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Abstract
We introduce the transport–transform and the relative transport–transform metrics between finite point patterns on a general
space, which provide a unified framework for earlier point pattern metrics, in particular the generalized spike time and the
normalized and unnormalized optimal subpattern assignment metrics. Our main focus is on barycenters, i.e., minimizers
of a q-th-order Fréchet functional with respect to these metrics. We present a heuristic algorithm that terminates in a local
minimum and is shown to be fast and reliable in a simulation study. The algorithm serves as a general plug-in method that can
be applied to point patterns on any state space where an appropriate algorithm for solving the location problem for individual
points is available. We present applications to geocoded data of crimes in Euclidean space and on a street network, illustrating
that barycenters serve as informative summary statistics. Our work is a first step toward statistical inference in covariate-based
models of repeated point pattern observations.

Keywords Fréchet mean · Fréchet median · Network · Optimal transport · Point process · Unbalanced · Wasserstein

1 Introduction

Point pattern data are abundant in modern scientific stud-
ies. From biomedical imagery over geo-referenced disease
cases and positions of mobile phone users to climate change-
related space–time events, such as landslides, we have
more and more complicated data available. See Chiaraviglio
et al. (2016), Lombardo et al. (2018), Konstantinoudis et al.
(2019), Samartsidis et al. (2019) for individual examples
and the textbooks Diggle (2013), Baddeley et al. (2015),
Błaszczyszyn et al. (2018) for a broad overview of further
applications. While a few decades ago, data consisted typi-
cally of a single point pattern in a low-dimensional Euclidean
space, maybe with some low-dimensional mark information,
we have nowadays often multiple observations of point pat-
terns available that may live on more complicated spaces,
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e.g., manifolds (including shape spaces), spaces of convex
sets or function spaces. A setting that has received a par-
ticularly large amount of attention recently is point patterns
on graphs, such as street networks, see Moradi et al. (2018),
Moradi and Mateu (2019) and Rakshit et al. (2019) among
others.

Multiple point pattern observations may occur by i.i.d.
replication (e.g., of a biological experiment), but may also be
governed by one or several covariates or form a time series
of possibly dependent patterns. Additional mark information
can easily be high-dimensional. Methodology for treating
such point pattern data in all these situations is the sub-
ject of ongoing statistical research, see, e.g., Baddeley et al.
(2015).

From a more abstract point of view, consider the set Nfin

of finite counting measures on some metric space (X , d).
If we manage to equip Nfin with a metric τ that reflects
the concept of distance between point patterns in an appro-
priate problem-related way, there are a number of standard
methods which can be applied, including multidimensional
scaling, discriminant and cluster analysis techniques. This is
a stance already taken in Schuhmacher (2014), Section 1.4,
and Mateu et al. (2015). In the metric space (Nfin, τ ), we
can furthermore define a Fréchet mean of order q ≥ 1;
that is, for data ξ1, . . . , ξk ∈ Nfin any ζ ∈ Nfin minimiz-
ing
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Fig. 1 An example of barycenters computed by our algorithm for three
different data sets. In each panel, there are three data point patterns indi-
cated by different symbols (black). The resulting (pseudo-)barycenter

pattern with respect to Euclidean distance is given by the blue circles
(p = q = 2). (Color figure online)

k∑

j=1

τ(ξ j , ζ )q . (1)

Such a q-th-order mean may serve as a “typical” element of
Nfin to represent the data and gives rise to more complex
statistical analyses, such as Fréchet regression; see Lin and
Müller (2019) and Petersen and Müller (2019).

Two metrics on the space of point patterns that have been
widely used are the spike timemetric, see Victor and Purpura
(1997) for one dimension and Diez et al. (2012) for higher
dimension, and the optimal subpattern assignment (OSPA)
metric, see Schuhmacher and Xia (2008) and Schuhmacher
et al. (2008). In the present paper,we introduce the transport–
transform (TT) metric and its normalized version, the relative
transport–transform (RTT) metric, which provide a unified
framework for the earlier metrics. Both the TT- and the RTT-
metrics are based on matching the points between two point
patterns on X optimally in terms of some power p of d and
penalizing points that cannot be reasonablymatched.Wemay
interpret these metrics as unbalanced p-th-orderWasserstein
metrics, see Remark 3 below. In the present paper, we always
set p = q.

Among others Schoenberg and Tranbarger (2008), Diez
et al. (2012) and Mateu et al. (2015) have treated Fréchet
means of order 1 (medians) for the spike time metric under
the name of prototypes. However, computations in 2d and
higherwere only possible for very small data sets due to a pro-
hibitive computational cost of O(n6) for the distance between
two point patterns with n points each. In the present work,
we use an adapted auction algorithm that is able to compute
TT- and RTT-distances between point patterns in O(n3). We
further provide a heuristic algorithm that bears some resem-
blance to a k-means cluster algorithm and is able to compute
local minima of the barycenter problem very efficiently. This
makes it possible to compute “quasi-barycenters” for 100pat-

terns of 100 points in R
2 in a few seconds when basing the

TT-distance on the Euclidean distance between points and
choosing p = q = 2.

In Fig. 1, we show some typical barycenters obtained by
our algorithm in this setting.We use smaller data sets for bet-
ter visibility. In each scenario, there are three different point
patterns distinguished by the different symbols in black. The
(pseudo-)barycenter represented by the blue circles captures
the characteristics of each data set rather well. Some minor
irregularities, especially in the third panel, may be due to the
fact that only a (good) local optimum is computed.

More important than being fast for point pattern data on
R

D when using squared Euclidean distances is the fact that
our algorithm provides a general plug-in method that can in
principle be used for point patterns on any underlying space
X where an appropriate “cost function” between objects is
specified as p-th power of a metric d. All that is required
is an algorithm that finds (maybe heuristically) a p-th-order
Fréchet mean for individual points in X , i.e., finds z ∈ X
minimizing

∑k
j=1 d(x j , z)p for any given x1, . . . , xk ∈ X .

We refer to this in what follows as the underlying location
problem. The reduction to the underlying location problem
allows us to treat the case of point patterns on a network
equipped with the shortest-path metric and p = 1. Figure 2
gives an example for crime data in Valencia, Spain, which
we study in more detail in Sect. 6.

The barycenter problem we consider in this paper is
closely related to the problem of computing an unbalanced
Wasserstein barycenter, see, e.g., Chizat et al. (2018). How-
ever, rather thanminimizing a Fréchet functional on the space
of all measures, we minimize on the spaceNfin ofZ+-valued
measures, see Remark 5.

The plan of the paper is as follows. In Sect. 2, we intro-
duce the TT- and RTT-metrics and discuss their relations to
spike time, OSPA, and incomplete Wasserstein metrics. Sec-
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Fig. 2 An example of a barycenter on a street network. Shown are 8
patterns of assault crimes during the summer months of 2010–2017 in
the old town of Valencia (all in gray for better overall visibility). The
resulting barycenter with respect to shortest-path distance along the
streets is given in blue, with multipoints in purple (p = q = 1). (Color
figure online)

tion 3 specifies what we mean by a barycenter (or Fréchet
mean) with respect to these metrics and gives an important
result that forms the basis for our heuristic algorithm. Two
versions of this algorithm, amore direct one and an improved
one, which saves computation steps that are unlikely to sub-
stantially influence the final result, are discussed in detail in
Sect. 4, along with some practical aspects. Section 5 contains
a larger simulation study, which investigates robustness and
runtime performances of the two algorithms for the case of
Euclidean distance and p = 2. Finally, we give two appli-
cations to data of crime events on a city map for real data
in Sect. 6. The first one concerns street thefts in Bogotá,
Colombia. We treat this again as data in Euclidean space,
using p = 2. The second one deals with assault cases in
the streets of Valencia, Spain. Here, we compute barycen-
ters based on the actual shortest-path distance on the street
network and use p = 1.

2 The transport–transformmetric

Denote by Nfin the space of finite point patterns (count-
ing measures) on a complete separable metric space (X , d),
equippedwith the usualσ -algebraNfin generated by the point
count maps ΨA : Nfin → R, ξ �→ ξ(A) for A ⊂ X Borel
measurable. Elements ofNfin are typically denoted by ξ, η, ζ

here. As usual, we write δx for the Dirac measure with unit

mass at x ∈ X . In the present section, we mostly use mea-
sure notation such as ξ = ∑n

i=1 δxi , ξ({x}) ≥ 1 or ξ +η, but
in later sections we also use corresponding (multi)set nota-
tion such as ξ = {x1, . . . , xn}, x ∈ ξ or ξ ∪ η where this is
unambiguous.

We use |ξ | = ξ(X ) to denote the total number of points
in the pattern ξ . For n ∈ Z+ = {0, 1, 2, . . .} write [n] =
{1, 2, . . . , n} (including [0] = ∅) and denote by Nn the set
of point patterns with exactly n points. We first introduce the
metrics we use on Nfin, which unify and generalize two of
the main metrics used previously in the literature.

Definition 1 Let C > 0 and p ≥ 1 be two parameters,
referred to as penalty and order, respectively.

(a) For ξ = ∑m
i=1 δxi , η = ∑n

j=1 δy j ∈ Nfin, define the
transport–transform (TT) metric by

τ(ξ, η) = τC,p(ξ, η)

=
(
min

(
(m + n − 2l)C p +

l∑

r=1

d(xir , y jr )
p
))1/p

,

(2)

where theminimum is takenover equal numbers of pair-
wise different indices i1, . . . , il in [m] and j1, . . . , jl in
[n], i.e. over the set
S(m, n) = {

(i1, . . . , il; j1, . . . , jl) ;
l ∈ {0, 1, . . . ,min{m, n}},
i1, . . . , il ∈ [m] pairwise different,
j1, . . . , jl ∈ [n] pairwise different}.

