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ABSTRACT The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in
which indoor localization systems from different research groups worldwide are evaluated empirically. The objective
of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time
(on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers.
For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping
mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of
several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed
with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global
navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score
corresponds to the third quartile (75" percentile) of an error metric that combines the horizontal positioning error
and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and
5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and
1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large,
realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the
organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned

from the competition and discusses its future.

INDEX TERMS IPIN, competition, indoor positioning, smartphone.

I. INTRODUCTION

The international conference on Indoor Positioning Indoor
Navigation (IPIN) brings together every year around
400 experts from the industrial and academic world to discuss
the uses of indoor geolocation, discover the best technologies
in indoor positioning and indoor navigation and share the
latest innovations. The 9™ edition took place in Nantes from
24 to 27 September 2018 and reunited more than 40 national-
ities. A competition took place in parallel to the congress and
allowed teams to compete against each other on pedestrian
tracks in a very challenging realistic scenario: a shopping
mall.

Several previous indoor competition editions were held
within the EVAAL framework [1], [2] in the past. Although
the IPIN Conference runs competitions in parallel to the
conference using the EVAAL framework since 2014, this
approach was formally adopted by the IPIN Competition
in 2016 [3]. Other competitions, such as the Microsoft Indoor
Localization Competition at the International Conference on
Information Processing in Sensor Networks [4]-[6] or the
GEO-IOT world [7], targeted similar on-site competitions.
The main goal of the on-site competitions is not only to assess
the performance of the competing systems but also to evaluate
the ability of the teams to configure their indoor positioning

The associate editor coordinating the review of this manuscript and
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solutions and to successfully work in a new environment in
a very short time, usually in less than 24 hours. In the past,
on-site competitions were mainly performed in conference
venues, including hotels, convention centres and university
buildings.

Evaluating indoor positioning systems through data sets is
now emerging (e.g., Perfloc [8] or the IEEE CTW 2019 Posi-
tioning Algorithm Competition [9]), since it enables all teams
to work with the same data and technologies for fair bench-
marking. Contrary to on-site competitions, where the teams
have to survey the area in their own way for calibration pur-
poses, off-site competition organizers provide all the required
data to calibrate and evaluate the indoor positioning systems.
Thus, since IPIN 2015, the indoor competition includes an
off-site track. At first, it was based on a Wi-Fi fingerprinting
database collected at three different buildings in a university
campus [10]. Since 2016, the Smartphone-based off-site track
provides all data that can be captured in real-time with a
smartphone [11]-[13]. Using data sets for the competition has
enabled the inclusion of new buildings, which in turn added
diversity to the evaluation areas.

However, these past competitions did not include complex
realistic indoor spaces such as public populated environ-
ments, which provide an extra challenge and are of high
relevance for any real-life indoor application. Although the
conference venues were populated, some restrictions applied
to the on-site competitions to avoid disturbing the conference
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regular activities. Therefore, in 2018, we decided to target
this issue and organized the IPIN competition in a shopping
mall, Atlantis. Thus, calibration, site surveying and evalua-
tion were performed under realistic conditions during com-
mercial opening hours, including rush hours with crowded
corridors. To better reflect the challenges introduced by this
new scenario, as well as the latest innovations in indoor
positioning technologies, a total of four different competition
tracks, two on-site and two off-site, were organized in the
shopping mall. This paper aims at presenting the methodol-
ogy adopted to organize this competition and discussing the
results achieved by the competitors before drawing general
conclusions.

The paper is structured as follows. Sections II and III
describe the preparatory work: design of the pedestrian
routes, geo-positioning of the reference points in the building
and creation of data sets for the off-site tracks. Section IV
focuses on the different approaches deployed by the competi-
tors. Section VI draws the lessons learned from the competi-
tion at the levels of the organization and the participants.

Il. PREPARATION OF IPIN 2018 COMPETITION
TRACKS AND DATASETS
This section describes the preparation of the IPIN 2018 com-
petition tracks, which has been carried in partnership with the
French High School of Surveyors and Topographers (ESGT),
under the supervision of the GEOLOC laboratory of the
French Institute of Science and Technology for Transport,
Development and Networks (IFSTTAR). The competition
was also prepared in collaboration with the Institute of New
Imaging Technologies (INIT) from Universitat Jaume I and
other institutions.

The IPIN competition basically consists of two main parts:
an on-site and off-site competition, although every part can
have one or more tracks in the competition:

o The on-site challenges occur at the competition location,
i.e. the conference venue or, as in this case, a shopping
mall. The teams deploy their own Indoor Positioning
System (IPS), respecting and obeying the restrictions
set by organizers, and estimate in real-time the coor-
dinates of the target points as they are reached by the
person carrying the location system and following a
track previously arranged by the organizers. Competi-
tors are allowed to access the venue the day before the
competition for calibration and site survey.

o The off-site challenges allow competitors to calculate
traces from data provided to them before the competi-
tion. Data are of various nature: Wi-Fi, magnetic field,
inertial signals, Bluetooth Low Energy (BLE), etc. They
comprise two parts provided to competitors: The first
part of the dataset is recorded on a geolocated path (or
paths) where the geographical coordinates of the refer-
ence points and the corresponding data are provided; this
path is used for calibration; the second part of the dataset
are raw data from the same location where previous data
were taken, and their coordinates must be estimated by

148596

the competitors. To ensure fair competition, an addi-
tional site survey is not allowed to competitors.

In both cases, a common evaluation framework is applied.
The individual positioning error corresponds to the 2D posi-
tioning error plus a penalty term in the case of incorrect floor
detection. The final score is either calculated in meters at
the third quartile or extracted from the function of cumula-
tive error distribution at the third quartile. This information
corresponds to the highest error for the 75% of the esti-
mates. Several recommendations of the ISO/IEC standard
18305:2016 [14] have been taken into account to define the
IPIN 2018 competition performance metrics.

A. TWO ON-SITE CHALLENGES

On-site challenges involve competitors who compute the
coordinates of the waypoints on which they walk, in real-time
and using their technology. Computation was not limited to
the embedded or hand-held devices, but competitors had to
provide the estimated locations of the evaluation waypoints
immediately after reaching the end of the evaluation path.
i.e., post-processing was not allowed. All estimated coordi-
nates must be reported by the competitors to the organizers
when the end of the route is reached. On-site competition
comprised two challenges, which only allowed hardware
worn on the upper body part, prohibiting Lidar technology
and infrastructure deployment in the environment. Indeed,
Lidar mobile mapping systems are generally for accurate
indoor mapping. They are considered as reference solu-
tions rather than personal navigation systems to be tested.
As described in the next section, a Lidar system was used to
compute the 10 cm accurate coordinates of all the waypoints.
There were two on-site competition tracks: camera-based and
non-camera-based.

1) TRACK 1: CAMERA-BASED POSITIONING CHALLENGE
The 1% on-site challenge allowed the use of camera enabling
vision-based localization. All vision-based technologies were
accepted except laser-based technology, like Lidar, that was
excluded from the competition. Competitors were allowed
to visit the shopping mall during normal opening hours the
day before the competition for calibration and surveying
purposes, but they were not allowed to install any kind of
hardware that could help their device to estimate the loca-
tion (e.g., BLE beacons, Wi-Fi routers or UWB tags). This
prohibition was also in compliance with the Infrastructure-
Free requirement placed by the shopping mall regulation. The
track organizers provided the coordinates and heading of the
starting point on the competition day. During the competition,
competitors were asked to perform some specific actions,
classically done by pedestrians indoors. Fig. 1 illustrates
some of these actions: sitting on a bench, going upstairs and
standing on a conveyor belt.

2) TRACK 2: NON-CAMERA-BASED

POSITIONING CHALLENGE

The 2™ on-site challenge followed the same rules and
requirements as Track 1, but the use of cameras was
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FIGURE 1. Photos of the diversity of environments and pedestrian motion
types for the competition (travelator, sitting on a bench, staircase).

forbidden. All equipment had to be carried on the upper part
of the human body, including trouser pockets. This restriction
was added to the track to explicitly exclude foot-mounted
Pedestrian Dead Reckoning (PDR) techniques, addressed in
Track 4. Competitors were asked to perform similar actions
as in Track 1.

B. TWO OFF-SITE CHALLENGES

Following a pre-study and the experience of previous IPIN
competitions, two off-site tracks were defined for the off-site
challenges, namely the Smartphone-based positioning chal-
lenge and Foot-mounted IMU and GNSS based positioning
challenge.

1) Track 3: Smartphone-based positioning challenge

The first off-site challenge aimed at testing the location tech-
nologies solely based on smartphone measurements recorded
by a person who had walked through the mall. This track
matched the off-site tracks organized in the 2016 [12] and
2017 [11] IPIN competitions.

To determine the parts of the shopping mall that were
usable for the off-site smartphone-based positioning, sev-
eral data acquisitions were carried out with the “GetSensor-
Data” Android application version 2.0 [13]. This application
records all data acquired with most of the sensors embedded
in a smartphone (WiFi RSS, Inertial measurements, Blue-
tooth low energy RSS, GNSS location, pressure, light and
sound intensity,. . .), and stores it in a log file. We divided
the shopping mall area into five parts and performed a loop
in each part to collect the data. These data were analyzed to
identify the areas that could not be used for the competition:
without Wi-Fi or BLE coverage or white coverage areas.

VOLUME 7, 2019

The analysis showed that all regions were sufficiently cov-
ered, except for some parts of the car parking areas where
the Wi-Fi signal was particularly weak. Data provided to
the competitors for this challenge were registered with the
same ‘““‘GetSensorData” Android application in three phases:
training, validation and evaluation.

For the training and validation phases, some short tra-
jectories were defined in the evaluation area to record the
required data. Training data is usually used for calibrating
the IPS, whereas validation data can be used by the teams
to estimate the accuracy of the developed solution. However,
competitors can use both datasets at their own discretion.
Each short trajectory was collected multiple times in both
walking directions. A total of 22 training and 15 validation
log files were provided to the competitors.

A 1 km path was recorded with the application for the eval-
uation phase, generating a blind evaluation log file without
reference waypoints. This dataset provided to the competitors
for track 3 [15] (raw signals and reference points coordinates)
can be downloaded for further bench-marking. Fig. 2 (left
part) shows the data acquisition for Track 3.

FIGURE 2. Smartphone data collection in the shopping mall for Track 3
(left part). Foot-mounted PERSY device used in Track 4, which includes a
STIM 300 inertial unit, an HMC5983 magnetometer and a NEO-M8T GNSS
receiver (right part).

2) TRACK 4: FOOT-MOUNTED IMU AND

GNSS BASED CHALLENGE

The second off-site track was dedicated to foot-mounted iner-
tial and GNSS navigation. The data were collected with the
unit PERSY (Personal Reference SYstem, Fig. 2 right part)
developed by GEOLOC at IFSTTAR. It comprises a 9 degrees
of freedom inertial unit and a GNSS receiver and antenna
[16], [17]. Two datasets were prepared. The first one was used
for sensor calibration and the second one for the calculation
of the coordinates of the waypoints. The usage of maps was
completely forbidden in this track.

First, the magnetometer calibration dataset was recorded
in an undisturbed geomagnetic environment by performing
rotations around the different sensor axes. It is a standard
procedure for ellipsoid fitting based magnetometer calibra-
tion algorithms [18]. It was complemented with data for
conducting an Allan variance analysis [19], [20] of signals
recorded during several hours in a static location to determine
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noise and measurement bias of inertial sensors. These data
were provided to the participants to enable them to calibrate
the device with their algorithms.

Finally, a dataset was recorded over 1 km of walking dis-
tance on three floors and provided to the competitors for the
computation of the coordinates of the waypoint. The purpose
of this challenge was to compare pedestrian navigation algo-
rithms based on inertial, GNSS and magnetic measurements
on similar data. The dataset provided to the competitors for
Track 4 [21] (raw signals and reference points coordinates)
can be downloaded for further bench-marking.

Ill. ACCURATE MAPPING OF THE TRACKS

This section describes all the steps carried out to accurately
map all the tracks, in the form of a sequence of ground-truth
points whose coordinates were determined with 10 cm accu-
racy to enable the competitors’ IPS performance assessment.

