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Abstract 

Antimonene is a recently developed two-dimensional material with outstanding expected 

physical properties based on theoretical calculations. Liquid phase exfoliation has become the 

most straight forward preparation method to produce stable antimonene suspensions. However, 

the processing and deposition on substrates of antimonene that is still required towards its 

exploitation in various fields, as current challenges in this research area. Despite the high 

current research interest in antimonene, the fabrication of Sb-films and its utilization in 

photoelectrochemical devices remains still unexplored. Herein, the electrophoretic deposition 

of antimonene on different substrates and its activity as absorber and hole acceptor layer in 

photoelectrochemical cell (PEC) is reported. The obtained results confirm that the 

photoelectrochemical performance of the antimonene films electrophoretically deposited on 

titanium dioxide exhibits an enhanced optical absorption and charge separation properties, 

compared to pristine TiO2 films. Furthermore, electrochemical measurements reveal that the 

antimonene films acts as a hole acceptor layer, enabling better PEC performance. 
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1. Introduction 

Two-dimensional (2D) materials have gathered a lot of attention during the last decade since 

the isolation and exploitation of graphene due to the peculiar properties derived from nanosized 

effects [1]. A wide variety of 2D materials have been reported and applied in different fields 

e.g. transition metal dichalcogenides (TMDCS), metal carbides (MXenes) [2,3], metal-free 

carbon- and boron nitride [4,5], and monoelemental ones (Xenes) such like graphene or 

phosphorene to name a few [6,7]. In this context, a new monoelemental 2D material that has 

recently gained a lot of attention is the so-called antimonene (2D-Sb). As phosphorene, this 2D 

material is another pnictogen that has been isolated as monolayer or few-layers (FL) by several 

methods including mechanical [8], liquid-phase (LPE) or electrochemical exfoliation,[9] as 

well as epitaxial growth [10,11]. Antimonene has been widely investigated due to its high 

stability under ambient conditions and their predicted physical properties such as strong spin-

orbit coupling, topological properties or its low band gap suitable for optoelectronic 

applications [12,13]. However, despite the recent progress in the theoretical and experimental 

investigations of 2D-Sb [14], and its application as supercapacitor [15], catalyst for organic 

reactions [16], electrocatalyst for hydrogen evolution reaction (HER) [17,18], or biosensing 

[19,20],  the fabrication of Sb-films and its utilization in photoelectrochemical devices remain 

still unexplored. Here, we demonstrate the deposition of 2D-Sb layers over conductive 

substrates by electrophoretic deposition (EPD) and its activity as absorber and hole acceptor 

layer in a photoelectrochemical cell (PEC). The morphology of the 2D flakes is thoroughly 

characterized as well as the physical and electronic features of the films. We further explored 

the deposition of 2D-Sb on mesoporous TiO2 as well as its photoelectrochemical performance. 

The new Sb-TiO2 film exhibits an enhanced optical absorption and charge separation properties, 

compared to pristine TiO2 films. Electrochemical measurements reveal that the 2D-Sb mainly 

acts as a hole acceptor layer, enabling better PEC performance. 
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2. Experimental Section  

2.1 Preparation of 2D-Sb 

This procedure involves a pre-grinding process of the Sb crystals (Smart Elements, 99.9999% 

purity) with an agate mortar resulting in so-called ground Sb. After the grinding process, a 

stainless-steel reactor with a volume of 5 mL (Retsch 1.4112) was filled under ambient 

conditions with 300 mg of ground Sb powder, 3 stainless steel balls of 4.74 mm diameter and 

0.5 mL of butan-2-ol (99.5 %, Sigma Aldrich). Subsequently, the samples were milled for 120 

min at 30 Hz in a Retsch MM 400 mixer mill. After milling, the reactors were washed with 

butan-2-ol to obtain all the grey metallic Sb paste, which was then centrifuged at 13000 rpm 

for 30 min. The deposited Sb was dried on a hot plate at 100 °C for 12 hours and for another 24 

hours in a drying oven at 75 °C and a few mbar. A colloidal dispersion of 2D-Sb was prepared 

by sonication of 10 mg of ball-milled Sb in 10 mL of toluene for 30 min, 400 W, 24 kHz and 

at an amplitude of 40 % with a sonication tip. Then, the resulting black Sb suspension was 

centrifuged at 3000 rpm (746 g) for 3 min, in order to eliminate the non-exfoliated crystals, and 

the clear supernatant was recovered. 

