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Abstract Terrain is an essential part of any outdoor environment and, con-
sequently, many techniques have appeared that deal with the problem of its
automatic generation, such as procedural modeling. One form to create ter-
rains is using noise functions because its low computational cost and its ran-
dom result. However, the randomness of these functions also makes it difficult
to have any control over the result obtained. In order to solve the problem
of lack of control, this paper presents a new method noise-based that allows
procedural terrains creation with elevation constraints (GPS routes, points of
interest and areas of interest). For this, the method establishes the restrictions
as fixed values in the heightmap function and creates a system of equations to
obtain all points that they depend this restrictions. In this way, the terrain ob-
tained maintains the random noise, but including the desired restrictions. The
paper also includes how we apply this method on large terrain models without
losing resolution or increasing the computational cost excessively. The results
show that our method makes it possible to integrate this kind of constraints
with high accuracy and realism while preserving the natural appearance of the
procedural generation.
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1 Introduction

The representation of natural environments is essential in a wide range of ap-
plications, such as geographic information systems [41], flight simulations or
videogames. The terrain is a crucial part of these outdoor environments and its
representation has been widely analyzed in the literature [39,42]. Some studies
search to extract real data [23], but this limits the results to the real world and
it is not always possible to obtain all real data to be able to represent them.
That is why automatic terrain generation is very important, a field of research
still active. Taking advantage of their fractal dimensions [24,38], many studies
have appeared in the literature that address the automation of its creation
process [40], mainly using procedural modelling. This modelling method has
been applied to represent many features related to terrains, including roads,
trees, villages, cityscapes [9,18,30], or even to represent atmospheric phenom-
ena [37]. According to the work of Smelik et al. [45], procedural modelling
were initially based on subdivision processes, in which the height map was
iteratively created and, in order to create the elevation, a controlled amount
of randomness was added in each iteration.

The first subdivision algorithm on which is based procedural modelling is
known as the midpoint offset method [10,26], in which a new point is generated
in every iteration. The elevation of this new point is obtained as a result of
the average of the elevations of its neighbours, with the addition of a random
displacement which decreases with each iteration. Many other studies, mostly
based on noise generators such as the Perlin method [32,33] have been done in
which the height map is obtained by a turbulence function. Perlin noise is fast,
but it tends to create terrains that are uniform and random, often requiring
significant post-processing to add interesting features. There are some works
that deal with this problem, such as the one presented by Parberry [31] that
uses a variant of Perlin noise, called value noise, to generate geotypical proce-
dural terrain based on a spatial analysis of elevation data extracted from GIS
data. The advantage of the approaches based on noise generators is that the
computational cost is low, due to the fact that every point can be calculated
independently of its neighbours.

However, all the methods described above have problems to controlling the
generated terrain. Although some of them allow small constraints to be applied
to the initial parameters, such as the maximum height, the procedural creation
of a terrain that fits more specific constraints is difficult to make efficiently.
Elements such as roads and rivers require a precise control to be able to include
them in the final height map. Generally, these elements have specific forms
and characteristics that condition the ground shape and including them in the
terrain without control can be cause unrealistic results. For example, roads
cannot be vertical, rivers do not flow upwards, and so forth. To represent large
terrains with different geometric features, Bruneton et al. [4] combined a digital
elevation model with layered geographic information system (GIS) vector data.
Thus, they were able to obtain precise boundaries of roads, rivers, lakes and
fields and enforce vector data constraints in the terrain.
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According to the work of Smelik et al. [45], the solution provided by the
studies that attempt to solve this problem is mostly based on the trial-and-
error method. Some of them even need to indicate where the modifications
have to be made, something that may not be trivial for users, since it is almost
impossible to reliably predict how each operation will affect the final result.
Many commercial tools have appeared that allow the user to manually model,
generate, and modify the terrain [50,55,53,22]. However, procedural terrain
modelling needs to be controllable in order to simplify content creation.

The initial problem to be solved was the integration of real GPS routes on
procedurally generated terrains. Some applications, such as the video games
for training, require to include real GPS routes and the rest of the terrain
could be generated randomly. These applications also need to use automatic
creation methods that do not need the interaction of the user during the
creation process.

After studying the previous works, it has been found that noise-based works
allow for variance in the final results, but at the moment there is none that
includes previously established data on their results. Considering the problem,
it was decided to create a new noise-based method to take advantage of its
randomness and its characteristics, such as low computational cost but that
allows to include precise restrictions in the final result.

