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Abstract
The last decade haswitnessed an increase of interest in the spatial analysis of structured
point patterns over networks whose analysis is challenging because of geometrical
complexities and unique methodological problems. In this context, it is essential to
incorporate the network specificity into the analysis as the locations of events are
restricted to areas covered by line segments. Relying on concepts originating from
graph theory,we extend the notions offirst-order network intensity functions to second-
order and local network intensity functions. We consider two types of local indicators
of network association functionswhich can be understood as adaptations of the primary
ideas of local analysis on the plane. We develop the nodewise and cross-hierarchical
type of local functions. A real data set on urban disturbances is also presented.

Keywords Graphs · Local indicators of spatial network association · Network
intensity functions · Second-order analysis · Partially directed networks

Mathematics Subject Classification 62H11 · 91D25 · 62Rxx

1 Introduction

The statistical analysis of spatial point patterns and processes is a highly attractive
field of applied research across many disciplines studying the spatial arrangement of
coordinates of events in planar spaces, in the sphere or over networks. Apart from point
patterns in planar spaces or the sphere, the last decade witnessed an enormous increase
of interest in the spatial analysis of structured point patterns and event-driven data over
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network domains. Various extensions of classical spatial domain statistics to the net-
work space have been proposed, which in turn rely on mathematical graph theory. For
example, Okabe et al. (1995) extended the Clark–Evans statistics to point patterns over
planar networks, Okabe andYamada (2001) introduced a generalization of Ripley’s K -
function (Ripley 1976) to the network domain,Okabe et al. (2008) and She et al. (2015)
proposed generalized Voronoi diagrams for network data, and Shiode and Shiode
(2011) discussed the applicability of network-based and ordinary kriging techniques
for street-level interpolation. Most recently, Anderes et al. (2017) covered parametric
classes of covariance functions and Baddeley et al. (2017) discussed the concept of
second-order pseudostationary of spatial point patterns over networks. In point pat-
terns over networks, the positions of events are pre-configured by a set of line segments
(e.g., roads) connecting pairs of fixed planar locations. In other words, treating the line
segments as edges and the planar locations as nodes of an arbitrarily shaped graph,
this implies that the positions of events are governed by a geometric structure such
that the point pattern can only be observed upon the edges contained in the network.

To date, a huge range of methodological and also applied papers covering global
characteristics of spatial point patterns over networks exist. Among these papers,
various extensions of kernel density smoothers and second-order moment measures
and functions have been proposed, including thework of Borruso (2005, 2008), Okabe
and Satoh (2009), Okabe and Sugihara (2012), Yu et al. (2015), Ni et al. (2016),
McSwiggan et al. (2017) and Moradi et al. (2018). Spooner et al. (2004), Ang (2010),
Ang et al. (2012) andBaddeley et al. (2014) focussed on generalizations ofOkabe’s and
Yamada’s network K -function (Okabe andYamada 2001) controlling for the geometry
of the network. A thorough discussion of the impact of different network structures
on network-based extensions of Ripley’s K -function is given in Lamb et al. (2016).
Similar to the analysis of classical spatial point patterns, most of these contributions
focused on the exploration and description of interrelations among events over the
network and the underlying characteristics of the observed spatial point pattern.

Although less frequently, several authors also considered autocorrelation between
lagged edges or nodes bymeans of network distances. Similar to spatial autocorrelation
statistics, network autocorrelation statistics express associations amongmeasurements
attributed to nodes over a network.Early adaptations of spatial autocorrelation statistics
to networks have beenpresented byErbring andYoung (1979) andDoreian et al. (1984)
with respect to social networks, and also Black (1992), who appliedMoran’s I statistic
to model autocorrelations of flow data over planar networks. Further contributions that
cover autocorrelation functions for planar networks are the papers by Chun (2008) and
Chun (2013). An in-depth treatment of network autocorrelation is given in Peeters and
Thomas (2009).

Lastly, several authors dealt with the analysis of local characteristics and covered
clustering and hot-spot detection over planar networks. Early contributions to the local
analysis of point patterns over spatial networks are Rogerson (1999) who discussed
a local cluster detection based on a χ2 test, and Shiode and Okabe (2004) who pro-
posed a network cell count method. Further contributions to clustering and hot-spot
detection over planar networks include the L-function analysis (Li et al. 2015), the
analysis of multiscale clusters (Shiode and Shiode 2009) as well as cluster detection
over road traffic (Young and Park 2014) or flow data (Tao and Thill 2016). Adaptations
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of local indicators of spatial association (LISA) functions to the network domain and
local K -functions have been discussed by Yamada and Thill (2007) and Yamada and
Thill (2010). These LISA, resp. local K , functions have been coined local indica-
tors of network-constrained clusters (LINCS), resp. KLINCS, by the authors. Similar
approaches have been covered by Berglund and Karlström (1999) and Flahaut et al.
(2003) who proposed a localG statistic, and Steenberghen et al. (2004) who discussed
a local I statistic.Wang et al. (2017) applied a hierarchical Bayesianmodel framework
for the analysis of local spatial patterns, whereas Schweitzer (2006) implemented a
kernel density smoother for hot-spot analysis which yields to local intensity estimates.

