent whenever
the value of the sampled signal is a multiple of the quantification
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threshold δ. A comparative study between SSOD and the RQ
strategies has been presented in [24]. Due to the lack of hysteresis
in the RQ sampler, bursts of events can appear due to the
measurement noise, which is the main disadvantage of RQ with
respect to SSOD. On the other hand, in RQ loops, the robustness
against the limit cycle apparition is higher than in the SSOD loops
for similar loop performances. These results suggest that the
intermediate cases between RQ and SSOD sampling strategies
could offer a better global behaviour because event generation due
to noise can be avoided and robustness requirements may be not as
restrictive as in the SSOD sampler.

The aforementioned researches in the field of EBPID show that,
in general, conventional PID working under event-based sampling
strategies hold its good performance-robustness trade-off while
drastically reducing the data necessary to perform the control, and
consequently the transmission through the digital network in
networked systems is also decreased. The results presented in this
paper delve into this approach by proposing new sampling
strategies for event-based PI that improves the before mentioned
drawbacks of the SSOD and RQ samplers.

The sampling law proposed here can be seen as a generalisation
of the SSOD and RQ. The approach is based on selecting the
hysteresis and the quantification threshold independently. This
allows to disengage the immunity to noise from the reactivity of
the controller to significant changes in the system. It is also proved

that the new proposal can significantly reduce the number of
generated events with respect to the SSOD strategy. The new
sampler is studied in terms of robustness, developing quantitative
measures to avoid the appearance of limit cycle oscillations.

Owing to in PID controllers the derivative action is very
sensitivity to measurement noise, the PI control is the dominant
form of the PID in use today [25]. As an example of the prevalence
of PI among industrial control loops, the study presented in [26]
reveals that >94% of controllers in power plants in Guangdong
Province, China, is PI. Using the proposed robustness measures,
the suitability of some well-known tuning methods used for
designing continuous PI controllers is evaluated when applied to
loops with PI controllers under the proposed sampling strategy.
Concretely, the Ziegler-Nichols [27], Cohen–Coon [28] and
AMIGO [29] methods are evaluated. These methods can be easily
applied in industry because the controller parameters are
straightforward calculated using very simple equations and data
collected from the step response or the relay feedback experiments.
Some previous studies developed by the authors have proved that
AMIGO provides a proper tune for this kind of control scheme
when SSOD sampling is used [22]. Among other results, the study
in this paper demonstrates the validity of the AMIGO method to
avoid the limit cycle oscillations when using PI with the proposed
sampling law.

The paper is organised as follows. In Section 2, the problem
statement is presented. Section 3 addresses the main characteristics
and advantages of the proposed sampling strategy. Section 4
provides a study about the robustness against limit cycles that
could be induced by this sampling approach. The study is based on
the DF method and two new robustness margins are defined to
avoid limit cycle oscillations. In Section 5, the aforementioned
tuning methods are evaluated according to the proposed robustness
margins considering a batch of processes. In Section 6, several
simulation examples are presented. Finally, the conclusions about
this work are drawn in Section 7.

2 Problem statement
Consider the networked control system shown in Fig. 1, where C(s)
and Gp(s) are the controller and process transfer functions,
respectively, the EG block represents the event generator, the ZOH
block is a zero-order hold and exp( − tds) models the network's
delay. Additionally, yr is the reference signal, y is the controlled
output and p is the perturbation input. It is assumed that the
controller is located close to the actuator and that the event
generator sends the measured signal e∗ of the error e through the
communication network and the ZOH block maintains in ē the last
sent value e∗ until new data arrive. This control scheme was
proposed in [15] considering that C(s) is a PI controller and that the
EG block is an SSOD sampler, thus, the authors named this
architecture SSOD-PI. In a more general way, any controller and
event generator can be used, therefore we will refer to this
architecture as EG-C(s).

As it has been mentioned before, two of the main sampling
strategies used for event generation with fixed thresholds are the
SSOD and RQ. The relation between a given input signal x and its
respective output x̄ for both sampling methods is shown in Fig. 2. 
The SSOD is characterised by sending new data whenever the
sampled signal changes in a magnitude δ with respect to the last
value sent, whereas the RQ sends new data whenever the signal
crosses a value multiple of the quantification magnitude, δ, without
any memory of the crossed thresholds.

As it was pointed in [24], with regard to the sampling of noisy
signals, the SSOD can avoid the generation of extra events due to
noise as long as its amplitude is lower than the hysteresis, whose
value is equal to the threshold δ. Conversely, the RQ sampler is
very sensitive to noise due to the lack of hysteresis, producing a
high rate of events near to the crossing levels. On the other hand,
regarding the robustness, the SSOD-C(s) configuration propitiates
the apparition of limit cycles, mainly due to the hysteresis, and
thus, it requires more robust controllers than the RQ-C(s), which
admit faster controllers with lower robustness requirements. These

Fig. 1  Control loop scheme for event-based PID controllers proposed in
[15]

 

Fig. 2  Input–output relation of SSOD (left) and RQ (right) sampling
strategies
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negatives effects of SSOD and RQ in the control loop should be
reduced in order to improve the overall performance of the control
system. To this aim, a new sampling law is introduced in the next
sections, whose properties are studied by defining new robustness
measures to limit cycle.

It must be remarked that for processes with integrator the
control system in Fig. 1 presents an oscillatory response, no matter
the sampling strategy used in the block EG. This can be easily seen
from the temporal response of the system: as long as the control
action is not null, the process will keep integrating it and
eventually the commutation thresholds will be reached, inducing
the apparition of a limit cycles that are unavoidable for this kind of
models. A control scheme based on SSOD sampling that prevents
this kind of oscillations for integrating processes was proposed in
[20]. Therefore, processes with integrator are out of the scope of
this paper.