A. DEFINITION OF THE EVALUATION TRACKS

The first task consisted in defining the evaluation tracks in
the shopping mall for the four challenges proposed in the
IPIN 2018 Competition. To avoid that competitors in one
Track could get information from other tracks, different paths
were used for every single challenge. On the other hand, it is
important to note that it was the first time that, to make it more
realistic, the competition took place in a very large, real-life
public environment, which complicated the challenge. The
shopping center Atlantis has 151 stores and 31 restaurants on
a 14000 m? area spread over 3 levels.

The four paths were sketched on the floor maps. We con-
sidered the positioning technologies involved in the chal-
lenge when designing the evaluation track and included some
challenging parts such as stair climbing, passages by eleva-
tor or on a treadmill, breaks on benches, and other real-life
activities in the shopping mall to resemble realistic walking
trips. Table 1 shows the description of the four paths.

TABLE 1. Comparison of the four challenge paths.

Real-time - on-site challenge

Path Name Length | Floors | Breaks | Challenges
Track 1: Use of travellator
Camera based 870m 3 3 Parking area

Use of travellator
Track 2: 840m 3 2 Use of stairs

Outdoor area
Parking area

Non-Camera based

Post-processing - off-site challenge

Path Name Length | Floors | Breaks | Type of spaces
Track 3: 1 km 3 2 Use of elevator/lift
Smartphone-based Use of travellator
Outdoor areas
Track 4: 1km 3 2 Parking areas

Use of travellator
Use of stairs

Foot-mounted IMU

Finally, the paths were plotted on the map and then char-
acterized as a sequence of representative waypoints, mostly
turns and intermediate points in long rectilinear paths. A total
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of 180 waypoints were identified on the map. All the way-
points were later surveyed and mapped into WGS84, serving
as ground truth. Although some waypoints are shared among
the four tracks, their sequencing and the actual pedestrian
route needed to reach them is different. Evaluation tracks
with a large number of evaluation waypoints are necessary to
conduct relevant statistical analysis of the positioning errors.

B. MATERIALIZATION OF THE TRACKS

The different paths were mapped in Autocad using the build-
ing’s floorplan, after a stage of clean-up and adaptation to
our purposes. The organizers used small and discreet self-
adhesive pads (Fig. 3) to mark the waypoints located on the
ground surface. The solution had to be easily and quickly
positioned on-site (due to their large number), not very vis-
ible (so as not to disturb the shopping mall staff and attract
the attention of customers) and should be able to last for
the surveying over several days. We placed the 180 stickers
throughout the gallery, using the Autocad plans previously
made. For each sticker, we had prepared an identification
card with the serial number, sketches, photos and explanatory
notes. These cards were used on the competition day to re-
position all the waypoints.

FIGURE 3. Marking the ground points to map the 180 waypoints
constituting the pedestrian tracks during the shopping mall survey (left
part) and during the on-site competition day (right part).

C. SETTING UP A NETWORK OF REFERENCE

SURVEY POINTS

Given the international nature of the competition, the geo-
graphical coordinates used in the competition were expressed
in the standard system WGS84 instead of using a
local or regional projection system. The coordinates of
the waypoints were therefore provided in WGS84. Other
geographical systems were used to post-process the mea-
surements recorded by two dynamic scanners. The French
RGF93 CC-47 projection system was adopted and the defor-
mations due to linear distortion were compensated in the
estimation of the coordinates.

As no reference points were marked in the various
plans provided by the building’s architect, RGF93 reference
points were surveyed. Two GNSS receivers Leica System
500 were used using the free pivot method. Five reference
points were materialized and accurately surveyed outdoors.
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FIGURE 5. Network of GNSS and theodolite reference points used to
georeference the shopping mall plans and perform global adjustment of
indoor waypoints.

Several GNSS points, previously surveyed on the roof
(Fig. 4), were used to ensure a good distribution throughout
the shopping mall. The network of reference points is shown
in Fig. 5.

Thanks to these reference points, it was possible to com-
pute the coordinates of two stations located in front of the
shopping mall entrances. Indoor stations were determined
by theodolite measurements and served as reference points
for the 3D scanner indoor mobile mapping. All indoor
surveyed coordinates were transformed from RGF93 into
WGS84 using the EUREF Permanent Network website
considering that RGF93 corresponds to ETRF2000 and
that ITRF2014 version 2017.91 is homogeneous with
WGS84 within 10 centimeters. The same system was kept for
the competition day that went through several months after
the mobile mapping.

D. MOBILE MAPPING OF THE SHOPPING MALL

A total area of 9000 m? was dedicated to the competition and
surveyed by two mobile scanners deployed by the Viametris
company [22]. The bMS3D is carried in a backpack whereas
the iMS3D is a mobile robot scanner. Both systems are shown
in Fig. 6.

VOLUME 7, 2019

FIGURE 6. bMS3D-360 and iMS3D mobile mapping systems from
Viametris.

The iMS3D was used in the galleries on the ground floor
and the bMS3D was used for the paths on different floors,
stairs and pedestrian parts in the car park area. The sur-
vey lasted two hours and did not include GNSS data. The
bMS3D scanner surveys points up to a maximum distance
of 30 meters with minimized noise but can theoretically aim
for further distances. The iMS3D scanner surveys points
up to 30 meters, but it is programmed to 10m to 15m
for the same reasons. The iMS3D includes three profiling
lasers and a panoramic camera to colorize the point cloud.
Unlike the fixed laser scanner, which measures all around it
thanks to a rotation of its laser, the profiling laser propagates
only in lateral and horizontal planes. It is the movement of
the operator that allows the acquisition of a complete point
cloud. Its characteristics are a precision of 2cm to 3 cm for
a resolution of 80000 points/s. It has a 10cm per 100 m
deviation in the horizontal plane. Coordinates were estimated
by Simultaneous Localization And Mapping (SLAM) pro-
cessing. [23], [24] give tutorials on SLAM. The bBMS3D
comprises four cameras and two scanners. The cameras take
pictures every second to colorize the cloud. An inertial unit
estimates roll and pitch angles and provides the horizontal
plane reference. Its characteristics are 50 cm per 100 m 3D
deviation and 1 per 1000 deviation for the X and Y com-
ponents. 50cm up to 1 m deviations were observed in the
dataset.

Known coordinates on the corners of walls at the ends of
the gallery were needed for the global point clouds adjust-
ment in a post-processing mode with PIMMS software [25].
They were surveyed with a theodolite and used to georefer-
ence the SLAM acquisition. The backpack survey started on
a known reference point allowing connecting with iMS3D
point cloud. A 5 per 1000 deviation was observed on the
global adjustment due to dynamic obstacles (movements of
persons) and due to the reflections on the mirrors and the
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FIGURE 7. Keyframes in green (left) for the backpack acquisition and
colorized point clouds (right).

windows of shops through the gallery. The start and end
positions of the acquisition were identical to close the loop
and bond the drifting errors. Finally, the point clouds were
colorized using the photos to produce more realistic resti-
tution of the scenes. Fig. 7 shows mobile mapping outputs
and [26] is a video of the results. It was found that even
the tile joints and the writings on the ground stickers could
be seen in the final point clouds. The targets’ coordinates
were then extracted by hand from the georeferenced points
clouds by analyzing the images. A 2cm to 10 cm standard
deviation on the 3D positioning error was obtained for all
180 reference points used to define the competition tracks
and assess the performances of the competitors’ systems.
Maps were provided to the competitors—except to the teams
participating in Track 4—as supplementary materials.

IV. INDOOR POSITIONING SOLUTIONS

PROVIDED BY COMPETITORS

This section gives a short description of every technique
deployed by the competitors in every track. The presentation
of solutions is done according to the team name alphabetical
order.

FIGURE 8. Detection of light-sources on a binary image and their
extracted center mass points.

A. TRACK 1: CAMERA BASED POSITIONING CHALLENGE
1) ARIEL1 TEAM

a: VISUAL INDOOR POSITIONING

Team Ariel 1 considers a navigation system that includes a
visual sensor (camera) and an orientation sensor. The process
of extracting visual landmarks consists of the following two
steps: Image processing and Extraction:

Image Processing: the ceiling lights are considered as
landmarks, and a simple threshold filter can be used for their
extraction as depicted in Fig. 8. That results in a binary image
I, from which the center mass, c, is extracted of each visual
landmark. The process is performed in two main steps: first
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FIGURE 9. The concept of using ceiling lights as landmarks for indoor
navigation.

extracting the contour y of each landmark that appears in /p;
and second, average through all points g € y. Fig. 9 shows
the general concept of using lights for indoor navigation. Few
additional geometric properties of each light-source are ana-
lyzed, including center, radius and a compact representation
of its perimeter (contour).

Extraction: For each spotted visual landmark center c, rep-
resented as a two-dimensional vector ¢ = (cy, cy), the relative
world vector connecting the visual sensor and the landmark
(in world coordinates) is pursued. The first step is to calculate
the Intrinsic matrix K33 of the visual sensor which is known
as “Camera Calibration”. The relative vector is then:

v=w-( DI - k! )

where w is a scale factor of mapping R? to R® which is
unknown. Hence, ¥ € R3 can be calculated up to a scale.
Finally, the acquired vector ¢ is rotated by the device self-
orientation to align it with the world coordinate system.

b: PUT IT ALL TOGETHER

The system used implements pedometry (i.e step-counter,
optical flow), that is used as a rough position estimation to
define a region-of-interest. The fusion problem is addressed
with a modified particle filter. Commonly a particle filter
is used with the initial area of the filter covering all the
evaluation map (and converging to the most likely Probability
Density Function). Instead, in the proposed system the search
is confined to the Region Of Interest (ROI). Once the ROI is
reported the relevant particle’s weight is increased. This way,
the true position is likely to be inside the predefined area.
To fuse detected visual landmarks, each particle’s weight
should be modified. Weights are modified according to some
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weight function that compares the particle state with the true
state. Some particles are periodically spread outside the ROI
to overcome the ‘kidnap robot’ situation. The generic particle
filter algorithm is presented below:

Algorithm 1 The Generic Particle Filter Algorithm
Data: ROI-point, ROI-radius, Particles, Landmarks
Result: Location.
for p € Particles and vs € Landmarks do

state(p) < action(pedometry,p);
increase p weight if p € area(ROI,ROI-radius);
w < weight-function(p,vs);
weight(p) < weight(p)-w;
end
Location «<— weighted-sum(Particles);

A real-world localization scenario often includes complex
sensory data: outliers, inaccurate and partial sensory infor-
mation. Moreover, human factors can influence the sensor
measurements and therefore contradict the pure Bayesian
inference filter, see [27] for details regarding the ways to
overcome those challenges.

c: VISUAL LANDMARKS MAPPING

The process of visual landmark mapping follows the fol-
lowing steps: 1) preprocess the visual measured data and
extract the visual landmark vectors vy, that correspond to
each landmark (Section IV-A.1.a); 2) the visual landmarks are
then registered (mapped) in real-world coordinates relative
to the environmental map (note that the task of mapping a
complex building such as a shopping mall that may have
hundreds of light sources might be challenging and time-
consuming); and 3), a light source is spotted and tracked
along a path, the position of the light source is then estimated
as the weighted average of all the intersections of the 3D
vectors to that source.

d: FIELD EXPERIMENT AND RESULT IN A SHOPPING MALL
Few large scale experiments were performed in crowded
shopping malls. Each experiment was divided into two steps:
1) Mapping; and 2) Localization and accuracy evaluation.
Mapping an average size shopping mall can be done within
a few hours including testing the map and validating it. The
level of accuracy varied between high accuracy (0.5-2 meters)
and low accuracy (5-20 meters) when the visual sensor was
blocked.

2) ARIEL2 TEAM

Team ARIEL 2 presents a smartphone indoor positioning
system (IPS) based on recent Augmented and Mix Reality
(AR and MR) tools such as Google’s ARCore or Apple’s
ARKit. The AR tools are used as visual pedometry (scaled
optical flow) sensor, which is then fused with an advanced
version of a localization particle filter to produce both accu-
rate and robust solutions for various indoor positioning appli-
cations. The presented method allows a simple and efficient
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mapping solution that, combined with the localization par-
ticle filter, allows 1-2 meter positioning accuracy in most
standard indoor scenarios.

a: THE BASIS OF INDOOR POSITION

The user global position can be retrieved from existing
geolocation services (e.g., Google Maps Geolocation API).
Such user location is commonly approximated using radiofre-
quency (RF) signals (4G-3G, WLAN, BLE) and even weak
global navigation satellite system (GNSS). The accuracy
of such methods is considered to be ‘building level”
(10m to 50m) or “room level” (Sm to 10m). The user’s
relative position is often computed using a pedometer. The
smartphone-based pedometer is composed of two major
virtual-sensors: 1) “Step-counter’’: which detects discrete
step-events; and 2), Orientation sensor, which approximates
the user’s global/relative direction. Combining the two parts
allows a step-based relative path computation. Naturally, such
a method tends to drift in time (and steps). Many modern
IPSs combine the above two positioning methods to achieve
an accurate and global localization (with no drift).

b: PARTICLE FILTER FOR LOCALIZATION
A particle filter method represents the posterior distribution
of a set of particles P (|[P| = n) on a given map, the result
of such algorithm is a new set of particles P’ with a (slightly)
different distribution (see Algorithm 2).

