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Let G be a finite group and assume that a group of automorphisms A is acting on
G such that A and G have coprime orders. Recall that a subgroup H of G is said to
be a TI-subgroup if it has trivial intersection with its distinct conjugates in G. We
study the solubility and other properties of G when we assume that certain invariant
subgroups of G are TI-subgroups, precisely when all A-invariant subgroups, all non-
nilpotent A-invariant subgroups, and all non-abelian A-invariant subgroups of G,
respectively, are TI-subgroups.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite group. Recall that a subgroup H of G is called a TI-subgroup (trivial intersection

subgroup) of G if either H ∩ Hg = 1 or H for every g ∈ G. Trivial examples of TI-subgroups are minimal

subgroups and normal subgroups of every group, and likewise, every Frobenius complement of a Frobenius

group. Much less obvious is the fact that a cyclic Sylow subgroup of a finite simple group is a TI-subgroup

[2]. During the last few years, a topic of interest has been to investigate the influence of TI-subgroups on

the structure of finite groups, and particularly, to classify the finite groups in which certain subgroups are

assumed to be TI-subgroups. This study was started by Walls [8], who gave a complete classification of the

finite groups all whose subgroups are TI-subgroups. Later, other authors have obtained some classifications,

for instance, that of those groups in which every abelian subgroup is a TI-subgroup [6]. This result, however,

is much deeper and its proof requires the Classification of the Finite Simple Groups.

In this note, we assume that a group of automorphisms A is acting on G and that A and G have coprime

orders. Then we only consider the subgroups of G that are invariant under the action of A, so that our goal

is to determine the structure of G or some properties of G, such as solubility, under the assumption that
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certain A-invariant subgroups of G are TI-subgroups. Our first result extends Wall’s classification (Main

Theorem of [8]) by giving a somewhat wider classification within the coprime action setting. We point out

that, however, we need to appeal to a result based on the Classification, concretely, on a coprime action

version of the Schimdt groups (minimal non-nilpotent groups), which was previously obtained by the authors

(Theorem A of [1]).

Theorem A. Suppose that a group A acts coprimely on a finite group G. If all A-invariant subgroups of G

are TI-groups then either G is nilpotent or a Frobenius group whose kernel is elementary abelian and its

complement is either a cyclic group or the direct product of Q8 and a cyclic group of odd order.

In [7], the solubility and other properties of those groups whose non-nilpotent subgroups are TI-subgroups

were studied. We extend these results into the coprime action scenario in the following way.

Theorem B. Suppose that a finite group A acts coprimely on a finite group G. If every non-nilpotent A-

invariant subgroup of G is a TI-subgroup, then G is soluble and every non-nilpotent A-invariant subgroup

is normal in G.

Groups in which every abelian subgroup is a TI-subgroup are not necessarily soluble. In fact, there exist

exactly three such non-soluble groups, which furthermore are simple: PSL2(4), PSL2(7) and PSL2(9) (see

the Main Theorem of [3]). We have not been able to obtain a classification for those groups acted on by an

coprime automorphism group such that all their abelian invariant subgroups are TI-subgroups. But inspired

by the results of [6], we address the opposite situation, that is, when all the non-abelian invariant subgroups

of a group are TI-subgroups. For brevity, we will say that a subgroup H of a group G is an A-TI-subgroup

when H is an A-invariant TI-subgroup of G.

Theorem C. Suppose that a finite group A acts coprimely on a finite group G. If every non-abelian A-

invariant subgroup of G is a TI-subgroup, then G is soluble. Furthermore:

(a) If G is nilpotent, then every A-TI-subgroup of G is normal.

(b) If G is non-nilpotent, then

(1) G = KM is a Frobenius group with a kernel K and a complement M , both A-invariant, where K

is minimal A-invariant normal subgroup of G and M is either a cyclic group or a product of Q8

with a cyclic group of odd order.

(2) G = PH with P an A-invariant normal Sylow p-subgroup of G and H an A-invariant abelian p-

complement of G. Furthermore, CP (H) is abelian and normal in G, and P/CP (H) is elementary

abelian.

2. Preliminaries

Regarding coprime action, we refer to [4, Chapter 8] for a detailed presentation and basic properties.