3 RQH sampling strategy
As SSOD and RQ are complementary with respect to their
strengths and weaknesses, a new sampling strategy that gets an
advantage of both is proposed. We have named this strategy as
Regular Quantisation with Hysteresis (RQH), and its behaviour,
i.e. the relation between an input signal x(t) and its respective
output x̄(t), is defined by (1) that includes two parameters, the
quantisation level δ > 0 and the hysteresis h that can be freely
selected as long as 0 ≤ h ≤ δ. The input–output characteristic of
the RQH sampler is presented in Fig. 3, where it can be easily seen
that by fixing h = 0 or h = δ the RQ or SSOD samplers are
obtained, respectively, thus, these sampling strategies are particular
cases of RQH.

x̄(t) =

(i + 1)δ if x(t) ≥ (i + 1
2 + h

2δ )δ and x̄(t−) = iδ,
i ∈ ℤ

(i − 1)δ if x(t) ≤ (i − 1
2 − h

2δ )δ and x̄(t−) = iδ

iδ if x(t) ∈ [(i − 1
2 − h

2δ )δ, (i + 1
2 + h

2δ )δ]
and x̄(t−) = iδ

(1)

For intermediate values of h, the proposed method presents the
characteristics of both SSOD and RQ. In general, the increment of
h/δ reduces the event generation due to the noise for the same
measured signal. More concretely, the inclusion of a hysteresis
aims to eliminate the burst of events generated by the noise, which
are eliminated whenever the amplitude of the noise lays within the
hysteresis thresholds. Therefore, h must be selected slightly higher
than the peak-to-peak amplitude of the noise.

The RQH sampling, as well as SSOD and RQ sampling,
introduces a steady-state error on the system output of Fig. 1
because it exists a band around e = 0 in which the controller will
receive a sampled error ē equal to 0 but the value of e is between
the commutation thresholds. This band should correspond to the
values where there are not significant changes on the process
output y. Equation (2) relates the admissible steady-state error in
the controlled output (ess) with the parameters of RQH.

ess = 1
2(δ + h) (2)

If h has been previously defined by considering the measured
noise, then δ can be obtained directly from this expression to fulfil
the ess requirement.

3.1 Event generation

One of the goals in the design of networked control systems is to
reduce the data transmission through the network, which is directly
related to the number of events generated by the sampler within the
event-based control systems. With the proposed RQH sampling
strategy, the number of events generated for a change of magnitude
C in the input signal is

nev =
C − 1

2 (δ + h)
δ + 1 (3)

Combining expressions (2) and (3), we can find the relation
between nev, h/δ, and C:

nev = C − ess
2ess

1 + h
δ + 1 (4)

If the change C in the input signal is expressed in terms of the
admissible steady-state error as C = essρ, then

nev = ρ − 1
2 1 + h

δ + 1 (5)

Equation (5) describes the number of events generated by a
RQH sampler with a given ratio h/δ when sampling an input signal
with a change of magnitude essρ. Fig. 4 shows the relation between
nev and h/δ for different values of ρ. It can be observed that the
ratio h/δ significantly affects the amount of events for the same
value of ρ. Concretely, the number of events obtained with an
SSOD (h/δ = 1) doubles the events generated by an RQ (h/δ = 0).
The RQH sampler presents intermediate values of nev between
these extreme cases, reducing the amount of events as the h/δ is
reduced. This influence in the number of events with respect to h/δ
is stronger for higher values of ρ.

Fig. 3  Input–output relation of the proposed sampling strategy with a
hysteresis h

 

Fig. 4  Influence of h/δ in the nev for different values of ρ
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With the aim of shedding further light on the advantages of the
RQH sampler with respect to the SSOD and RQ strategies, let us
introduce the following example.

 
Example 1: Consider three samplers (SSOD, RQ, and RQH)

which should be configured to guarantee a maximum steady-state
error ess = 0.15. In the case of SSOD and RQH, the samplers
should also avoid the event generation due to a noise of 0.1 peak-
to-peak amplitude. To fulfil these requirements, the parameter h of
the RQH sampler must be selected slightly greater than the
amplitude of the noise: h = 0.12. Then, δ can be calculated from
(2) to meet the condition on ess: δ = 2ess − h = 0.18. For the SSOD
and RQ sampler, δ is determined by ess: for SSOD δ = ess = 0.15
and for RQ δ = 2ess = 0.3. In order to show the behaviour of the
samplers, consider a sinusoidal input with unitary amplitude.
During the first 2 s, the input to the sampler is a signal without
noise, then the noise is added. The results produced by the
samplers are shown in Fig. 5. 

Firstly, it can be noted that the switching thresholds and the
quantification produced by each sampler are different. This is due
to the ess specification, which results in different δ for each
sampler. For the RQ sampler, the number of events is significantly
lower than that for the other two alternatives when a signal without
noise is sampled. Nevertheless, for a noisy input, the RQ generates
unnecessary events when the input is close to the switching
thresholds. The SSOD sampler keeps quantifying the signal

without being disturbed by the noise, but, as it has the lowest
switching thresholds, if we only consider the sampling of the signal
without noise, the number of events generated is the highest one
among the three samplers. By using the RQH, no bursts of an event
due to the noise are observed. Moreover, the number of samples is
lower than in the case of the SSOD sampler, effectively reducing
the data transmission through the network.

Using the RQH, sampling strategy has some important
implications on the loop performance. As it is shown in the
precedent example, the RQH sampler offers a reduction in the data
transmission through the network with regard to RQ and SSOD
sampling techniques. Nevertheless, regarding the control action
bumps due to a change of magnitude δ in the sampler output
δu = Kpδ, it is clear that by choosing the sampler parameters as in
Example 1, these control action bumps will be greater for the RQH
than for the SSOD sampling because the value of δ is greater for
the first one.