The method solves an equation system that includes these constraints and
generates a custom height map. The terrains generated with this new method
are similar in appearance to those created with common noise functions, but
including these previously established constraints, that the user can change, to
design a random and at the same time custom terrain. This method computes
noise functions with constraints that can be applied to any problem where the
user needs to have some kind of control on the result.

The rest of the work is organized as follows. Section 2 show the previous
work. Section 3 explains our method as well as certain concepts needed to
understand it. Section 4 considers the creation of large terrain models. Next,
Section 5 offers the results obtained. Finally, conclusions are presented in sec-
tion 6.

2 State of the art

One of the most used terrain generating methods is the procedural modelling.
It is mainly based on the fact that terrains are self-similar [24] and the most
of works that manage this generation method use noise functions to obtain a
random edition of the terrain height values [26,27].

Some of these works have included some constraints to condition the result-
ing terrain. According to the moment in which these constraints are applied,
they can be mainly classified in two groups: methods that generate a terrain
that includes the desired elements, and methods in which the final terrain is
obtained by applying the required constraints to an already created terrain.
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2.1 Generation of terrain with constraints

In order to create a realistic terrain automatically, one of the most important
characteristics is to be able to generate it including constraints imposed by
the user, so that it fits the terrain to be represented as much as possible. For
this purpose, different methods have been developed.

Some studies are based on the modification of the method of terrain gen-
eration using mid-point displacement [10,26]. Kamal et al. [21] present a tech-
nique that generates a mountain by taking its elevation and base propagation
as a constraint. Belhadj [1] presents a more general method in which a set of
values constrain the mid-point displacement process. The constraints consist
of scattered points of elevation provided by a satellite or other geological data
acquisition sources.

A larger-scale method is the one proposed by Doran et al. [8], in which, us-
ing agents, constraints are added during the generation of the terrain, thereby
creating geographical features such as mountains, beaches, etc. Although it
allows for control over the terrain relief, it does not allow us to know the
accurate position where these occurrences take place [45].

Some works initially generate the constraints and then model the terrain
based on them. This is the case of the procedural approach presented by
Génevaux et al. [14] that uses river networks for large terrain modeling. The
landscape is generated by combining procedural terrain and river patches with
blending and carving operators, but the user lacks fine control over the result.

The work of Génevaux et al. [15] requires the user to define and distribute
many different primitives by hand. They combine feature-based primitives and
hierarchical procedural modelling to generate the terrain, including rivers.
Guérin et al. [16] extend this model and present a hierarchical sparse ter-
rain model that defines continuous terrains with varying level of detail. The
approach represents terrains as elevation functions built from a sparse com-
bination of automatically distributed primitives and, linear combinations of
land-form features stored in a dictionary.

Recently, Gasch et al. [11] present a method of automatic terrain creation
with constraints that force some height values to concur with a series of points
determined by a GPS route. The limitations of this method are given by
the size and complexity of the routes, since the accuracy diminished as they
became bigger. This fact restricts its use to artificial routes, as tests carried
out using real routes result in unrealistic maps.

2.2 Adaptation of the terrain to constraints

The following methods adapt an already created terrain to include elements
such as roads or rivers. They can be classified depending on the user interaction
required.
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2.2.1 Results not controlled by the users

This group considers works in which, although users can interactively apply
some processes to a terrain to add it natural elements, they do not have any
control on the final result.

A realistic way to modify terrain to simulate soil erosion caused by air
or water is by using physics-based algorithms. Kelley et al. [19] propose a
method based on empirical erosion models used in geomorphology to simulate
the erosion of stream networks, adjusting the surface by triangulation and
fractal interpolation. With the aim of improving the representation of relief,
the approach proposed by [27] calculates the erosion of the water on the surface
depending on the amount of water that would fall in each vertex of a fractal
height field and the influence of the thermal weathering. They use a global
simulation model. The work of Nagashima [28] presents an algorithm that
adjust valleys and mountains to the rainfall erosion and thermal weathering
by using earth layer patterns on their surfaces. Neidhold et al. [29] combine a
fluid simulation with an erosion algorithm. This fact enables to create eroded
terrain interactively by changing simulation parameters or applying additional
water to the scene. All these algorithms produce simulations that are difficult
to control and unpredictable, and interactive editing cannot be done for large
areas of terrain because calculations require a lot of time and memory, and a
high computational cost.