2.2 Deposition of 2D 2D-Sb on FTO substrates 

 Electrophoretic deposition (EPD) was carried out with an ENDUROTM Power supplies system 

operated at 300 V and different deposition times (1 to 3 min), and a colloidal dispersion of Sb 

(1 mg mL-1) in tholuene previously sonicated for 30 min at 40% amplitude with a sonication 

tip. Following the EPD, the electrodes were annealed for 1 h at 300 °C for improving the contact 

between the material and the substrate. TiO2-coated FTO electrodes were prepared by doctor 

blading a transparent paste of TiO2, with 20 nm particle size over clean FTO electrodes, 

followed by annealing at 450 °C for 30 min under air. Sb was then deposited over TiO2 

electrodes by EPD during 3 min at 300 V followed by thermal annealing under air for 1 h at 

300 °C. 
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2.3 Characterization  

AFM measurements were carried out using a Cervantes Fullmode AFM from Nanotec 

Electronica SL. WSxM software (www.wsxmsolutions.com) was employed both for data 

acquisition and image processing [21]. PPP-NCHR cantilevers (nanosensors.com) with a 

nominal spring constant of 42 N·m-1 and tip radius of less than 7 nm were employed. The 

tapping mode was used for imaging to ensure that the nanolayers would not be damaged by the 

tip [22]. Raman spectra were acquired on a LabRam HR Evolution confocal Raman microscope 

(Horiba) equipped with an automated XYZ table using 0.80 NA objectives. All measurements 

were conducted using an excitation wavelength of 532 nm, with an acquisition time of 5 s and 

a grating of 1800 grooves per mm. To minimize photo-induced laser oxidation of the samples, 

the laser intensity was maintained at 10 % (1.6 mW). TEM images were obtained on a JEOL 

JEM 2100 FX TEM system with an accelerating voltage of 200 kV. The microscope has a 

multiscan charge-coupled device (CCD) camera (ORIUS SC1000) and an OXFORD INCA X-

ray XEDS microanalysis system. SEM analysis of the 2D-Sb nanolayers was performed using 

a Philips XL 30 S-FEG microscope operating at an accelerating voltage of 10 kV. X-ray 

diffraction patterns (XRD) of the synthesized powders were obtained using an Empyrean 

powder diffractometer (Panalytical). Ultraviolet-visible spectroscopy (UV-Vis) spectra were 

collected using a Cary 100 spectrophotometer. XPS data were obtained with an X-ray 

photoelectron spectrometer ESCALAB 250 ultrahigh vacuum (1 × 10−9 bar) device with an Al 

Kα X-ray source and a monochromator. The X-ray beam size was 500 μm, survey spectra were 

recorded with a pass energy (PE) of 150 eV and high energy resolution spectra were recorded 

with a PE of 20 eV. To correct for charging effects, all spectra were calibrated relative to a 

carbon C 1s peak, positioned at 284.8 eV. The depth profile of the sample was obtained by 

combining a sequence of Ar ion gun etch cycles interleaved with XPS measurements from the 

current surface. The sputtering rate was approximately 0.07 nm·s-1. The XPS results were 
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processed by using the AVANTGE software. Surface profile measurements were performed by 

a laser microscope LEXT OLS5000 under low magnification. The photoelectrochemical 

performance of the electrodes was evaluated in the dark and under illumination in a three-

electrode cell consisting of a working electrode, an Ag/AgCl (3 M KCl) reference electrode, a 

Pt foil as a counter electrode and 0.1 M KOH, 0.5 M H2SO4 and 0.1 M Na2SO4 as electrolytes. 