(b) For ξ, η ∈ Nfin, define the relative transport–transform
(RTT) metric by

τ̄ (ξ, η) = τ̄C,p(ξ, η) = 1

max{|ξ |, |η|}1/p
τC,p(ξ, η).

(3)

We state and prove below that τ and τ̄ are indeed metrics.
The following result simplifies proofs of statements about

thesemetrics and is furthermore invaluable for their computa-
tion. The idea is to extend the metric space (X , d ∧(21/pC)),
where [d ∧ (21/pC)](x, y) = min{d(x, y), 21/pC}, by set-
ting X ′ = X ∪ {ℵ} for an auxiliary element ℵ /∈ X and

d ′(x, y) =

⎧
⎪⎨

⎪⎩

min{d(x, y), 21/pC} if x, y ∈ X ;
C if ℵ ∈ {x, y}, x �= y;
0 if x = y = ℵ.

It is shown inLemmaA.1 that (X ′, d ′) is ametric space again.
We may then compute distances in the τ and τ̄ metrics by
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solving an optimal matching problem between point patterns
with the same cardinality. For n ∈ N denote by Sn , the set of
permutations on [n].
Theorem 1 Let ξ = ∑m

i=1 δxi , η = ∑n
j=1 δy j ∈ Nfin, where

w.l.o.g. m ≤ n (otherwise swap ξ and η). Set xi = ℵ for
m + 1 ≤ i ≤ n and ξ̃ = ∑n

i=1 δxi . Then,

τ(ξ, η) =
(
min
π∈Sn

n∑

i=1

d ′(xi , yπ(i))
p
)1/p

and

τ̄ (ξ, η) =
(
1

n
min
π∈Sn

n∑

i=1

d ′(xi , yπ(i))
p
)1/p

.

The proof of this and the other theorems in this section
can be found in the appendix.

Remark 1 (Computation of TT- and RTT-metrics) Writing
n for the maximum cardinality as in Theorem 1, this result
shows that we can compute both τ(ξ, η) and τ̄ (ξ, η) in worst-
time complexity of O(n3) by using the classic Hungarian
method for the assignment problem; see Kuhn (1955). In
practice, we use the auction algorithm proposed in Bert-
sekas (1988), because it has usually much better runtime in
our experience, although the default version has a somewhat
worse worst-case performance of O(n3 log(n)).1

Theorem 2 The maps τ and τ̄ are metrics on Nfin.

The next result establishes our previous claim that the new
transport–transform construction generalizes two metrics on
Nfin previously used in the literature.

Theorem 3

(a) If p = 1, then for any ξ, η ∈ Nfin

τ(ξ, η) = min
(ξ0,...,ξN )

N−1∑

i=0

celem(ξi , ξi+1), (4)

where the minimum is taken over all N ∈ N and all paths
(ξ0, . . . , ξN ) ∈ NN+1

fin such that ξ0 = ξ , ξN = η, and
from ξi to ξi+1 either a single point is added or deleted
at cost celem(ξi , ξi+1) = C or a single point is moved
from x to y at cost celem(ξi , ξi+1) = d(x, y).

(b) If diam(X ) = supx,y∈X d(x, y) ≤ 21/pC, then for any
ξ = ∑m

i=1 δxi , η = ∑n
j=1 δy j ∈ Nfin, assuming w.l.o.g.

m ≤ n

1 There is a modified auction algorithm that can improve the worst-
case performance to O(n5/2 log(n)); for the performance discussion
see Bertsekas (1988), page 109. Actually, both orders include a factor
c in the log which measures the numerical precision, assumed to be
bounded here.

τ̄ (ξ, η)p = 1

n

(
(n − m)C p + min

π∈Sn

m∑

i=1

d(xi , yπ(i))
p
)

.

(5)

Theorem 3(a) implies that the TT-metric is the same
as the spike time metric (using add and delete penalties
Pa = Pd = C and a move penalty Pm = 1), which was
originally introduced on R+ by Victor and Purpura (1997)
and generalized to metric spaces by Diez et al. (2012). It can
be seen from the proof in the appendix that the right hand
side of (4) is not a metric in general if p > 1.

Theorem 3(b) implies that the RTT-metric is the same as
theOSPAmetric, introduced in Schuhmacher andXia (2008)
and Schuhmacher et al. (2008). Note that in the definition of
theOSPAmetric diam(X ) ≤ C ≤ 21/pC was either required
or enforced by taking the minimum of d with C . Here, it can
be seen that the right hand side of (5) is not ametric in general
if diam(X ) > 2C .

Remark 2 (Computation of spike time distances) The spike
time distances in Victor and Purpura (1997) and Diez et al.
(2012) allowed for separate add and delete penalties Pa and
Pd , as well as a move penalty Pm (factor in front of d(x, y)).
We set here Pa = Pd = C to obtain a proper metric and
divide distances by Pm , which is just a scaling. Thus, the
parameter C = Pa/Pm = Pd/Pm is all that remains.
As noted at the end of Section 4 in Diez et al. (2012),
having different add and delete penalties may be useful
for controlling the total number of points in a barycenter
point pattern. Let us point out therefore that Theorem 1
is easily adapted to this more general situation by setting
d ′(x, y) = min{d(x, y), 21/p(Pa + Pd)}, d ′(ℵ, y) = Pa and
d ′(x,ℵ) = Pd for all x, y ∈ X .
In particular, this yields aworst-time complexity of O(n3) for
general (maybe asymmetric) spike time distances in general
metric spaces, which is a substantial improvement over the
O(n6) complexity of the incremental matching algorithm
presented in Diez et al. (2012).

Remark 3 (Unbalanced Wasserstein metrics) The TT- and
RTT-metrics can be seen as unbalancedWasserstein metrics,
see, e.g., Chizat et al. (2018), Liero et al. (2018) and the
references therein. Minimizing over the space Mfin of all
finite measures on X × X , we obtain the TT-distance as a
solution to a particular instance of the unbalanced optimal
transport problem in Chizat et al. (2018), Definition 2.11,
namely

τ(ξ, η)p = inf
γ∈Mfin

(∫

X×X
d(x, y)p γ (dx, dy)

+ C p‖ξ − γ1‖TV + C p‖η − γ2‖TV
)

,

(6)
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where γ1 = γ (·×X ) and γ2 = γ (X×·) denote themarginals
ofγ , and‖·‖TV is the total variation normof signedmeasures;
specifically ‖μ−ν‖TV = supA(μ(A)−ν(A))+supA(ν(A)−
μ(A)) for μ, ν ∈ Mfin, where the suprema are taken over all
measurable subsets of X .
Equation (6) can be shown as follows. It is straightforward
to see that we may take the infimum on the right hand side
only over γ ∈ Mfin with marginals γ1 ≤ ξ and γ2 ≤ η,
because any additional mass in γ may be removed without
increasing the total cost of γ . Writing ξ = ∑n

i=1 δxi and
η = ∑n

i=1 δyi with the help of additional points at ℵ (if
necessary), we obtain by similar arguments as in the proof of
Theorem 1 that the latter problem is equivalent to the discrete
transportation problem

min
(γi j )1≤i, j≤n

n∑

i, j=1

d ′(xi , y j )
p · γi j

s.t.
n∑

j=1

γi j = 1 for all i,
n∑

i=1

γi j = 1 for all j,

γi j ≥ 0 for all i, j .

It is a standard result in linear programming that this problem
always has a solution γi j ∈ {0, 1}, 1 ≤ i, j ≤ n; see, e.g.,
the theorem in Section 6.5 of Luenberger and Ye (2008),
which is essentially due to the fact that the structure of the
constraint allows for a back substitution approach involving
only additions and subtractions. We may therefore conclude
from Theorem 1 that Equation (6) holds and that the infimum
on the right hand side is attained for γ = ∑n

i, j=1 1{xi , y j �=
ℵ}γi jδ(xi ,y j ).

In principle, Remark 3 allows us to specialize results
and algorithms for unbalanced Wasserstein metrics to TT-
and RTT-metrics. However, the discrete setting we consider
here is sometimes not included in the general theorems or
requires a more specialized treatment. Algorithms for com-
puting unbalanced transport plans are typically derived from
balanced optimal transport algorithms; a selection can be
found in Chizat (2017). The auction algorithm we use in this
paper is derived from the auction algorithm used for balanced
assignment problems in a similar way.

3 Barycenters with respect to the TT-metric

For data on quite general metric spaces, barycenters can for-
malize the idea of a center element representing the data. In
the case of Nfin, we are thus looking for a center point pat-
tern that gives a good first-order representation of a set of
data point patterns ξ1, . . . , ξk . More formally, we may define
a barycenter as the (weighted) q-th-order Fréchet mean with
respect to τ ; see Fréchet (1948).

Definition 2 For k ∈ N, let ξ1, . . . , ξk ∈ Nfin be data point
patterns and λ1, . . . , λk > 0 with∑k

j=1 λ j = 1 be weights. Let furthermore q ≥ 1. Then, we
call any

ζ∗ ∈ arg min
ζ∈Nfin

k∑

j=1

λ jτ(ξ j , ζ )q (7)

a (weighted) barycenter of order q . If no weights are speci-
fied, we tacitly assume that λ j = 1/k for 1 ≤ j ≤ k, leading
to an “unweighted” barycenter.