To accelerate the simulation of terrain erosion, some works downloaded
the simulation to a GPU [25,48]. Due to memory requirements and GPU
limitations, these methods were not suitable for large terrain modeling. In
order to simulate large-scale terrain affected by physics-based erosion, Vanek
et al. [52] use adaptive tiles on the GPU. They divide the terrain into tiles of
different resolutions according to their complexity. Then, each tile is stored as
a mip-map texture and a mip-map pyramid is built for each tile. During the
simulation process, they use the appropriate level of detail depending on the
changes in the terrain.

Kristof et al. [20] present an hydraulic erosion simulation using the Smoothed
Particle Hydrodynamics (SPH), which implies lower memory usage and better
performance for large scale simulations as compared to earlier approaches. A
stochastic and interactive simulation of the impact of various geomorphologi-
cal agents on terrain erosion in conjunction with the vegetation simulation is
presented in the work of Cordonnier et al. [5]. During the simulation process,
the input elevation map is modified using a discrete layer model in which dif-
ferent geomorphological and ecological events modify the data stored in these
layers.

Some studies allow for the inclusion of roads in the terrain, such the one
proposed by Stachniak et al. [47]. This method requires the initial approxi-
mation of the terrain and a function that looks for an acceptable set of de-
formation operations to apply to a random terrain in order to adapt it to the
constraints. The problem is that it is computationally expensive. The work
presented by Zhou et al. [58] allows roads, rivers, crests or valleys to be gener-
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ated. They use a sketch generated by the user that, when linked to the height
map of the terrain, produces the terrain following that crest-shaped drawing.
This method allows a large terrain to be modified, although the final height
cannot be predicted accurately.

2.2.2 Results controlled by the users

This group involves methods where the users have control over the final result
of the terrain appearance.

Based on Perlin noise, Scheneider et al. [44] introduce an editing environ-
ment where it is possible to edit the terrain by interactively modifying the
base functions of the noise generator. Their method replaces the Perlin noise
grid with a set of user-drawn greyscale images. Gain et al. [12] allow the user
to draw the silhouette and the boundaries of a mountain chain through the
propagation of noise, the terrain grows until the constraint is reached. To fa-
cilitate user interaction and make it more intuitive, Smelik et al. [46] propose
a method in which a top view of the map is drawn, covering both heights
and soil material. Rusnell et al. [43] base the terrain synthesis method on the
interpretation of a weighted graph generated from a set of generator vertices.

The work presented by Hnaidi et al. [17] allows a designer to draw 3D
curves to control the shape of the terrain generated. Each curve is enriched
with different properties, such as elevation and slope angle, which become
constraints during the modelling process. Bradbury et al. [3] present a sketch-
based toolset that allows the manipulation of virtual terrains. The method
works with a layer-based interface. Each layer includes three sub-layers show-
ing, respectively, the high, medium and low frequency bands of the image. The
user can mix these bands and apply different edits to each, as desired. The
method for the creation of islands developed by Puig-Centelles et al. [35,36]
is also included in this category, in which the resulting island created in real
time can be observed through an interface.

Other methods use interfaces to allow the user to modify the terrain [2] or
even to carve them in real time [6]. In these approaches, users paint a height-
mapped terrain directly in 3D by applying simple terrain raising brushes and
also GPU-based brushes that generate several types of noise in real time.
The model proposed by Tasse et al. [49] combines the sketching interface and
patch-based terrain generation in a hybrid system that gives wider control to
the user and produces realistic terrains.

In an attempt to bring interactivity and user control in the synthesis of the
terrain, the work of [13] combines user-defined maps with silhouette strokes
used to define roughness. They use parallel pixel-based texture synthesis to
interactively create the terrain from a database of height field examples, and
gain control over the height and slope of the terrain by means of constraint
points and curves. This method does not capture the large-scale terrain shape
characteristics of real landscapes.

In 2017, Zhang et al. [57] presented a method to procedurally generate
rivers and then adapt their routes according to a set of image features that are
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Fig. 1 Graphical representation of the terms involved in obtaining Noise(P).

extracted by user interaction. The method adapts the initially generated rivers
to these features by applying an iterative optimization in order to increase the
similarity between the resulting rivers and the images.