The measurements were carried out by using two Autolab potentiostat/galvanostat Metrohm, 

PGSTAT101 and PGSTAT302, and a 300 W Xe lamp was used for those experiments under 

illumination conditions. The light intensity was adjusted to 100 mW/cm2 using a thermopile 

and illumination was carried out through the electrolyte. All the potentials were referred to the 

Reversible Hydrogen Electrode (RHE) through the Nernst equation: VRHE = VAg/AgCl +

VAg/AgCl
0 + 0.059 · pH . Incident Photon to Current Efficiency (IPCE) measurements were 

performed with a 150 W Xe lamp coupled with a monochromator and an optical power meter. 

The photocurrent was measured at 1.23 V vs RHE, with 10 nm spectral step. IPCE was 

calculated through the expression: IPCE % =  
Iph(A)

P(W)
×

1239.8

λ (nm)
× 100 , where Iph is the 

photocurrent measured at a wavelength λ and P is the power of the monochromatic light at the 

same wavelength. The amount of evolved gas was evaluated by Gas Chromatography (Agilent 

7820 GC System). Electrochemical Impedance Spectroscopy (IS) measurements were 

performed between 50 mHz and 1 MHz with 20 mV of amplitude perturbation, with a step 

potential of 64 mV in the anodic direction. The IS data were analyzed with ZView software 

(Scribner associates). With the extracted capacitance values from IS at the anodic region; Mott-

Schottky analysis was carried out using the expression: 
1

𝐶𝑆𝐶
2 =

2

𝜀0𝜀𝑟𝑒𝑁𝐷𝐴2
(𝜙𝑆𝐶 −

𝑘𝑇

𝑒
), where CSC 

represents depletion capacitance, 𝜙𝑆𝐶 = 𝑉 − 𝑉𝐹𝐵 is the voltage drop at the space charge region, 

V is the applied voltage, VFB the flat band potential, ND the donor density, e is the elementary 

charge, ε0 is the permittivity in vacuum, εr is the relative permittivity of TiO2, (taken as 50) 
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[23], k is the Boltzmann constant and T is the absolute temperature, taken as 298 K. From this 

analysis, the values of  𝑉𝐹𝐵 and ND were extracted.  

3. Results and Discussion 

3.1 Materials Preparation and Characterization 

Firstly, we pre-processed the bulk antimony crystals with butan-2-ol using a ball-milling 

method as described in our previous work [17]. Then, we used the pre-processed antimony 

crystals to obtain a colloidal dispersion of 2D-Sb by LPE using toluene as solvent (For further 

details see Experimental Section). The final concentration of the as-prepared dispersions was 

0.135 g·L-1 (measured upon vacuum drying the sample overnight and the obtained solid was 

weighed to know the exact amount of Sb that was in the sample).  

 
 

Figure 1. a) Representative topographic AFM image (scale bar 2 μm) of a 2D-Sb nanolayers 

toluene dispersion drop-casted deposited on SiO2/Si. b) Magnification of the blue dashed area 

in (a) showing the typical AFM topographic image of a 2D-Sb nanolayer (scale bar 100 nm). 

c) Height profile along the blue line in (b). d) SEM image of 2D-Sb nanolayers (scale bar 500 
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nm). e) TEM image of an isolated 2D-Sb nanolayer (scale bar 100 nm). f) Single-point Raman 

spectrum of the D-Sb nanolayer showed in (b). 

 

This concentration value is not as high as those previously reported in butan-2-ol, ca. 0.368 

g·L-1 [17], but suitable for films preparation by LPE. Toluene was selected as solvent  instead 

of the typical alcohols [17] because it is highly suitable for the subsequent electrophoretic 

deposition step.  Besides, using toluene does not affect to the morphological and chemical 

integrity to the obtained 2D-Sb nanolayers. 

Figure 1 shows a summary of the most significant features of a 2D-Sb representative sample. 

