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Abstract In this article, we present an integrated ma-
nipulation framework for a service robot, that allows to
interact with articulated objects at home environments
through the coupling of vision and force modalities. We
consider a robot which is observing simultaneously his
hand and the object to manipulate, by using an external
camera (i.e. robot head). Task-oriented grasping algo-
rithms [1] are used in order to plan a suitable grasp on
the object according to the task to perform. A new vi-
sion/force coupling approach [2], based on external con-
trol, is used in order to, first, guide the robot hand to-
wards the grasp position and, second, perform the task
taking into account external forces. The coupling be-
tween these two complementary sensor modalities pro-
vides the robot with robustness against uncertainties in
models and positioning. A position-based visual servoing
control law has been designed in order to continuously
align the robot hand with respect to the object that is be-
ing manipulated, independently of camera position. This
allows to freely move the camera while the task is being
executed and makes this approach amenable to be in-
tegrated in current humanoid robots without the need
of hand-eye calibration. Experimental results on a real
robot interacting with different kind of doors are pre-
sented.
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1 INTRODUCTION

Most of our physical interaction with the world is me-
diated by the use of our hands. A domestic robot com-
panion must be able to reliably perform simple manip-
ulation tasks in everyday environments such as opening
a door to enter another room, or pulling a drawer open
to take something out. Most of today’s robots exhibit-
ing such abilities do it in an ad-hoc fashion and having
little flexibility. See, for example, [3], where the authors
present a mobile manipulator for opening doors without
using force feedback. Instead, success in manipulation
relies on an accurate localization algorithm and detailed
models of the doors. This is also the case for sophisti-
cated humanoid robots in which the effort has been put
into locomotion, leaving manipulation unaddressed. See
for instance [4] in which a Kawada Industries HRP2 hu-
manoid robot is used for grasping ad-hoc cylinders by
using its hands as pincers; or [5] in which a Sony QRIO
humanoid is used which, even though it is endowed with
5-fingered hands, its manipulative abilities are limited to
grasp a ball or spongy foam objects.

There is a need for fully autonomous robots that
make use of different and complementary sensor modali-
ties to perform a great variety of tasks under all kinds of
uncertainties. In particular, vision and force are the most
important sensors for task execution. Whereas vision can
guide the hand towards the object and supervise the
task, force feedback can locally adapt the hand trajectory
according to task forces. When dealing with disparate
sensors, a fundamental question stands: how to effec-
tively combine the measurements provided by these sen-
sors? An approach of this problem is to combine the mea-
surements using multi-sensor fusion techniques [6]. How-
ever, as pointed out by several researchers, such method
is not well adapted to vision and force sensors since
the data they provide measure fundamentally different
physical phenomena, while multi-sensory fusion is aimed
in extracting a single information from disparate sensor
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Fig. 1 Considered scenario.

data. Another approach to this problem is to combine
visual and force data at the control level.

Some researchers have addressed the problem of vi-
sion/force control and two main approaches (impedance-
based and hybrid-based strategies) have been studied
[7–10]. In these approaches, the idea is merely to replace
the classical position controller [11] by a vision-based
controller. Hybrid control separates vision control and
force control into two separate control loops, that oper-
ate in orthogonal directions. With this approach, it is
not possible to control a direction simultaneously in vi-
sion and force. With the impedance-based control, the
six degrees of freedom can be simultaneously vision- and
force-controlled. However, coupling is done at the control
level and local minima can appear during convergence.

In this article, we present a novel approach for sensor-
guided robotic task execution that is amenable to be in-
tegrated in current mobile manipulators and humanoid
robots. We consider a robot which is observing simulta-
neously his hand and the object to manipulate, by us-
ing an external camera (i.e. robot head, see Figure 1).
Task-oriented grasping algorithms [1] are used in order to
plan a suitable grasp on the object according to the task
to perform. A new vision/force coupling approach [2] is
used in order to, first, guide the robot hand towards the
grasp position and, second, perform the task taking into
account external forces.

The problem of hand/object alignment for grasping
tasks has been addressed by other authors. In [12], a
visual servoing framework for aligning the end-effector
with an object was presented. Instead of working in the
euclidean space, visual servoing was done on the pro-
jective space by doing projective reconstruction with a
stereo camera, thus avoiding the need for camera cali-
bration. The desired gripper-to-object relationship was
learnt during an off-line procedure. In [13], an external
position-based visual servoing approach was used on a
humanoid robot in order to guide the hand towards the
object. Hand pose was estimated by a kalman filter ta-

king as input the stereo reconstruction of a set of LEDs
attached on the robot hand.