Algorithm 2 Generic Particle Filter Localization
Algorithm
Input: Black and white 2D map of each floor in the
navigation region.
Init: generate a set P of n particles. For every x; € P a
random location < x, y, z > in uniform distribution over
the map.
Result: Estimated 3D-Position : | =< x, y, z, >
while True do
1) Estimated the current movement
< Ax, Ay, Az >.
2) Apply an action-function on all particles in P.
3) Evaluate the weight of each particle according
to its new position on the map.
4) Re-sample the particles — P’
5) Report the current best-position.

end

In order to implement the above generic algorithm the

following functions should be well-defined.

« Movement estimation: computes the 3D movement
vector according to the scaled optical-flow algorithm.

o Action function: Translate each particle according to
the movement vector (in 3D). To prevent the conver-
gence of the particles from happening too fast (and by
that risk missing the true location), a small random noise
is added to each particle.
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« Evaluate: compute the updated weight of each particle
according to the map constraints.

o Re-sampling: The process of choosing a new set of
particles P’ from P according to the particles’ weights.

c: ADVANCED ALGORITHM: AUGMENTED REALITY

The advanced algorithm improves the location accuracy
thanks to improved mapping and sense functionality, both
applicable using the new AR smartphones’ technology. The
field of AR has evolved dramatically in recent years. Major
companies released powerful SDKs (e.g., Google’s ARCore
and Apple’s ARKit), allowing developers to harness AR abil-
ities for geolocation applications. AR platforms have the
following features: 1. Feature points detection and tracking.
2. Visual-based optical-flow. 3. Plane recognition and track-
ing. The first two allow estimating the user 3D-movement
and orientation in real-time. This information can be used
as an improved alternative for a IMU-based pedometer. The
third feature is exploited to improve the mapping and the
particle filter sense function. It is detailed in the two following
subsections.

d: ADVANCED ALGORITHM: MAPPING

The advanced particle filter relies on the existence of a
pre-made map (of the region of interest) divided into the
following “colors”, shown in Fig. 10. A: Accessible area
(white), B: Unaccessible area, such as walls and fixed barriers
(black or brown), C: Accessible area, in fixed width, tied
to the B regions (pink), D: Area near floor-changing, such
as stairs and elevators (yellow). The generated map is the
foundation of the particle filter algorithm and further used to
determine the particles’ weights.

FIGURE 10. Evolution of the particles in the localization Filter. In white:
accessible zones (4) and in black and brown: inaccessible ones (B). At the
init. state, the particles are uniformly distributed (left map). Using the
short motion vector, the particles get organized in few clusters (middle
map). Then the particles converged to a single position

cluster (right map).

3) ETRI/HANA MICRON TEAM

ETRI/HANA MICRON team (ETRI team), as a part of an
Indoor Navigation project, investigate vision-based localiza-
tion approaches. They are interested in monocular visual
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SLAM applications in public buildings like airports, train and
subway stations, shopping malls, etc. A common problem in
such dynamic environments is the presence of moving people
and objects in the input images which degrade the accuracy
of the localization results.

To deal with this, ETRI Team focused on the use of seman-
tic information to process detected sparse features according
to their reliability for localization purposes. A monocular
SLAM is developed, following a common approach [28]
using sparse feature-based visual odometry in combination
with semantic segmentation filters on the input images.

In parallel to this approach, which requires continuous
streaming of images from the phone camera to the PC based
implementation, single image-based localization approaches
with much lighter communication load were also investi-
gated. More specifically, PoseNet [29] (based on the PyTorch
implementation [28]) for relocalization was experimented,
planning to replace it later with the map-based relocalization
provided by visual SLAM.

The main implementation was not completed in time
for the IPIN2018 competition and was ended up using the
PoseNet based relocalization with a filter over the estimated
positions. The implementation ran on a notebook computer
receiving images from a smartphone at about 5 frames
per second. On the day before the competition, images were
collected from reference points (spaced about three meters
apart) along a set of likely trajectories in the mall. The dataset
preparation and model training were performed using cloud
servers.

Looking back at the results, the relocalization approach
performance was affected by the sparseness of the collected
dataset and the limited time for model training/tuning. For
example, several sections of the testing trajectory were out-
side of the areas covered by the dataset. Collecting only once
along a trajectory resulted in the inclusion of a bright red
service vehicle (used in light fixtures repair) that was gone
by the time of the test run. In cases like this, when sufficient
variance in the scene could not be captured, the ability to use
additional semantic information would have been helpful.

4) GOOGLE TEAM

a: AR MOTION TRACKING

Recent developments on ARCore [30] for Android devices
(based on the previous Project Tango) and ARK:it [31] for
10S made it possible to accurately track motion using visual-
inertial odometry (VIO) [32] in smartphones. The types of
phones with ARCore enabled include Google Pixel, as well as
various Samsung, LG, and Asus phones. However, the track-
ing is estimated with respect to the initial camera pose, not
in a global coordinate frame. The Google Team proposed a
method to automatically align a local trajectory with global
coordinates, using either a few accurate landmarks — or ref-
erence positions —, such as visual markers on the map, and/or
many noisy landmarks, such as the ones from the Android
Fused Location Provider (FLP) [33].
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b: RIGID TRAJECTORY ALIGNMENT

The solution proposed is a least-square minimization between
global locations (X, ¢) where A and ¢ stand for longitude and
latitude in radians, and (X, y) are the local coordinates with
respect to the initial pose of the camera, subject to the rigid 2D
transformation: (xp, yo, @). Time-stamped local trajectories
are recorded with corresponding global anchor locations,
then perform point-wise least-square error minimization is
performed:

min Y " wl(x — %)% + O — y1)°] @)
X0,30,0¢
with w a weight for the position. Anchor (x, yp) corresponds
to the locations from global latitude / longitude:

xp = (A — Ap) - cos(¢o) - R
yo = (¢ — o) - R 3)

where R is the radius of the Earth (6 378 137 m) and (1q, ¢¢)
indicates the start location of the camera, (x;, y;) are the local
trajectory coordinates obtained by motion tracking:

X = xo + cos(@) - x + sin(a) - y
yi = yo — sin(@) - x +cos(a) - y 4)

For FLP locations, w was set to 1/d? where d is the reported
accuracy in meters. For user-provided accurate landmarks,
d was small, e.g. 0.1 m, which results in large w. Given the
2D transformation (xg, ¥, &) computed from Eq. (2), and any
coordinates from the location trajectory (x;, y;), the locations
in the global coordinate system are obtained:

A = ho =+ (% /(R - cos(¢)))
¢ = ¢o+ (/R o

The optimization is performed at a 0.1 Hz fixed sampling rate
in real-time.

¢: LANDMARKS FROM INITIAL LOCATION AND DIRECTION
For the 2018 IPIN competition, the initial location (1g, ¢q)
and direction (fp) were given and used as accurate global
markers. The initial location (1g, ¢o) is a landmark by def-
inition. The initial direction was used to compute the second
landmark, by A1 = Ao+L cos(6p), 1 = ¢o+L sin(fy), where
L is the length along the initial direction.

d: FLOOR DETECTION

The accuracy of ARCore is around 2cm in the horizontal
plane, but it is noisy vertically. Vertical changes obtained
from ARCore for indicating the vertical movement only, and
the barometer sensor was used to obtain the actual height
changes. It was assumed that all floors were the same height.
The system worked well in most buildings, but failed in
Atlantis Mall in testing, as the height of the second floor was
significantly lower than the first.
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e: MULTI-SEGMENT ALIGNMENT

Although ARCore is accurate locally, it may jump in dis-
tance or direction from time to time. It is mandatory to detect
those jumps and perform global alignment to each segment.
All segments except the first are used as FLP global anchors,
as no interaction with the map can be performed during the
test.

B. TRACK 2: NON-CAMERA BASED

POSITIONING CHALLENGE

1) ETRI/SNU/HANA MICRON TEAM

This technical description presents the indoor positioning
technology that was implemented on a smartphone for the
Track 2 of IPIN 2018 competition by ETRI team.

Most smartphone-based indoor positioning applications
implement a hybrid approach based on multiple resources
such as Wi-Fi, BLE signals and inertial sensors. Since the pro-
posed ongoing project targets commercially available prod-
uct, ETRI Team focused on pure smartphone-based PDR
and image-based localization, from the perspective of main-
tainability and sustainability. For Track 2 competition, PDR
was applied as one single source of positioning. Since the
competition venue of IPIN2018 was a large commercial mall,
it was quite challenging for smartphone PDR to maintain the
required level of accuracy during the course of the competi-
tion. To deal with this situation, an intrinsic PDR algorithm
was tried to be enhanced.

PDR system consists of three basic steps: step detection,
step length and heading estimation. To detect a step, peak
detection using accelerometer magnitude is widely used in
PDR. However, simple peak detection method only compares
current and previous accelerometer values, which degrades
detection accuracy. In order to eliminate unwanted steps,
the detected timestamps between steps and threshold value
are considered. Once a step is detected, then the relative
distance between current and previous steps is estimated.
One of the powerful factors to estimate step length is to use
linear relationship between step frequency and step length;
the faster a user walks, the longer the step length is [34].
Another feature that is correlated with step length is the
vertical acceleration. These two features are linearly com-
bined for the stable step length estimation. Besides that, step
length values are adjusted for certain walk patterns, such as
corner walk, staircase walk, etc. Heading accuracy is closely
related to the overall performance of PDR. Even though step
detection and step length estimation are accurately done,
the position accuracy is severely and gradually degraded
when the device is not pointing along the walking direction.
The direction of the device was then estimated using built-in
gyroscope and accelerometer filtered in an attitude reference
system (ARS). ARS exploits attitude calculated by gyroscope
and accelerometer. Accelerometer output gives the roll and
pitch angles under stationary condition. In order to combine
the attitudes from gyroscope and accelerometer, Extended
Kalman Filter (EKF) is applied to estimate the error states:

148603



IEEE Access

V. Renaudin et al.: Evaluating Indoor Positioning Systems in a Shopping Mall

attitude errors and gyro bias. Gyroscope bias is continuously
updated and the acceleration vector is used as a measurement
when stationary condition is detected.

In parallel, the use of semantic information was devised to
assist heading drift, which causes a critical error in localiza-
tion. Here, semantic information includes map information
such as nearby angle values, floor change zone, etc. Dynamic
heading adjustment was applied using the semantic informa-
tion, and it was proven reasonable performance in the ETRI
team site.

Looking back at the result, the performance of the approach
was affected by the limited time for exploring the competi-
tion site and data verification. We found to main reasons of
unsatisfactory performance at the time of competition. One is
misaligned map information, and the other is delayed logging
of estimates for waypoints. Although the error compensation
using external information worked well, it was challenging to
endure such a long path without any other positioning aid.

2) KYUSHU TEAM

This technical description presents the indoor positioning
technology that was implemented based on PDR and Map
Matching for the Track 2 of IPIN 2018 competition by
Kyushu team.