Despite this prejudicial effect, choosing a RQH sampler has a
big influence regarding the robustness requirements to design the
controller C(s) in order to avoid limit cycle oscillations induced by
the sampler. This issue is studied in the next section.

4 Robustness to oscillation induced by RQH
The sampling strategy strongly influences the robustness against
limit cycle oscillations induced by the sampler. This kind of
robustness can be successfully characterised by using the DF
technique, as proved in [19, 24]. To this aim, the block scheme
presented in Fig. 1 can be rewritten as that in Fig. 6, where
Gol(s) = C(s)G(s) is the open-loop transfer function, and
G(s) = Gp(s)e−tds includes the plant model and the network delay. 
The EG-ZOH block samples the signal according to the RQH law
and holds the last value sampled until the switching conditions are
fulfilled, then, a new sample is taken and held again. Thus, it is
clear that the combination of the sampling strategy block and the
ZOH results in a non-linearity, and consequently it can be studied
with the DF method.

It is well known that the condition for the existence of limit
cycle in the system of Fig. 6 is given by

Gol(jω) = − 1
N , ∀ω, (6)

where N is the DF of the non-linearity. The graphical
interpretation of (6) is that the system does not present limit cycle
if the plots of Gol(jω) and − 1

N  do not intersect. The DF for the
proposed RQH sampling strategy, including the parameters h and δ,
is given by the following equation (see the Appendix of Section
10):

N(A, h) = 2δ
Aπ ∑

k = 1

m
1 − δ

A k + h
2δ − 1

2
2

+ ∑
k = m + 1

2m
1 − δ

A 2m − k − h
2δ + 1

2
2

− j2hmδ
A2π

,
(7)

where A is the amplitude of the sinusoidal oscillation and
m = A

δ − h
2δ + 1

2 , i.e. the maximum number of levels crossed by
the oscillation. From this expression, the SSOD and the RQ DFs
can be obtained by replacing h = δ and h = 0, respectively.
However, the most interesting cases are found in the range
h ∈ ]0, δ[, where all the intermediate cases between SSOD and RQ
appear.

Fig. 7 depicts the shapes of −1/N for different values of h/δ. 
The locus of −1/N are composed of several branches, one for each
value of m. All the branches tend to fold and move towards the
real-axis as h/δ decreases. The case in Fig. 7, where h/δ = 1
represents the negative inverse of N for SSOD, whose study was
addressed, together with the case of the RQ sampler, by the authors
in [24], where some measures were defined to characterise their
robustness against limit cycle oscillations. Nevertheless, to take

Fig. 5  Sampled signal (red) resulting from a sinusoidal signal with and
without noise (black) with the generated events (blue) using SSOD, RQ, and
a RQH sampler with h/δ = 2/3

 

Fig. 6  Block scheme equivalent to the one presented in Fig. 1
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into account the intermediate cases between SSOD and RQ,
presented in Fig. 7 when h/δ ≠ 1, new robustness measures must
be defined.

Similar to the classical gain and phase margins, we have
defined the gain margin to the non-linearity (γh/δ) as the increment
in the Gol gain before reaching the intersection with −1/N:

γh/δ =
− 1

N(Aγ)
Gol(jωγ)

, (8)

where ωγ and Aγ are the values of ω and A for which the quotient
− 1

N(A)
Gol(jω)  is minimum while fulfilling the condition

arg(Gol(jω)) = arg − 1
N(A) . This can be written in a compact form

as

(ωγ, Aγ) = arg min(ω, A)

− 1
N(A)

Gol(jω) :arg(Gol(jω)) = arg −1
N(A) . (9)

On the other hand, the phase margin to the non-linearity (Φh/δ) is
the minimum amount of phase required by Gol to intersect the non-
linearity while fulfilling the condition − 1

N(A) = Gol(jω) . That is

Φh/δ = arg(Gol(jωΦ)) − arg − 1
N(AΦ) , (10)

where ωΦ and AΦ are the values of ω and A for which the
difference arg(Gol(jω)) − arg − 1

N(A)  is minimum while fulfilling

the condition − 1
N(A) = Gol(jω) . This can be written in a compact

form as

(ωΦ, AΦ) = arg min(ω, A) arg(Gol(jω)) − arg − 1
N(A) :

− 1
N(A) = Gol(jω) .

(11)

It is important to note that, as proved in [19, 24] for the cases
SSOD and RQ, for PI controllers tuned with reasonable values of
gain and phase margins the shape of Gol is such that the non-
intersection with the branch corresponding to m = 1 guarantees no
intersections with branches for m > 1, and consequently, no
intersection between Gol and −1/N takes place. Therefore, in most
of practical cases, the limit cycles can be effectively eliminated by
avoiding the intersection between Gol and the branch of −1/N
corresponding to m = 1, and the margins γh/δ and Φh/δ are measured
with respect to this branch.

Fig. 8 shows the margins γh/δ and Φh/δ in the Nyquist and
Nichols diagrams for a given system and a given value of h/δ. In
this figure, only the branch m = 1 of −1/N has been represented.
These robustness measures are easily visualised on Nichols chart
because they are, similar to the traditional gain and phase margins,
the vertical and horizontal minimum distances from the Gol(jω) to
the negative inverse of N.

As postulated in [30], the condition for avoiding limit cycle
oscillation results from a generalisation of the Nyquist stability
criterion by considering the DF as a generalised gain. This
generalisation states that the entire Nyquist curve of the open-loop
transfer function must encircle anticlockwise the critical points
( − 1/N, 0) the number of times equal to the number of poles with
the positive real part in Gol. Therefore, if neither the plant Gp(s) nor
the controller C(s) have poles with the positive real part, the
Nyquist curve should not encircle the negative inverse of the DF
for avoiding limit cycles. This fact allowed us to define the margins
γh/δ and Φh/δ to measure the distance between −1/N and Gol when
encircles are not required for the stability. According to that, these

Fig. 7  Shapes of −1/N for RQH samplers with different values of h/δ
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margins cannot be applied to plants whose poles have a positive
real part.