As in [13], we also adopt a position-based visual ser-
voing control law, because of the facilities that this ap-
proach offers for task specification. Instead of using a
stereo camera and performing 3D reconstruction, we make
use of a single camera and follow the virtual visual ser-
voing approach for pose estimation [14]. The goal of the
vision control loop is to align the gripper with respect to
some part of the object (i.e, handle). As the pose of the
gripper and the object is estimated on-line, the relative
position between both can be computed at each iteration
without the need of knowing the position of the camera
with respect to the robot base. Therefore, the robot is
still able to perform the task even in the presence of some
camera motion. Task execution is independent of cam-
era position. No extrinsic camera parameters are needed,
which makes the integration of this approach into other
robotic systems very easy, and opens the door to best-
view planning algorithms for head control. In addition,
instead of learning the grasp position during an offline
stage like in [12], we make use of a task-oriented grasp
planning algorithm [1] which autonomously computes
which part of the object should be grasped in order to
perform a given task. Finally, and in contrast with exist-
ing works, visual servoing does not finish when the robot
grasps the object. Instead, a novel vision/force control
framework is adopted in order to perform a given task
on the object. Thus, visual servoing is not only used for
hand-object alignment (reaching), but also for task ex-
ecution and supervision (interaction). Our approach for
vision/force coupling [2], based on the concept of exter-
nal control [15], does the coupling in sensor-space, and
not at the control level as classical impedance and hy-
brid approaches do [7–10]. This allows to control vision
and force on all the degrees of freedom, whereas only the
vision control law is controlling the robot. Note that in
impedance and hybrid control, vision and force control
outputs are added at the lowest level, making it possible
to reach local minima when both vision and force control
outputs are in conflict.

In summary, the main contributions of this work are:

– an external position-based visual servoing approach
for aligning object and gripper, independently of cam-
era motion, using virtual visual servoing pose estima-
tion

– a novel method for vision/force coupling where the
force control law modifies the visual reference, so that
only the vision control law is connected to the robot,
thus avoiding local minima.

– an integrated robotic manipulation system, using the
above concepts, able to robustly perform common
daily tasks by the coupling of visual and force feed-
back, after the automatic planning of the grasp ac-
cording to the robot’s purpose.

In Section 2, we describe the concept of everyday
tasks as the kind of tasks that we want to perform with
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our service robot. Section 3 introduces the theoretical
framework of our work, consisting of the task-oriented
grasp planning and the vision/force control scheme. In
Section 4, the implementation on a real robot is de-
scribed, and experimental results are presented. Finally,
some conclusions and future lines are outlined in Section
6.

2 EVERYDAY TASKS

In this section, the kind of tasks our service robot has
to perform are described and modelled according to a
well-known task description formalism.

2.1 Considered tasks

We consider the general case of a mobile manipulator (or
humanoid) working in a home environment. We assume
that the robot is endowed with an object recognition
module, so that it is able to recognize the object to ma-
nipulate and to retrieve its geometrical and structural
model from a database. The robot is able to move in
front of the object by using navigation capabilities such
as mapping, localization, obstacle avoidance, etc.

With “execution of everyday tasks”, we mean the
robotic manipulation of articulated objects that can be
commonly found in our everyday life, such as doors,
drawers, windows, etc. For this, we need a formalism
that, first, allows us to easily specify the tasks to the
robot, and, second, allows the robot to compliantly ex-
ecute the tasks under uncertainties. We make use of
the Task Frame Formalism (TFF), first devised by Ma-
son [16], and then reviewed in [17], because of its suit-
ability for all kinds of force-controlled actions. We con-
sider 1DOF mechanisms such as revolute joints (turning
a knob, opening a door, etc.) and translational joints
(opening a drawer, pushing a button, etc.). As shown
in [17], this kind of tasks are well supported by the TFF.
The programmer has to choose a suitable task frame
(TF) so that some directions are velocity-controlled and
some others are force-controlled, according to the natural
constraints imposed by the environment (by the mecha-
nism in our case).

2.2 Object and task modelization

Normally it is the programmer who specifies the TF in
advance according to the task [18]. In our case, the robot
chooses the most suitable TF autonomously by using a
task-oriented grasp planning algorithm [1] that needs as
input an object model including not only geometrical in-
formation, but also kinematic information, or a descrip-
tion of the object mechanism.

We describe an object as a set of different parts that
are assembled together. Each part is defined on its own

Fig. 2 Considered frames.

reference frame, which is independent from the other
parts. A set of relations is defined between the parts, in
terms of constrained and free degrees of freedom, i.e. a
motion constraint is defined with each frame. Therefore,
each of the frames defining the structure of the object
can be used as the task frame.