Remark 4 For q = 2, barycenters on general metric spaces
are simply known as (empirical) Fréchet means. For q = 1,
they are sometimes known as Fréchet medians. This comes
from the fact that given x1, . . . , xk ∈ R

D , we have

arg min
z∈RD

k∑

j=1

‖x j − z‖2 = 1

k

k∑

j=1

x j (8)

(the arg min is unique here), and that given
x1, . . . , xk ∈ R, we have

arg min
z∈R

k∑

j=1

‖xk − z‖ = median{x1, . . . , xk}, (9)

where the right hand side denotes the set of medians
{
z ∈

R; #{ j; x j ≤ z} = #{ j; x j ≥ z}}.
Remark 5 As seen in Remark 3, we may interpret τ as an
unbalanced Wasserstein metric. There has been a great deal
of research on Wasserstein barycenters (in the Fréchet mean
sense as above, see, e.g., Agueh and Carlier (2011) or Cuturi
and Doucet (2014)), which more recently also extends to
unbalancedWassersteinmetrics, see, e.g., Chizat et al. (2018)
or Schmitz et al. (2018). In addition to the fact that much
of the corresponding theory is not well adapted to the case
of discrete input measures, with the notable exception of
Anderes et al. (2016), we point out that a fundamental differ-
ence of (7) lies in the fact that we minimize over the space
Nfin of Z+-valued measures. This space is smaller than the
spaceMfin of general finite measures, but has amore compli-
cated structure because it decays into connected components
Nn = {ξ ∈ Nfin; |ξ | = n} (under the TT-metric), implying,
e.g., that continuous optimization procedures will not work
directly.

In what follows, we always set p = q and choose this
numbermostly∈ {1, 2}.We refer to the resulting barycenters
simply as 1- and 2-barycenter or as point pattern median and
point pattern mean, respectively. Point pattern medians have
been introduced under the name of prototypes in Schoenberg
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andTranbarger (2008) onR and studied in higher dimensions
in Diez et al. (2012) and Mateu et al. (2015). However, in
these papers the applicability was limited to rather small data
sets due to the large computation cost of O(n6) mentioned
in Remark 2.

Using the construction fromTheorem 1, wemay reformu-
late the barycenter problem as a multidimensional assign-
ment problem, generalizing Lemma 16 in Koliander et al.
(2018). Note that for the TT-metric we can add an arbitrary
number of points atℵ to both point patterns without changing
the minimum in Theorem 1.

Theorem 4 For point patterns ξ j = ∑n j
i=1 δxi j , j ∈ [k], let

ñ := ⌊ 2
k+1

∑k
j=1 n j

⌋
and n ≥ max{ñ, n j ; 1 ≤ j ≤ k}. Set

xi j = ℵ for n j + 1 ≤ i ≤ n and ξ̃ j = ∑n
i=1 δxi j for any

j ∈ [k].
Then, for any π∗,1, . . . , π∗,k ∈ Sn jointly minimizing

n∑

i=1

min
z∈X ′

k∑

j=1

d ′(xπ j (i), j , z)p (10)

the point pattern ζ∗|X with ζ∗ = ∑n
i=1 δzi , where zi ∈

arg minz∈X ′
∑k

j=1 d ′(xπ∗, j (i), j , z)p is a p-th-order barycen-
ter with respect to the TT-metric.

The π∗,1, . . . , π∗,k ∈ Sn above define n disjoint “clus-
ters” Ci = {xπ∗, j (i), j ; 1 ≤ j ≤ k}, where each contains
exactly one (maybe virtual) point of each point pattern. The
minimization of (10) may thus be interpreted as a multidi-
mensional assignment problem with cluster cost

cost∗(C) = min
z∈X ′

∑

x∈C
d ′(x, z)p. (11)

Proof Let us first give an upper bound on the cardinal-
ity of the barycenter. A single barycenter point can be
matched with up to k points (one from each point pat-
tern). If said point is matched with only k

2 points or
fewer, it cannot be worse to delete it. The contribution
for this point in the objective function is at least k

2C ,
while deleting it adds at most k

2C to the objective func-
tion.

So, every barycenter point should be matched with at least
� k+1

2 � points. The total number of points is
∑k

j=1 n j . There-
fore, the number of barycenter points is bounded above by
ñ = ⌊ 2

k+1

∑k
j=1 n j

⌋
.

It is thus sufficient to fill up all the point patterns ξ j to n
points and work also with an ansatz of n points for ζ . Theo-
rem 1 yields

min
ζ∈Nfin

k∑

j=1

τ(ξ j , ζ )p

= min
z1,...,zn∈X ′

k∑

j=1

min
π∈Sn

n∑

i=1

d ′(xπ(i), j , zi )
p

= min
z1,...,zn∈X ′ min

π1,...,πk∈Sn

k∑

j=1

n∑

i=1

d ′(xπ j (i), j , zi )
p

= min
π1,...,πk∈Sn

n∑

i=1

min
zi ∈X ′

k∑

j=1

d ′(xπ j (i), j , zi )
p

(12)

and that any minimizer ζ∗|X = ∑n
i=1 δzi |X on the left hand

side is obtained from jointly minimizing in π1, . . . , πk and
z1, . . . , zn on the right hand side. ��

4 Alternating clustering algorithms

Based on Theorem 4, we propose an algorithm that alternates
between minimizing

k∑

j=1

n∑

i=1

d ′(xπ j (i), j , zi )
p (13)

inπ1, . . . , πk ∈ Sn and in z1, . . . , zn ∈ X ′ until convergence.
Such an algorithm terminates in a localminimumof (13) after
a finite number of steps, because (13) can never increase and
the minimization in the permutations is over a finite space.

Since this underlying idea is close to the popular k-means
clustering algorithm, we named the main function in the
pseudocode and in the actual implementation kMeansBary
(note, however, that n plays the role of k in our notation).
Similar alternating algorithms in the context of Wasserstein-
2 barycenters for finitely supported probability measures
have been proposed in Cuturi and Doucet (2014), Borgwardt
(2019) and del Barrio et al. (2019). See Sect. 5, where we
compare results between kMeansBary and Algorithm 2 in
Cuturi–Doucet.

In what follows, we present pseudocode along with the
underlying ideas and explanations for two versions of the
kMeansBary-algorithm thatweduboriginal and improved.
Here, “improved” refers to the fact that we cut down on cer-
tain computation steps in order to save runtime.Wewill see in
Sect. 5 that this comes essentially without any performance
loss.

User-friendly implementations of both algorithms are
publicly available in the R-package ttbary; see Müller and
Schuhmacher (2019).
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4.1 Our original kMeansBary algorithm

The pseudocode for the basic alternating strategy described
above is given inAlgorithm 1.We have introduced a stopping
parameter δ to allow termination before the local optimum is
reached. Since we are not interested in the actual clustering,
but only in the position of the centers z1, . . . , zn , it seemsvery
unlikely (though possible) that the solution changes substan-
tially once the cost decrease has become very small. What
is more, such a change might be spurious due to rounding
errors in the data or when we use an approximation method
for optimizing in the centers. Note also that we can always set
δ to the smallest representable positive floating-point number
to ensure convergence to the local optimum.

Algorithm 1: kMeansBary. Dependence on data
pplist suppressed for simplicity.
Input : center an initial pseudo-barycenter;

pplist the list of data point patterns;
δ > 0 a constant for the termination;
N the maximum number of iterations.

Output : Locally optimal pseudo-barycenter center.

1 perm, cost ← optimPerm(center);
2 for it ← 1 to N do
3 costold ← cost;
4 center ← optimBary(perm, center);
5 center ← optimDelete(perm, center);
6 center ← optimAdd(perm, center);
7 perm, cost ← optimPerm(center);
8 if costold − cost < δ then break; // difference

always nonnegative
9 end

10 return center; // warn if the loop has run out

Theminimization with respect to π1, . . . , πk is performed
by optimPerm. This function computes an optimal match-
ing between the current center and each data point pattern
in pplist, using an alternating version of the auction algo-
rithm with ε-scaling; see Remark 1 and Bertsekas (1988) for
more details. We output the cost of the current matching
and an n × k matrix perm, whose j-th column specifies the
order in which the points of the j-th data pattern are matched
to z1, . . . , zn . For greater efficiency, we save auxiliary infor-
mation (price and profit vectors) and use it for initializing the
auction algorithm when calling it again with the same data
point pattern.

For practical purposes, we have split up the minimiza-
tion with respect to z1, . . . , zn ∈ X ′ into a function
optimBary that optimizes the positionswithinX and func-
tions optimDelete and optimAdd that optimize which
of the zi to move from X to ℵ and from ℵ toX , respectively.
We discuss details of these functions under the separate head-
ings below.

In addition to the outputs of the various functions shown
in Algorithm 1, we also keep information on the quality of
each match of points up to date. We call the match of a zi

with a data point xi ′ j

happy if zi , xi ′ j ∈ X and d ′(zi , xi ′ j ) < 21/pC

miserable if zi , xi ′ j ∈ X and d ′(zi , xi ′) = 21/pC

or if zi = ℵ, xi ′ j ∈ X
to ℵ if xi ′ j = ℵ.

Note that amiserablematch is worst possible in the sense that
cost(Ci ) = ∑

x∈Ci
d ′(x, zi )

p for center zi cannot increase if
xi ′ j is replaced by any other x ∈ X ′.

Details on optimBary

The purpose of this function is to find for each zi ∈ X
(i.e., not currently at ℵ) a location in X that minimizes
cost(Ci ) for its current cluster Ci = {xπ j (i), j ; 1 ≤ j ≤ k}.
This amounts to a more traditional location problem in X ,
except that it is typically made (much) more difficult by the
fact that we have to truncate distances at 21/pC .