The following two lemmas, however, do not require the fact that the action is coprime, but we include this

hypothesis in their statements since this is the framework in which we are working in.

Lemma 2.1. Suppose that a finite group A acts coprimely on a finite group G. Let N be a non-trivial A-

invariant normal subgroup of G. If H is an A-TI-subgroup of G with N ≤ H, then H � G.

Proof. For every g ∈ G, we have Ng ≤ Hg. Since N � G, then N ≤ H ∩ Hg. As H is an A-TI subgroup,

we get H = Hg, and hence H � G. 2
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If a group A acts on a group G (not necessarily their orders are coprime), we recall the concept of A-

composition series of G (see for instance 7.32 of [5]). An A-series of G is a series of G the terms of which

are A-invariant, and an A-composition series of G is a proper A-series of G which has no proper refinement

(as an A-series). Notice that if G is soluble, then every factor of an A-composition series of G is elementary

abelian, because such factor does not have any non-trivial proper A-invariant normal subgroup. We need

the following property regarding A-composition series and TI-subgroups.

Lemma 2.2. Suppose that a finite group A acts coprimely on a finite soluble group G. Let H be an non-abelian

(non-nilpotent) A-invariant subgroup of G. If there exists a A-composition series

H := Hs � Hs−1 � Hs−1 � · · · � H1 � H0 = G,

such that Hi is a TI-subgroup of G for every 1 ≤ i ≤ s, then H � G.

Proof. We argue by induction on s. Since H is non-abelian (non-nilpotent) and H < Hs−1, we have that

Hs−1 is also non-abelian (non-nilpotent), and by induction Hs−1 � G. Note that each factor Hi/Hi−1 has

no proper and non-trivial normal A-invariant subgroup, and since G is soluble, it follows that Hi/Hi−1 is

elementary abelian for every i. Then, for every g ∈ G, we have Hg ≤ Hg
s−1 = Hs−1. As H � Hs−1, then

H � HHg ≤ Hs−1 (HHg is not necessarily A-invariant). If H 6= Hg, then H ∩ Hg = 1 for H being a TI-

subgroup. But then Hg ∼= HHg/H is a subgroup of Hs−1/H, which is elementary abelian. This contradicts

the fact that H is non-abelian (non-nilpotent). Therefore, H = Hg for every g ∈ G, that is, H is normal in

G. 2

Unlike the above two lemmas, the coprimeness of the action is essential for proving the next result.

Besides, we want to remark that, in the statement of the following lemma (and likewise throughout the

paper), by maximal A-invariant subgroup we mean a subgroup that is maximal among all proper A-invariant

subgroups. Of course, if the action is non-trivial, then such a subgroup need not be a maximal subgroup.

Lemma 2.3. Suppose that a finite group A acts coprimely on a finite group G. If every maximal A-invariant

subgroup of G is normal, then G is nilpotent.

Proof. For every prime p dividing |G| we can choose an A-invariant Sylow p-subgroup P of G. If P is not

normal in G, then we take a maximal A-invariant subgroup M of G such that NG(P ) ≤ M . By Sylow

properties NG(M) ≤ M , which certainly leads to a contradiction because M � G by the hypothesis. This

proves that G is nilpotent. 2

As already pointed in the Introduction, for our proofs we use the following extension of Schmidt groups,

whose proof relies on the Classification of the Finite Simple Groups.

Theorem 2.4. Suppose that a finite group A acts coprimely on a finite group G. If every A-invariant proper

subgroup of G is nilpotent, then G is soluble. Furthermore, if G is non-nilpotent, then |G| = paqb and G

has an A-invariant normal Sylow p-subgroup.

Proof. This is equivalent to Theorem B of [1]. 2

We can say more about the structure of those groups from the above result if, in addition, all of their

invariant proper subgroups are abelian.
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Theorem 2.5. Suppose that a finite group A acts coprimely on a finite group G. If every A-invariant proper

subgroup of G is abelian and G is non-nilpotent, then G = PQ, where P is an A-invariant normal Sylow

p-subgroup, Q is an A-invariant Sylow q-subgroup (both abelian), such that P/CP (Q) is elementary abelian.