The proposed margins guard the traces of −1/N against
intersections with Gol(s) due to modelling errors or variations in the
plant dynamics and network delay. If the open-loop transfer
function for the nominal plant does not cross the boundary defined
by γh/δ and Φh/δ, the system will remain without oscillations for a
certain range of variation on the plant parameters. The magnitude
of the admissible variations is strongly influenced by the structure
of the plant model Gp(s), so it has to be studied for each specific
case. The robustness can be also affected by the variation on the
network delay, which is always present in the control system under
study. The effect of variation on this parameter is addressed next.

4.1 Network communication delay influence on the
robustness margins

The effect of the delay introduced by the communication network
on the robustness margins is considered by including the term e−tds

in the open-loop transfer function. However, variations on td could
degrade the robustness against limit cycle oscillations. To study the
influence of this parameter on γh/δ and Φh/δ, consider a variation on
td: td′ = td ± α. Then the open-loop transfer function is

Gol′ (jω) = Gol(jω)e∓ jωα (12)

This equation can be expressed in terms of magnitude and phase as

Gol′ (jω) = Gol(jω)
arg {Gol′ (jω)} = arg {Gol(jω)} ∓ ωα

(13)

from which it can be seen that variations on the network delay
correspond to horizontal displacements of Gol(jω) in the Nichols
diagram. Concretely, the resulting open-loop transfer function will
approach to the negative inverse of the DF traces as td′  increases,
worsening both γh/δ and Φh/δ. On the other hand, the reduction of td′
improves both margins. Due to this effect, the higher value of
admissible delays introduced by the network should be considered
as td to avoid the degradation of the margins due to the variation on
this parameter.

It must be remarked that, depending on the process dynamics
defined by Gp(s), the network delay can be neglected because of its
minor influence on Gol, and consequently on the robustness
margins. In those cases, the delay term can be omitted from the
open-loop transfer function.

5 Evaluation of classical tuning methods using
the proposed margins
To illustrate the usefulness of the proposed margins we have
applied them to study the robustness against limit cycle oscillations
induced by PI controllers with transfer function

C(s) = Kp 1 + 1
Tis

, (14)

tuned with well known methods when the controllers are used
under the RQH sampling strategy scheme as that in Fig. 1. The
tuning methods selected for this study are Ziegler–Nichols [27],
Cohen–Coon [28] and AMIGO [29]. PI controllers have been
tuned for the batch of models presented below, which describe a
wide range of behaviours that can be found in actual real systems.
The dynamic responses of the models in the batch were
approximated by first-order plus time delay (FOPTD) models to
obtain the parameters of their respective controller. The robustness
margins γh/δ and Φh/δ have been calculated in all cases.

G(s) = e−s

(Ts + 1)2 ,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1,
1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500,

G(s) = 1
(s + 1)(Ts + 1)2 ,

T = 0.05, 0.1, 0.2, 0.5, 2, 5, 10,

G(s) = 1
(s + 1)n ,

n = 3, 4, 5, 6, 7, 8,

G(s) = 1
(s + 1)(αs + 1)(α2s + 1)(α3s + 1) ,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

G(s) = Te−L1s

(T1s + 1)(Ts + 1) ,

T1 + L1 = 1, T = 1, 2, 5, 10,
L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1,

G(s) = 1 − αs
(s + 1)3 ,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1,

G(s) = 1
(s + 1)((sT)2 + 1.4sT + 1) ,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

(15)

Fig. 8  Gain and phase margins to the non-linearity (γh/δ, Φh/δ) for a given
open-loop transfer function Gol in Nyquist and Nichols diagrams
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The open-loop transfer functions, Gol(s) = C(s)G(s), for all the
designs are represented in the Nyquist and Nichols diagrams in
Figs. 9 and 10, where the traces of −1/N for one level oscillations,
m = 1, obtained for different ratios h/δ are also depicted. As
commented before, the behaviour of these traces with the reduction
of the ratio h/δ, in both Nyquist and Nichols diagrams, is to fold
and tend to a straight line, horizontal on the real axis for the
Nyquist diagram and vertical at -180° for the Nichols diagram,
which corresponds to the RQ sampling.

From these figures, some conclusions can be drawn. Firstly, the
Ziegler–Nichols and Cohen–Coon methods offer some controllers
which make the open-loop transfer function to intersect with the
negative inverse of the DF for some values of h/δ, and thus, these
systems will oscillate when sampled with those strategies.
Secondly, the AMIGO method offers controllers which avoid the
intersection with −1/N and provide the higher values of γh/δ and
Φh/δ, therefore, oscillations due to the RQH sampling will not take
place, even for certain variations in the plant dynamic.

In view of these results, to assure that limit cycle oscillations
will not take place, the proposed margins must be checked once the
controller is tuned. To evaluate the robustness of a concrete design
for particular variations in the plant model, the magnitude of
changes in the plan dynamic must be expressed in terms of gain
and phase variations of Gol. If such variations are lower than the
respective margins then the design in a robust enough. On the other
hand, if as a consequence of changes in the dynamic behaviour of
the plant, the margins γh/δ and Φh/δ are surpassed, then instabilities
will appear.

5.1 Influence of h/δ on the robustness margins

The margins γh/δ and Φh/δ for different values of h/δ are shown in
Figs. 11–13. The results corroborate the preliminary observations
from Figs. 9 and 10. Firstly, it must be highlighted the good
behaviour of PI controllers tuned with AMIGO rules, which have
positive values of margins for all the batch processes and all ratios
h/δ. It is also remarkable that for Ziegler–Nichols and Cohen–
Coon methods, despite the fact of having reasonable values of
classical phase and gain margins, which are also represented in the
figure with dashed lines, for high values of h/δ some systems
present negative values of γh/δ and Φh/δ, i.e. it exists an intersection
between the open-loop transfer function and −1/N. Particularly,
critics are the results of the Cohen–Coon method whose margins
are negative for most of the processes when h/δ is greater than 0.4.