Note that any cluster points at ℵ can be ignored because
they always contribute the same amount to the cluster cost, no
matter where the center lies. The same is true for individual
points that have a much larger distance than 21/pC from the
bulk of the points. However, there are countless scenarios
with (groups of) points being around distance 21/pC apart
from one another for which the optimization of the clus-
ter cost becomes a difficult optimization problem (piecewise
smooth on a space that is fragmented in complicated ways).

As a simple heuristic that works well in cases where we do
not have to cut too many distances (i.e., C is not too small),
we suggest to ignore all points that are at the maximal d ′-
distance 21/pC from the current zi when computing the new
zi . Note that in this way the cluster cost can never increase.

Algorithm2:optimBary: findoptimal center pattern
within X for given clusters Ci .

1 for i ← 1 to n do
2 if zi ∈ X then // zi is the current center

of the ith cluster Ci
3 happypoints ←

{points in Ci that are happily matched to zi };
4 if happypoints != ∅ then
5 zi ← optimClusterCenter(happypoints);
6 end // otherwise zi is deleted in

next call to optimDelete
7 end
8 end
9 return {z1, . . . , zn};
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Algorithm 2 gives corresponding pseudocode. The func-
tion optimClusterCenter handles the location prob-
lem for the untruncated metric d on X . If for example
X = R

D equipped with the Euclidean metric and p = 2,
Equation (8) implies that optimClusterCenter simply
has to take the (coordinatewise) average of all happy points.
The case p = 1 can be tackled with higher computational
effort by approximation via the popularWeiszfeld algorithm;
see Weiszfeld (1937).

As a further instance, which we will take up in Sect. 6,
we consider the situation where X is a simple graph (V , E)

equipped with the shortest-path distance and p = 1. It can
be shown that in this case the location problem inX is solved
by an element zi of V ∪Ci , i.e., either a vertex of the graph or
any data point, see Hakimi (1964). We therefore proceed by
first computing the distance matrix between all these points,
which is thenused for the entire algorithm.Such shortest-path
distance computations in sparse graphs with thousands of
points can be performed in (atmost) a few seconds by various
algorithms, see Chapter 25 in Cormen et al. (2009) and the
concrete timing in Sect. 6.2. It is now easy to implement the
functionoptimClusterCenter. For a given set of happy
points of a cluster Ci , pick the corresponding columns in
the distance matrix, add them up and determine the minimal
entry of the resulting vector. If there are several such entries,
which due to choosing p = 1 can happen quite frequently,
we pick one among them uniformly at random. The index of
the obtained entry identifies the center point zi .

Precomputing the distance matrix between all points of
V ∪ Ci in the graph case has the additional advantage that
no distances have to be computed in the optimPerm step.
It is, on the other hand, the main bottleneck of the proce-
dure and may not be feasible in situations with very large
graphs and data sets. In this case, we can resort to one of the
various heuristics available, such as the single and multi-hub
heuristics proposed (in principle) in Bandelt et al. (1994) and
Koliander et al. (2018).

Details on optimDelete

This function deletes (i.e., moves to ℵ) any zi ∈ X for which
this operation decreases cost(Ci ).

We denote by khappy, kmiser and kℵ the numbers of data
points in Ci that are happy, miserable and at ℵ, respectively.
Write furthermore chappy for the total cost of matching the
happy points to zi . If zi stays in X , the cluster incurs an
overall total cost of

chappy + kmiser · 2C p + kℵ · C p

as opposed to

khappy · C p + kmiser · C p

if we delete zi . Subtracting kmiser ·C p from both expressions,
this leads to the deletion condition

khappyC p < chappy + (k − khappy)C
p.

Since chappy ≥ 0, a sufficient condition for deletion is
2khappy < k. We use this as a quick pretest, which allows
us to avoid computing chappy sometimes. The full deletion
procedure is presented in Algorithm 3.

Algorithm 3: optimDelete: move center points
from X to ℵ if it decreases cost.
1 for i ← 1 to n do
2 if zi ∈ N then
3 happypoints ←

{points in Ci that are happily matched to zi };
4 khappy ← #happypoints;
5 if 2 ∗ khappy < k then
6 zi ← ℵ; // shortcut deletion
7 else
8 chappy ← ∑

x∈happypoints d ′(x, zi )
p;

9 if khappy ∗ C p < chappy + (k − khappy) ∗ C pthen
zi ← ℵ;

10 end
11 end
12 end
13 return {z1, . . . , zn};

Details on optimAdd

This function adds (i.e., moves to X ) any zi ∈ ℵ for which it
finds a way to do so that decreases cost(Ci ). Pseudocode is
given in Algorithm 4.

As a compromise between computational simplicity and
finding a good location inX , we first sample a proposal loca-
tion z̃ uniformly from all miserable data points (i.e., points
from any cluster that are currently in a miserable match with
their center). Before we consider moving zi to z̃, we rebuild
the cluster Ci in such a way that this move has a better chance
of being accepted.

The corresponding procedure is performed by the
optimizeCluster-function in the pseudocode: For each
data pattern, ξ j pick the miserable point that is closest to z̃
(if it has any) and exchange it with the corresponding point
xπ j (i), j that is currently in Ci . Since the point coming from
the other cluster was miserable before, the cost of that clus-
ter cannot increase by this exchange. The cost of the cluster
Ci can increase only if it loses a point located at ℵ in the
exchange. In this case, the cost increases by C p, which is
compensated by the fact that the cost of the other cluster
must decrease, either from 2C p to C p if its center is in X , or
from C p to 0 if its center is at ℵ. Thus, the total cost remains
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the same, but Ci has an additional point in X now, which
makes the successful addition of zi to X more likely.

To further decrease the prospective cluster cost after addi-
tion, we update the proposal z̃ by recentering it in its new
cluster using the appropriate optimClusterCenter-
function introduced in optimBary (applied to the set of
points of the new cluster that are in a happy match with z̃).

Finally, checkwhether the cost of the new cluster based on
the updated z̃ is smaller than the same cost based on zi = ℵ,
which is C p times the number kX of non-ℵ points in the new
cluster. Set zi to z̃ if this is the case.

Algorithm 4: optimAdd: move center points from ℵ
to X if it decreases cost.
1 alephindex ← {i ∈ [n]; zi = ℵ};
2 if alephindex!= ∅ then
3 supply ← {data points miserably matched to some zi };
4 for i in alephindex do
5 if supply = ∅ then break;
6 z̃ ← sample(supply, 1); // draw uniformly

at random from supply
7 supply ← supply \ {z̃};
8 newcluster,newperm ←

optimizeCluster(z̃,perm, i);
9 newhappypoints ←

{pts in newcluster with happy new match to z̃};
10 if newhappypoints != ∅ then

z̃ ← optimClusterCenter(newhappypoints);
11 kX ← #{x ∈ newcluster; x ∈ X };
12 cnew ← ∑

x∈newcluster d ′(x, z̃)p;
13 if cnew < kX ∗ C p then
14 zi ← z̃;
15 perm ← newperm;
16 supply ← supply \ {x ∈ supply; x is happy};
17 end
18 end
19 end
20 return {z1, . . . , zn};

4.2 An improved kMeansBary algorithm

For obtaining an algorithm with a reduced computational
cost, we cut down on steps that are costly, but are not
expected to influence the resulting local optimum in a deci-
sive way. Since for now we treat the location problem at the
cluster level (performed by optimBary) as very general,
allowing a wide range of metric spaces (X , d), we focus
here on saving computations in the functions optimPerm,
optimDelete, and optimAdd.

We have realized that by far the most additions and dele-
tions of points take place in the first two iterations of the
original algorithm (see also Fig. 3). Especially checking for
addition of points is costly and after the first few iterations
very rarely successful. Therefore, we limit such checking

henceforward to the first Ndel/add = 5 iteration steps. Some
further heuristics could be applied in optimAdd, but the
gain in computation time is not so large and they can signifi-
cantly change the outcome, which is why we decided against
implementing them.

In optimPerm, we cannot avoid doing matchings. How-
ever, the auction algorithmweuse allows to solve a relaxation
of the problem by stopping the ε-scaling method early.
In general, the auction algorithm with ε-scaling based
on a decreasing sequence (ε1, . . . , εl) returns successively
improved solutions that are guaranteed to lie within n εi of
the optimal total cost after the i-th step, see Bertsekas (1988,
Proposition 1). By representing rescaled distances as inte-
gers in {0, 1, . . . , 109}, an optimal matching is obtained in
the l-th step if εl < 1/n. Our improved algorithm is based
on the same ε-vector as the original algorithm, which has
components εi = 1

n+110
l−i , 1 ≤ i ≤ l, where l is chosen in

such a way that 107 ≤ ε1 < 108. As a first improvement, we
use the subsequence (εait , εait+1, . . . , εbit), where a and b
are prespecified vectors of indices ∈ {1, 2, . . . , l}. A simple
choice for a and b that tends to decrease the runtime notice-
ably is ait = 1 and bit = min{it, l}. Pseudocode for this
is presented in Algorithm 5.

In practice, we settled for a somewhat more sophisticated
improvement. We choose the vectors a = (1, 1, 1, 3, 3, 3,
. . . , 3, 4) and b = (1, 2, 3, 4, 6, 8, . . . , 2� l−1

2 �, l), and we
use the sequence (εa j , εa j +1, . . . , εb j ), where j = it for
it ∈ {1, 2, 3}, and then j is increased by 1 each time the
algorithm would otherwise converge or if the cost increases
(which can only happen as long as the matchings are not
optimal).