Figure 2 shows an example of a door representation.
It is composed of two parts: the door table, defined in
frame O -which is also the object reference frame- and
the handle, defined in frame H. The model, as described
in [1], includes the relation between the different object
parts. In this case, the relation between the handle and
the door table is known, and represented as an homo-
geneous transformation matrix OTH. The model also
includes the degrees of freedom (motion constraint) for
each part. In the example of Figure 2, the frame H is
fixed with respect to O, but the frame O has one degree
of freedom: a rotation around Y axis, which corresponds
to the task of opening the door. Thus, the task is spec-
ified to the robot by means of a frame (the task frame)
and the degree of freedom that must be activated on it.
For more details on the object representation, refer to [1].

2.3 Approaches to task execution

The task execution process for articulated objects can
be divided into two stages:

– A reaching phase, where the hand of the robot must
be moved towards the handle until the grasp is exe-
cuted successfully.

– An interaction phase, where the hand is in contact
with the object and the particular mechanism must
be activated.

The reaching task can be performed in open loop if
a good estimation of the object pose with respect to the
robot is available. This is the approach followed in [3],
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where the localization algorithm is able to provide the
robot pose inside the map with 1mm of accuracy. How-
ever, this is not the general case, and, in the real life, the
robot has to face with lots of uncertainties. Closed loop
is more adequate if we want to deal with these uncer-
tainties under not-structured environments. Normally, a
visual servoing framework is adopted to close the loop
during reaching [12,13].

Regarding the interaction phase, it is worth noting
that the robot hand is in contact with the environment,
and any kind of uncertainty (errors in the models, bad
pose estimation, etc.) may produce very big forces that
can damage the environment or the robot. In [3] the au-
thors still rely on the localization algorithm during the
interaction phase, without using any kind of sensor feed-
back, which is very dangerous. When the robot is in con-
tact with the environment, it is extremely important to
design a controller that can deal with unpredicted forces
and adapt the hand motion accordingly.

This is the reason why a vision/force coupling ap-
proach is adopted in this work. Vision feedback allows
the robot to continuously track the object and to visually
servo the hand for task execution. Force feedback allows
to deal with errors in pose estimation and object models,
so that any undesired external force can be compensated
by modifying the control law, either at the control level
as classical approaches do, or at the sensor level as we
present in this work.

3 GENERAL FRAMEWORK

In this section, the theoretical description of the two
main modules of our service robot application are de-
scribed:

– Task-oriented grasp planning, in charge of choosing
a grasp on the object, which is suitable for the task
to perform.

– Vision/force control, in charge of visually guiding the
robot hand towards the planned grasp, and then per-
forming the task with vision and force feedback.

3.1 Task-oriented grasp planning

Task-oriented grasp planning deals with the problem of
finding a grasp on an object which is suitable for a par-
ticular task. There are few works about grasping that
take the task into account [19–21] and most of them do
not consider the task during grasp planning. Instead, the
task is considered on the grasp evaluation stage as a qual-
ity measure. In practice, lots of grasps would have to be
generated and evaluated, making these approaches com-
putationally unaffordable. In [1], we presented a task-
oriented grasp planning algorithm based on hand pre-
shapes [22].

The input to this algorithm is the object model (as
described previously) and the task to perform, in terms
of a mechanism (i.e. degree of freedom) to be activated
on the object. The algorithm provides the following:

– A grasp frame, G in the example of Figure 2, where
the hand has to be moved, which is related with the
object reference frame, O, by computing the homo-
geneous transformation matrix OTG .

– A hand preshape suitable for the task, including a
tool frame, T in Figure 2, attached to the hand, which
determines the control strategy that will be followed
for grasping [1]. The tool frame is related to the end-
effector frame by the transformation ETT

The original description of the task-oriented grasp
planning algorithm was prepared for the Barrett Hand
[1], but we have adapted it in order to deal with the
parallel-jaw gripper that we use in this work. For this
simple hand, we only consider the precision hand pre-
shape [1]. The tool frame, T , is set to the middle point
between both fingertips as shown in Figure 2. The goal of
the reaching phase is to move the tool frame T towards
the grasp frame G. This is done by visually computing
the relative pose between both frames, and visual ser-
voing the tool frame in order to reduce the pose error,
as explained in Section 3.2. When the visual servoing
control law has converged, the grasp frame is used as
the task frame, where the task is defined in terms of the
constrained motion. For more details, refer to [1].