Since the chest has fewest unexpected movements in the
upper body while walking compared with a hand or a head,
it was selected as a novel IMU installation position. As well
as other PDR frameworks, a step is first detected, and then
a step length and direction are computed from the temporal
sequence of accelerations and angular velocities. To adapt
the PDR system to the chest-mounted IMU, novel regression
model is proposed based o step length and direction estima-
tion. In addition, an efficient map matching algorithm based
on particle filter with barometric pressure was integrated.
This largely suppresses the error accumulation on the position
and heading of the pedestrian in the building when the step
estimation causes some error. For the development, NGIMU!
was used. It can be wirelessly connected to a laptop so that
the computation was performed on the laptop. The detailed
description has already been published [35], and the source
code is available online.”

a: STEP ESTIMATION
To separate the sequential data into the steps,an approach
based on filtering and thresholding for the norm of the
acceleration was “‘used. This process is the same as that in
other PDR systems. The norm of the 3D acceleration in the
sequence is first computed, and a low pass filter is applied to
it. Finally, the peeks are extracted because they correspond to
the moments when the foot hits the ground. In other words,
one step is defined as the interval from a peek to the next one.
The next process is to compute the step length and
direction. Fig.11 illustrates the conceptual figure on the

1 http://x-io.co.uk/ngimu/
2https:// github.com/rairyuu/PDR-with-Map-Matching
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FIGURE 11. Conceptual figure on velocity changes at foot and chest.

velocity changes of foot and chest while walking. For the
foot-mounted IMU, zero velocity update is useful because
the foot can be fixed while it is attached on the ground.
However, the chest normally does not stop while walking, and
its velocity change is periodic. From this characteristic, it was
empirically formulated that the displacement of one step can

be computed by:
D:K~//a(t)dtdt (6)

where a(z) is the 3D acceleration at time ¢, the range of the
integral is the duration of one step, and K is a scalar parameter
that needs to be calibrated for each user. In particular, K is
always negative because the chest is first decelerated, and
then accelerated in one step. Since the orientation of the
IMU is updated by using the Madgwick method [36] all the
time, the acceleration here is described in the world frame
where z axis is parallel to the gravity direction. This means
that the integral of the accelerations with K in x axis and y
axis corresponds to the moving length and direction. With
Eq. 6, it can simultaneously be estimated the step length
and direction from the accelerations without estimating the
velocity to avoid the drift error.

b: MAP MATCHING

A particle filtering based map matching algorithm was used
with a back tracking test [37]. The following components for
multi-floor PDR were selected to constraint the movement on
the map:

o line is used for the wall that can not be crossed.

o zone_no_particle represents the region where pedestri-
ans cannot come into, and therefore the existing particles
will be deleted, and new particles can not be generated.

o zone_update_altitude represents the region where the
altitude can be changed such as stairs, escalators, and
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elevators so that the altitude will be updated according
to the movement.

o arrow is used for explicitly describing the direction of
the possible movement at zone_update_altitude such
that arrow_up connects to the upper floor, arrow_down
connects to the lower floor, and arrow_both connects to
both floors.

A map editor was also implemented, whose input was the
map images, and output was a set of files which contains
the multi-floor building information. The users simply input
points and connect them to create the map.

3) TUM TEAM

The high level architecture of TUM team system consists of
seven components: 1) User’s Context Extraction; 2) Map,
which is responsible for mining the corresponding Open
Street Maps Model; 3)Pedometer, that is responsible for
detecting steps; 4) Initial Direction; 5) the Direction esti-
mation; 6) Particle Filter, responsible for the fusion of the
aforementioned components; and 7), the Visualize Loca-
tion, that is responsible to visualize the estimated location
(see Fig. 12).
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FIGURE 12. Localization module architecture.

Map is responsible for parsing the map and for identifying
elements that belong to walkable areas, such as stairs, corri-
dors or pathways.

Grammars enhance map elements using established stan-
dards, like based on standards regarding the minimum width
of corridors.

Particle Generation generates a set of randomly posi-
tioned particles S,k [x X;, k] where x is the j particle at

time k and WJI.‘ is the normahzed Welght of the particle, with
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uniform prior distribution, as described by the Monte Carlo
simulation.

Particle Filter. The proposed filter is used to model the
probability density of the state vector Xy = [xk, Yk, 17 at
step k by N, particles. According to [38]-[40] and assuming
a first-order hidden Markov model, the posterior filtered
density p(xx|zox) is approximated by:

N,

Z W(t) S(Xp — (l)) 7

p(xxlzox) ~

where zo.x defines the measurement vector for the time steps
0....,k, §(-) stands for the Dirac distribution, x,(f denotes
partlcle state and w,((/) denotes the normalized weight. The
conditional probability is P(S¢|z;, Si—1) = P(z|Ss, Si—1)
where S; and S;_1 are the current and previous state vectors
respectively. z; is the observation, which in the proposed case
is z; = min(Spap — Sr), where Spqp is a vector of all points in
the map.

Motion Prediction is an implementation of the dead reck-

oning process where the motions are modeled by:

Xk X1+ p- COS(ékfl)
Ye | = | Yk—1 4 p - sin(B—1) 3
Ok Op_1 — 06

where xi, yr and 6 are the coordinates and direction at time k.
Xr—1 and y;_1 are the previous coordinates. p is the traveled
distance and 0y, is the followed direction.

In the Update phase, each particle’s weight is computed
based on the assigned probabilities, a model that describes a
set of restrictions and a motion predicted mechanism. Hence
the weight of the i particle at time k, wg) is defined by:

where p(x(l)|8(l)) describes the conditional probability of the

th particle being at location X at time k given the nearest
distance 8 to the nearest corridor. p(x,i') |9,£')) describes the
conditional probability of the particle being at location X,
given its current heading direction 6. Finally, p(x,il)|oz,((l)) is
the conditional probability of the particle being at location X
at time k given the current activity .

Resample. For proper resample, two additive Gaussian
noise models are used on top of the motion prediction mecha-
nism, in order to compensate direction and step length uncer-
tainty.

Initial Direction. In order to extract an initial direction,
the phone’s accelerometer and magnetometer are used to
calculate the phone’s pose and later the rotation matrix (roll,
pitch and yaw angles).

Direction Estimation For the direction estimation, a low
pass filter is first applied to remove human motion noise and
then the angular velocity is computed. Positive or negative
sign to the values is assigned to indicate whether there is a
right or left turn respectively.
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Step Detection. In the step detection module a peak detec-
tion module is applied, which detects peaks caused by the
action when the heel strikes the ground.

Visualize Location. After calculating the new positions of
the particles using the dead reckoning algorithm, weighted
through a fusion with the map and the user context,
the weighted average of the particles position is displayed as
the final position to the user.

Context Extraction. This module is responsible for
collecting data, filtering noise, segmenting sensor values,
extracting features and for the classification of these values
in a series of activities.

4) UPJS TEAM

The UPJS team approach focuses on indoor positioning using
low-cost smartphones with built-in sensors. Floor plans are
assumed to be available and no additional building infras-
tructure is required. A relative position is determined using
Pedestrian Dead Reckoning (PDR). Bayesian filtering is
introduced to deal with the uncertainty from the noisy sensor
measurements. A step is detected from acceleration data,
which triggers a computation of a new position estimation.
The step heading is obtained from filtered values of the device
orientation information. The positioning is performed on a
single floor. If a floor change is detected using barometer
measurements, the system is reset. In this case, a new initial
estimation is set to the predefined location from a set of all
possible transition platforms (e.g., elevators, stairs) in the
building and previous location estimates.

Our main research focus is on the Bayesian filtering espe-
cially on grid-based methods [41]. Prediction and update are
two stages of the filtering, where the prediction spread the
probability density function according to the transition model
and update stage decreases the uncertainty using measure-
ments and observations. The grid-based filter approximates
a continuous state space by a grid of regularly distributed
isolated points. Values of conditional probability density
function are computed only at these grid points. The method
has high computational demands making it suitable for real-
time indoor positioning only by assuming a low-dimensional
system state. In this approach, every state is defined by
a position in 2D space. The state transition is performed
using the PDR with a fixed step length and the obtained
step heading in addition with the noise model. The transition
between two states represented by grid points is accomplished
using a convolution with pre-computed convolution masks
for various possible step lengths and directions. The update
stage resets the belief value to zero for all grid points denot-
ing inaccessible positions and movements, e.g., locations at
obstacles, outside the map, motions through walls.

Walls and convex polygons composing accessible posi-
tions in the building are manually labeled in the floor plans.
The map model is automatically generated and the floor plan
is tessellated into a regular grid, where a point represents
an area of 33 x 33 cm? denoting a single grid cell with the
belief value. The grid-based filtering approach is elaborated
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and the positioning error introduced by discretization of the
map is reduced using a centroidal grid approach. The same
procedure is performed for the belief computation. However,
the current position is not always represented by a center of a
grid cell, but it is selected from the set of points in a finer grid
according to the transition model. A single grid cell consists
of 11 x 11 finer grid points.

The system proposed by UPJS team fuses PDR and map
model using the grid-based Bayesian filtering. The analysis
of the competition results show the applicability of such
approach. However, even with the calibrated step length for
the user, the main drawback of the solution is that the fixed
step length causes the system to be less robust to different
paces and walking styles in a realistic scenario.

C. TRACK 3: SMARTPHONE BASED

POSITIONING CHALLENGE

1) ARARADS TEAM

AraralPS is Arara’s proprietary indoor positioning technol-
ogy. Arara is engaged in developing advanced knowledge
solutions and producing high-quality technology to address
modern business and industry challenges. AraralPS has been
one of the central issues in Arara agenda for the last two
years. It is a functional indoor positioning system on its way
to become a commercial solution in the next months.

AraraDS team approach to indoor positioning has four
distinctive characteristics: 1) it is based on a cartographic
paradigm (fingerprinting); 2) it uses a discretization of
the predicted floor/building, 3) it is measurement-agnostic
(i.e. its abstract formulation is not specific to any kind of
signal or measurement such as WiFi, magnetic field, BLE,
etc.); and 4) it exploits measurement history. In the following
paragraph it will be shown how AraralPS works.

Fingerprinting has become a popular technique for indoor
positioning. Traditional positioning methods are generally
based on principles such as trilateration or triangulation,
in which sufficient geometric information (with respect to
reference landmarks) is used to compute the position of the
object to be located. These methods are based on strong
hypotheses that usually do not hold in the dynamic, cluttered
context of indoor spaces, like the need of a clear line of sight
between the object and the reference landmark to establish a
functional one-to-one relation between the distance and the
signal’s intensity.

The system also relies on the discretization of the indoor
space. In practice, this means that a graph is built from the
map of a venue, in which nodes are possible locations where
the tracked device can be found and edges connect neigh-
boring nodes. This effectively turns the positioning problem
into a classification one, in which the prediction is one of the
finitely many possible locations. It has the further advantage
of ruling out inaccessible locations (e.g. walls) and thus
avoiding complicating the prediction task.

The final part of our system enriches the information avail-
able in the prediction module by including the measurements’
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FIGURE 13. Sample graph on the competition scenario, each blue dot represents a graph node.

history, exploiting the fact that measurements closely related
in time will be strongly correlated. Thus, it is expected the
prediction to narrow in on the true position with a greater
confidence as time goes by. The mathematical formulation of
this idea is the use of a random walk on the graph of the venue,
in which transition probabilities at a given epoch depend
on the measurements at the same epoch. This dependence
is made precise by the underlying measurement and node
transition probabilistic models, which in the proposed system
authors choose not to disclose.

2) MCLIPS TEAM

Team ‘mCLIPS’ adopted an empirical approach, only based
on WiFi, for indoor positioning. In this approach, some
important features of the received signal strength indicator
(RSSI) vector are selected to exploit the similarity measure
and index order of the access points (APs) in the RSSI
list of a WiFi device [42]. The basic principle of the pro-
posed approach is the following: instead of relying only on
the RSS similarity measure, the system takes into account
other features available in the RSSI list and their efficiency
weight to identify candidate positions with high precision
and robustness. The selected features have several dimen-
sions. The K value and the kRMSE parameter calculation are
selected to control the diversity effects of WiFi environments
[43]. To exploit the spatial distribution of candidate reference
points around the ground truth, another parameter called
centroid distance is used [44]. To control the effect of the
diversity of different mobile devices, the entropy parameter is
adopted from ranked based approach [45]. In addition, these
features are combined to compensate complementary weak-
nesses. As a result, the algorithm of the proposed fingerprint
matching approach is more efficient and robust than algo-
rithms already available in the literature for fingerprinting
purposes. To find the best match among multiple candidate
fingerprint locations with a minimum error distance, the pro-
posed algorithm along with conventional RSSI similarity
calculation in fingerprint matching process also calculates
the order difference of the APs in RSSI list with respect
to the signal strength at a particular reference point (RP).
The following sections describe the steps of the proposed
technique.
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o The first step is the selection of K. K selection applies

to the WiFi infrastructure present in the environment
and is directly proportional to the good APs in the envi-
ronment. According to the Good AP definition in [46],
APs with consistency in presence at particular refer-
ence points are of great importance compared to others
that disappear in consecutive scans. Eq. 10 and Eq. 11
describe the selection of K.