Proof. By applying Theorem 2.4, we only have to prove that Φ(P ) ≤ CP (Q). Since Q is not normal in G,

we can choose a maximal A-invariant M such that NG(Q) ≤ M . Then M = Q(M ∩ P ) and since M is

abelian we have

M ∩ P ≤ CP (Q) ≤ NP (Q) = M ∩ P.

As a consequence, M = Q × CP (Q). Now, we distinguish two possibilities. If Φ(P ) ≤ M , then we trivially

have the result. So by the maximality of M , we can assume that G = Φ(P )M . This certainly implies that

Φ(P )CP (Q) = P and this forces CP (Q) = P , that is, G is nilpotent, a contradiction. 2

3. Main results

Theorem A. Suppose that a group A acts coprimely on a group G. If all A-invariant subgroups of G are

TI-subgroups, then either G is nilpotent or a Frobenius group whose kernel is elementary abelian and its

complement is either a cyclic group or the direct product of Q8 and a cyclic group of odd order.

Proof. Assume that G is non-nilpotent, and take some A-invariant Sylow subgroup Q such that NG(Q) < G.

Then we take a maximal A-invariant subgroup M containing NG(Q), which obviously satisfies NG(M) = M .

As M is a TI-subgroup, then G is a Frobenius group with complement M . Write G = K ⋊ M , where K is

the kernel. First, we prove that K is minimal A-invariant normal subgroup of G. Assume that this is false

and take N to be a minimal A-invariant normal subgroup of G, with N ≤ K. Then NM < G and this

contradicts the maximality of M . Consequently, K is p-elementary abelian. Let Mq be an A-invariant Sylow

q-subgroup of M , for some prime q. Then K ⋊Mq is also a Frobenius group with kernel K and complement

Mq. Moreover, by Lemma 2.1, we have K ⋊ Mq � G, so Mq � M . This proves that M is nilpotent. Now,

if q 6= 2, then Mq is cyclic by [4, 8.3.8 and 8.3.2], and if q = 2, then M is a generalized quaternion group

by the same well-known result. Thus, if A does not act trivially on Mq, we get |Mq| = 8 according to the

fact that the automorphism group of a generalized quaternion group of order larger than 8 is a 2-group (see

for instance [4, Exercise 5.7]). So we only have to consider the case in which A acts trivially on M . In that

case, for every non-trivial subgroup M1 of Mq, we have KM1 � G by Lemma 2.1, and this trivially implies

that M1 � Mq. This means that Mq is a Dedekind group, so again |Mq| = 8 and Mq
∼= Q8. We conclude

that the complements of G have the structure of the statement. 2

Theorem B. Suppose that a finite group A acts coprimely on a finite group G. If every non-nilpotent A-

invariant subgroup of G is a TI-subgroup, then G is soluble and every non-nilpotent A-invariant subgroup

is normal in G.

Proof. We prove first that G is soluble by counterexample of minimal order. Thus, assume that G is a non-

soluble group of minimal order satisfying that every non-nilpotent A-invariant subgroup is a TI-subgroup.

We easily get that every non-nilpotent maximal A-invariant subgroup of G is soluble by minimality. First,

notice that there exists a proper non-nilpotent A-invariant subgroup in G, otherwise Theorem 2.4 leads to

the solubility of G. Thus, let M be a non-nilpotent maximal A-invariant subgroup of G. Note that NG(M) is

also A-invariant, so M �G or NG(M) = M . Suppose first that M �G, and notice that G/M is A-irreducible,

that is, G/M does not have any non-trivial and proper A-invariant subgroup. By [4, 8.2.3], it follows that

G/M is a group of prime power order (in fact, it is elementary abelian) and hence it is soluble. As M is

soluble, we conclude that G is soluble, a contradiction. Now we consider the case M = NG(M). Since M is
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a TI-subgroup, we get that G is a Frobenius group with complement M by [4, 4.1.7]. Write G = U ⋊ M ,

where U is the Frobenius kernel, which is well-known that is nilpotent. Consequently, G is soluble too, a

contradiction.