3.2 Vision/force control for everyday tasks

For visually-guided reaching of the object, we propose a
position-based visual servoing closed-loop approach where
a robot head observes both the gripper and the object
and tries to achieve a relative position between both, like
in [12, 13]. Regarding the task execution, it is necessary
to minimize external forces at the same time that the vi-
sion control law guarantees the whole task execution. In
the following sections, the theoretical framework for our
position-based visual servoing approach and vision/force
control is presented.

3.2.1 External position-based visual servoing

Several vision-based control laws have been proposed
in the literature [23]. They are generally classified in
three groups, namely position-based, image-based and
hybrid-based control. The first one works in 3D cartesian
space and requires, in most cases, a model of the object
and the camera intrinsic parameters [24]. In contrast,
image-based visual servoing works directly in the image
space [25]. More recently, several researchers have ex-
plored hybrid approaches which combine euclidean and
image information [26].

As already mentioned in [13], the natural space for
specifying the task is the cartesian space, and there are
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Fig. 3 The vision task is to guide frame T towards frame G.

evidences that humans use 3D information for task plan-
ning [27]. Thus, we adopt a position-based visual servo-
ing approach using an external camera which observes
simultaneously the gripper and the object. Note that this
is the common configuration in humanoid robots.

We set the vector s of visual features to:

s =

(
t

uθ

)

where t is the translational part of the homogeneous
matrix T TG , and uθ is the axis/angle representation of
the rotational part of T TG .

The matrix T TG , which relates hand and handle,
is computed directly from the visual observation of the
gripper and object, according to the following expression:

(
CTGP · ETGP

−1
· ETT

)−1

· CTOP · OTOP

−1
· OTG (1)

where CTGP is an estimation of the pose of an arbi-
trary hand frame, expressed in camera frame. CTOP is an
estimation of an arbitrary object frame pose, expressed

in camera frame. We are currently estimating hand and
object pose by virtual visual servoing [14], using a set of
point features drawn on a pattern whose model is known.
One pattern is attached to the gripper, in a known po-
sition ETGP . Another pattern is attached to the object,
also in a known position with respect to the object re-
ference frame: OTOP . As future lines we would like to
implement a feature extraction algorithm in order to use
natural features of the object instead of the markers.
Note that this will not significantly affect the current
implementation, as virtual visual servoing pose estima-
tion can deal with different types of visual features [14].
Finally, the tool frame ETT and the grasp frame OTG

are computed by the task-oriented grasp planning algo-
rithm presented in section 3.1 and detailed in [1]. For a
comprehensive description of the frames involved in the
vision task, see Figure 3.

We compute the velocity in the tool frame τT using
a classical visual servoing control law:

τT = −λe +
∂̂e

∂t
(2)

where e(s, s∗) = L̂+
s (s−s∗) (in our case, s∗ = 0). The

last term, ∂̂e

∂t
, is the estimation of how the visual features

change over time. It is related to the object motion, and
should be taken into account when the hand is in contact
with the environment in order to reduce tracking errors.
However, we can neglect it, because the use of force feed-
back allows us to cope with these small tracking errors,
as long as the task velocity is small. The interaction ma-

trix L̂s is set for the particular case of position-based
visual servoing:

L̂s =

(
−I3×3 03×3

03×3 −Lw

)

Lw = I3×3 −
θ

2
[u]× +

(
1 −

sinc(θ)

sinc2( θ

2
)

)
[u]2×

where [u]× is the skew anti-symmetric matrix for the
rotation axis u. Finally, the joint velocities that are sent
to the robot are computed as:

q̇ = J−1 · L̂× ·

(
ERT [EtT ]× · ERT

03×3
ERT

)
· τT

where J is the robot jacobian and L̂× relates τE and

ẊE according to ẊE = L̂× · τE [24,28]. It is worth noting

that, for very small displacements, L̂× can be taken as

the identity matrix, and, thus, ẊE = τE . Finally, ERT

and EtT are, respectively, the rotational and transla-
tional part of the homogeneous transformation matrix
ETT .
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Fig. 4 External hybrid vision/force coupling.

3.2.2 Vision/force control law

Computer vision can provide a powerful way of sens-
ing the environment and can potentially reduce or avoid
the need for environmental modeling. Vision allows ac-
curate part alignment in partially unknown and/or dy-
namic environments without requiring contacts. Force
sensor provides localized but accurate contact informa-
tion. To combine visual and force information, two main
approaches (impedance-based and hybrid-based strate-
gies) have been studied [7–10]. In these approaches, the
idea is merely to replace the classical position controller
[11] by a vision-based controller. In both cases, the addi-
tion of the vision and force control outputs is done at the
lowest level (control level). This can lead to local min-
ima when both outputs are in conflict (same value and
opposite signs).