Beyond the results obtained for each tuning method, the
previous study reveals that the reduction of h/δ tends to increase
both Φh/δ and γh/δ, being ultimately similar to the classical gain and
phase margins when the RQ sampler is considered.

5.2 Influence of controller's parameters on the robustness
margins

Concerning the influence of the controller parameters on the
proposed margins, it is worth noting that both Kp and Ti modify the
relative position of Gol(s) with regard to −1/N. The effect of
varying these parameters can be easily observed in the Nichols
diagram because changes in Kp and Ti produce vertical and/or
horizontal displacements on Gol(s).

Fig. 9  Nichols plots of the presented batch of processes with the specified controllers and the traces of −1/N for m = 1 with different values of h/δ
 

Fig. 10  Nyquist plots of the presented batch of processes with the specified controllers and the traces of −1/N for m = 1 with different values of h/δ
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The magnitude and phase expressions for a PI controller with
transfer function in (14) are

C(jω) = Kp 1 + 1
ωTi

2
(16)

arg {C(jω)} = arctan − 1
ωTi

(17)

From these expressions, it can be seen that the proportional gain
produces a vertical displacement of Gol(jω) in the Nichols diagram.
Concretely, the Gol(jω) moves down as Kp decreases, which, due to
the shape of Gol(jω) depicted in Fig. 9, implies the improvement of
both margins. On the other hand, the variation on the integral time
produces both a vertical and horizontal displacement of Gol(jω). It

can be seen that by increasing Ti a displacement downwards and to
the right of Gol(jω) take place in the Nichols diagram, which
implies an improvement of both margins.

According to these results, by detuning of the PI controllers
(reducing Kp and/or increasing Ti) both margins can be raised. This
behaviour of Φh/δ and γh/δ respect to the controller parameters is
qualitatively similar to that of the classical gain and phase margins,
therefore, the detuning of the controller improves all the four
margins at the expense of getting more slow closed-loop responses.

6 Simulation examples
In this section, the main issues related to the RQH sampler
presented in this paper are illustrated through simulation examples.
 

Example 2: This example shows the influence of h/δ in the
event generation. The number of generated events in RQH − PI(s)
loops strongly depends on the choice of the sampling parameters,
i.e. hysteresis h and quantification δ. In Section 3.1, a study about
the effect on the event generation of the ratio h/δ for samplers,
which conduct to the same steady-state error was presented. In the
following example, the influence of this choice is shown by
comparing SSOD and RQH samplers.

Consider a process whose transfer function is described by

Gp(s) = e−0.3s

(s + 1)(0.7s + 1) . (18)

The network communication delay is tested to have a latency
td = 0.15 s. Thus, the whole model to be considered for the tuning
is described by

G(s) = e−0.45s

(s + 1)(0.7s + 1) . (19)

A PI controller has been tunned following Ziegler–Nichols tuning
rules, obtaining Kp = 1.52 and Ti = 2.58. This controller does not
make the open-loop transfer function intersect the traces of the
inverse negative for any ratio h/δ, therefore, it avoids limit cycle
oscillations induced by the sampler. This fact can be corroborated
in Fig. 14, where the Nyquist diagram of Gol(jω) and the inverse
negative of the DF for several ratios h/δ have been represented. As
it can be seen, no intersection exist between Gol(jω) and the −1/N
traces.

The measurement noise present in this loop is observed to have
a peak-to-peak amplitude of 0.07 units and the admissible
maximum steady-state error to provide a correct functioning is
ess = 0.18. With these requirements, following the guidelines in
Section 3, the SSOD is chosen to have δ = 0.18 to minimise the
event generation and assuring the accomplishment of the
specifications. With regard to the RQH sampler, to avoid event
generation due to noise, the hysteresis is chosen to be h = 0.08,
and, to fulfil the maximum ess criterion, δ = 0.28.

Two experiments have been performed with the same process
and controller but changing the sampler in the loop. The
experiments consist in two unitary step changes at the reference
input and a unitary step change in the disturbance input at different
times. The results of the experiments can be seen in Figs. 15 and 16
for the SSOD and RQH samplers, respectively. 

Regarding both figures, there are not remarkable differences
which could make one sampler preferable over the other. In terms
of the controlled output, both reach the steady-state regime in about
10 s. The unique difference resides in the number of events
generated, which for the case of the SSOD is nev = 31 and for the
RQH is nev = 22, reducing in a significant manner the number of
generated events.

This example proves that by choosing a RQH sampler over an
SSOD, the system performance is not significantly affected and the
number of events generated is lower. Nevertheless, this event
generation reduction implies that the control action bumps
produced by a change of the magnitude δ at the input of the

Fig. 11  γh/δdB and Φh/δ for several values of h/δ (solid coloured lines) and
classical gain and phase margins (dashed magenta line) with Ziegler–
Nichols tuning method

 

Fig. 12  γh/δdB and Φh/δ for several values of h/δ (solid coloured lines) and
classical gain and phase margins (dashed magenta line) with Cohen–Coon
tuning method
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controller, δu = Kpδ, is higher for the RQH than for the SSOD. In
this example, this control action bumps for the SSOD are
δu = 0.274 and for the RQH are δu = 0.426.
 

Example 3: This example shows the usefulness of the DF
approach on predicting the oscillation induced by the RQH
sampler. As commented before, the ratio h/δ has a strong influence
in the appearance of limit cycle because it changes significantly the
shape of the inverse negative of the DF and, therefore, the
robustness margins γh/δ and Φh/δ. In this example, the influence of
the ratio h/δ on the robustness is highlighted.