The morphology of the particles contained in the so-formed toluene 2D-Sb dispersion was 

evaluated using atomic force microscopy (AFM). Figure 1a-c show typical topographic AFM 

images of 2D-Sb nanolayers casted into a Si/SiO2 substrate that contains isolated nanolayers 

showing a minimum step height of ca. 4 nm (Figure 1b-c). A statistical AFM analysis has been 

also performed on the sample, based on histograms over 150 2D-Sb nanolayers (Figure S1). 

The histograms show that the mean lateral dimensions (Figure S1b), <L>, of most 2D-Sb 

nanolayers is ~ 378 nm, while the mean height (Figure S1c), <H>, is ~ 22 nm. A closer 

examination to the results collected in Figure S1 shows a limiting step height of ca. 4 nm that 

corresponds with a lateral dimension of ~ 209 nm, what perfectly agrees to that previously 

reported [17]. The ruffled morphology observed by AFM has been further confirmed by 

electron microscopy measurements using transmission (TEM) and scanning (SEM) modes. 

Figure 1d and S2 show SEM images of several 2D-Sb nanolayers, and Figure 1e and S3 show 

TEM images of isolated 2D-Sb nanolayers, all of them with lateral dimensions within the range 

measured by AFM, ca. 200-400 nm.  

To further characterize the sample quality, we have also performed Raman measurements. 

Figure 1f shows a single point Raman spectrum of a 2D-Sb nanolayers deposited on a SiO2/Si 

substrate with a thickness of ca. 12 nm, showed in Figure 1b, revealing the representative main 
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phonon peaks, the A1g mode at 150 cm-1 and Eg mode at 110 cm-1 [10]. We also performed X-

ray energy dispersive spectroscopy (XEDS) measurements in the 2D-Sb nanolayer showed in 

Figure 1e, corroborating their composition, showing small signals of oxygen (Figure S4). 

2D-Sb films were prepared by electrophoretic deposition (EPD) of a 0.135 g·L-1 toluene 

suspension of 2D-Sb nanolayers at 300 V and different time ranges for achieving different 

coverages thickness, followed by the thermal annealing at 300 °C for 1 h. Electrophoretic 

deposition is a very useful technique for the fabrication of homogeneous films of a wide variety 

of materials, including among others graphitic carbons [24,25], metal-organic frameworks 

(MOFs) [26,27], covalent organic frameworks (COFs) [28], or inorganic structures [29,30].  

 

Figure 2. a) XRD patterns of FTO, pre-processed the bulk antimony crystals and SbFTO. b) 

XPS analysis of the surface and deeper levels of SbFTO after sputtering with Ar ions. The 

colors correspond to; green - O1s, blue - Sbv, red – SbIII, orange - Sb0. c) Structure of -



  

9 

 

antimony and picture of a 2D-Sb nanolayers toluene dispersion. d) Picture of the electrophoretic 

deposition of Sb on FTO substrates. 

 

This technique is based on the phenomenon of electrophoresis, namely, the movement of 

colloidal particles upon creation of an electric field by applying a certain potential, and it offers 

the possibility to control film properties by manipulating parameters like deposition time, 

voltage or solvent [31]. Here, we will focus this work on the electrodes prepared at 300 V during 

3 min of deposition, owing to the optimum photoelectrochemical performance (as shown later 

in the manuscript). EPD over fluorine-doped tin oxide (FTO) electrodes yield a homogeneous 

2D-Sb coating of 2 µm thickness (Figure S5).  

The X-ray diffraction (XRD) pattern of the electrode is similar to that obtained for the pre-

processed antimony crystals and nicely corresponds to the peaks observed for the -antimony 

phase with crystal planes (012), (104), and (110) located at 28.5, 40 and 41.9°, respectively 

(Figure 2a) [32]. X-ray photoelectron spectroscopy (XPS) measurements indicate that the 

surface is composed mainly of antimony oxides with oxidation states of Sb III and V due to the 

thermal annealing carried out in order to improve the contact with the electrode [33]. 