In [2], we proposed a novel vision/force coupling ap-
proach, based on external control [15] where the force
control loop is closed around an internal vision control
loop in a hierarchical way (see Figure 4). The reference
trajectory sd used as original input of the vision-based
controller is modified according to the external force con-
trol loop. The force control is performed by direct con-
trol: when the robot is moving dX against a contact
surface, the force measurement is proportional to the en-
vironment stiffness K and the displacement dX. Then,
instead of adding the force control output to the vision
control output as classical approaches do, the force con-
trol output is used to modify the desired vector of vi-
sual features sd, by projecting it on sensor space using

the interaction matrix L̂s. Either if the end-effector is in
contact with the environment or not, the robot is only
controlled by the visual control law, and thus, the pro-
posed control scheme has the same stability and conver-
gence properties as the particular visual control law we
choose [23]. In other words, force feedback does not in-
troduce and problem of stability in the proposed control
law.

In the control scheme, shown in Figure 4, the desired
wrench fd is added as input in the force feedback control

Fig. 5 General setup for vision/force control simulations

loop. The stiffness is controlled by the force controller
(FCL) according to a proportional control law:

dX = K−1(fd − f)

Although we have chosen stiffness control for this
work, the control scheme is general and it is possible to
implement another more complex type of force control.
Unlike existing approaches, the force controller does not
modify the vision control output. Instead, it only modi-
fies the reference trajectory of visual observations sd:

s∗ = sd + ds (3)

where s∗ is the modified reference for visual features
and ds can be computed by projecting dX by means of

the interaction matrix as ds = L̂s · L̂
−1
× · dX. It is worth

noting that dX must be first transformed, from the force
sensor frame, to the camera frame, via the corresponding
screw transformation matrix.

The hierarchical juxtaposition of the force control
loop on the vision control loop provides several advan-
tages according to the existing methods [7, 9]: selection
matrices and time-dependent geometric transformations
are eliminated from the control loop leading to a con-
troller design independent of the arm configuration. Since
the force control only acts on the reference trajectory,
conflicts between force and vision controllers are avoided.
For a detailed analysis, refer to [2].

This is shown by simulation results in Figures 6, 7, 8
and 9, for a peg-in-hole task, where a robot with an eye-
in-hand camera has to insert a peg of 10 cm length into
a hole of the same depth. The difference between the peg
and the hole diameters is 3 mm. The hole is in the center
of a pattern composed by four circles forming a square,
as shown in Figure 5. We assume that the hole, and thus
also the pattern, are on the origin of the world frame,
but rotated 10 degrees around Y axis (one of the axis
contained in the pattern plane). The goal of the vision
part is to reach a camera position so that the square is
centered on the image at a given size (see Figure 6b).
This desired position corresponds to the one when the
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Fig. 6 Hybrid vision/force for a peg-in-hole task. Initial
camera position is set to X = (0.02,−0.02,−0.36,−5, 5, 0)T

with respect to the world frame. (a) Initial image, (b) Desired
image, (c) Features trajectory in the image plane, (d) Image
error
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Fig. 7 Impedance vision/force for a peg-in-hole task. Initial
camera position is set to X = (0, 0,−0.25, 0, 0, 90) with re-
spect to the world frame. (a) Initial image, (b) Desired image,
(c) Features trajectory in the image plane, (d) Image error

peg is successfully inserted into the hole, and can be
learnt during an off-line process.

Figures 6 and 7 show two different cases where the hy-
brid vision/force control and the impedance-based con-
trol fail (as shown in Figures 6c, 6d, 7c and 7d, the de-
sired goal is never reached) . Figures 8 and 9 show the
convergence of our proposed vision/force control law in
the same conditions. For more details on these results,
refer to [2].
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Fig. 8 External control for a peg-in-hole task. Initial cam-
era position is set to X = (0.02,−0.02,−0.36,−5, 5, 0)T with
respect to the world frame. (a) Features Trajectory in the
image plane, (b) Image error
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Fig. 9 External control for a peg-in-hole task. Initial camera
position is set to X = (0, 0,−0.25, 0, 0, 90) with respect to the
world frame. (a) Features Trajectory in the image plane, (b)
Image error

4 APPLICATION AND IMPLEMENTATION

The theoretical development of the previous section has
been applied to a real robot. We have used a mobile ma-
nipulator composed of an Amtec 7DOF ultra light weight
robot arm mounted on an ActivMedia PowerBot mobile
robot. The hand of the robot is a PowerCube parallel jaw
gripper. This robot belongs to the Intelligent Systems
Research Center (Sungkyunkwan University, South Ko-
rea), and is already endowed with recognition and navi-
gation capabilities [29] [30], so that it is able to recognize
the object to manipulate and to retrieve its geometrical
and structural model from a database. The robot is able
to move in front of the object by using navigation capa-
bilities such as mapping, localization, obstacle avoidance,
etc.