Consider a process whose transfer function is described by

Gp(s) = 1 − 0.1s
(s + 1)3 . (20)

The network communication delay is small enough with respect to
the system dynamics, so it can be neglected. A PI controller has
been tuned according to Cohen–Coon tuning rules, resulting in
Kp = 1.612 and Ti = 1.938.

The measurement noise in the loop is observed to have a peak-
to-peak amplitude of 0.03 units and the maximum admissible
steady-state error is ess = 0.1. From this specifications, two RQH
samplers will be designed and tested in the loop.

For the first sampler, consider a very conservative approach to
avoid the event generation due to noise, in which the hysteresis
will be selected to be twice the observed peak-to-peak amplitude
h = 0.06 and the quantification δ is selected to meet the maximum
admissible ess, δ = 0.14, resulting in a sampler with ratio
h/δ = 0.4286.

Fig. 13  γh/δdB and Φh/δ for several values of h/δ (solid coloured lines) and
classical gain and phase margins (dashed magenta line) with AMIGO
tuning method

 

Fig. 14  Nyquist diagram of Gol( jω) and the inverse negative of the DF
corresponding to several samplers

 

Fig. 15  Controlled output y and control action u for the system containing
an SSOD sampler, which results in a number of events generated nev = 31,
marked in an orange

 

Fig. 16  Controlled output y and control action u for the system containing
a RQH sampler, which results in a number of events generated nev = 22,
marked in an orange
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This system has been simulated and its temporal response to a
unitary step change in the reference and disturbance inputs is
presented in Fig. 17. As it can be seen, the resulting system
response is oscillatory. This is justified in the previous section
because, even if the classical gain γcp = 6.5 dB and phase
Φcg = 30.37° margins for most of continuous applications provide
enough robustness, the gain γh/δ = − 0.4 dB and phase
Φh/δ = − 1.98° margins to the non-linearity obtained for the RQH
with h/δ = 0.4286 indicate the existence of an intersection between
Gol(jω) and −1/N as corroborated in Fig. 18a, and therefore, it
exists a limit cycle. 

A more suitable RQH sampler is obtained by choosing the
hysteresis h = 0.04 and δ to fulfil the ess requirement, δ = 0.16,
resulting in a ratio h/δ = 0.25, which is lower than in the precedent
case. With this new RQH sampler, the proposed robustness
margins are recalculated, and the respective gain and phase
margins, γh/δ = 1.15 dB and Φh/δ = 5.58°, are obtained, which
indicate that the oscillation condition is not satisfied, and then,
limit cycle oscillations will not take place. This fact is shown in
Fig. 18b, where it can be seen that the intersection between Gol(jω)
and −1/N is avoided. The avoidance of the apparition of limit
cycle oscillations has also been tested through a simulation with
the same conditions as in the precedent case, which is presented in
Fig. 19, where the system response to a unitary step change in the
reference and disturbance input has been presented. As expected,
this system does not present limit cycle oscillations, which shows
that, effectively, a reduction on the ratio h/δ of the sampler lowers
the robustness requirements of the system to avoid limit cycle
oscillations.
 

Example 4: In an industrial environment, errors in the process
model can appear due to several common causes, such as noisy
measurement, few data for identification or non-linear behaviours,
among others. The robustness margins serves to cope with the
modelling error as well as with possible variations in the plant
dynamic. Studying these margins for the worst-case scenario can
be insightful to determine the actual robustness taking into account
the uncertainty in the plant parameters. Furthermore, it is also
possible to express the margins in terms of admissible variation in
the parameters of the model, even though this analysis is valid only
for the model structure that is being studied. This example
illustrates these ideas.

Consider a process with nominal model given by the following
transfer function:

G(s) = e−0.2s

(s + 1)4 (21)

whose gain, delay and poles have been obtained with a reliability
of ±5%. A PI controller has been tuned using AMIGO tuning rules,
obtaining Kp = 0.281 and Ti = 2.41. A RQH sampling with ratio
h/δ = 1/3 has been applied.

Due to the model uncertainties, the worst and best case
scenarios, from the robustness point of view, are, respectively,

Gw(s) = 1.05e−0.21s

(s + 0.95)4 and Gb(s) = 0.95e−0.19s

(s + 1.05)4 . (22)

These models have been evaluated with the controller. The
Nichols diagrams are depicted in Fig. 20, where it can be seen that
the margins to the non-linearity vary from γh/δ =9.7 dB and Φh/δ =
42.8° for the worst case to γh/δ =14.8 dB and Φh/δ = 52° for the
best case, being γh/δ =12.3 dB and Φh/δ =48.3° the values obtained
for the nominal model. In this case, the achieved margins are good
enough to consider the system robust against oscillations induced
by the sampler, even considering the effect of the model
uncertainties.

Fig. 17  Controlled output y and control action u of a system with a RQH
sampler with h/δ = 0.4286 in the loop, which leads to an oscillatory
response

 

Fig. 18  Nyquist diagram of Gol with the inverse negative of the DF of its
respective sampler
(a) RQH with h/δ = 0.4286, (b) RQH with h/δ = 0.25
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In addition to the previous study, the admissible variation of
each nominal parameter without provoking limit cycle oscillation
can be calculated. For this specific case, the gain can be increased
until 4.11, the delay until 6.98 s and the multiple poles can be
decreased to 0.75.

This kind of analysis allows expressing the robustness in terms
of parameter variation, however, the results depend on the structure
of Gp(s).

7 Conclusions
In this paper, an alternative to either RQ or SSOD sampling
strategies for event-based PI control systems has been presented.
The proposed solution consists in an intermediate case between
both strategies, attained by regulating the ratio between the
quantification step and the quantifier hysteresis.