Nevertheless, XPS depth profile up to 17.5 nm reveals that the bulk Sb is much less oxidized, 

showing the peak corresponding to metallic Sb (527.9 eV) in addition to the antimony oxides 

Sb2O3 (529.8 eV) and Sb2O5 (530.2 eV), which appear at lower binding energies compared to 

the surface level (530.5 and 530.9 eV, respectively). A peak corresponding to O1s was also 

observed at 531.9 and 531.5 eV for the surface, and the deeper level, respectively (Figure 2b).  

Additionally, we performed the EPD of Sb flakes over 20 nm TiO2-coated FTO electrodes [34]. 

TiO2 is a widely used semiconductor in photo-catalytic applications due to its low cost and its 

utilization in a photoelectrochemical cell has been widely reported [35]. Nevertheless, its wide 

band gap alongside its poor hole extraction kinetics hinder its capability to achieve a high 

current density upon illumination and therefore its optimal water splitting performance. Our 



  

10 

 

research group and others showed recently the formation of 2D/2D heterojunctions between a 

wide band gap semiconductor and low-dimensional pnictogens like phosphorene or 2D-Sb, 

where the intimate contact resulted in charge transfer, the quench of the electron-hole pairs 

recombination and consequently significant enhancement of the photocatalytic activity [36–

40]. Based on our previous results, and the predicted electrocatalytic activity of Sb [41], we 

decided to investigate the influence of the deposition of 2D-Sb flakes on TiO2 photoanodes and 

to evaluate its photoelectrochemical performance. XRD and XPS confirmed the successful 

coating of TiO2 electrodes. XRD patterns show the (101) crystal plane of the anatase-TiO2 at 

25.2° [42,43], as well as the contributions corresponding to Sb, by the existence of diffraction 

peaks at 25.5, 40, and 41.9° (Figure S6a). XPS shows the higher oxidation of the Sb surface 

compared to the inner levels, as proven by the peaks corresponding to SbV and SbIII at 530.3 

and 529.9 eV, respectively. After sputtering with Ar ions the binding energies of the Sb oxides 

remain in similar values and an additional chemical contribution that corresponds to metallic 

Sb can be observed at 528.9 eV. In both cases, another binding energy that belongs to O1s can 

be found at 531.2 and 530.9 eV for the surface and the inner level (Figure S6b). The interaction 

between the Sb flakes and the TiO2 was further confirmed by UV-vis spectroscopy, by the 

enhanced light scattering for the Sb-TiO2 electrode (Figure S7). 

SEM images confirm the covering of the FTO and TiO2 surface by 2D-Sb flakes of an 

approximate size of 200 nm (Figure 3, Figure S8). Additionally, XEDS imaging shows a 

homogeneous distribution of the different elements (Figure S9, S10) along the electrodes.  
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Figure 3. SEM images of FTO electrodes covered with a) 2D-Sb, b) TiO2 and c,d) SbTiO2.  

 

3.2 Photoelectrochemical activity 

 The photoelectrochemical performance of the prepared electrodes was tested in a standard 

three electrodes photoelectrochemical cell (PEC) with an Ag/AgCl reference electrode, Pt as 

counter electrode, in different electrolytes and upon 1 sun illumination [44,45]. The SbFTO 

electrodes prepared by deposition during 3 min compared to 1, 2, and 4 min show a slightly 

higher photocurrent in basic media (KOH 0.1M, pH = 13) (Figure S11a). Therefore, we decided 

to focus the study on electrodes prepared with deposition conditions of 3 min and 300 V. SbFTO 

showed a higher photoelectrochemical performance in acid electrolyte (Figure S11b, Figure 

S12), reaching 4 µA cm-2 of stable current density upon illumination at 1.23 V vs RHE for the 

course of measurement. This fact could be due to the higher stability of the passivation layer of 

antimony oxides in acidic media, and partial dissolution of the antimony oxides layer into 

hydroxides [46]. The deposition of Sb flakes on TiO2 dramatically enhances the photoanodic 



  

12 

 

performance, reaching an initial current of more than 250 µA cm-2 (vs 20 µA cm-2 of bare TiO2 

electrodes) in a basic media, 130 µA cm-2 in acidic electrolyte, and 100 µA cm-2 in neutral pH 