Grp,
Krp, = — (10)
Trp,

KrssiList - Mean(Kgp, , Kgp,, . .. Krpy) + C)
(11)

Grp; and Tgp; are Good AP count and Total AP count to
each cell of the fingerprinting DB, respectively. KrssList
is the total AP count in a particular RSSV. The variable
C is the standard deviation.

From an empirical point of view, it has been observed
that the existence of RP corresponding to the ground
truth is high among the RP candidates having a high
number of AP matches. Therefore, the maximum match
count (MMC) of APs relative to the number of neighbors
is an important measure used to avoid outliers that have
a high correlation but a lower value for the number of
neighbors.

The root means square error (RMSE) is one of the impor-
tant parameters that plays a key role in the similarity
calculation of fingerprints. Experimentation shows that
in indoor radio environments, some areas lead to the
selection of outliers with low RMSE values due to a
strong correlation between some access points with low
RSSI values. Therefore, to prioritize the candidate loca-
tions having a higher number of AP mappings, a kRMSE
of candidate location is calculated that includes an
additional division with the number of APs compared
(i.e. MMC) to RMSE calculation.

Another important parameter for filtering the estimated
positions is the distance from the center of gravity [47].
After computing kRMSE of each candidate, the aver-
age location of the top ordered N RPs relative to the
minimum kRMSE value is selected as centroid point.
In the proposed algorithm, the position of the centroid

K
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is calculated by taking an average of the coordinate
values (X, Y) of each selected candidate position. The
Euclidean distance of a candidate RP from the calculated
centroid is called the centroid distance. This distance
from the centroid is used to define the RP priorities that
are closer to the centroid point.

« Next, the entropy error is another important measure
after KRMSE to estimate the similarities of each candi-
date location RSSI list in the database against the RSSI
list received online. The proposed algorithm calculates
Avj; for each corresponding AP in both RSSI lists, first
by sorting the two RSSI lists relative to the RSSI level,
then measuring the difference of AP index in both lists
(Eq. 12). In addition, the order difference of an AP with
a stronger RSSI is minimized by multiplying it by the
RSSI level (RSSly;;) divided by -100. Empirical results
show that the position accuracy performance of the pro-
posed entropy parameter outperforms the ranked based
approach [45]. Therefore, entropy helps in limiting the
strong candidates around the ground truth by calculating
the order difference of each AP with respect to its signal
strength.

RSSIy;;

TR

Avyji = |y — Icji) -

k
A .
% where k < K (13)

Entropy =

where Iy;; and I¢j; are indices of matched APs in online
and candidate RSSI list from DB, respectively.

o Finally, the FACT calculation is performed to select
the final candidate location. FACT calculation begins
with the normalization of the parameter values of each
selected candidate. Then the FACT is calculated as a
product of kRMSE with the sum of Entropy and Dy,
as detailed in Eq. 14. The candidate RP with the least
value of FACT is selected as the final position estimated
by the proposed algorithm.

FACT = kRMSE - (Entropy + Donyy)  (14)

3) EGEC TEAM

The algorithm used by EGEC Team is based on PDR and map
matching. WiFi RSSI information and magnetic field strength
information are also used to build the fingerprint databases,
to provide the initial position and improve the algorithm’s
precision and stability. The sensor information used in this
algorithm includes the inertial measurements (accelerometer
and gyroscope), WiFi RSSI, magnetic field strength and air
pressure. In particular, the map information provided by the
competition organizers is fully utilized in the map matching
algorithm to correct the pedestrian’s position and direction.
Figure 14 shows the technical route of the algorithm.

a: PEDESTRIAN DEAD RECKONING (PDR)
The PDR algorithm (Fig. 15) mainly uses mobile phone sen-
sors like accelerometers, gyroscopes and magnetometers to
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FIGURE 14. The technical route of the algorithm.
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FIGURE 15. The PDR algorithm for calculating the pedestrian walking
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estimate pedestrian’s step number, step length and direction,
and then calculates the pedestrian walking trajectory and
position. The initial position used in the PDR algorithm is
given by WiFi RSSI fingerprint. The air pressure is also used
for the floor switching.

The PDR algorithm contains a step detection, a step length
estimation and a direction estimation algorithms. Compared
to traditional PDR algorithms, it uses an optimized physio-
logical model of pedestrian gait, which is more adaptable and
stable for pedestrian step detection and step length estimation.

b: MAP MATCHING

PDR algorithm is affected by cumulative errors, which may
result in locating the pedestrian outside of the indoor road
network with large calculation errors. In that case, a map
matching algorithm is used to match the current pedestrian
location with the indoor GIS maps provided by the competi-
tion’s organizers.

The map matching algorithm used in this manuscript is
the optimized ST-matching algorithm, that fuses the indoor
road network location, direction and pedestrian speed. It fully
utilizes the map information and is more suitable for the
indoor positioning and navigation.

¢: FINGERPRINT MATCHING ALGORITHM

The algorithm uses also WiFi RSSI, magnetic field strength
to build WiFi and magnetic fingerprints. They are used to pro-
vide the initial position and correct the pedestrian’s direction
and position estimation errors. The WiFi fingerprint matching
algorithm is the cosine similarity algorithm. The geomagnetic
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FIGURE 16. The Kalman filter is designed to combine different calculation
results of these algorithms.

fingerprint matching algorithm is the contour matching algo-
rithm. These matching algorithms can significantly improve
the accuracy and reliability of the solution.

d: THE FUSION FILTER

A Kalman filter combines the different algorithms’ estimates
and provides real-time, accurate and stable indoor positioning
results, as shown in Fig. 16.

4) HFTS TEAM

The HFTS algorithm used in the 2018 competition is based on
WiFi and pedestrian dead reckoning (PDR), and a particle fil-
ter (PF) (Fig. 17). It is an evolution of the algorithm deployed
at the 2016 competition [48] and the 2017 Competition [49].
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FIGURE 17. Scheme of the HFTS PDR/WiFi/PF algorithm.

For the dead reckoning, heading estimation is performed
using compass and gyroscope data. The gyroscope is able to
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detect heading changes quite accurately on a short timescale,
but will drift in the long-term. In contrast, compass heading
is subject to strong local magnetic perturbations but shows no
drift on a long-term scale. Therefore, gyroscope data is used
to detect immediate heading changes. The heading relaxes
to the compass direction with a certain time constant of
some seconds. Step detection is performed by peak detection
of the accelerometer data.

WiFi positioning is performed using the scalar product
correlation fingerprinting algorithm [50] which is based on
k — nn and the cosine similarity. Prior to the estimation
of the unknown competition track, a radio map is obtained
by evaluating the reference data provided by the competi-
tion organizers. These data are enriched with true ground
positions and RSS readings. Therefore obtained RSS vectors
can be related to a position. As the true ground readings
occur only rarely, the actual reference position between two
reference points is interpolated by PDR.

The actual positioning process comprises 2 phases. In the
first phase RSS positioning is performed with the radio map.
RSS readings are obtained at a rate of one reading every 4 sec-
onds. For each reading a position is estimated. The floor is
also estimated by RSS. If the actor is moving, the position will
change considerably within the 4 seconds between two RSS
readings. Therefore, the position between the two readings
is interpolated using PDR. The heading offset and the actual
step length are not known at this stage. However, since the
RSS position estimates exist for the start- and the endpoint
of the 4 second period, the step length and heading offset are
adjusted such that the track connects the two points.

In the second phase, positioning is performed employing
PDR and a particle filter. Step length estimation and heading
error- and drift compensation are performed by the particle
filter using the information of floor plans to detect the most
likely path (see also [51], [52]). The particle filter contains a
constant number of particles. Besides the position, a particle
state also comprises individual step length and heading offset
values. The filter is updated each time a step is detected.
All particles are moved according to the estimated heading,
individually modified by the particle specific offsets. Resam-
pling is performed as follows: particles who collide with,
for example, a wall, are replaced by new ones. For collision
detection, the provided floor plans are used. New particles
are seeded at the position of an existing particle, but with
randomized step length and heading offset value. The global
heading and step length are recalculated by averaging the
heading values and step length of all particles. The reported
PDR position is the averaged position of all particles.

Depending on the building layout (e.g. open spaces, corri-
dors, room sizes, etc.), the PF results alone may not be suffi-
cient for absolute position determination. Therefore, the step
length and heading are also adjusted by the obtained WiFi
position from phase 1: After each step the longitudinal- and
the lateral displacement between WiFi and PF position are
evaluated and a configurable fraction of the displacement is
added to the movement vector.
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It is planned to further improve the algorithm by also
considering magnetic fingerprinting.

5) TUM TEAM

The system proposed by TUM team, Ariadn, can be divided
into two main modules. The first module is responsible for
the localization and its functionality is embedded in a smart-
phone; and the second module is responsible for detecting and
localizing landmarks and keeping up-to-date a classifier that
enables ‘“‘on the fly”’ localization.

a: THE LOCALIZATION MODULE

The localization module is responsible for localizing the
user following a modified particle filter approach. The main
components of this module, presented in Fig. 18, are now
described.
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FIGURE 18. Localization Module Architecture.

OSM Model. Existing information from Open Street Maps
is imported to enable the generation of particles.

Grammars. They are heuristics following standards that
help to create a finer geometry. They are necessary due to the
OSM limited information and they are inspired by [53].

Particle Generation. In this module, the newly con-
structed map is restructured as a set of randomly generated
particles, with uniform prior distribution, which follows the
Monte Carlo simulation description.

Initial Direction. The initial direction is estimated follow-
ing an opportunistic approach, based on the users context
(i.e. “‘user transit indoors”, ‘‘user is ascending stairs”, etc.).
When this is not possible, the direction is extracted from the
compass after the phone pose (i.e. on hand, in pocket etc.) has
been extracted.

Step Counter. In the step counter module, the current
number of steps is estimated based on the repetitive pattern
caused in the accelerometer from the human bipedal move-
ment.

Localization. Ariadne provides horizontal and vertical
localization, where the horizontal localization is based on
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Dead Reckoning, while the vertical is based on the barometric
formula.

Quantify Confidence. In every unit of time new particles
are generated, weighted based on the probability of being the
target’s true location. Their weights are quantified based on
map restrictions or model predictions.

Visualize Location. Finally, the particle with the highest
probability is visualized as the real location.
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FIGURE 19. Landmark Selection Architecture.

b: THE LANDMARK SELECTION MODULE

The Landmark Selection module (Fig. 19) is responsible for
extracting landmarks from raw sensor data that have been
extracted while the user was localized from the localization
module and for localizing the user once a model is available.
Its components are:

Classification. In this module sensed values from WiFi,
geomagnetic and GSM sensors are imported to a support vec-
tor machine classifier responsible for predicting the location
of the client.

Raw Data. The raw streamed sensor values are then
labeled based on their spatial coordinates, estimated from the
localization module, and are stored in a database.

Cluster Analysis. A cluster analysis is performed on the
collected data and the optimum number of clusters is been
estimated.

Fusion. Once the number of clusters has been identified,
weights are assigned to the clustered values and the data are
aggregated based on their proximity.

Clustering. Once the data are aggregated, they are clus-
tered based on their characteristics, forming rectangular
shapes whose edges are tangent to the walls in the map.

Labeling. The new created clusters are now labeled based
on coordinates of the rectangular that they include. The size
of the rectangular, in the localization phase, will indicate the
localization confidence.

Clustered. The clustered and labeled data are now stored
in a database.

Training. Once there are enough data and with a regular
interval, a classifier is trained on them and more precise
localization is enabled.
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6) UGENT TEAM

The core of UGENT team location tracking system is a route
mapping filter [54] that is based on a motion model and the
Viterbi principle, a technique related to Hidden Markov Mod-
els and backward belief propagation. The physical layout of a
building is used to construct the most likely path instead of a
sequence of independent, instantaneous estimates. This post-
processing filter ensures physically realistic trajectories and
has been shown by independent researchers to outperform
traditional approaches such as smoothing particle filters [55].
During the initialization, the route mapping filter starts with
N paths (e.g., 1000 starting points) that are located in a circle
around the best first estimation given the first WiFi measure-
ments and a fingerprint map based on the training data [54].
These N paths are updated each time new WiFi measurements
become available. The next candidate positions, starting from
the current last points of the paths in memory, are determined
based on a maximum walking speed (derived from a step
counting algorithm using the available accelerometer data),
and the walls and obstacles of the building (people cannot
move through walls). Each path consists of a chain of grid
points and a cost that indicates the probability of this path at
this time step. The path with the lowest cost after processing
all sensor data is the most likely trajectory. The cost of a
path is the sum of costs based on various sensor measure-
ments: WiFi RSS measurements, barometer, accelerometer
and gyroscope data:

WiFi. The RSS values are compared to the corresponding
reference values in a fingerprint map and are weighed based
on the estimated distance to the WiFi access points. The
fingerprint map itself is based on all training data, grouped per
BSSID and per grid point. Missing grid points in the finger-
print map are filled in based on interpolation of neighboring
grid points (that do have measurements), with a certain upper
limit, e.g., Sm.