As already mentioned, our goal is to interact with
the different furniture and articulated objects that can
be found in home environments, such as doors, windows,
wardrobes, drawers, lights, etc. Our task starts when the
mobile manipulator has navigated in front of the object
that is going to be manipulated and has a view of both
the object and its hand. For the experimental validation
we have chosen a door opening task, because it is the
most common task in home environments. Concretely,
experimental results are presented with two very differ-
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ent doors: a closet and a refrigerator. Both doors are very
different in size, and have different handles. But both
tasks can be described in terms of the structural model
(Figure 2) as applying a rotational velocity around Y
axis of frame O. The task-oriented grasp planning algo-
rithm [1] computes the grasp frame G and the tool frame
T for each particular case, and relates them to the object
reference frame with OTG , and to the end-effector frame
with ETT , respectively (see Figure 3). It is worth noting
that only the door model changes from one execution
to the other. The grasp and the vision/force references
are computed automatically taking the model as input,
which makes this approach suitable for any kind of door
as long as it has been recognized by the robot (in order
to retrieve the model).

The whole manipulation process is divided into two
steps: reaching a handle with a task-suitable grasp, and
interacting with the environment (performing the task).

4.1 Reaching

The reaching task is divided into three different subtasks:
reaching a pre-grasp position, reaching the grasp position
and performing the grasp. The robot switches from one
subtask to another when the resulting velocity of the
vision/force controller is close to zero (i.e, the desired
references have been reached).

4.1.1 Reaching a pre-grasp position

A pre-grasp frame, P, is computed by the task-oriented
grasp planning algorithm [1], and it is related to the ob-
ject reference frame with the transformation OTP . The
pre-grasp position is used in order to adopt an initial con-
figuration with respect to the final grasp frame so that
the robot can reach the handle from a good direction.

The transformation between the tool frame and the
pre-grasp frame T TP is computed at each iteration by
equation 1, and then used for building the visual fea-
tures vector s. During this step there is no contact with
the environment. Thus, the force loop in the vision/force
control law is not modifying the visual reference. This
means that the system behaves according to the vision
control law of section 3.2.1

Figure 10 shows the evolution of the visual velocity
for each degree of freedom (only for the case of the closet
door). Initially, the tool frame is far from the pre-grasp
frame (see Figure 11a), so that there is a large visual
error. The visual control law makes this error converge
to zero, which corresponds to the situation where the
tool frame matches with the pre-grasp frame (see Figure
11b).

4.1.2 Reaching the grasp position

During this step, the tool frame is moved, from the pre-
grasp position towards the grasp frame, as shown in Fig-
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Fig. 10 Kinematic screw for reaching the pre-grasp position
(closet task).

ure 11c. A new vector of visual features is computed ac-
cording to equation 1. Thus, the handle is reached from
the reaching direction established by the transformation
PTG . At the end of this step, the grasp frame and the
tool frame are the same (up to modelling errors), which
means that the handle is situated between the robot fin-
gertips.

4.1.3 Performing the grasp

The last step of the reaching stage is to grasp the handle.
The previous step guarantees that the handle is between
the robot fingertips. Thus, the robot gripper is closed in
order to grasp it, as shown in Figure 11d.

During this step the first contacts appear. Thus, at
the same time that the gripper is closed, the vision/force
control law is active. The reference for the vision control
law is to match the grasp and tool frames (i.e, keep the
handle in the middle point between both fingertips). The
reference for the force control law is to minimize external
forces (fd = 0). If, due to modelling errors, the handle
is not perfectly placed in the middle point between the
fingertips, then one finger will make contact before the
other. This will generate a force that the force control
law will try to regulate to zero by modifying the vision
reference. During this step, the stiffness coefficient on
Y direction of frame E is set to a small value in order
to make the robot highly compliant in this direction.
When the grasp is finished, the task frame is set to the
tool frame in order to specify the task in terms of the
constrained motion.