Modifications made through user interaction have the advantage that it is
much easier to know what the final result will be like, or at least facilitates
trial and error. However, the disadvantage is that to get accurate results, the
user has to invest time in previously creating the terrain [45].

After reviewing all these works, it can be inferred that there is no method
that generates a realistic terrain using procedural modelling that includes con-
straints defined by the user with a high accuracy. Moreover, in a simple way
and without the need for high knowledge for to obtain the final result, be-
ing necessary the intervention of the user only at the beginning. In order to
address this problem, the work described in the following sections is proposed.

3 Procedural generation of terrain with constraints

The presented work not only creates a height-map that includes some previ-
ously given features, but they are combined with some randomly generated
heights for the rest of the terrain, that makes it possible to have a natural
appearance. This randomness is generated by means of a noise function. Af-
ter analyzing some noise generators, Perlin [32,33] has been used, since its
low computational cost allows its use in real time and, in addition, its result
maintains the pseudo-random appearance of nature.

According to the work of Perlin, the calculation of the noise in a point
typically involves three steps. Initially, a two-dimensional grid is created, and
a random value in the range of [0, 1] is assigned to each node (Q). The next
step is to determine in which cell in the grid is the point P to be calculated.
Then the distance is obtained between the point P and every node Q of that
cell. In a two-dimensional grid, this will require the computation of 4 distance
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Fig. 2 Procedural texture obtained with the Perlin method and its terrain representation.

vectors. The noise at the given point is finally obtained as the interpolation
between the values computed at the vertices of the cell.

Considering a cell with four grid nodes Q00, Q01, Q10, Q11, the noise value
of a point P is based on a bilinear interpolation from the noise of the values
of these nodes. Figure 1 illustrates the points and grid nodes involved in the
process. The formula of this bilinear interpolation is presented in Equation 1.

Noise(P ) => x · y ·Q00 + x · (1 − y) ·Q01

+(1 − x) · y ·Q10 + (1 − x) · (1 − y) ·Q11

(1)

Turbulence is obtained at a point Turbulence(P ) by considering the noise
value of that point P on some levels, which are produced by iteratively dividing
the grid by 2. If i is the number that controls the quantity of noise levels that
have been taken into account to calculate the turbulence, then Equation 2
shows the final function proposed by Perlin to calculate it.

Turbulence(P ) =>
∑
i

Noise(P · 2i)

2i
(2)

Considering the values assigned to every point, a grey-scale image is gen-
erated for a determined turbulence. Terrain generation is achieved by inter-
preting this image as a height map so that the colour of each pixel is used as
the value of the terrain elevation. An example of a procedural texture and the
terrain that it generates is shown in Figure 2.

Perlin method [32] generates random values for each of the Q nodes in-
volved in calculating the noise of P , so the value obtained in that point is also
random. This work introduces constraints into certain points, for instance P
has a value conditioned by the terrain features that has to appear in the final
representation. In this case, the Q values that have an influence in P cannot be
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randomly approximated. Instead of obtaining its value from the values of Q,
our method changes the roles and the values that must be calculated are the
points Q that influence P . This calculation is possible, establishing a system of
equations using all equations obtained from all fixed values that are required
for the given restrictions.

3.1 Case study

In order to make it easier to understand the method, the process of estab-
lishing the equation system is explained through an example. In this case, the
turbulence is obtained combining three noise levels.

Figure 3 illustrates the data of the example. Initially, the value of the noise
at point P1, Noise(P1) is established with vertices (Q00, Q04, Q40 and Q44) on
the first noise level (Figure 3(a)). According to Equation 1, these four vertices
are necessary to obtain the noise of P1. On the second level (Figure 3(b)),
the grid is divided and five more vertices appear (Q02, Q20, Q22, Q24 and Q42).
However, only four of all the current vertices condition the value of P1 to obtain
the Noise(P1). They have been marked with a circle to differentiate them
from the rest. Finally, on the last considered level (Figure 3(c)), all the other
vertices that complete the grid appear. This last level is where the vertices
have the least distance between them, thereby giving the highest resolution.
As on previous level, only three of these new values that need to be found
intervene in obtaining Noise(P1), (Q03, Q04 and Q13) in addition to Q14.