Barometer. The differences between the average pressure
over a short (5 seconds) and a long window (30 seconds)
are used to detect up or down floor changes when the differ-
ence exceeds a certain threshold based on the training data.
Furthermore, a cooling-off period is implemented to avoid
changing floors multiple times within a short time span. Paths
that do no change their current floor in the right direction
(by taking the escalator or elevator) get an additional cost
assigned. By default, this additional cost is set to the floor
height or floor penalty (15 m).

Accelerometer, gyroscope, and mobile phone 3D orien-
tation. These data are fused together and used to detect the
step count, stride length and orientation between two loca-
tions updates; combination of these three gives the traveled
distance and direction. The difference between this traveled
distance and direction, and the distance and direction between
a grid point and its parent grid point (i.e., the previous grid
point of the path) are used as an additional cost. This penalizes
paths that move when the accelerometer and gyroscope esti-
mate that the user is standing still; and also paths that remain
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(a) b)

FIGURE 20. Floor plan modeled as polygon with details of the grid.

static when the user is moving; or paths that take a turn in the
opposite direction.

The physical layout of the building is modeled by a shape-
file, constructed with QGIS, the PDF maps with georefer-
enced points, and a plugin to reference the raster to the
projected coordinate system by creating a GeoTIFF file. Each
floor is represented by a polygon with the floor id as a feature
value and likewise, the escalator and elevator are represented
by a polygon with the start and end floor as a feature value
(Fig. 20(b)). The route mapping filter uses this shapefile as
input to construct a grid database with a certain grid size, e.g.,
1 m, and a reachable database, consisting of the reachable
grid points, for each grid point (Fig. 20(a)). The reachable
grid points are the neighboring grid points that do not cross
walls or obstacles, and the above or below grid points if they
are located within the polygon of an escalator or elevator (and
correct floor level). This grid and reachable database are used
to select the next candidate positions in the route mapping
filter, given the current last points of the paths in memory
and the time that has passed since the last location update.

7) WHU TEAM

The method used by Wuhan University team utilizes data of
many sensors available in a smartphone. The main method
combines PDR, Wi-Fi fingerprinting and magnetic matching.

The PDR algorithm processes accelerometer, compass,
gyroscope and barometer data. Similarly to PDR algorithm,
compass and gyroscope signals are used to estimate heading
and accelerometer signal is used for step detection. In contrast
to traditional PDR, barometer data is used as an important
source for the altitude estimation to detect much more pre-
cisely the floor.

Since the competition organizers have provided a training
set, the team took full advantage of the WiFi signals to con-
struct a fingerprinting database. WiFi fingerprinting method
is an attractive indoor positioning method but the training data
was limited. That is the reason why magnetic information
was fully used. It is important to note that the geomagnetic
sequence and fluctuations are often similar when people pass
through the same path. These anomalies are, therefore, highly
reliable. The position of the reference was used to control the
position drift error of the inertial navigation system.

8) YAI TEAM

YAI team fingerprinting method first leverages the three-
axis accelerometer to build trusted known points associated
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with APP time. Next, the team uses WiFi received signal to
reconstruct the WiFi fingerprints. Finally, the system com-
pares both, the Euclidean distance and the similarity of the
received WiFi behavior metrics to compute the final localiza-
tion results.

a: STEP DETECTION

The training dataset gives the coordinates (longitude and lati-
tude) of some known points, i.e. POSI, but these POSI points
are sparse in the space domain. To build a WiFi fingerprint,
coordinates of many other points than the known POSI points
have to be estimated. Therefore, first, the system assumes
that the walking path between two consecutive POSI points
follows a straight line. Then, the sensed data of the three-axis
accelerometer is used to estimate the number of steps between
two known POSI positions. This can be done by finding
the local maximum points of the magnitude of the output
of a three-axis accelerometer between two POSI points. The
magnitude can be expressed as:

M; = M; — E {M;} (15)

where M; = ‘/xiz ~|—yi2 —i—z?; Xi, Vi, and z; are the values

of a three-axis accelerometer at epoch i. The symbol E {-}
denotes the averaged operation. Lastly, we use inter- and
intra-polation to estimate the locations of the interpolated
points between two POSI points. At this stage, we have a table
which lists 4-tuple for each record: (APP Time, Longitude,
Latitude, Floor Number).

b: GENERATION OF THE FINGERPRINTING TABLE

Next, the received RSS values from each access point (AP)
are associated with the 4-tuple table. Note that the APP time
of receving the RSS values is not synchronized to the 4-tuple
table. However, over short time duration, the location of a
walking man should be pretty similar. Thus, the location with
the closest APP time is chosen to generate the fingerprinting
table.

¢: POSITIONING METHOD

The positioning method simply consists in comparing a
N-tuple received RSS values with the WiFi fingerprinting
table. In addition, a metric called ‘““Similarity of the WiFi
receiving behavior (S value)” is defined. It is used to measure
the distance of the N-tuple received RSS values with the
records in the WiFi fingerprinting table. Since the received
RSS values with each AP are not stable, it is better not to com-
pare all the entries of the fingerprinting table with the N-tuple
received RSS values. Instead, the entries of the fingerprinting
table, which have the highest S value, are compared with the
N-tuple received RSS values. The two proposed ‘“‘similarity
of the WiFi receiving behavior metrics”, S1 and S, are:

Si; 1= ) sen(x) - sgn(yy) (16)
J

S, = Z[ (sgn(x)), sgn(yy)) (17)

J
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where x; denotes the j-th entry of the received N-tuple;
yij denotes the j-th entry of the i-th record in the fingerprinting
table. sgn(-) is a sign function defined as follows:

0 ifx>0

sgn(x) := { —1 otherwise (18)
and I (-, -) is an indication function defined as follows:
_Jlifx=y
Ix,y) = {0 otherwise (19)

Finally, the Euclidean distance is calculated between the
N-tuple and the records in the fingerprinting table which
has the largest first two S values and the location of the
N-tuple with the smallest Euclidean distance is obtained. It is
important to note that, in general, S} is used as the similarity
of the WiFi receiving behavior metric. However, when the
sparsity of the N-tuple is high, S, is adopted as the similarity
of the WiFi receiving behavior metric instead.

D. TRACK 4: FOOT-MOUNTED IMU AND

GNSS BASED CHALLENGE

1) AOE TEAM

The system proposed by AOE team is a human foot-mounted
PDR. Fig. 21 gives an overview of the solution comprising
three different modules.

The bottom module is an IMU device with four sensors: an
accelerometer for measuring acceleration af 41 » @ gyroscope
for measuring angular rate wﬁ’ ', 1> @ magnetometer for mea-
suring magnetic field of the Earth of - and a barometer for
measuring barometric pressure of the Earth, with which the
person’s altitude, 4,1, can be calculated.

The middle module includes five components: the Stance
& Still Phase Detection, the HDR, the ZUPT, the ZARU,
and the Earth Magnetic Yaw. Meanwhile, the Stance & Still
Phase Detection includes two components. The GLRT detec-
tor algorithm is used under slow and normal pedestrian gait
speed condition and the HMM detector algorithm is used
under high dynamic and fast pedestrian gait speed condition,
such as fast walking. When the Stance & Still Phase Detection
detects the stance and swing phases of human foot gait from
IMU’s data, the HDR, the ZUPT, the ZARU, and the Earth
Magnetic Yaw utilize these data to estimate the error vector
M1 (81, 80,1, 8vi41) (Fig. 21), where 8yi41, Sf,,
and 8v;41 denote the bias error of yaw, the bias error of
angular rate and the bias error of velocity at time 741 , respec-
tively. m;+1(6¥s+1, Sa)f iy 8vs41) is the most important input
data for successfully bounding errors in the EKF algorithm.
Since the EKF mechanization part processes dynamic data
that are related to position, velocity, and attitude, it relies
on the Stance & Still Phase Detection to apply the HDR,
the ZUPT, the ZARU and the Earth Magnetic Yaw updates.

The top module includes an INS and an EKF. The INS
system alone can’t cope with the IMU drift. The EKF, along
with a properly constructed sensor fusion scheme, can how-
ever estimate the IMU biases. Therefore, it can help the
INS in reducing the IMU drift. To mitigate possible gross
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Acceleration

FIGURE 21. The Scheme of IMU/EKF+HMM+ZUPT+ZARU+HDR+Compass algorithm.

errors in the measurements, a fault detection method based
on the innovation vector is adopted. It can effectively detect
and remove the gross errors to ensure that only accurate
measurements are fused.

a: EXPERIMENTAL EVALUATION

In this section, the proposed algorithm is implemented in the
indoor experiment, in order to evaluate the accuracy of the
position estimation of the foot-mounted PDR system. One of
the experimental data result is shown in Fig. 22. The errors
in the horizontal plane for the three groups of test data are
detailed in Table 2.

The Plane projection Trajectory
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FIGURE 22. Route line Plane projection.
AOE algorithm has been tested in the real indoor environ-
ment. The experiment shows that the algorithm can effec-

tively eliminate the error accumulation of the IMU device,
with a high accuracy.
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TABLE 2. Route line plane error assessment results.

Point No. Point | Point | Point | Point | Point | Point | Closed | Error
2 5 6 9 10 13 error length
Plane er- | 0.160 | 0.248 | 0.452| 0483 | 0.576 | 0.616 | 0.672 0.217%
ror 1 (m)
Plane er- | 0.301 | 0.410 | 0.603 | 0.688 | 0.797 | 0.759 | 1.084 0.350%
ror 2 (m)
Plane er- | 0.182 | 0.205| 0.324 | 0.342 | 0451 | 0.502 | 0.643 0.207%
ror 3 (m)
IMU
~h Position
@ Velocit

Attitude

Motion State

Integrity
Check

Motion based )
Filter Urel

FIGURE 23. Concept of the INS/GNSS data fusion. The different parts of
the INS are colored in blue and the augmentation of GNSS data is colored
in yellow.

2) KIT TEAM

In Fig. 23 an overview of KIT team tightly-coupled
INS/GNSS sensor data fusion approach is illustrated. The
current position, velocity and attitude are propagated with
a strapdown-algorithm considering the specific force and
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gyroscope measurements. The measured inertial signals are
corrected with estimated sensor bias values. Zero-Velocity-
Updates (ZUPTs) are generated in the detected midstance
phases of the foot by a finite state machine based gait phase
classifier [56]-[58]. In contrast, horizontal ZUPTs and delta
ZUPTs are applied during stance phases using an eleva-
tor. Absolute velocity measurements are generated during
stance phases on an escalator [59]. If GNSS pseudo-range
and Doppler measurements are available, the kind of aiding
depends on the current classified motion state. To enable
accurate position estimation in urban scenarios, an integrity
check of the received GNSS data is essential [60]. Based on
the described measurements, corrections of the navigation
solution and the bias values of the inertial sensors are calcu-
lated by the Error-State-Stochastic-Kloning-Kalman-Filter.

a: GAIT PHASE CLASSIFIER

The proposed finite state machine based motion classifier
method is founded on biomechanical knowledge and medical
research findings of the human gait. Because the foot module
is solely mounted on one foot, it is appropriate to model four
basic motion states for forward motion, as shown in Fig. 24
and described in detail in [57]. The transitions and states
representing backwards motion and the detection of walking
and running are explained in [58].