The real behavior is shown in Figure 12 (only for the
case of the closet door). Due to a premature contact on
one of the fingers, it appears a force in Y direction and
a torque in X axis (expressed in effector frame E). These
forces modify the visual reference (i.e. the grasp frame
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Fig. 11 Reaching the handle. Top row: closet. Bottom row: refrigerator. From left to right: (a) Initial position (b) Reaching
the pre-grasp position (c) Reaching the grasp position (d) Grasping.
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Fig. 12 Forces during grasping (closet task).

pose w.r.t tool frame) according to equation 3, and then
the robot is visually-guided in order to reduce the force.
Note that it would be impossible to correct this visual
positioning error without using force feedback.

4.2 Interaction

Once the handle has been reached, the robot computes
the direction of the force that must be applied at the
contact point (the motion constraint in the task frame),
depending on the motion that must be applied to the ob-
ject [1]. Thus, the reference for the force control law fd

is set on-line, depending on the task. However, the refe-
rence for the vision control law is not modified, because
the contact (and, thus, the relative position between ob-
ject and gripper) must be kept during the task execution.

The new force reference will modify the vision refe-
rence, so that the robot will move in a direction suitable

Fig. 13 Interaction phase. Top row: closet. Bottom row: re-
frigerator

for the task guided by the vision task. The natural ob-
ject mechanism will generate forces on the robot hand
that the force control law will try to minimize, making
the robot hand to adapt to the object motion. Simul-
taneously, as the object pose is being observed at each
iteration, any misalignment between the hand and the
handle will be detected and corrected by the vision loop.
Thus, both force and vision will work simultaneously for
a common goal: performing the task while the relative
position between hand and handle is kept constant.

Experimental results on the interaction phase can be
seen in Figures 14 and 15 (only for the closet task). Fig-
ure 15 shows the evolution of the visual reference mod-
ifier ds, which depends directly on the task forces ac-
cording to equation 3. The visual reference is modified
mainly in translation in Y and Z axis, and in rotation
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Fig. 14 Kinematic screw computed by the vision control law
during the interaction phase (closet task).
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Fig. 15 Visual reference modifier based on interaction forces
(closet task).

in X axis, due to the existence of important forces in
these directions. Force in Z direction (of the end-effector
frame E) is regulated to a positive value according to
the force reference fd. This force corresponds to the re-
sistance of the particular object mechanism and is the
one which is really acting on the task direction. The rest
of forces appear on constrained directions and must be
regulated to zero. The force in Y direction and torque
in X direction are generated by the particular trajectory
when opening the door. The force control law updates
the vision reference so that the robot hand adapts to
the natural trajectory (see the velocity in Y and the ro-
tational velocity in X in Figure 14). It is worth noting
that the hand trajectory is never planified. Instead, the
vision/force control law adapts the hand motion auto-
matically to the particular object mechanism.

5 DISCUSSION

An initial step towards vision/force-guided autonomous
robotic manipulation of articulated objects has been pre-
sented. First, we have shown an object representation
which is suitable for the definition of tasks under the
Task Frame Formalism, and enables the use of task-
oriented grasp planning algorithms. The object represen-
tation does not include a detailed geometrical model of
the object. Instead, a simplified model, using bounding
boxes, is used, which needs lower storage requirements,
and makes grasp planning faster. However, we still have
not addressed the problem of object recognition using
such model.

Regarding vision and force sensors, a novel control
law for coupling both modalities has been developed,
based on external control [15]. The main advantage of
this scheme is that the force control law is used to mod-
ify the vision reference, and not the vision control out-
put, so that only the vision control law is moving the
robot, thus avoiding problems of local minima that ap-
pear with other approaches. Although we have applied
this control law to the particular case of position-based
visual servoing, it can also be used with other kinds of
visual servoing such as image-based or hybrid, as long
as we know the interaction matrix. It is worth noting
that the control law can still be improved by consider-
ing robot dynamics in the force loop, which is one of
our future lines. We would also like to add more sensor
modalities such as tactile sensors or proximity sensors
that could add robustness to manipulation. Tactile sen-
sors can detect contacts, even if they generate very small
force, and could be used in order to correct any misalign-
ment during grasping. Proximity sensors could be used
for the same goal, but before making contact.

We have applied task-oriented grasp planning and
vision/force control to a robot that must perform daily
chores in a home environment. Instead of putting the
camera on the hand, which may cause some problems
of visibility when the hand is close to the object, an
external camera has been used, which allows to have a
suitable view of the object even when contact is made. In
addition, this is the common configuration in current hu-
manoid robots, where the camera is placed on the head.