This strategy was chosen after analyzing the calculations
of the algorithm with respect to the time each calculation
takes. In the first two to three iterations, there are a lot of
changes in the positions of the barycenter points. Especially
in the first iteration, many points are deleted and added,
which completely changes the assignments. Therefore, we
have to begin the assignment calculation with ε1 and to get
more sensible results we get more precise with each of the
first three iterations. After three iterations, there are usually
no big changes to the barycenter anymore, so we can reuse
the assignment from the iteration before as a sensible start-
ing solution and can omit ε1 and ε2 in return. Leaving out
the first entries of ε too soon increases the runtime. Every
time the algorithm converges, but has no guaranteed optimal
assignment (i.e., b j < l), j is increased by 1, meaning that
the next two entries of ε are used too, until the end of ε is
reached. Then, we can safely leave out the first three entries
of ε without increasing the runtime, because at this point the
assignments from one iteration to the next only change very
little.
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Fig. 3 Stepwise evolution of the barycenter for k = 80, m# = 100. In the first iteration, 32 points are deleted and 25 added. After that only
movements take place

4.3 Practical aspects

As it turns out, the upper bound ñ on the cardinality of the
barycenter from Theorem 4 is often far too large in practice.
For efficiency reasons, we typically run the algorithm with a
number n ≥ max{n j ; 1 ≤ j ≤ k} that is much smaller than
ñ. We generate a starting point pattern center by picking
1
k

∑k
j=1|ξ j | points uniformly at random from the underlying

observationwindow. In a first step, all point patterns are filled
to n points by adding points at ℵ. Then, Algorithm 1 or 5 is
run.

Figure 3 shows a typical run of Algorithm 1 in the case
of an i.i.d. sample ξ1, . . . , ξk of point patterns in R

2 gen-
erated from a similar distribution as studied in Sect. 5. We
use Euclidean distance and p = 2. The current barycenter is
marked by blue points. Typically, the random starting point
pattern is not a good approximation to the resulting barycen-
ter. Therefore, many points are deleted in the first iteration.
Many other ones are added at or moved to more cost effi-
cient spots. Regardless of the starting pattern, the algorithm
typically attains a reasonably looking configuration after a
single iteration. After that hardly any points are added or
deleted any more. The algorithm mostly moves a few indi-
vidual barycenter points around each time.

5 Simulation study

In this section, we present a simulation study for evaluat-
ing the algorithms described in Sect. 4 for point patterns
ξ1, . . . , ξk in R2 using squared Euclidean cost.

Unfortunately, it is not feasible for larger data examples to
compute the actual barycenter as a ground truth. To illustrate
this, consider the special case where all point patterns have
the same cardinality n and are contained in a subset of R2

of radius C . Assume further that we know that there is a
barycenter that also has cardinality n (which need not be the
case). In this situation, it is easy to see that instead of solving
the minimization problem (13), we only need to minimize

k∑

j=1

n∑

i=1

‖xπ j (i), j − zi‖2 (14)

in π1, . . . , πk ∈ Sn and z1, . . . , zn ∈ R
2. This is the assign-

ment version of the problem of finding a barycenter of the
discrete probability measures 1

n ξ1, . . . ,
1
n ξk with respect to

theWasserstein metric W2. An exact algorithm for this prob-
lem can be found in Anderes et al. (2016) and has been
tremendously improved in Borgwardt and Patterson (2018).
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Algorithm 5: kMeansBary2. A simple version of
the improved kMeansBary-algorithm. Dependence
on data pplist suppressed for simplicity.
Input : center, pplist, δ > 0, N are as in the original

kMeansBary-algorithm;
Ndel/add number of iterations during
which we perform delete/add steps.

Output : Locally optimal pseudo-barycenter center.

1 l ← ⌈
log10(10

8/ 1
n+1 )

⌉
;

2 epsvec ← ( 1
n+1 10

l−i
)
1≤i≤l ;

3 perm, cost ← optimPerm(center, epsvec);
4 for it ← 1 to N do
5 costold ← cost;
6 center ← optimBary(perm, center);
7 if it ≤ Ndel/add then
8 center ← optimDelete(perm, center);
9 center ← optimAdd(perm, center);

10 end
11 if it < l then
12 perm, cost ← optimPerm(center, epsvec[1 : it]);
13 else
14 perm, cost ← optimPerm(center, epsvec);
15 if costold − cost < δ then break;

// difference always nonnegative
16 end
17 end
18 return center; // warn if the loop has run out

Nevertheless, the computation times increase still rapidly in
the problem size and reachminutes to hours for problem sizes
well smaller than our smallest examples below.

Since we are not able to compare the results of our algo-
rithm to the actual barycenter for larger examples, we assess
the range of the final objective function values. In addition,
we evaluate the time performance of the default algorithm
and compare both objective function values and timings to
the improved algorithm.

As problem instances, we created sets of k point patterns
in R

2 having mean cardinality of m# in each pattern. The
cardinalities n j , j ∈ [k], of the individual point patterns
were generated by one of the following methods:

(i) by setting n j = m# (deterministic cardinality)
(ii) by sampling n j from a binomial distribution with mean

m# and variance ≈ 1
(low-variance cardinality)

(iii) by sampling n j from a Poisson distributionwith param-
eter m#

(high-variance cardinality)

The points were distributed according to a balanced mix-
ture of N ∈ {5, 10, 15} rotationally symmetric normal
densities centered at fixed locations in [0, 1]2 and having
standard deviation σ ∈ {0.05, 0.1, 0.2}. Figure 4 gives exam-
ples under the three center scenarios for k = 20, deterministic
cardinality n j = m# = 20 and σ = 0.05.

We chose five (k, m#) pairs (20, 20), (20, 50), (50, 20),
(50, 50) and (100, 100), which in combination with N
varying in {5, 10, 15}, σ in {0.05, 0.1, 0.2} and the three car-
dinality distributions yield a total of 5×33 = 135 scenarios.
We created 100 instances for each scenario.

Our algorithms from Sect. 4 were run from ten starting
solutions whose cardinalities matched the mean number of
data points and whose points were sampled uniformly at ran-
dom from [0, 1]2. In a pilot experiment, this tended to give
somewhat better local minima than starting from a random
sample of all data points combined. The starting point pat-
terns were independently chosen for each instance, but the
same for both algorithms. In all cases, the penalty C was set
to 0.1.

Tables 1, 2, 3 and 4 summarize the performance of our
two algorithms. For the clarity of presentation, we leave

Fig. 4 20 point patterns with 20 points each from the three different center scenarios N = 5, 10, 15 for σ = 0.05

123



964 Statistics and Computing (2020) 30:953–972

Table 1 Original algorithm. Maximum relative deviations from the
minimum objective function value among ten starting solutions given in
percent. Means taken over 100 instances, with 0.05- and 0.95-quantiles

in parentheses. The first block of four rows corresponds to the deter-
ministic cardinality, the second block to the high-variance cardinality

N σ 20/20 20/50 50/20 50/50 100/100

5 0.05 4.59 (2.67, 7.41) 3.82 (1.93, 5.88) 4.00 (2.59, 5.93) 3.54 (2.18, 5.04) 3.27 (1.80, 4.78)

0.2 2.06 (1.03, 3.21) 2.41 (1.42, 3.29) 1.21 (0.62, 2.03) 1.71 (1.06, 2.35) 1.32 (0.74, 1.89)

15 0.05 3.22 (1.72, 5.18) 3.31 (2.09, 5.00) 2.50 (1.25, 4.22) 2.74 (1.78, 3.89) 2.66 (1.56, 3.72)

0.2 1.54 (0.56, 2.50) 2.19 (1.28, 3.11) 0.62 (0.01, 1.21) 1.50 (0.91, 2.21) 0.99 (0.52, 1.43)

5 0.05 3.48 (1.78, 5.46) 2.35 (1.40, 3.91) 2.82 (1.34, 4.50) 1.86 (1.04, 3.15) 1.16 (0.63, 1.81)

0.2 1.81 (1.02, 3.01) 2.41 (1.46, 3.41) 0.97 (0.56, 1.49) 1.54 (0.97, 2.16) 1.02 (0.56, 1.66)

15 0.05 2.73 (1.48, 4.28) 2.52 (1.59, 3.89) 2.25 (1.22, 3.59) 2.04 (1.18, 3.01) 1.41 (0.79, 2.14)

0.2 1.16 (0.42, 1.99) 2.13 (1.15, 3.13) 0.42 (0.00, 1.01) 1.42 (0.82, 2.03) 1.14 (0.61, 1.76)

Table 2 Improved algorithm. Maximum relative deviations from the
minimum objective function value of the original algorithm (both based
on the same ten starting solutions) given in percent. Means over 100

instances, with 0.05- and 0.95-quantiles in parentheses. The first block
of four rows corresponds to the deterministic cardinality, the second
block to the high-variance cardinality

N σ 20/20 20/50 50/20 50/50 100/100

5 0.05 3.84 (1.93, 6.02) 3.77 (2.06, 5.76) 3.81 (2.02, 5.88) 3.80 (2.07, 5.63) 3.38 (1.88, 5.13)

0.2 1.66 (0.88, 2.69) 2.49 (1.67, 3.40) 1.01 (0.45, 1.70) 1.77 (1.13, 2.42) 1.35 (0.84, 1.92)

15 0.05 3.23 (1.89, 4.81) 3.41 (2.24, 4.89) 2.61 (1.39, 4.04) 2.79 (1.67, 4.07) 2.64 (1.62, 3.82)

0.2 1.04 (0.37, 1.81) 2.21 (1.33, 3.35) 0.40 (0.01, 0.90) 1.59 (0.99, 2.32) 0.99 (0.55, 1.41)

5 0.05 3.32 (1.80, 5.27) 2.06 (1.09, 3.12) 2.55 (1.36, 4.01) 1.67 (0.85, 2.68) 1.08 (0.49, 1.74)