Taking into account the equation shown in Equation 2, the turbulence
Turbulence(P1) is obtained by adding the noise on each of the three levels
considered. The final formula is detailed in Equation 3, where the height value
of the constraint is C height, ai, bi, ci and di replace xy, x(1−y), (1−x)y and
(1 − x)(1 − y) respectively, from Equation 2. Finally, ten Q vertices condition
the value of the turbulence at that point, leaving fifteen that do not intervene
and which, as in the Perlin method, will receive a random value.

C height =

3∑
i=0

Noise(P1 · 2i)

2i
=>

a1 ·Q00 + b1 ·Q04 + c1 ·Q40 + d1 ·Q44

20
+

a2 ·Q02 + b2 ·Q04 + c2 ·Q22 + d2 ·Q24

21
+

a3 ·Q03 + b3 ·Q04 + c3 ·Q13 + d3 ·Q14

22

(3)

In the example used, only one point has been used as a constraint. However,
a real case usually have a points set, for example a path with n points. This
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(a) Noise Level 1. (b) Noise Level 2.

(c) Noise Level 3.

Fig. 3 Vertices involved in obtaining the turbulence of three noise levels at point P1.

fact makes it possible to have the equation system 4 composed by the equation
that obtains every point in the trajectory.

C height P1 =
∑

i
Noise(P1·2i)

2i

.

.

.

C height Pn =
∑

i
Noise(Pn·2i)

2i

(4)

This example clearly shows that there is an unbalanced number of unknown-
known terms involved in the equation system: n known points on the trajectory
versus (2m−1 + 1) × (2m−1 + 1) vertices that need to be found, being m = 3
in this case. In order to balance this difference without adding more unknown
values to the ecuations system, more restriction points have to be added in the
trajectory of existing points. To obtain these points in a coherent way, these
new values have been obtained by making a curve equation with the points
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from which we start. This allows to obtain with great precision additionals
points that do not change the trajectory of the points set to represent and al-
low to solve the system. The additional points number added depends on the
unbalanced numbers of unknown-known terms. Therefore, points are added
between the pairs of nearby points of each set until the number of equations
is equal or greater than the number of unknown values.

Points are added in such a way as to force all the ones that form the
trajectory to be equidistant (dmin). Having more points in the path with known
values makes the equation system have more equations without increasing the
number of values to obtain.

But it must to keep in mind that the new added equations can be equivalent
to other ecuations of the system, that is, with linearly dependent results that
have an infinite set of solutions. This happens when the new added point is
placed too close the existing ones. To avoid this problem, the point is discarded
and only valid turbulence equations are added to the equations system. For
the new valid points, as has been done with the constraints points, its equation
from its height value and its turbulence are obtained.

As a result of the resolving process, the values of the Q vertices that directly
affect the constraint points are obtained. However, the process still leaves some
Q vertices without value. This is due to the fact that they have not been used to
obtain the value of the constraints. To finish the process, like the conventional
Perlin method, is assigned a random value to these vertices without value. In
this way, the Perlin turbulence matrix thus obtained contains the constraints
values given initially, but keeping the randomness in the parts that do not
affect to these constraints. The pseudocode of the implementation of all this
process is shown in Algorithm 1.

4 Large terrain models

The number of noise levels involved in obtaining the turbulence limits the size
of the grid. If m levels are considered, the resolution of the obtained grid will
be ((2m−1 + 1) × (2m−1 + 1)). According to this, the resolution of the grid in
the previous example, where 3 levels of noise were considered, is 5 × 5 nodes.
The number of points of the final terrain depends on the resolution of the grid,
so the larger a terrain is, the more noise levels have to be considered.

Some considerations have to be taken into account when large terrains are
going to be generate. On the one hand, the size of the terrain determines the
distance between the nodes on the grid that represent it. If this distance is too
large, all the constraints that fall below this minimum distance will be ignored,
thus losing precision in the result. To avoid this loss of information, grids with
a great number of points would have to be used in large areas, which would
require using a high number of noise levels. Keep in mind that the equations
size obtained by each constraint increases proportionally with each calculated
noise level. So the computational cost of solving the equations system does
too.
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Algorithm 1 Process to obtain the terrain with constraints.