Next we prove that every non-nilpotent A-invariant subgroup is normal in G. Let H be a non-nilpotent

A-invariant subgroup of G, which is a TI-subgroup by hypothesis. Assume that H is not normal in G. Let

N := NG(H) < G. We claim that H < N . Assume on the contrary that H = N and then G is a Frobenius

group with complement H. Write G = K ⋊ H, where K is the kernel. As H is non-nilpotent, it does not

have prime power order. Then we take Hp an A-invariant Sylow p-subgroup of H for each prime divisor p

of |H|. It follows that KHp is also a Frobenius group, so in particular is non-nilpotent. By hypothesis, KHp

is a TI-subgroup and KHp � G by Lemma 2.2. Let G := G/K. Then Hp � G. By the arbitrariness of p, we

conclude that G ∼= H is nilpotent, a contradiction. Therefore H < N as claimed.

Now we consider the following A-series

H := Hs � N := Hs−1 � Hs−2 � · · · � Hm � · · · ,

where Hi = NG(Hi+1). If there is some i such that Hi = G, then we can refine this series to an A-

composition series, from H to G. By Lemma 2.2, we obtain that H is normal in G and we are done. If such

i does not exist, then there is some j such that Hj = Hj+1 < G. Let L := Hj . By the same reason as above

and using Lemma 2.2, we have H � L, that is, L = N and also N = NG(N). Since H is non-nilpotent

and H < N , then N is a non-nilpotent A-invariant subgroup of G, which moreover is a TI-subgroup by

hypothesis. By [4, 4.1.7], G is a Frobenius group with complement N . Arguing as in the above paragraph,

we easily obtain that N is nilpotent, and so is H. This contradiction finishes the proof. 2

Theorem C. Suppose that a finite group A acts coprimely on a finite group G. If every non-abelian A-

invariant subgroup of G is a TI-subgroup, then G is soluble. Furthermore:

(a) If G is nilpotent, then every non-abelian A-TI-subgroup of G is normal.

(b) If G is non-nilpotent, then

(1) G = KM is a Frobenius group with a kernel K and a complement M , both A-invariant, where K

is minimal A-invariant normal subgroup of G and M is either a cyclic group or a product of Q8

with a cyclic group of odd order.

(2) G = PH with P an A-invariant normal Sylow p-subgroup of G and H an A-invariant abelian p-

complement of G. Furthermore, CP (H) is abelian and normal in G, and P/CP (H) is elementary

abelian.

Proof. First we prove that G is soluble by induction on |G|. We can certainly assume, by Theorem 2.4,

that G possesses a non-abelian maximal A-invariant subgroup, say M . Also, every non-abelian maximal

A-invariant subgroup of G is soluble by the inductive hypothesis. Thus, if M is normal in G, then G/M is

A-irreducible, so it is a group of prime power order. In particular, G/M is soluble and thus G is soluble, so

we are finished. If M is not normal in G, by maximality we have M = NG(M). Since M is a TI-subgroup

of G, by [4, 4.1.7], we obtain that G is a Frobenius group with complement M . Write G = K ⋊M , where K

is the kernel. If M is a group of prime power order, since K is nilpotent, it follows that G is also soluble. So

we can assume that M does not have prime power order. Since M is A-invariant, by [4, 8.2.3], we have that

M has an A-invariant Sylow p-subgroup Mp of M for every prime divisor p of the order of M . Note that

K is an A-invariant normal subgroup of G. Then KMp is non-abelian and hence KMp is a TI-subgroup.

By Lemma 2.2, KMp � G. Let G := G/K. By the arbitrariness of p, we conclude that G is nilpotent. Note

that G ∼= M , so M is soluble too. Therefore G is soluble.

The rest of the proof is divided into two cases.
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Case 1. G is nilpotent.

We prove that every non-abelian A-invariant subgroup of G is normal. Let M be a non-abelian A-invariant

subgroup of G that is not normal in G and let N := NG(M). We have the following A-invariant series

M = M1 � N := M2 � M3 � · · · � Ms � · · · ,

where Mi+1 = NG(Mi). Since G is nilpotent, there is some i such that Mi = G. Then we can refine the

series to be an A-composition series of G. By Lemma 2.2, we have that M is normal in G, a contradiction.

This proves (a).