0.2 1.53 (0.63, 2.55) 2.28 (1.32, 3.40) 0.79 (0.34, 1.33) 1.53 (0.85, 2.28) 1.02 (0.59, 1.60)

15 0.05 2.49 (1.22, 4.09) 2.50 (1.63, 3.57) 2.19 (1.11, 3.57) 2.08 (1.20, 3.17) 1.33 (0.68, 2.30)

0.2 0.82 (0.26, 1.46) 2.26 (1.44, 3.48) 0.29 (0.00, 0.77) 1.39 (0.84, 1.96) 1.12 (0.64, 1.64)

Table 3 Original algorithm. Total times in seconds for ten runs with random starting patterns. Means over 100 instances, with 0.05- and 0.95-
quantiles in parentheses. The first block of four rows corresponds to the deterministic cardinality, the second block to the high-variance cardinality

N σ 20/20 20/50 50/20 50/50 100/100

5 0.05 0.48 (0.47, 0.50) 0.89 (0.85, 0.93) 1.02 (0.99, 1.05) 2.37 (2.24, 2.52) 20.79 (19.42, 22.32)

0.2 0.51 (0.49, 0.53) 1.14 (1.07, 1.23) 1.05 (0.99, 1.12) 3.55 (3.26, 3.96) 37.95 (34.70, 42.22)

15 0.05 0.50 (0.49, 0.51) 0.95 (0.91, 1.00) 1.06 (1.03, 1.09) 2.60 (2.44, 2.80) 24.25 (22.51, 25.93)

0.2 0.49 (0.47, 0.51) 1.14 (1.08, 1.22) 0.91 (0.85, 0.99) 3.51 (3.12, 3.85) 37.77 (33.86, 42.21)

5 0.05 0.58 (0.53, 0.64) 1.27 (1.11, 1.53) 1.37 (1.24, 1.55) 4.12 (3.38, 4.97) 39.66 (33.33, 46.96)

0.2 0.59 (0.53, 0.67) 1.58 (1.37, 1.88) 1.30 (1.11, 1.47) 5.62 (4.64, 6.86) 65.86 (54.51, 77.49)

15 0.05 0.59 (0.55, 0.65) 1.32 (1.16, 1.56) 1.41 (1.26, 1.64) 4.31 (3.59, 5.22) 45.37 (38.88, 51.93)

0.2 0.55 (0.49, 0.61) 1.55 (1.37, 1.81) 1.06 (0.94, 1.23) 5.73 (4.72, 7.23) 66.25 (56.73, 79.16)

out the “middle values” N = 10 and σ = 0.1, as well as
the low-variance cardinality distribution. The correspond-
ing performance results lie up to minor random fluctuations
between the values shown. The original purpose of includ-
ing the low-variance cardinality case was to detect whether
a slight departure from equal cardinalities would cause sub-
stantial differences in the performance. As it turned out, this
was not the case.

We first consider the original algorithm presented in
Sect. 4. Table 1 gives the maximum relative deviation from
the minimum dmin of the resulting objective function values
among the ten starting solutions, i.e., dmax−dmin

dmin
. We can see

that the maximal objective function value among the ten runs
rarely exceeds the minimum value by more than 5%. This
percentage is rather higher for the deterministic and low-
variance cardinalities and when clusters in the (unmarked)
superposition of the point patterns are well separated (small
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Table 4 Improved algorithm. Total times in seconds for ten runs with random starting patterns. Means over 100 instances, with 0.05- and 0.95-
quantiles in parentheses. The first block of four rows corresponds to the deterministic cardinality, the second block to the high-variance cardinality

N σ 20/20 20/50 50/20 50/50 100/100

5 0.05 0.48 (0.47, 0.48) 0.83 (0.81, 0.85) 0.97 (0.96, 0.99) 2.05 (1.99, 2.12) 13.68 (13.02, 14.57)

0.2 0.50 (0.49, 0.50) 0.93 (0.89, 0.98) 1.00 (0.98, 1.02) 2.47 (2.33, 2.65) 18.25 (16.87, 20.57)

15 0.05 0.49 (0.48, 0.49) 0.85 (0.82, 0.88) 0.98 (0.97, 1.00) 2.08 (1.99, 2.20) 13.24 (12.47, 14.26)

0.2 0.50 (0.49, 0.50) 0.92 (0.89, 0.95) 0.96 (0.92, 0.99) 2.42 (2.27, 2.57) 17.62 (16.08, 19.33)

5 0.05 0.56 (0.52, 0.61) 1.14 (1.00, 1.33) 1.24 (1.14, 1.36) 3.21 (2.82, 3.73) 22.47 (19.86, 25.53)

0.2 0.58 (0.54, 0.63) 1.23 (1.09, 1.43) 1.21 (1.12, 1.30) 3.64 (3.25, 4.18) 29.41 (25.54, 34.47)

15 0.05 0.56 (0.52, 0.60) 1.12 (0.99, 1.27) 1.24 (1.13, 1.37) 3.17 (2.76, 3.71) 22.64 (19.72, 25.59)

0.2 0.56 (0.53, 0.61) 1.19 (1.05, 1.36) 1.14 (1.04, 1.27) 3.60 (3.06, 4.35) 29.11 (24.94, 34.51)

Fig. 5 Mean objective function
values over all instances as
function of σ for different N

N and σ ). This may well be explicable by the fact that typ-
ically many pairs can be matched over short distances in
these situations such that wrong clustering decisions come
typically at a higher relative cost. Figure 5 supports this by
showing that the total objective function values within each
problem size are lower for well separated clusters.

A further smaller experiment following up on the scenar-
ios that exhibited the poorest performance for ten starting
patterns showed that the margin of 5% increases to 8% when
basing the maximum relative deviation from the minimum
on 100 starting patterns.

For the improved algorithm from Sect. 4.2, we compute
the maximum relative deviation of its objective function val-
ues from the minimum dmin of the corresponding values

of the original algorithm, i.e., d∗
max−dmin

dmin
, where d∗

max is the
maximum of the objective function values of the improved
algorithm. As seen in Table 2, the performance is no worse
than for the original algorithm in spite of the reduced amount
of computations performed.

We finally turn to the computation times. We present the
total runtimes in seconds for the ten runs with different start-
ing patterns. This corresponds to the realistic situation of
selecting as (pseudo-)barycenter the solution with the small-
est local minimum in ten runs. It also provides some more
stability for the means and quantiles given in Tables 3 and 4.

Table 3 gives the runtimes for the original algorithm. We
see that individual runs of as large scenarios as 100 patterns
with 100 points on average only take a few seconds.

From Table 4, we see that the runtimes for the improved
algorithm are even considerably lower, and for some of the
larger problems they have less than half of the original run-
times (at virtually no losswith regard to the objective function
value as we have seen before). It is to be expected that this
ratio becomes even smaller if the problem size is further
increased.

Let us finally compare our algorithm to an algorithm that
treats point patterns as empirical measures and tackles the
Wasserstein-2 barycenter problem for these measures. As
noted in the introduction, it is not realistic to treat even
our smallest examples with exact algorithms for this prob-
lem. A selection of approximate algorithms can be found in
Peyré and Cuturi (2019). See also the alternating algorithm
in Borgwardt (2019), which includes a factor-2 performance
guarantee. For our comparison, we choose Algorithm 2 in
Cuturi and Doucet (2014), which alternates between solving
transport problems and using gradient descent to calculate
a discrete barycenter with a prescribed maximal number of
support points. It allows to restrict the set of weights for
the support points to a closed convex set Θ and thus pro-
vides an approximate solution of the problem (14) if we set
Θ = {(1/n, . . . , 1/n)}.
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Fig. 6 Barycenters for one of our simulated data sets (20 patterns
with 20 points each). From left to right: Cuturi–Doucet algorithm with-
out constraints, Cuturi–Doucet algorithm with (maximally) 20 support

points and equal masses, typical result from kMeansBary algorithm
based on a single start. The areas of the disks are proportional to the
masses

We thank Florian Heinemann for allowing us to use his R
implementation with underlying C++ code of this algorithm.
Figure 6 shows an example that compares the Cuturi–Doucet
algorithm without constraint using the theoretically maxi-
mal number of support points (according to Anderes et al.
(2016)), theCuturi–Doucet algorithmwith full constraint and
our algorithm.

To evaluate how the algorithms perform on our objec-
tive function (13), we have run both the fully constrained
Cuturi–Doucet algorithm and our kMeansBary algorithm
(with a single starting value) on the smallest scenarios used
in the simulation study. These are 900 instances of 20 pat-
terns with exactly 20 points (deterministic cardinality) and
900 instances of 20 patterns whose cardinalities are Poisson
with mean 20 (high-variance cardinality).

We report the ratio of the total TT-objective function
(13) between the solution of kMeansBary and the Cuturi–
Doucet algorithm, where again C = 0.1. For the case of
deterministic cardinality, the ratio was 0.729 on average,
with a minimum of 0.554 and a maximum of 0.871. For the
high-variance cardinality, the results are very similar with
an average of 0.732 and a minimum of 0.541 and a maxi-
mum of 0.866. So on average the objective function values
attained by the point patterns returned by the Cuturi–Doucet
algorithm are about 37% larger than the ones attained by
kMeansBary. This increase is reflected in the example in
Fig. 6.

At the same time, the average runtime of the Cuturi–
Doucet algorithm is more than twice the runtime of
kMeansBary. This may well be due to the fact that the
former is not particularly optimized for the constrained set-
ting we use.

Overall, our comparison yields that the Cuturi–Doucet
algorithm is not well suited for our problem, which is sim-
ply due to the fact that this algorithm was designed for a
somewhat different problem.We expect similar results when
comparingwith other algorithms that compute (approximate)
Wasserstein-2 barycenters.