//Obtain all turbulence equations for the system.
eq n = 0
for all constraints do
eq n = eq n + 1
vector equations(eq n) = compute equation(turbulence, C height))

end for

//If there are more unknowns points than equations add new
//points and obtain its equation
for eq n less unknow number do
eq n = eq n + 1
equation(eq n) = compute equation(turbulence, C height new point)

end for

Solve equation system(vector equations)

//Get the value of nodes that do not influence the constraints
for all Q nodes do
if Q node no value then
Q node = rand value[0 − 1]

end if
end for

Taking these facts into account, large terrain are then represented by di-
viding large areas into smaller tiles, so that the resolution of them falls within
the optimal result. Once the map has been divided, the method solves each tile
independently. It must be taken into account that when they are joined again,
the values of the vertices at the edges must be the same. Due to this fact,
the method solves every one by establishing these values of the vertices at the
edges as new constraints, because they have to match with the corresponding
vertices of the adjacent tiles. This ensures that the height of the edges is equal
in neighbouring tiles.

5 Results and Discussion

In order to test the method presented here, several experiments were con-
ducted using a computer with an Intel Core i7-6700k 4.00 GHz processor.
As already mentioned, the method uses restrictions formed by a set of points.
These points can form routes (synthetics or georeferenced), areas such as lakes
or concrete forms, further this points can be used to set heights of interest,
such as elevations and low ground areas. To test the results obtained, the three
types of data sets mentioned have been used. Their characteristics have been
detailed in subsection 5.1. During the experimentation, the MATLAB func-
tion LU factorization has been used to solve the system of linear equations,
because of its computational efficiency.
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Table 1 Detail of the data used to test the presented method.

Route Number of points Normalized height (m)

Simple 43 13
Snake 192 50

First route 443 65
Second route 668 122
Third route 421 44
Fourth route 208 36.5

Lambda 12,154 20
Flower 23,217 40

5.1 Details of the used constraints

Different points sets have been used to test the results of the method. They
can be classified in two groups according the terrain that is going to represent:
simple or large terrains. Table 1 describes the number of points of each route
and the normalized height, that is, the difference in meters between minimum
and maximum height of terrain.

Regarding the first group, two different points sets have been considered:
hand-made and special figures. Starting from the hand-made paths, two routes
have been designed to test the method: one of them called Snake, because its
form (Figure 4(a)), and other one composed by a low number of points, that
has been called Simple to identify it (Figure 4(d)).

Some works related to the topic use synthetic forms that represent special
figures to test the results. So, two of them have been used to comprove that
this method can get this constraints kind. Both are black and white figures,
which the points that form the figure have been extracted, so that the method
uses them as restrictions. They have been obtained from two research works
related to the topic: the first one, called Flower, from the work presented by
Yoon and Lee [56] and the second one, called Lambda, from the work from Zhou
et al. [58]. All the points sets in this group have been represented immersed
in terrains with a resolution of 256 × 256.

The problem to be solved by this work asked to be able to use GPS routes
as a restriction. Therefore, in this second group of point sets, four real routes
extracted from Wikiloc [54] have been used, a mashup where geo-referenced
outdoor routes and points of interest from around the world are stored and
shared. This routes represent real routes and areas in the province of Castellón
(Spain). They are more complex paths, composed by a higher number of points,
with some interest points and areas. Table 2 completes the information about
these routes. The considered resolution of the grid that represent the terrain
has been 1024×1024, so the process of dividing the grid into 16 tiles has been
performed to represent them.
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Table 2 Details of the interest points and areas associated with the real paths.

Route Interest points Area to be included

First route 0 No
Second route 0 No
Third route 9 No
Fourth route 12 Circle: 38 points

5.2 Visual results

The visual results obtained by applying the presented method to the different
routes are shown in the following figures. Figure 4 illustrates the results for
the simplest paths and the synthetic figures and finally Figure 5 for the real
paths. All of them have been distributed in three columns. The first column
shows a bird’s eye view of the path or the set points. The second one shows the
turbulence generated for the corresponding set of points, where its location has
been marked when it was not clear. Finally, the third column shows the terrain
representation associated to the turbulence generated. The set of points have
also been highlighted in these images.

5.3 Efficiency and accuracy

The study was carried out by analyzing aspects related to efficiency, precision
and realism. The experimental results have been divided according to the
classification of the paths, and they can be seen in Table 3 and Table 4.

Regarding efficiency, every terrain was obtained computing grids of 256 ×
256. Only the computation of the terrain that contain the real paths have
required to generate tiles, because the resolution of the final terrain was 1024×
1024. Then, the seconds required to compute the tiles only appear in Table 4
for these routes.