(Figure 4a, b). We want to note that, despite higher values have been reported in the state of the 

art of photoelectrochemical cells using materials such like perovskites,[47] bismuth vanadates 

(BiVO4),[48,49] metal oxides,[50,51] carbon nitrides (C3N4)[52,53] and more (Table S1),[54–

57] the value reported here is considerably high for TiO2-based catalysts. Additionally, up to 

our knowledge this is the first time that antimonene is utilized in a photo-electrochemical cell 

and furthermore showing such a marked enhancement. However, the high solubility of the 

antimony oxide passivation layer causes the quick decrease of the photocurrent density. The 

photoelectrodes show wavelength-dependent activity, incident photon-to-current efficiency 

(IPCE) measurements show a value of 3.4 % at 340 nm and response up to more than 400 nm, 

confirming the improvement in the charge separation of the TiO2 electrodes (Figure 4c). 

Additionally, the utilization of a hole scavenger like triethanolamine (TEOA) improved 

substantially the stability of the photoelectrodes, reaching 220 µA cm-2 after 5 on/off cycles (vs 

110 µA cm-2 without any hole scavenger, Figure S13), nevertheless the initial current does not 

differ from the one obtained in the absence of, implying the good charge separation efficiency 

and hole injection into the electrolyte for the water oxidation half-reaction. The higher 

photocurrent systematically measured with back illumination conditions reflect that electron 

transport, rather than hole transport, limits the performance of the SbTiO2 photoelectrode. The 

capability of the electrodes of efficiently separating electron-hole pairs was further investigated 

by measuring the open circuit voltage (Voc), where the SbTiO2 displayed a remarkable value 

of -0.77 V (vs -0.15 V for bare TiO2 electrodes) (Figure 4d).  
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Figure 4. Photocurrent measurements for SbTiO2 electrodes in a) KOH 0.1M, b) H2SO4 0.5M 

and Na2SO4 0.1M. c) Incident photon-to-current efficiency at 1.23 V vs RHE in a KOH 0.1M 

electrolyte. d) Open circuit voltage of SbTiO2 electrode. 

Further mechanistic evaluation of the photoelectrodes was carried out by impedance 

spectroscopy (IS). We have studied the behavior of the SbTiO2 photoanode (compared to TiO2 

reference) under different polarization conditions. The transport and recombination dynamics 

of the electrodes were determined under forward polarization (negative currents in the cyclic 

voltammograms, Figure S14), and the results clearly showed that at this regime, both 

conductivity and recombination dynamics were less favorable for PEC performance, compared 

to the reference TiO2 (Figure 5a, b).  
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Figure 5. (a) Transport and (b) charge transfer resistances extracted from EIS analysis on TiO2 

and SbTiO2 under dark and illumination conditions in the cathodic region, (c) Chemical 

capacitance and (d) the corresponding DOS extracted from IS at the cathodic region, as C = 

e·DOS, where "e" is the elemental charge. 

 

On the other hand, higher capacitance (chemical capacitance, 𝐶𝜇) was obtained for SbTiO2 

(Figure 5c), which could be indicative of higher density of catalytic sites, if the density of states 

(DOS) is calculated from this chemical capacitance as 𝐶𝜇 = 𝑒 𝐷𝑂𝑆, where e is the elemental 

charge (Figure 5d). At reverse polarization (positive currents in the cyclic voltammograms, 

Figure S13), charge transfer resistance is lower for SbTiO2 (Figure 6a), in good agreement with 

the measured photocurrents shown in Figure 3a. At this anodic region, the capacitance (Figure 

6b) is mainly dominated by the double layer capacitance (20 μF cm2 at the most anodic 

potentials). The flat-band potential and donor density of the films from were also determined 
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by Mott-Schottky analysis, although these mesoporous films are not ideal for this type of 

analysis. Estimated values for the flat-band potential around 0.18 V vs RHE and a donor density 

of around 3×1020 cm-3 were obtained for the reference TiO2 (Figure S15a, b).  