This solution presents several advantages regarding to RQ and
SSOD. Firstly, it avoids sending events, and its associated data,
through the network generated by changes in the sampled signal
due to noise. In addition, it reduces the number of events needed to
perform the control while still being reactive to significant changes
in the state of the system.

To evaluate the robustness against limit cycles of the proposed
sampling strategy the DF technique has been used, obtaining the

regions that induce limit cycle oscillations on the system. From the
knowledge of these regions, gain and phase margins to limit cycles
induced by the RQH sampler have been defined.

Using these margins, the suitability of classical tuning methods
for continuous systems, such as Ziegler–Nichols, Cohen–Coon,
and AMIGO, can be evaluated when used for tuning controllers
under RQH sampling strategy. An extensive simulation study
shows that, even with good classical gain and phase margins
provided by these methods, limit cycle oscillations can still be
induced by the sampler if the proposed margins are negative.

The influence of the controller's parameters, network delay and
model uncertainty on the proposed margins has been studied. The
results reveal that the effect of varying these parameters on the new
margins is similar to that obtained on classical gain and phase
margins.

Additionally, the guidelines to select proper sampler parameters
from noise and steady-state error specifications have been
provided, and its influence in the limit cycle oscillations apparition
and in the event generation has been addressed and highlighted
through several examples.

8 Acknowledgments
This work was supported by MICINN project no. TEC2015-69155-
R from the Spanish government, research project 18I411-Uji-
b2018-39 from Universitat Jaume I and by CEICE grant no. ACIF/
2018/244.

9 References
[1] Lunze, J.: ‘Event-based control: introduction and survey’, in Miskowicz, M.

(Eds.): ‘Event-based control and signal processing’ (CRC Press, Boca Raton,
2015), pp. 3–20

[2] Dotoli, M., Fay, A., Miśkowicz, M., et al.: ‘An overview of current
technologies and emerging trends in factory automation’, Int. J. Prod. Res.,
2019, 57, (15-16), pp. 5047–5067

[3] Aranda-Escolástico, E., Guinaldo, M., Heradio, R., et al.: ‘Event-based
control: a bibliometric analysis of twenty years of research’, IEEE Access,
2020, 8, (March), pp. 47188–47208

[4] O'Dwyer, A.: ‘Handbook of PI and PID controller tuning rules’ (Imperial
College Press, UK, 2006, 2nd edn.)

[5] Samad, T.: ‘A survey on industry impact and challenges thereof’, IEEE
Control Syst., 2017, 37, (1), pp. 17–18

[6] Maxim, A., Copot, D., Copot, C., et al.: ‘The 5w's for control as part of
industry 4.0: why, what, where, who, and when a PID and MPC control
perspective’, Inventions, 2019, 4, (1), pp. 1–10

[7] Årzén, K.-E.: ‘A simple event-based PID controller’. Proc. 14th World
Congress of IFAC, Beijing, March 1999, vol. Q, pp. 423–428

[8] Durand, S., Marchand, N.: ‘An event-based PID controller with low
computational cost’. 8th Int. Conf. on Sampling Theory and Applications
(SampTA'09), Marseille, France, 2009

[9] Durand, S., Marchand, N.: ‘Further results on event-based PID controller’.
Proc. of the European Control Conf. 2009, Budapest, Hongrie, August 2009,
pp. 1979–1984

[10] Vasyutynskyy, V., Kabitzsch, K.: ‘A comparative study of PID control
algorithms adapted to send-on-delta sampling’. Int. Symp. on Industrial
Electronics (ISIE) 2010, Bari, Italy, July 2010, pp. 3373–3379

[11] Vasyutynskyy, V., Kabitzsch, K.: ‘Time constraints in PID controls with send-
on-delta’, in Juanole, G., et al., (Eds.): ‘Fieldbuses and networks in industrial
and embedded systems, vol. 8, (Elsevier, USA, 2009), pp. 48–55

[12] Hsia, T.C.: ‘Analytic design of adaptive sampling control law in sampled-data
systems’, IEEE Trans. Autom. Control, 1974, 19, (1), pp. 39–42

[13] Dormido, S., Sánchez, J., Kofman, E.: ‘Muestreo, control y comunicación
basados en eventos’, Rev. Iberoamericana Autom. Inf. Ind. RIAI, 2008, 5, (1),
pp. 5–26

[14] Ploennigs, J., Vasyutynskyy, V., Kabitzsch, K.: ‘Comparative study of energy-
efficient sampling approaches for wireless control networks’, IEEE Trans.
Ind. Inf., 2010, 6, (3), pp. 416–424

[15] Beschi, M., Dormido, S., Sánchez, J., et al.: ‘Characterization of symmetric
send-on-delta PI controllers’, J. Process Control, 2012, 22, (10), pp. 1930–
1945

[16] Beschi, M., Dormido, S., Sánchez, J., et al.: ‘Tuning of symmetric send-on-
delta proportional-integral controllers’, IET Control Theory Appl., 2014, 8,
(4), pp. 248–259

[17] Pawlowski, A., Beschi, M., Guzmán, J.L., et al.: ‘Application of SSOD-PI
and PI-SSOD event-based controllers to greenhouse climatic control’, ISA
Trans., 2016, 65, pp. 525–536

[18] Romero, J.A., Sanchis, R., Peñarrocha, I.: ‘A simple rule for tuning event-
based PID controllers with symmetric send-on-delta sampling strategy’. Proc.
of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
Barcelona, Spain, September 2014, pp. 1–8

[19] Romero Pérez, J.A., Sanchis Llopis, R.: ‘A new method for tuning PI
controllers with symmetric send-on-delta sampling strategy’, ISA Trans.,
2016, 64, pp. 161–173

Fig. 19  Controlled output y and control action u of a system with a RQH
sampler with h/δ = 0.25 in the loop, which avoids limit cycle oscillations

 

Fig. 20  Robustness margins to the non-linearity for the modelled system
and its best and worst-case scenarios due to uncertainty