Case 2. G is non-nilpotent. We distinguish two subcases corresponding to two excluding assumptions.

Case 2.1. Assume that there is a non-abelian maximal A-invariant subgroup M of G which is not normal

in G.

We certainly have M = NG(M). As M is a TI-subgroup, then G is a Frobenius group with complement

M . Write G = K⋊M , where K is the kernel. First, we prove that K is minimal A-invariant normal subgroup

of G. Assume this is false and let p be a prime divisor of |K|. Since K is MA-invariant, by coprime action

there is a MA-invariant Sylow p-subgroup Kp of K. It is trivial that KpM < G and is also non-abelian.

But this contradicts the maximality of M . Hence K is a p-group for some prime p. By a similar argument,

we can get that K is minimal A-invariant normal subgroup of G. Next we prove that M has prime power

order. Let Mq be an A-invariant Sylow q-subgroup of M , for some prime q. Then K⋊Mq is also a Frobenius

group with kernel K and complement Mq. By the same reason as above, we have K ⋊ Mq � G. If q > 2,

then Mq is a cyclic group by [4, 8.3.8 and 8.3.2]. If q = 2, then M is a generalized quaternion group by

[4, 8.3.8 and 8.3.2]. Now, if A does not act trivially on Mq, we get |Mq| = 8 according to the fact that the

automorphism group of a generalized quaternion group of order larger than 8 is a 2-group (see for instance

[4, Exercise 5.7]). So we only have to consider the case Mq ≤ CG(A). For every non-trivial subgroup M1 of

Mq, we have KM1 � G by the same reason as above, and this trivially implies that M1 � Mq. This means

that Mq is a Dedekind group, so again |Mq| = 8 and Mq
∼= Q8. By the same reason as above, we can get

KMr � G for every A-invariant Sylow r-subgroup of M . Therefore, we conclude that M is nilpotent and

the 2-complement of M is cyclic. This is part (1) of the Theorem.

Case 2.2. Assume that every non-abelian maximal A-invariant subgroup of G is normal in G.

It may happen that every proper A-invariant subgroup of G is abelian. In that case, the structure of G

is given by Theorem 2.5, that is, G = PQ with P an A-invariant normal Sylow p-subgroup of G and Q an

A-invariant Sylow q-subgroup of G satisfying all the conditions of case (2)(b). Henceforth, we assume that

G has a non-abelian maximal A-invariant subgroup. We claim that G has at least one normal A-invariant

Sylow subgroup. Suppose not and let us take an A-invariant Sylow p-subgroup P of G for every prime p

dividing |G|. Then NG(P ) is A-invariant and we note that must be abelian, otherwise NG(P ) would be

contained in some non-abelian maximal A-invariant subgroup, say M , which by our assumption is normal

in G. However, the Frattini argument gives G = MNG(P ), so we get a contradiction. Now, the fact that

all Sylow normalizers are abelian implies that G is abelian. This can be seen, for instance, by applying the

well-known Burnside p-complement Theorem for every prime p dividing the order of G, since then G would

be p-nilpotent for every p, and as a consequence, nilpotent. This contradiction proves the claim.

We construct the following subgroups. Let R be the (direct) product of all normal Sylow subgroups of

G and let π be the set of primes corresponding to those Sylow subgroups. Of course, R is an A-invariant

normal Hall subgroup of G, and we take T to be an A-invariant π-complement of G. For every prime q ∈ π′
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and every A-invariant Sylow q-subgroup Q1 of T , by the above argument, we know that NG(Q1) is abelian.

In particular, NT (Q1) is also abelian, so we deduce that T is abelian.

It is clear that there exists a prime p ∈ π and an A-invariant Sylow p-subgroup P of G such that

[P, T ] 6= 1, otherwise T would be central in G, which contradicts our assumption that G is non-nilpotent.

Thus PT is non-abelian, and by Lemma 2.1, PT � G. Now, let q ∈ π′ and choose an A-invariant Sylow

q-subgroup Q of T . The Frattini argument gives PNG(Q) = G, where we know that NG(Q) is abelian.