 
Figure 6. (a) Charge transfer resistance and (b) capacitance extracted for the analyzed 

samples in the anodic region. 

 

On the other hand, a flat-band potential around 0.22 V vs RHE and a donor density of around 

5×1020 cm-3 were obtained for SbTiO2 doped (Figure S15c, d). These values are in good 

agreement with previous studies on TiO2 photoanodes [58,59]. It is clear that the deposition of 

Sb flakes anodically shifts the conduction band of TiO2 and slightly increases the carrier 

density. The energy diagram for both TiO2 and SbTiO2 was determined from optical and 

electronic characterization (Figure S16). Compared to the reference TiO2, SbTiO2 exhibits a 

valence band (VB) edge located at slightly lower energy respect to vacuum level, which 

thermodynamically favors the driving force of photo-generated holes for water oxidation. 

3.3 Photoelectrodes stability 

 The stability of the photoelectrodes was evaluated by performing photoelectrochemical 

measurements for a prolonged period of time in both basic and acidic media. Despite the high 

initial photocurrent density, it decreases quickly with time, until reaching 40-50 and 30 µA cm-

2 in KOH 0.1 M and H2SO4 0.5 M respectively after 10 min, which then remains stable (Figure 
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S17a, b). The decay in the photoelectrochemical performance is attributed to the partial 

dissolution of the Sb layer in the electrolyte forming antimony hydroxides in basic media, as 

confirmed by the XRD patterns of the recycled electrode, where all the contributions 

corresponding to the -antimony layer almost vanished (Figure 17c).  

In the case of the measurement performed in acid electrolyte, where the system produced 0.03 

µmol H2 after 1 h (Figure S18) the 2D-Sb layer suffers less losses and still shows remaining 

XRD diffraction peaks of the initial -antimony. Additionally, XPS in depth profile confirmed 

the presence of the same chemical states shown before PEC measurements (Figure S17d, S19). 

      

4. Conclusions 

Liquid phase exfoliation of antimony in toluene allows the formation of a suspension containing 

2D-Sb nanolayers (200-400 nm in lateral dimensions) with a thickness of few nanometers (ca. 

4 nm). This suspension is highly suitable to produce homogeneous and well-defined films with 

thickness of antimonene on FTO and TiO2-coated FTO using electrophoretic deposition. 

The SbFTO electrodes prepared by deposition during 3 min and 300 V showed a higher 

photoelectrochemical performance in acid electrolyte, reaching 4 µA cm-2 of stable current 

density upon illumination at 1.23 V vs RHE for the course of measurement. This is attributable 

to the higher stability of the passivation layer of antimony oxides in acidic media, and partial 

dissolution of the antimony oxides layer into hydroxides. Thus, the deposition of Sb flakes on 

TiO2 dramatically enhances the photoanodic performance, reaching an initial current of more 

than 250 µA cm-2 (vs 20 µA cm-2 of bare TiO2 electrodes) in a basic medium, 130 µA cm-2 in 

acidic electrolyte, and 100 µA cm-2 in neutral pH with remarkable hole extraction kinetics as 

shown by the measurements performed in the presence of TEOA. Therefore, the so-formed 

TiO2-coated FTO films have shown promising activity as absorber and hole acceptor layer in a 

photoelectrochemical cell. The mechanistic evaluation of the TiO2-coated FTO photoelectrodes 

carried out by impedance spectroscopy shows that both conductivity and recombination 
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dynamics in the cathodic region are less favorable for PEC performance, compared to the 

reference TiO2. Nevertheless, the deposition of Sb flakes anodically shifts the conduction band 

of TiO2 and slightly increases the carrier density resulting in improved optical absorption and 

charge separation properties.  

The energy diagram for both TiO2 and SbTiO2 determined from optical and electronic 

characterization shows a valence band edge located at slightly lower energy respect to vacuum 

level, which thermodynamically favors the driving force of photo-generated holes for water 

oxidation. 
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