The grids of 256× 256 were obtained with three different numbers of noise
levels (6, 7 and 8), which yield different levels of grid resolution (32×32, 64×64
and 128 × 128). The number of equations was the same for all the levels in
every experiment. This implies that the points used as constraints in the edges
are more separated in the lower resolutions. Finally, the tables show the total
time spent on calculating the terrain (Total Cost).

To analyze the introduced error of the method, the values of the obtained
height map were compared to the original values of the route, with an threshold
of 0.025%. The final value for the error is obtained from all the points on
the route with values that match the map obtained or which are within the
permitted error. This accuracy is also shown in the tables.
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(a) Snake. (b) Turbulence. (c) Terrain representation.

(d) Route simple. (e) Turbulence. (f) Terrain representation.

(g) Flower figure. (h) Turbulence. (i) Terrain representation.

(j) Lambda figure. (k) Turbulence. (l) Terrain representation.

Fig. 4 Visual results obtained for the simplest paths and the synthetic figures.
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(a) First path. (b) Turbulence. (c) Terrain representation.

(d) Second path. (e) Turbulence. (f) Terrain representation.

(g) Third path. (h) Turbulence. (i) Terrain representation.

(j) Fourth path. (k) Turbulence. (l) Terrain representation.

Fig. 5 Visual results obtained for the real paths.
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Table 3 Time cost (seconds) and error introduced (%) when generating terrains that in-
clude the hand-made routes and the special figures.

Route Number Noise Total Error
Equations Levels Cost (s) (%)

6 0.12 16.46
Snake 192 7 0.21 0

8 0.54 0

6 0.07 25.28
Route simple 83 7 0.15 0

8 0.46 0

6 15.37 24.29
Flower 14,895 7 29.92 0.37

8 61.21 0.14

6 11.76 28.52
Lambda 12,158 7 28.03 0.11

8 58.16 0

Table 4 Partial and total cost (seconds) and the error introduced (%) generating large
terrains that contain the real paths.

Route Number Noise Tile Total Error
Equations Levels Cost (s) Cost (s) (%)

6 1.01 16.82 12.92
First 1979 7 4.26 69.02 8.83

8 10.80 174.91 5.37

6 1.79 29.20 11.55
Second 2204 7 5.21 84.95 7.87

8 11.91 193.28 3.09

6 0.81 12.99 5.9
Third 1966 7 4.03 65.43 2.77

8 10.64 172.12 0.58

6 0.23 5.01 6.29
Fourth 1794 7 3.31 53.72 3.08

8 9.87 161.02 0.21

5.4 Realism

The Unity 3D game engine [51] was used to see the final representation of the
height maps obtained by the method. Figure 6 shows the results obtained for
the second real path. The terrain has been textured to improve the realism
and the data set used as constraints in the experiments are marked in pink
in the figures. These marks show that the generated terrain is adapted to the
established constraints.
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Fig. 6 Close view of the resulting terrain that includes the Second real path.

5.5 Different iterations over the same paths

Apart from the data included in the terrain, a large part of the data are ran-
domly obtained according to the traditional noise function. However, applying
different iterations to the same path does not return the same terrains. This is
because the method forces the data to be included in the terrain to have an ac-
curacy, but as the distance of the points of the grid to the path increases, these
constraints do not have any influence on the points and they are completely
random.

An example of this situation is shown in Figure 7. The path used in this
experiment has been the one called Simple. Two iterations of the method have
been performed with this path and the terrains generated have been different
in every one.

5.6 Validating the presented method

Noise-based procedural terrain generators [50] do not allow the use of precise
constraints but often have some attributes that their modification allows to
alter the obtained result. The most common attributes to vary are the modifi-
cation of the octaves, modifying the level of detail of the result, the frequency,
which allows varying the roughness of the terrain and the persistence, which
modifies the height of the crests and the wave valleys. In order to analyze the
method presented and to validate that in addition to meeting the proposed
objectives it also allows the variations specified by these other methods with-
out losing precision in the restrictions, it has been tested by modifying these
attributes. Figure 8 show the results obtained when modifying the attributes.
The path used to test this validation has been the one called Simple.

First of all, the number of octaves has been changed to obtain different
results of the obtained turbulence. Figure 8 shows the terrains generated by
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(a) First iteration: Turbulence. (b) First iteration: Terrain generated.

(c) Second iteration: Turbulence. (d) Second iteration: Terrain generated.