 

IET Control Theory Appl.
© The Institution of Engineering and Technology 2020

11



[20] Ruiz, Á., Beschi, M., Visioli, A., et al.: ‘A unified event-based control
approach for FOPTD and IPTD processes based on the filtered Smith
predictor’, J. Franklin Inst., 2017, 354, (2), pp. 1239–1264

[21] Sánchez, J., Guinaldo, M., Visioli, A., et al.: ‘Identification of process transfer
function parameters in event-based PI control loops’, ISA Trans., 2018, 75,
pp. 157–171

[22] Miguel-Escrig, O., Romero-Pérez, J.-A., Sanchis-Llopis, R.: ‘Tuning PID
controllers with symmetric send-on-delta sampling strategy’, J. Franklin Inst.,
2020, 357, pp. 832–862

[23] Miguel-Escrig, O., Romero-Pérez, J.-A., Sanchis-Llopis, R.: ‘New robustness
measure for a kind of event-based PID’, IFAC-PapersOnLine, 2018, 51, (4),
pp. 781–786

[24] Romero Pérez, J.A., Sanchis Llopis, R.: ‘Tuning and robustness analysis of
event-based PID controllers under different event-generation strategies’, Int.
J. Control, 2017, 91, pp. 1–21

[25] Åström, K.J., Hägglund, T., Astrom, K.J.: ‘Advanced PID control’, volume
461. ISA-The Instrumentation, Systems, and Automation Society Research
Triangle, 2006

[26] Sun, L., Li, D., Lee, K.Y.: ‘Optimal disturbance rejection for PI controller
with constraints on relative delay margin’, ISA Trans., 2016, 63, pp. 103–111

[27] Ziegler, J.G., Nichols, N.B.: ‘Optimum settings for automatic controllers’,
Trans. ASME, 1942, 64, (11), pp. 759–765

[28] Cohen, G.H., Coon, G.A.: ‘Theoretical consideration of retarded control’,
Trans. ASME, 1953, 75, (75), pp. 827–834

[29] Åström, K.J., Hägglund, T.: ‘Revisiting the Ziegler-Nichols step response
method for PID control’, J. Process Control, 2004, 14, (6), pp. 635–650

[30] Slotine, J.-J.E., Li, W.: ‘Appied nonlinear control’ (Prentice Hall, USA, 1991)

10 Appendix
 
The output equation of the proposed sampler, whose input–output
relation is presented in Fig. 3 is

ē(t) =

(i + 1)δ if e(t) ≥ (i + 1
2 + h

2δ )δ and ē(t−) = iδ,
i ∈ ℤ

(i − 1)δ if e(t) ≤ (i − 1
2 − h

2δ )δ and ē(t−) = iδ

iδ if e(t) ∈ [(i − 1
2 − h

2δ )δ, (i + 1
2 + h

2δ )δ]
and ē(t−) = iδ

(23)

For a sinusoidal input e(ϕ) = Asin(ϕ), the output of the sampler
can be expressed as

ē(ϕ) = δ ∑
k = 1

i
sgn de(ϕ)

dϕ ϕk
∀ϕ; ϕi < ϕ < ϕi + 1

= δ ∑
k = 1

i
sgn cos(ϕk)

(24)

The EG-ZOH sampler is an odd non-linearity where the history
of the input determines the value of the output in the multiple-
valued regions. The DF for this kind of non-linearity is calculated
as (see (25)) 

which can be rewritten as (see (26)) . Taking into account that

∫
ϕk

π
e− jϕdϕ = − sin ϕk − j(1 + cos ϕk), (27)

equation (26) results in

N(A, h) = 2δ
πA ∑

k = 1

n
(1 + cos ϕk)sgn(cos ϕk)

− j ∑
k = 1

n
sin ϕksgn(cos ϕk) ,

(28)

which can be transformed to

N(A, h) = 2δ
πA ∑

k = 1

m
cos ϕk − ∑

k = m + 1

2m
cos ϕk

−j ∑
k = 1

m
sin ϕk − ∑

k = m + 1

2m
sin ϕk .

(29)

As the expressions of the sin ϕk and cos ϕk are known to be

sin ϕk =
δ
A k − 1

2 + h
2δ if k = 1, 2, …, m

δ
A 2m − k + 1

2 − h
2δ if k = m + 1, m + 2, …, 2 m

(30)

cos ϕk =

+ 1 − δ
A k − 1

2 + h
2δ

2

if k = 1, 2, …, m

− 1 − δ
A 2m − k + 1

2 − h
2δ

2

if k = m + 1,
m + 2, …, 2 m

(31)

can be introduced in (29) which results in

N(A, h) = 2δ
Aπ ∑

k = 1

m
1 − δ

A k + h
2δ − 1

2
2

+ ∑
k = m + 1

2m
1 − δ

A 2m − k − h
2δ + 1

2
2

− j2hmδ
A2π

(32)

N(A, h) = 2 j
πA∫

0

π
ē(ϕ)e− jϕdϕ

= 2 j
πA ∫

ϕ1

ϕ2
δsgn(cos ϕ1)e− jϕdϕ + ∫

ϕ2

ϕ3
δ(sgn(cos ϕ1)

+sgn(cos ϕ2))e− jϕdϕ + ⋯ + ∫
ϕn

π
δ ∑

k = 1

n
(sgn(cos ϕk))e− jϕdϕ

(25)

N(A, h) = 2δ j
πA ∫

ϕ1

π
sgn(cos ϕ1)e− jϕdϕ + ∫

ϕ2

π
sgn(cos ϕ2)e− jϕdϕ

+⋯ + ∫
ϕn

π
sgn(cos ϕn)e− jϕdϕ

= 2δ j
πA ∑

k = 1

n
sgn(cos ϕk)∫

ϕk

π
e− jϕdϕ .

(26)
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