Now, let M be a maximal A-invariant subgroup of G containing NG(Q). Since M cannot be normal in G,

by our assumption, M must be abelian. In particular M = NG(Q). We conclude that G possesses abelian

Hall p-complements. Now, for every prime s ∈ π, s 6= p, if we take S the Sylow s-subgroup of R, it follows

that [PT, S] ≤ PT ∩ S = 1, so [S, T ] = 1. This proves that

G = PT × S1 × . . . × Sn,

where Si for i = 1, . . . , n are the (A-invariant) Sylow subgroups of R distinct from P . Furthermore, Si is

abelian for every i (indeed Si ≤ Z(G) for every i). Now write H = T ×S1 × . . .×Sn, which is an A-invariant

abelian p-complement of G. Therefore, the first assertion of (2) is proved.

Let P0 := CP (H) = CP (T ). First, we prove that M = P0 × H. As H is abelian, then H ≤ NG(Q) = M .

Hence, as G = PH, then M = (M ∩ P )H. Moreover, as M is abelian

M ∩ P ≤ P0 ≤ CP (Q) ≤ NP (Q) = M ∩ P,

so the equality M = P0 × H holds.

Finally, we prove that Φ(P ) ≤ P0 and that P0 �G. We know that CG(P0) ≥ M and by maximality of M

we have CG(P0) = G or CG(P0) = M . If CG(P0) = G, then P0 ≤ Z(G) and thus P0 � G. Let G := G/P0.

Assume that there is some non-trivial proper AM -invariant subgroup U of P . Then MU is also a proper

A-invariant subgroup of G and thus M < MU is a proper A-invariant subgroup of G, contradicting the

maximality of M . As a result AM acts irreducibly on P . So we get Φ(P ) ≤ P0, that is, P/P0 is elementary

abelian. Assume now that CG(P0) = M and we prove again that Φ(P ) ≤ P0. Otherwise, M < Φ(P )M is

A-invariant. By the maximality of M , we have G = Φ(P )M . Since M = P0 × H, we get G = Φ(P )P0H.

Note that Φ(P )P0 ≤ P implies that P = Φ(P )P0, and then P = P0, a contradiction. Hence Φ(P ) ≤ P0,

as wanted. Also, this implies that P0 � P , and since H centralizes P0, we conclude that P0 � G. Thus, the

proof of (2) is finished. 2

Examples. We show that all cases in Theorem C are feasible. Every Dedekind group admitting a coprime

automorphism group is an immediate example of case (a). For a non-trivial example of this case, let us take

two copies, H1 and H2, of the quaternion group of order 8. Each of these has a coprime automorphism of

order 3, say α and β respectively, and we suppose further that α is acting trivially on H2 and that β is acting

trivially on H1. Then A = 〈α〉 × 〈β〉 acts coprimely on G = H1 × H2, and this group clearly satisfies the

hypotheses of Theorem C. The non-abelian A-invariant (proper) subgroups of G are exactly Hi for i = 1, 2,

and H1 × Z(H2) and Z(H1) × H2, all of which are normal in G.

Let us consider D2n = 〈x, y | xn = y2 = 1, xy = x−1〉, the dihedral group of order 2n, where n is an

integer such that ϕ(n) is divisible by some odd prime q (where ϕ denotes the Euler function). It is clear that

D2n is a Frobenius group which admits a coprime automorphism of order q that acts as an automorphism

group of 〈x〉 and trivially on 〈y〉. Every proper invariant subgroup of D2n is abelian, so this group satisfies

the hypotheses of case (b)(1).

The group G = SL(2, 3) with the trivial action is an example of group for case (b)(2), which in addition

is not a Frobenius group. For an example of case (b)(2) with a non-trivial action, let p 6= 2, 3 be a prime, Cp

the cyclic group of order p and consider the permutation wreath product W = CpWrS3, where S3 = HA
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is the symmetric group of degree 3, and H and A are cyclic groups of order 3 and 2, respectively. Let

P = Cp × Cp × Cp be the base group of W . Then A acts coprimely on G = PH. It is easily seen that every

A-invariant proper subgroup of G is abelian, so in particular, G satisfies the hypotheses of Theorem C,

and this is another example of case (2)(b), (which is not either a Frobenius group). Indeed, G verifies the

hypotheses of Theorem 2.5.
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