Loading Terminal
response stance

Initial Initial
contact contact

Loading

Midstance
response

Swing

FIGURE 24. Compact subdivision of the human gait of the motion
classifier during one step forward in four different motion states: Loading
response, Midstance, Terminal stance and Swing [58].

b: ELEVATOR AND ESCALATOR DETECTOR

KIT team approach is able to detect and separate elevator
from escalator movements [59]. In addition, the elevator
and escalator rides are subdivided in different sub-states
like acceleration phase, constant velocity phase and braking
phase. The elevator and escalator detector is realized with
two separate finite state machines; one for the recognition of
elevators and the second for the detection of escalators. The
finite state machines have different states and transitions to
switch between the states.

c: GNSS AUGMENTATION

A tightly-coupled INS/GNSS integration is used for the
pedestrian navigation system. The precise relative position-
ing INS is fused with GNSS pseudo-range and Doppler
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measurements for absolute position and heading estimation.
Unique is the decision depending on the classified motion
state if Doppler measurements improve the accuracy of the
navigation solution. In addition, the integrity of the GNSS
signals are checked. The good knowledge of the system
precise relative positioning inertial system is used to detect
and exclude GNSS measurements with high multipath errors.
This is essential for robust pedestrian localization in dense
urban environments with outdoor-indoor transitions.

3) WHU TEAM

In the last several years, WHU team has been working on
developing an accurate and reliable pedestrian navigation
system (PNS), which will significantly increase the safety of
military personnel and first responders.

The data sources used in WHU solution are IMU data and
GNSS raw data. Magnetometer is not included due to its
vulnerability to disturbance (especially indoors). The basic
navigation algorithm adopted is quite simple and commonly
consists of INS mechanization, zero-velocity detector, and a
complementary Kalman filter (KF), as shown in Fig. 25.

Mechanization Equation

IMU

Acc > VL f dt > f dt —— Position
T -Tg \——bVelocity

Gyro > [ ar - > Attitude

Static Ifeedback
Detection
[ @ «

FIGURE 25. Block diagram of the basic navigation algorithm.

The Foot-Mounted INS signals are integrated with GNSS
signals in a loosely-coupled manner. To get rid of gross error
as much as possible, satellites with small elevation should be
discarded. Some measurements with poor quality based on
the magnitude and covariance of the innovation vector can
also be rejected. Even though the heading is not observable
when a GNSS signal is not available, heuristic methods like
zero integrated heading rate are adopted because it is not reli-
able and accurate enough for a statistical grade or better IMU.

The height precision should be sufficient to distinguish
between different floors. Some constraints, employed effec-
tively, mitigate the error drift along the vertical channel in
the absence of barometer. When walking up and down stairs,
the slope can be seen as constant in most cases. So the
system is able to define a slope from every footstep, as shown
in Fig. 26. In this way, the slopes that are already in the buffer
can be used to constraint the current slope, as well as updating
the slope buffer with this newest slope.

Another extreme case is the escalator. Normally escalator
moves with constant speed, which means that nearly all the
acceleration input comes from local gravity when users stay
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FIGURE 26. Diagram of the slope definition from every footstep.
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FIGURE 27. Flow chart of the moving trajectory estimation algorithm.

relatively static on the escalator. The gravity information
can be fused in a tightly coupled manner, the measurement
equation can be defined in error form as:

o' = [g"x]¢+w (20)

By using this gravity information, the drifting error part
can be controlled even when moving on the escalator. The
only thing, that needs to be done, is to compare the magnitude
of the specific force with the one of the local gravity before
proceeding with the update to determine the availability of
the measurement. Thanks to this approach, the tricky issue of
escalator recognition can be circumvented and still obtain a
good position’s estimate on escalator.

4) YAI TEAM

The system proposed by YAI team is shown in Fig. 27. The
positioning algorithm includes three steps: step detection,
stride and walking-direction estimation.

The first two steps utilize accelerometers and the last two
steps exploit the data from the horizontal-axis component
of the accelerometers and the magnetometers. In addition,
outlier samples observed in the accelerometers are ensure
a smooth and stable walking-step estimation. Multivariable
linear regression techniques were used to estimate the stride
for each step. The detailed operation of the proposed moving
trajectory estimation algorithm is now described
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a: ACCELERATION DECOMPOSITION

By averaging the accelerometer values, an averaged g-vector
can be obtained over the past few seconds, which can be
expressed by:

t

> e @D

i=t—N+1

1
go—N

t t
Z 8ix» Z 8i,y»

i=t—N+1 i=t—N+1

where g( represents a unit vector along the vertical direction.
g; is the i-th reading of the g-sensor; N is the number of read-
ings in the window. This can be generalized by the concept
of low pass filtering. The vertical component of the g-vector
can be formulated as follows:

g = (220 % (22)
Also, the vertical component of g; can be expressed by
g = (&) (23)
The horizontal component of the g-vector becomes
g =gi-g (24)

Note that g; is distributed in a 2D space.

b: STRIDE MODULE

Next, we calculate the step’s distance using multi-variable
linear regression equation for each step with:

D (AA, X)) = Co + C1AA + CoX| 25)

where AA = AA| + AAy; AA; and AA; are the difference
between the left peak-valley pair and right peak-valley pair,
respectively; Cp, C; and C, are parameter; X is the first
component of DFT of gf- in the period.

¢: WALKING DIRECTION CALCULATION

Finally, the orientation of the STIM300 and HMC5983 are
used to calculate the horizontal component of m-vector,
which can be expressed as follows:

m; =m; — (m; - go) go (26)
where m; represents the i-th reading of the m-sensor. By
calculating the horizontal component of e, = (0,0, 1),
we obtain:

ezz =e; — (e;- 80) g 27

The angle between the smartphone orientation and the
north is obtained by combining m;~ and e as follows:

o _mi e
COS (T) (28)
[ e

If (ml: X evz) - g0 < 0, walking direction is toward east,
otherwise, toward west. The holding angle is figured out by
using horizontal acceleration vectors. The horizontal accel-
eration is composed of forward vector, backward vector and
lateral vector. Walking causes great acceleration in forward
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and backward directions, and small acceleration in lateral.
By accumulating the horizontal acceleration vectors, the lat-
eral vectors can be compensated and remains only the forward
and backward vectors.

V. COMPETITION RESULTS

This section presents the practical course of the competition
for the four tracks and an analysis of results achieved by the
teams who participated in the competition.

A. PRACTICAL COURSE OF THE COMPETITION

For the on-site tracks, the teams were allowed to survey the
evaluation area during the calibration day (Friday, Septem-
ber 21%t, 2018) in the regular opening hours of the shopping
mall with the restriction of not disturbing the daily life of
shopkeepers and customers. Accessing the shops was explic-
itly forbidden since the evaluation only covered the com-
mon areas, like corridors or car park area. The competition
organizers were present at three different times on that day
to provide important information like the initial waypoint
(lat, long, heading) for each on-site Track (Tracks 1 and 2),
act as the main interface with Atlantis shopping mall and
to answer those questions from the competitors, if possi-
ble. It is important to highlight that the organizers did not
disturb or help in the calibration of the indoor positioning
solutions.

The evaluation of the Track 1 teams was performed on
Saturday, September 22" in the morning, whereas the eval-
uation of the Track 2 teams was performed the same day,
in the afternoon after lunch. All teams were requested to
be present in a briefing meeting to inform them about the
evaluation features and randomly assign the evaluation slot
for each team. Each team had to be in the meeting room
five minutes before the assigned time slot. Two people from
the organizing team, the evaluators, accompanied the com-
petitors to the initial point and ensured they arrived on-time
for evaluation. Moreover, there were more people from the
organizing team spread in the shopping center to ensure that
the elevator, stairs and sitting places were available for all the
competitors. The two main evaluators were in close contact
with the teams during the evaluation. One of the evaluators
acted as path discoverer, and she/he was a little ahead of the
competitors during the evaluation. The main objective was
to open the path in the presence of crowds in the shopping
mall and visually indicate the next evaluation waypoint. The
other evaluator remained close to the competitor. She/he gave
indications about the next evaluation waypoint and checked
that the competitor was acting according to the rules. Before
starting, the competitors had a few seconds to initialize their
system. Once the end of the evaluation path was reached,
the competitor had to go directly to the meeting room with the
two organizers and provide the position estimates. After the
first round of evaluations, the teams were informed that they
had a second chance to evaluate their solution. If a team
decided to run the course a second time, only this second
course would be evaluated.
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For the off-site tracks, Track 3 and Track 4, competi-
tors had to provide the position estimates the latest on
September 14", several days before the conference and com-
petition. The evaluation trajectory was recorded by the track
chairs in advance following a similar approach than the one
reported for the on-site tracks. i.e., the competition organizers
surveyed the area and collected the required data for the
system calibration under realistic conditions (similar than the
ones for the on-site tracks) and, after that, they recorded
the data for positioning algorithms on the evaluation path
simulating a real-time on-site evaluation.

The same format was expected for all the competition
tracks. For each trial, the teams had to submit a CSV
file, where each row represented a single estimated posi-
tion. Each estimation had to include the timestamp in ms,
the WGS84 longitude and latitude in decimal degrees with at
least 9 decimal digit resolution, the floor number as an integer
value (0 : Ground Floor, —1, 1, 2), the waypoint index in inte-
ger (waypoint number from 1 to N. O represents no landmark.
Each specific integer represents the specific waypoint). The
comma (““,”’) was used as data delimiter and headers were
not allowed in the CSV file. In Track 3, the timestamps for
the waypoints were not provided to the competitors to avoid
giving them many clues about the evaluation strategy. In that
track, the competitors had to provide position estimates at
a 2Hz frequency, synchronized with the beginning of the
evaluation trajectory according to the timestamp provided in
the evaluation log file.

B. ACCURACY SCORE ESTIMATION

The ““accuracy score” was computed for each team by com-
paring the estimated coordinates with the reference coordi-
nates of the waypoints marked on the ground and they were
marching on during the competition. This metric combines
the floor detection accuracy and the horizontal positioning
error.

e=|Pr—Pgl+p-fr —fel (29)

where

o Pp are the ground truth horizontal coordinates

o Pp are the horizontal coordinates estimated by the

competitors

¢ |[Pr — Pg|| is the horizontal error and it is computed as

the Euclidean distance between the ground truth and the
estimated position provided by the competitor in the 2D
space.

« pisused to penalize errors in estimating the floor and is

set to 15 m.

o |fr — f£| is the absolute difference between actual floor

number and the predicted one.

The positioning error, €, is computed for all way-points
marked on the ground that define the path of a specific chal-
lenge. The “accuracy score” s is given by the third quartile
error, in meters, of a cumulative error distribution function
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for all ¢ by:

s = 3" quartile {¢} (30)

The team with the lowest score won the challenge. Table 3
shows the scores for all the four challenges. Additional met-
rics included in the ISO 18305 Standard are also reported in
the table.

TABLE 3. Competition results for the four challenges based on the 75th
percentile (the competition main metric) and other well-known metrics of
the positioning error as defined in eq. 29.

Track Rank Team Name Mean RMS Median 750 P. 90™ P

I ARIEL2 980 1440 720 11.70 20.10
Track 1 2" ARIEL-1 1170 14.00 1040 1520 2330
3¢ ETRI 1620 19.30 14.60 18.90 28.40
I SONY 390 460 350 550 7.0
2™ KYUSHU 520 720 360 570 1550
3¢ SNU 450 520 440 680 8.0
4" CLE 13.10 25.10 550  7.60 45.00
Track2 S ETRI 870 1150 5.10 1240 22.70
6" TUM 12.80 1470 12.00 15.00 20.60
7" UPIS 3030 38.70 2540 37.50 62.60
I FiveWHU 070 100 050 090 1.90
2" EGEC 1LI0 150 080 130 270

3¢  TENCENT 190 300 140 210 320
4% TRIMBLE 240 340 160 270 4.0
Track3 5" HFTS 300 390 240 360 670
6" ARARADS 10.80 37.80 270 420  7.40
6% UGENT 350 450 290 420 820

8 CLE 410 520 330 600 820
9" YAI 460 600 350 620 960
10% TUM 630 830 500 760 1420
1 mCLIPS 800 1170 540 880 19.50
126 XMU 700 900 520 1040 1590
130 MSU 1020 1450 730 1220 1950
T WHU 100 120 090 130 170
2 KIT 280 350 260 390 470

Track 4

R IG5 1130 1760 7.30 790  20.10
4h YA 66.10 7270 5880 90.80 113.50

A total of forty-nine world-wide teams registered for the
competition. Although thirty-four teams finally participated
in the competition, only the twenty-seven shown in the table
agreed to publish the results. Some companies are not allowed
to report the results and a few teams could not complete the
evaluation path. Fifteen teams withdrew their proposal and
did not participate in the competition.

C. ANALYSIS OF THE ON-SITE CHALLENGE RESULTS

Most of the teams that competed for the on-site challenges
performed a comprehensive pre-survey of the shopping mall
the day before the competition. The footpaths were kept
secret until the competition day, therefore the teams surveyed
rather large areas in a short time.