An external camera also allows us to visually track
the robot hand pose and to specify the grasp (and task)
in terms of a desired relative pose between the hand and
the object. Tracking the hand could be avoided by us-
ing joint encoders to get the hand pose with respect to
the camera, assuming that the pose of the camera with
respect to the robot base is known, which is a difficult
calibration problem (specially when the camera is not
fixed). In practice, modelling errors would generate im-
portant errors in the hand pose estimation, making this
approach unfeasible. It is for this reason that we com-
pute simultaneously the object and the hand pose and
work with the relative pose between both. The main ad-
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Fig. 16 General framework of the task scheduler.

vantage is that the camera can be moved freely without
affecting the task execution. No external calibration is
needed. At this moment, we are estimating the object
and hand pose by using markers which is a quite robust
and easy way for pose estimation. However, it has sev-
eral disadvantages. First, whereas it may be acceptable
to put a marker on the robot hand, it is not appropriate
to put a marker to each object the robot has to manipu-
late. In addition, for certain hand-object configurations,
it may be difficult to have a good view of all the points,
and they can easily go out of the image. We plan to solve
these problems by using natural object features for pose
estimation, like in [31] or [32]. We also propose to take
advantage of the independence between task execution
and camera motion, by developping head control algo-
rithms in order to move the robot eyes so that a suitable
view of the hand and object is always available, according
to some optimization criteria, following an active vision
approach.

Regarding the visual servoing control law, the position-
based approach was chosen for our experiments, mainly
because it works on the cartesian space, where the grasp
and task are also defined, making easier to generate the
visual references from the grasp and task planning algo-
rithms. However, it would be also possible to control the
hand trajectory in cartesian space even with image-based
visual servoing [33]. During the interaction phase, the
robot is applying a motion on the object, and, thus, the
visual features are in motion. We are currently neglecting
the term that models this motion (see equation 2), and,
therefore we have a tracking error, although force control
can deal with it for small task velocities. It is worth not-
ing that, due to image acquisition and processing times,
the vision control frequency will be usually much smaller
than the force control frequency. Thus, it is desired to
run the global control law at the force sensor rate, even

if the visual features are not updated at this high fre-
quency. With this, we give priority to the force sensor
feedback, and are able to detect and regulate contact at
force sensor frequency, independently of the vision rate,
which can vary from 25 Hz for ordinary cameras, up to
1 KHz for high-speed cameras.

Switching between the different tasks (reaching and
interaction phase) is done by a task scheduler (see Fig-
ure 16) according to the error function of the visual con-
trol law (e(s, s∗)). When the error is close to zero, we
assume that the current step has finished, and update
the vision and force references in order to perform the
following step given by the task-oriented grasp planner.
This clearly has the disadvantage of a discontinuity in
the velocity signal when switching from one task to an-
other. Our aim is to integrate current developments into
a general control architecture. We have already worked
on a control architecture for compliant execution of ma-
nipulation tasks [34]. The tasks presented in this arti-
cle, could be implemented as behaviors into this archi-
tecture, so that the robot could make use of them ac-
cording to a global plan. Another interesting approach is
the task sequencing paradigm [35], which allows to acti-
vate/deactivate a set of small subtasks (such as avoiding
obstacles, joint limits, maximizing manipulability, etc.)
in order to reach a global task by taking profit of the
robot redundancy.

6 CONCLUSIONS

An integrated sensor-guided robotic manipulation sys-
tem for common everyday tasks has been presented. The
system combines a task-oriented grasp planning algo-
rithm with advanced visual/force servoing capabilities.
The task-oriented grasp planning module computes a
grasp on the object taking into account the task to per-
form. An external position-based visual servoing approach
is used in order to visually guide the hand of the robot
towards the object to grasp. During this step, the robot’s
head is continuously tracking the hand and the object.
The relative pose between both is computed at each iter-
ation independently of the camera position, which makes
our approach amenable to be integrated into current hu-
manoid robots without hand-eye calibration. Finally, the
task is executed by means of a novel vision/force coupling
approach which avoids control problems by making the
integration in sensor space. Both vision and force feed-
back cooperate during task execution in order to keep
the relative pose between gripper and object at the same
time that the natural object mechanism is tracked. As
future work, we would like to develop a feature extrac-
tion module in order to use the natural object features
as input to the virtual visual servoing pose estimator.
We would also like to work on head control algorithms
in order to keep always a good view of the gripper and
object during task execution. Task scheduling can also
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be improved for taking into account joint limits, obsta-
cles, and other kind of task-relevant criteria. Finally, we
want to test the system on many different objects and
mechanisms that future humanoid robots will have to
deal with.
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