6 Applications

The following analyses are all performed in R, see R Core
Team (2019), with the help of the package spatstat, see Bad-
deley et al. (2015).

6.1 Street theft in Bogotá

We investigate a data set of person-related street thefts in
Bogotá, Colombia, during the years 2012–2017. This data
set is part of a huge data set based on a large number of
types of crimes collected by the Dirección de Investigación
Criminal e Interpol (DIJIN), a department of the Colombian
National Police. We acknowledge DIJIN and the General
Santander National Police Academy (ECSAN) for allowing
us to use this data. In particular, the cases of street theft in
Bogotá consist ofmuggings,which involve the use of force or
threat, as well as pickpocketing. They do not include theft of
vehicles, breaking into cars, etc. Here, we focus on the local-
ity of Kennedy, a roughly 7.5 km × 7.5 km administrative
ward in the west of the city, because this area is considered
by the police as being more dangerous with a higher average
number of crime events compared to the rest of Bogotá. The
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2012 2013 2014

2015 2016 2017

Fig. 7 Barycenters of weekly street thefts in the localidad of Kennedy in Bogotá. The cardinalities are 48, 53, 52, 52, 80 and 175, respectively

total number of street thefts in Kennedy for the considered
period is 25 840.

Since a plot of weekly numbers of crimes reveals no clear
seasonal pattern and since weekly patterns (and hence their
barycenters) are of a good size to be interpreted graphically,
we compute yearly barycenters for these weekly patterns.
Thus, we may think of a barycenter pattern as representing a
“typical week” of street thefts in the corresponding year. As
penalty parameter,we chose 1000m.Since street information
was not directly available to us, we chose Euclidean distance
as ametric and set p = 2 to be able to relate to our simulation
results in the previous section.

Each barycenter was computed based on 100 starting pat-
terns with cardinalities regularly scattered over the integer
numbers between the 0.45 to the 0.7 quantiles of the weekly
number of data points for the corresponding year. We chose
this somewhat asymmetrically around the median, because
the mean number of thefts (the theoretical number of points
in the barycenter if the penalty becomes large) was typi-
cally quite a bit to the right of the median, and also because
our algorithm is somewhat better at deleting than at adding
points.

Figure 7 depicts the obtained barycenters, which except
for the last pattern have cardinalities just slightly below the
average weekly numbers of muggings of 51.7, 57.6, 52.8,
54.4, 82.5 and 196.9, respectively. The barycenters for the

years 2012–2015 seem to be largely similar. Then, in 2016
we start seeing patterns of denser structures forming along
a line to the west and a center in the south-east of Kennedy.
These can be actually identified as a main street and a major
intersection in the densely populated parts of Kennedy.

6.2 Assault cases in Valencia

As a second application,we analyze cases of assault inValen-
cia, Spain, reported to the police in the years 2010–2017.
Since the addresses of the assaults and the street network
are available, we treat this data as point patterns on a graph
using shortest-path distance and p = 1. We acknowledge
the local police in Valencia city together with the 112 emer-
gency phone that kindly provided us the data after cleaning
and removing any personal information.

We split up the graph and analyze the four central districts
of Ciutat Vella, Eixample, Extramurs and El Pla del Real sep-
arately. For this, we assigned each assault case to its district,
but added also streets from other districts at the boundary,
in order to enable more natural shortest-path computations.
The north-south and east-west extensions of the districts vary
roughly between 1.6 and 3.3km.

In the time domain, we split up the assault data by year
and season into seven winter patterns (data from December,
January and February) and eight summer patterns (data from
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Fig. 8 Barycenters of cases of assault for different districts of Valencia in winter and in summer. The numbers indicate multiplicities if there are
several points at a single location. The cardinalities of the barycenters are 68, 69, 88, 30 (winter) and 103, 79, 74, 24 (summer)

June, July and August), discarding for the present analysis
data from the intermediate seasons, as well as from January
and February 2010 and December 2017. We then computed
barycenters per main season and district, obtaining “typical”
assault patterns for summer and winter for each of the four
districts considered, see Fig. 8. The penalty was chosen as
800m with respect to the shortest-path distance.

As mentioned in Sect. 4.1 when describing the subrou-
tine optimBary that finds cluster centers on networks, we
can calculate all distances that are relevant to the algorithm
beforehand. For this, we use the corresponding functional-
ity built into the linnet objects in spatstat. On a standard
laptop with a 1.6 GHz Intel i5 processor, the computation
took only about four seconds for the largest data set, which
is Ciutat Vella in summer with a total of 2494 vertices (1676
street crossings plus 818 data points).

For the starting patterns in each district in summer and
in winter, we chose n random points, where n ranged
from 0.8 times to 1.15 times the median cardinality of
the data point patterns. Since our present implementation
of the kmeansbary algorithm on graphs runs without

optimDelete and optimAdd steps, we based each
barycenter on a large sample of 500 starting patterns for
each n. This resulted in an overall total of 101 500 calls to
our algorithm for the eight scenarios, which on average took
0.57 seconds each, using the precomputed distance matri-
ces. One calculation in the largest setting (Ciutat Vella in
summer) takes about 0.82 seconds and in the smallest (El
Pla del Real in summer) about 0.08 seconds. The increase in
the objective function was only up to 1% when decreasing
the total number of calls to our algorithm by a factor of 20,
resulting in a total computation time of well under one hour.

Due to the choice of p = 1, it happens quite frequently
that there are several optimal centers for some of the clusters
obtained after convergence of the kmeansbary algorithm.
In this case, we take the average of their coordinates and
project the result back onto the graph in order to obtain a
somewhat more balanced result. The resulting point does not
necessarily realize the same cluster cost as the original center
points, but on a real street network it is not to be expected
that the cost becomes considerablyworse. In fact, for the data
considered, the results hardly differed at all.
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Considering the barycenters in Fig. 8, it seems that there
are no very clear effects of the season on the assaults. Nev-
ertheless, we may discern a number of differences between
summer and winter in the four districts, which even in this
relatively small data set would be considerably harder to spot
in a plot of the raw data.

In the first district (Ciutat Vella), there are substantially
more assaults in summer, but their spatial distribution in the
barycenter is more or less similar. In Eixample, we see a con-
centration of assault cases in summer in the Barrio Ruzafa in
the southern half of the district, whereas cases are more or
less equally spread in winter. A notable feature is the occur-
rence of 23 barycenter points at a single crossing in summer
and 7 points at the same crossing inwinter with further points
close by. This is due to the cul-de-sac visible in Fig. 8, which
in reality forms sort of a backyard that makes the area easy
for assaults, especially in summer time when there are more
people (especially tourists) moving around those parts of the
city. The spot is well-known to the police and in recent years
the number of assaults has decreased due to police interven-
tions. The barycenters clearly reflect this (former) assault hot
spot.

In the district of Extramurs, both barycenters are more
or less spread over the whole district, with two clusters of
assaults occurring in the east and south. Both clusters are
much more pronounced in winter. In the district of El Pla del
Real, there is some concentration in the winter month in the
east and south-east. Apart from that the only noticeable dif-
ference is that there are substantially more assaults in winter
than in summer, which may well be related to the fact that
this is a popular student district.

7 Discussion and outlook

In this paper, we have introduced the p-th-order TT- and
RTT-metrics, which allow us to measure distances between
point patterns in an intuitive way, generalizing several earlier
metrics. We have investigated q-th-order barycenters with
respect to the TT-metric and presented two variants of a
heuristic algorithm. These variants return local minimizers
of the Fréchet functional that mimic properties of the actual
barycenter well and attain consistent objective function val-
ues. They are computable in a few seconds for medium-sized
problems, such as 100 patterns of 100 points.

For the proof of Theorem 4, it was necessary to set p = q.
While such a choice may seem natural, we point out that due
to the separate interpretations of p as the order for matching
points in the metric on Nfin (higher p tends to balance out
the matching distances) and q as the order of the empirical
moment inNfin, it may well be desirable to combine p �= q.

In the present paper, we have only dealt with the descrip-
tive aspects of barycenters. It is thus clear that our appli-

cations in Sect. 6 can only be seen as explorative studies.
In order to determine whether differences between group
barycenters are statistically significant, we need to take the
distribution of the point patterns around their barycenters into
account and perform appropriate hypothesis tests.

Fortunately, the Fréchet functional (7) provides us with a
natural quantification of scatter around the barycenter. For
q = 2, it is quite common to refer to

Var(ξ1, . . . , ξk) = min
ζ∈Nfin

1

k

k∑

j=1

τ(ξ j , ζ )2

as (empirical) Fréchet variance, due to Equation (8). Detailed
asymptotic theory for performing an analysis of variance
(ANOVA) inmetric spaces based on comparing Fréchet vari-
ances has been recently developed in Dubey and Müller
(2019a). The application and adaptation of this theory for
the point pattern space and an investigation of the perfor-
mance of our heuristic algorithm in this context will be the
subject of a future paper.

Based on the computation of barycenters further more
advanced procedures in statistics and machine learning
become possible. This includes barycenter-based dimen-
sion reduction techniques, such as Wasserstein dictionary
learning, see Schmitz et al. (2018), and functional principal
component analysis of point patterns evolving in time, see
Dubey and Müller (2019b).
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Appendix: Proofs left out in themain text

Lemma A.1 Let C > 0, C̃ ∈ (0, 2C] and let (X , d) be a
metric space with diam(X ) = supx,y∈X d(x, y) ≤ 2C. For
k ∈ N set X ′ = X ∪{ℵ1, . . . ,ℵk}, where ℵ1, . . . ℵk /∈ X are
pairwise different, and define

d ′(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d(x, y) if x, y ∈ X ;
C if {x, y} ∩ X �= ∅

and {x, y} ∩ {ℵ1, . . . ,ℵk} �= ∅;
C̃ if {x, y} ⊂ {ℵ1, . . . ,ℵk} and x �= y;
0 if x = y = ℵi for some i ∈ [k].
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Then, (X ′, d ′) is a metric space.