Fig. 7 Results obtained after performing different iterations of the method taking the path
called Simple as input data.

establishing the number of octaves to 5 and 7. It can be appreciated in the
images that the level of detail of the terrain increases at the same time this
attribute does. Next, the frequency has been modified. This attribute varies
the distance between the points in a level of noise, so, as can be appreciated in
the Figure 8, the higher the frequency is, the more abrupt the resulting terrain
results.

Finally, the persistence factor indicates the weight of every level of noise
in the turbulence. As the level of noise increases, its weight is reduced to the
half. Increasing the value of the persistence, the final result will have higher
roughness because the higher levels of noise will have more influence in the
final turbulence. Figure 8 shows the results obtained by varying the persistence
value from 0.70 to 0.99.
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(a) 5 octaves. (b) 7 octaves.

(c) Frequency +1. (d) Frequency +2.

(e) Persistence 0.70. (f) Persistence 0.99.

Fig. 8 Results obtained modifying the number of octaves, the frequency and the persistence.

5.7 Cases of failure

The method needs that the set of points that is going to be included in the
final terrain meets some conditions to obtain a good result. If the points that
form it are too closely situated or consecutive points represent really different
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(a) Turbulence. (b) Terrain generated.

Fig. 9 Example of a case of failure.

locations, the terrain obtained will be not valid. An example of this situation
can be observed in Figure 9.

To avoid this situation, the routes have to be pre-processed to ensure a good
distribution of the point data and a coherent sequence of point locations. Then,
a good result can be obtained by applying this terrain generation method.

5.8 Discussion

As shown in the results, the method presented here is capable of generating
large terrains that can be adapted to certain features using procedural mod-
elling. This procedural modelling includes some previously fixed data that
represent certain constraints and adds to them the random data that charac-
terize this modelling method. The time spent on obtaining the turbulence map
that represents the maps is not high taking into account that this process is
not required to be performed in real time: in fact it took 3 minutes in the case
of generating 1024× 1024 maps formed by tiles with a resolution of 256× 256.
This makes the method suitable for quick generation and later visualization
in appropriate real-time applications such as game engines or simulators.

Regarding the accuracy of the data to be included in the final approxima-
tion, the generated terrain includes the routes with a precision of more than
85%, in most cases being above 90%. If the accuracy does not reach 100%, ex-
cept in the case of accepting a major error, it is due to the final joining of the
tiles. Sometimes, a small deviation takes place at some of the join points. This
is not appreciable to the naked eye, but it affects the value of the accuracy.

The realism of the terrains can be observed in the Figure 6, where close
views can be appreciated. There, it is shown the good quality of the results.
Moreover, different executions of the method give as result to different terrains,
as it has been shown in Figure 7. This is one of the advantages of being based
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on the procedural modelling, the possibility of obtaining different terrains that
fit the constraints established by the user.

6 Conclusions

This work presents a new procedural modelling method to generate terrain
that allows to combine in a same representation some given data with other
randomly generated. Some point set constraints are taken as input, such as
GPS routes, figures or points situated in interest zones, and the method pro-
duces a random terrain that includes these constraints with a high degree of
precision. The random part of the terrain is obtained by solving an equation
system based on a noise function, which generates a procedural texture that
is used as a height map. The noise generator method has been the presented
by Perlin. It traditionally allows for variations in the final result but not the
inclusion of precise data.

Results show that the terrains generated include the constraints in their
final representation with a high level of realism, and ensuring a smooth conti-
nuity between the input data and the randomly generated heights. Moreover,
the method maintains the random nature of the Perlin noise, because different
terrains result from every run of the method. All the process is performed, as
results support, with a low computational cost.

In the tests, it has been demonstrated that our method is able to produce
large terrains. In these cases, terrains are divided into tiles, each of them is
obtained separately, and they are joined at the end. Visual representations
of the generated turbulence maps show the good quality of the results that
include the given routes and the interest points, without the appearance of
jumps in the terrain or changes that are too sudden.

As future work, the line of research that we are working on is addressed
to the procedural generation of vegetation, in order to improve the realism
of the terrains that are generated. Two main lines are being studied: on the
one hand, the procedural placement of the plants, according to their botanical
characteristics and the features of the generated terrain and, on the other hand,
the procedural representation of the life of the plants based on inequations.
Plants will be located on the terrain and in every iteration of the procedural
system different representations of them will be shown depending on the time
they have been growing.
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