In Track 1, the accuracy score ranges from 11.7 to
19.9 meters, whereas it ranges from 5.5 to 37.5 meters for
Track 2. Surprisingly, some self-contained positioning solu-
tions, not using a camera, performed better than the ones
using video processing. Specular reflection was not affecting
the performances with a fully indoor path and not too many
obstacles in the camera field were present since Track 1
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competition happened in the morning with a shopping center
not too crowded.

The most popular technologies for Track 1 were visible
light, augmented and mixed reality (ARCore, ARKit), inertial
sensors, segmented maps and images. For Track 2, they were
mainly restricted to inertial sensors, barometers and indoor
maps. Popular processing methods for Track 1 are based on
particle filter (segmented maps and images) and hybridization
(PDR and optical flow). The same processing methods were
adopted for Track 2 but complemented by highly accurate
MEMS error calibration and machine learning for step length
estimation and activity recognition. Competitors carried their
positioning systems, providing a more favorable context for
the success of machine learning methods.

D. ANALYSIS OF THE OFF-SITE CHALLENGE RESULTS

In contrast to the on-site competitors, the teams that partic-
ipated in the off-site competition had around 16 weeks to
calibrate their solutions with the data provided by competition
organizers. It is worth to mention that the data format and
strategy to collect data was new to most of the competing
teams, that had to adapt their existing solutions to the pro-
vided data.

In Track 3, the accuracy ranges from 0.90 to 12.30 meters
whereas it ranges from 1.30 to 90.80 meters for Track 4.
Although the accuracy for the Track 3 (based on smartphone
data) was generally better than for the Track 4 (based on
PDR), the competitors of Track 3 had a huge advantage in
form of many geo-referenced training data inside the shop-
ping mall to, for instance, generate the WiFi radio maps.
In contrast, the Track 4 competitors did not have such kind
of training and validation data.

The most popular technology for Track 3 was WiFi fin-
gerprinting, which has been the core technology of most
proposals. The competitors have improved the fingerprinting
approach by refining the position estimates with the data
provided by the other available technologies, this additional
information mostly came from inertial sensors and the mag-
netometer. In fact, the most accurate systems combined data
from multiple sources, including magnetometer.

For Track 4, only IMU, magnetometer records and GNSS
signals were used. The competitors processed the several
hours MEMS data-logs collected in static conditions to
identify and calibrate the sensors’ noises. The most popu-
lar mechanization was the ““strap-down” one completed by
complementary filters and stochastic cloning Kalman filter.
To mitigate the impact of sensors drift in inertial signals,
competitors applied machine learning techniques based on
mobility patterns and generalized likelihood ratio tests to
identify specific walking gait periods and correct the posi-
tioning error. Remarkably, precise results have been obtained
for conveyer belt and stairway passages.

E. LESSONS LEARNED
The most important lesson learned is that moving the compe-
tition site to a shopping mall has attracted many teams from
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academy and industry to participate in the proposed chal-
lenges. A total of 15 teams participated in the on-site tracks,
with only one not able to provide the position estimates. The
number of submissions for the on-site tracks was a success
compared to previous editions were only 3 teams (2015) [61],
11 teams (2016) [12], [62] and 6 teams (2017) [11], [63]
successfully provided the estimates on the evaluation path.
Providing an evaluation schedule with tight slots was an
additional motivation for competitors to ensure they had a
robust solution. Moreover, 19 teams participated in the off-
site tracks. The participation in the off-site tracks has also
been notably higher than in previous editions, which demon-
strates that selecting a shopping mall was a good choice.

Organizing a two-day competition is not trivial and it

involves some additional workload for the conference orga-
nizers. The most important steps are detailed below:

« Agreeing to a set of rules for the competition with the
venue authorities and adhering to them. A detailed
agreement with the competition venue, the shopping
mall, in this case, is required to organize the competition.
This agreement must contain all the competition features
and requirements should be detailed and had to be for-
malized many months beforehand. Thus, every aspect
has to be well-documented and agreed with the shopping
mall managers with little margin for any unexpected
events or special requirements. Hopefully, some key
information about the on-site and off-site competitions
was collected more than one year before the compe-
tition and the most critical aspects were clarified by
the organizers of the previous competitions in Sapporo
(2017), Alcald (2016) and Banff (2015). Attending the
competition in Sapporo, September 2017, was crucial to
understand the dynamics of the competition and draft the
desired outputs for 2018. Thus, the final agreement did
not only cover the competition days but also all the key
aspects to organize the competition such as the venue
mapping (see Section III) and the off-site data collection.
Although the shopping mall managers were open to host
the competition, they imposed the tight constraint of
not disturbing the regular activities and daily-life in the
shopping mall.

« Planning in advance. The competition challenges and
routes must be closed before signing the agreement.
In particular, the organizers defined all the competition
challenges and scheduled the data collection for the off-
site tracks in November 2017. In December 2017, all
the waypoints and the final evaluation routes were also
defined. Therefore, the evaluation paths were already
known by the competition organizers at the end of 2017.
As it has been said, there was little margin to, for
instance, add a new competition track or extend an exist-
ing one after signing the agreement with the shopping
mall.

o Careful site surveying and mapping. The accu-
rate mapping of the competition venue is needed to
provide the ground truth references within the ISO
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18305 parameters. This procedure lasted 3 months,
including on-site surveying and off-site post-processing.
The venue and all the waypoints involved in the eval-
vation of the four tracks were accurately mapped.
Lidar measurements were done the third week of
January 2018 and the georeferenced waypoints were
provided to Track chairs the first week of April 2018.

o Thorough checking of competition data. The data sets
for the off-site tracks were provided to competitors in the
last week of April 2018. The data sets release included
the technical documentation and supplementary files in
terms of georeferenced maps. Although the raw data
sets were collected and cross-checked in January 2018,
it took two weeks to generate the definitive anonymized
geo-referenced data sets and the supporting maps. It is
of importance to remark that data sets cross-checking
has been of paramount importance in the competition.
An error in one of the reference files or the evaluation
trajectory might be enough for withdrawing a compe-
tition track. For the data sets collection, two people
manually logged the key sequence of waypoints for all
the log files separately. In case of inconsistency between
the two logs, the wrong manual log was fixed if pos-
sible or, otherwise, the log file was removed. For the
process of dataset anonymization and georeferenciation,
also two people checked that the resulting logfiles with
anonymized WiFi data and georeferenced landmarks
were coherent with the manual logs and the raw log files
collected in January.

« Screening of contestants by previous analysis of their
methodological approach to indoor positioning. The
deadline to send the technical descriptions was set to
the second week of July. All proposals were evaluated
by two independent track chairs, who analyzed the pro-
posal feasibility. Although 34 teams participated in the
competition, we reviewed more than 40 proposals.

o Commitment to the competing teams. During the
Setup day, three chairs were in the shopping mall to
act as the main interface with the shopping mall and
to give some clarifications to the competitors about the
competition rules. During the competition day, the local
organizing team (10 people) plus 2 external people were
engaged in the competition organization since 6 AM.
They covered multiple roles in the competition, which
also include the installation of ground stickers that
defined the competition courses early in the morning of
the competition day. Thanks to them, the competition ran
smoothly.

Regarding the on-site tracks, one team complained that the
Non-camera based positioning challenge (Track 2), should
have been split into two different challenges. They claim
that Smartphone-based solutions had fewer opportunities to
win and, therefore, they should have been evaluated indepen-
dently. The organizing team defined the four challenges many
months before receiving the description of the competition
teams. Although one of the off-site challenges dealt with
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Smartphone-based positioning, the organizing team decided
not to forbid that kind of system in the Non-camera based
positioning challenge. This concern was reported to the orga-
nizers of the competition in 2019, who finally included an
on-site smartphone-based positioning challenge. Although all
scenarios cannot be covered in the same competition edition,
they can be considered if the event is run annually like
this one.

One of the competitors claimed that the competition score
only reflected the positioning accuracy without balancing
it with the resources required. Previous editions of the
EVAAL competition indeed considered the accuracy, instal-
lation complexity, user’s acceptance, availability and inte-
grability into AAL systems in the evaluation criteria [1].
However, any criteria will be subject to criticism due to the
subjective selection of individual assessment criteria or their
weighting in the final score. Therefore, the organizers
selected an objective metric, the positioning error, as the main
evaluation criterion having in mind that the competition is
about indoor positioning and navigation. A solution to the
issue raised by the competitors would be to organize many
multiple tracks covering all the different aspects of the indoor
positioning systems, but this approach was not possible due
to limited resources that prevented the organizers to organize
more than two on-site competition tracks. It is important to
highlight, that the results of the competition and this doc-
ument, which contains the description of some competing
systems, are publicly available. Therefore, the competitors
can argue and discuss their solutions considering additional
parameters like complexity.

Some teams reported that this event allowed them to
establish new collaborations with other participants. Some
collaborations have been materialized into research visits,
possible joint participation in the next editions and detailed
discussions about the different strategies followed in the com-
petition. Although the spirit of a competition is to compete,
the organizing team considers that its main aim is to bring
together the best research groups and encourage them to
discuss their proposals. This is a very practical and less formal
scenario to exchange knowledge and, above all, learn from the
experience.

Some off-site competitors realized that the teams reporting
the best results in Track 3 used data from the magnetometer.
It seems that the magnetic data can be really useful to refine
the estimations provided by, for instance, Wi-Fi fingerprint-
ing. Most of the teams that used Wi-Fi and inertial data are
considering to add this additional source of information to
improve their systems. Thus, some teams gained some empir-
ical experience because of participating in the competition
and they will use this expertise to improve their approaches
for the next editions.

To sum up, organizing a competition in a real-life envi-
ronment: a shopping mall has been a challenging task.
It supposed an additional workload that involved more than
12 people, including the organizing research team and collab-
orators from other universities and research centers, to cover
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all aspects: accurately mapping the shopping mall, preparing
four independent challenges, recording data for the off-site
tracks, organizing a two-day event in a shopping mall with-
out disturbing the customers. The on-site competitors had a
challenging scenario to survey, in just one day, during the
regular opening hours of the shopping mall without deploying
any infrastructure to support localization, whereas the off-
site competitors had to deal with some pre-collected data to
provide the estimated positions of the blind evaluation path.
The evaluation in the shopping mall, either on-site or off-site,
also supposed an additional workload to the teams that partic-
ipated in the competition. Although the workload was huge
on both sides, it deserved any invested minute on the organi-
zation. All the competitors thanked the organization team for
arranging the competition in such a challenging environment.
The proposed evaluation was valuable to demonstrate that
their solutions can work in a real-life scenario, which in turn
is what the market is demanding.

VI. CONCLUSION

For the first time, the IPIN 2018 international indoor posi-
tioning competition took place in a real-life challenging
space: the Atlantis shopping mall in Nantes (France). Four
challenges (2 in real-time, 2 in post-processing mode)
were prepared for the 49 registered worldwide competition
teams. A survey combining differential GNSS, theodolite and
mobile mapping 2D scanners enabled to map 9,000 m? and to
compute the coordinates of 180 ground points spread over the
3 levels of the commercial center, with a 3D accuracy better
than 10 cm. On September 22, 2018, all stickers, marking the
way-points and used to define the paths to be followed by
the competitors, were re-positioned on the ground thanks to
the surveying and logging strategy followed.

This paper summarizes the main contributions presented
in the competition and the details of the full results for
comparison purposes. The ambition of this paper is also to
draw lessons learned by the organizing committee but also by
the competitors to improve the organization of future indoor
positioning and indoor navigation competitions.

The most important conclusion is that the [IPIN competition
is not just an event where the participants compete. The main
added value of the competition is the post-evaluation discus-
sion. The informal talks about indoor positioning between
the competitors are an excellent way to exchange knowledge.
On-site competitors witnessed many different novel
approaches and technologies for indoor positioning run-
ning in a challenging scenario. Off-site competitors learned
the benefit of processing magnetic data for smartphone-
based applications. While many indoor location technologies
rely on an infrastructure of beacons deployed in buildings,
the competition results have shown that it is possible to
achieve high accuracy positioning with self-contained tech-
nologies. Finally, the competition has enabled some col-
laborations between different research teams, which was
one of the main objectives of the competition. In general,
the competition was not just a two-day event to compete for
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a prize, but a forum to discuss, establish new collaborations
and learn.
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