Proof Identity and symmetry properties of the map d ′ : X ′ ×
X ′ → R+ follow immediately. Since d is a metric on X and
d̃(x, y) = C̃ if x �= y (and 0 otherwise) defines a metric
d̃ on Y = {ℵ1, . . . ,ℵk}, we only have to check the triangle
inequality for a few special cases. If x ∈ X and y ∈ Y (or vice
versa), then d(x, y) = C . Since one of d(x, z) and d(z, y)

has to be = C regardless of z ∈ X ′, we obtain d(x, y) ≤
d(x, z) + d(z, y). If x, y ∈ X and z ∈ Y , then

d(x, y) ≤ diam(X ) ≤ 2C = d(x, z) + d(z, y).

Likewise, if x, y ∈ Y and z ∈ X , then

d(x, y) ≤ C̃ ≤ 2C = d(x, z) + d(z, y).

��
Proof of Theorem 1 Since τ̄ (ξ, η) = 1

n1/p τ(ξ, η), it is enough
to show the statement for τ .

Let π ∈ Sn be a permutation that minimizes∑n
i=1 d ′(xi , yπ(i))

p. Writing I = {
i ∈ [m]; d(xi , yπ(i)) <

21/pC
}
, we obtain

d ′(xi , yπ(i)) =

⎧
⎪⎨

⎪⎩

d(xi , yπ(i)) if i ∈ I ;
21/pC if i ∈ [m]\I ;
C if i ∈ [n]\[m].

(A.15)

Therefore, enumerating I in arbitrary order as {i1, . . . , il} for
some l ∈ [m] and setting jr := π(ir ) for r ∈ [l], we have

n∑

i=1

d ′(xi , yπ(i))
p

=
l∑

r=1

d(xir , y jr )
p + (m − l)(21/pC)p + (n − m)C p

= (m + n − 2l)C p +
l∑

r=1

d(xir , y jr )
p. (A.16)

Thus, τ(ξ, η)p ≤ minπ∈Sn

∑n
i=1 d ′(xi , yπ(i))

p.
Conversely, let (i1, . . . , il; j1, . . . , jl) ∈ S(m, n) mini-

mize (m + n − 2l)C p + ∑l
r=1 d(xir , y jr )

p. This implies
d(xir , y jr ) ≤ 21/pC for all r ∈ [l], because otherwise we
could obtain a smaller value by removing ir , jr from the
vector. Writing I = {i1, . . . , il}, J = { j1, . . . , jl} it implies
also that d(xi , y j ) ≥ 21/pC for all i ∈ [m]\I and j ∈ [n]\J ,
because otherwise we could obtain a smaller value by adding
i , j to the vector. Let then π ∈ Sn be any permutation satis-
fying π(ir ) = π( jr ) for all r ∈ [l]. With this π , we obtain
exactly the d ′-distances in (A.15) for all i ∈ [n] and hence
(A.16) holds again. Thus, minπ∈Sn

∑n
i=1 d ′(xi , yπ(i))

p ≤
τ(ξ, η)p. ��

Proof of Theorem 2 We start with the map τ : Nfin ×Nfin →
R+. If ξ = η, then m = n and there is a permutation
π ∈ Sn such that xi = yπ(i) for 1 ≤ i ≤ n. Hence
τ(ξ, η) = 0, choosing l = n and (i1, . . . , il; j1, . . . , jl) =
(1, . . . , n, π(1), . . . , π(n)). If on the other hand τ(ξ, η) = 0,
wemust have l = m = n to be able to achievem+n−2l = 0
and theremust be (i1, . . . , in; j1, . . . , jn) ∈ S(n, n) such that
d(xir , y jr ) = 0 for 1 ≤ r ≤ n. Since the d is a metric, this
yields ξ = ∑n

r=1 δir = ∑n
r=1 δ jr = η. The symmetry of τ

is immediately clear from the symmetric form of (2).
For the proof of the triangle inequality, we use the metric

space (X ′, d ′) introduced before Theorem 1. Let ξ, η, ζ ∈
Nfin. After filling up patterns to the maximum of the three
cardinalities by adding points at the auxiliary location ℵ, we
may assume that ξ = ∑n

i=1 δxi , η = ∑n
j=1 δy j and ζ =∑n

k=1 δzk have the same cardinality. Noting that given two
point patterns of the same cardinalitywemay add anynumber
of extra points located at ℵ to both of them without changing
their τ -distance, Theorem 1 yields that there are π1, π2 ∈ Sn

such that

τ(ξ, ζ ) =
( n∑

i=1

d ′(xi , zπ1(i))
p
)1/p

and

τ(ζ, η) =
( n∑

i=1

d ′(zi , yπ2(i))
p
)1/p

.

Then, π = π2 ◦ π1 ∈ Sn matches the points of ξ and η in
such a way that

d ′(xi , yπ(i)) ≤ d ′(xi , zπ1(i)) + d ′(zπ1(i), yπ2(π1(i)))

and Theorem 1 and the triangle inequality for the �p-norm
yields that

τ(ξ, η) ≤
( n∑

i=1

d ′(xi , yπ(i))
p
)1/p

≤
( n∑

i=1

d ′(xi , zπ1(i))
p
)1/p

+
( n∑

i=1

d ′(zπ1(i), yπ2(π1(i)))
p
)1/p

= τ(ξ, ζ ) + τ(ζ, η).

We turn to the map τ̄ : Nfin × Nfin → R+. Since
τ̄ (ξ, η) = 1

max{|ξ |,|η|}1/p τ(ξ, η), we may inherit the iden-
tity and symmetry properties for τ̄ directly from τ . To show
the triangle inequality, let ξ = ∑m1

i=1 δxi , η = ∑m2
j=1 δy j

and ζ = ∑n
k=1 δzk be in Nfin and set m∗ = max{m1, m2}.

If n ≤ m∗, we obtain the desired result from the triangle
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inequality of τ as

τ̄ (ξ, η) = 1

m1/p∗
τ(ξ, η)

≤ 1

m1/p∗

(
τ(ξ, ζ ) + τ(ζ, η)

)

≤ 1

max{m1, n}1/p
τ(ξ, ζ ) + 1

max{n, m2}1/p
τ(ζ, η)

≤ τ̄ (ξ, ζ ) + τ̄ (ζ, η).

If n > m∗, we use a slightly different construction for
the extended metric space. Let X ′ = X ∪ {ℵ,ℵ′} for two
different ℵ,ℵ′ /∈ X . Setting

d ′(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{d(x, y), 21/pC} if x, y ∈ X ,

C if {x, y} ∩ X �= ∅ and

{x, y} ∩ {ℵ,ℵ′} �= ∅,

21/pC if {x, y} = {ℵ,ℵ′},
0 if x = y = ℵ

or x = y = ℵ′,

weobtain byLemmaA.1 that (X ′, d ′) is again ametric space.
Setting xi = ℵ for m1+1 ≤ i ≤ n and y j = ℵ′ for m2+1 ≤
j ≤ n, we may define ξ̃ = ∑n

i=1 δxi and η̃ = ∑n
j=1 δy j .

Note that an optimal permutation π∗ ∈ Sm∗ for τ̄ (ξ, η) can
be extended to an optimal permutation π̃∗ ∈ Sn for τ̄ (ξ̃ , η̃) by
setting π̃∗(i) = i for m∗ + 1 ≤ i ≤ n. Furthermore, for any
s, c ≥ 0 with s ≤ m∗c, we have 1

m∗ s ≤ 1
n

(
s + (n − m∗)c

)
.

Combining these two facts, we obtain

τ̄ (ξ, η)p = 1

m∗

m∗∑

i=1

d ′(xi , yπ∗(i))
p

≤ 1

n

( m∗∑

i=1

d ′(xi , yπ∗(i))
p + (n − m∗) · 2C p

)

= τ̄ (ξ̃ , η̃)p,

and therefore

τ̄ (ξ, η) ≤ τ̄ (ξ̃ , η̃) ≤ τ̄ (ξ̃ , ζ ) + τ̄ (ζ, η̃) = τ̄ (ξ, ζ ) + τ̄ (ζ, η),

where the second inequality holds since the cardinalities of
all point patterns are equal and the equality holds by two
more applications of Theorem 1. ��
Proof of Theorem 3 The equivalence for (a) was already used
in Diez et al. (2012). We give a quick argument for the sake
of completeness. We may assume without loss of generality
that, in an admissible path P = (ξ0, . . . , ξN ) for the mini-
mization problem (4),

• only moves from x ∈ ξ to y ∈ η occur;

• only points y ∈ η are added;
• only points x ∈ ξ are deleted;

because if any of these conditions were violated, the total
cost of the path could only become larger (for the first item
we use the triangle inequality for d). The minimization (4) is
then equivalent to choosing l ∈ {0, 1, . . . ,min{m, n}} points
to be moved from ξ -points with indices i1, . . . , il ∈ [m] to
η-points with indices j1, . . . , jl ∈ [n], respectively, at cost
d(xir , y jr ) for eachmove. The remainingm−l points of ξ are
deleted at cost C per deletion, and the remaining n − l points
of η are added at cost C per addition. This yields exactly the
minimization problem (2).

The equivalence (b) is an immediate consequence of The-
orem 1. ��
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