When dealing with spatial point data collected over networks, it is essential to
incorporate the network specificity into the calculus as the locations of events are
restricted to areas covered by line segments. Predominantly, as for traditional spatial
point patterns statistics, techniques for analyzing point patterns over spatial networks
are definedwith respect to pairwisemetric distances between the locations of events. In
the most general case, this results in computations of point characteristics which only
consider events within a disc of radius r centered around the origin. However, when
dealing with real-world planar networks consisting of a wide variety of differently
sized and differently shaped edges, circular definitions appear to be less suitable to
incorporate the characteristics and specificity of the graph.

An alternative formalism, which in turn relies on concepts originating from graph
theory, has recently been introduced by Eckardt and Mateu (2017) where the distance
boundaries used for calculation are determined exclusively by the inherent network
elements independently of the length of the edges, for example all edge intervals
contained in the neighborhood. In detail, Eckardt and Mateu (2017) defined a class
of network intensity functions and various intensity-based statistics for differently
shaped graphs and various levels of aggregation covering undirected, directed and
also partially directed networks. Although this approach provides additional infor-
mation for point patterns over spatial networks, second-order or local characteristics
of network intensity functions have not been presented so far. To address these lim-
itations, we propose extensions of the network intensity formalism with respect to
second-order characteristics and discuss adaptations of LISA functions to network
intensity functions. To provide a clearer classification in context, we denote these new
LISA functions as local indicators of network association (LISNA). We note that the
second-order analysis of point patterns over spatial networks has recently also been
addressed by Rakshit et al. (2017) who considered different metric distances. How-
ever, the approach presented in this paper differs from this reference inmany important
aspects. Essentially, it covers the second-order analysis of different entities contained
in the network, namely edges, subsets of vertices such as neighborhoods and paths,
and omits any statements in terms of radii. In addition, the present paper establishes
a link to spatial autoregression statistics and LISA functions.

The remainder of this paper is organized as follows: A motivation and introduction
to second-order characteristics for spatial networks are given in Sect. 2, whereas a dis-
cussion of weighting matrices and local characteristics for spatial networks follows in
Sect. 3. Applications of local Moran I and local G statistics to urban disturbance-
related spatial network data are given in Sect. 4. Finally, the concluding Sect. 5
comments on the major results and impacts on future research.
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2 First- and second-order characteristics of network intensity
functions

Before discussing second-order characteristics of network intensity functions in detail,
some notation and terminology are introduced. For an in-depth treatment of graph
theory, we refer the interested reader to the monographs of Bondy and Murty (2008)
and also Diestel (2010).

2.1 Notation and terminology

We consider a graph G as a pair of two finite sets: vertices V and edges E . The terms
network and graph are used interchangeably. The shape of G could be undirected,
directed or partially directed such that pairs of vertices in V are linked by at most one
edge, namely a line or an arc. In general, elements of V and E will be expressed in
lower cases.

For a given network, certain sets are of interest and are intensively used in the
remainder of this paper. Any pair of distinct vertices which is linked by an edge is
called adjacent. In this case, the vertices are termed the endpoints of an edge and
the edge is incident to its endpoints. The set of all vertices which are joined by an
undirected edge to node vi is the neighborhood ne(vi ). The degree of vi (deg(vi )) is
the number of distinct vertices in ne(vi ). Similarly, for any directed graph, we define
the parents pa(vi ), resp. children ch(vi ) of vi , as the set of nodes pointing to vi , resp.
with root vi . Taking the union over both sets results in the family fam(vi ). Analogously
to deg(vi ), we express the number of distinct parents of vi by deg−(vi ) and the number
of distinct children of vi by deg+(vi ).

A path is any sequence of distinct nodes and edges, and any nodes vi and v j which
are joined by a path πi j are called connected. If all edges along a path are directed,
the path is called directed path where we assume that the path is direction preserving.
That is, we do not consider sequences of directed edges in which a head-to-head or
tail-to-tail configuration exists. A directed path from vi to v j will be indicated by
�πi j . In addition, we call any vertex vi pointing to v j an ancestor of v j and write
an(v j ) = {vi ∈ �πi j−1} to denote the set of ancestors of v j . Similarly, we say that v j

is a descendant of {vi } if an(v j ) = {vi }. The set of descendants of vi is indicated by
de(vi ).

2.2 Motivation

For motivation, we consider an arbitrarily shaped spatial network with vertices v1 to
v11 and a set of edges joining some, but not all pairs of vertices, as depicted in Fig. 1.
For simplicity, assume Fig. 1 displays a traffic network such that edges correspond to
roads and vertices correspond to segmenting entities such as crossings or ends, whence
each road has at least two ends which need not necessarily be interconnected to any
alternative segment in the network. However, to obtain further parsimony, auxiliary
vertices might be included into the network structure. We also note that a real-world
road is a continuous one-dimensional structure, and our network-based construction is
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(a) (b) (c)

Fig. 1 Examples of possible pairs of paths in an artificial network indicated by using dashed lines: a two
undirected paths, b two diametrically directed paths and c a mixed pair of paths consisting of one undirected
and one directed path

a good (perhaps not perfect) approximation of the road itself. Typically, certain roads
are unidirectional by nature such that traffic can only flow in one direction, while
other roads remain bidirected. That is, our spatial network contains directed as well as
undirected edges and movements along the network appearing as a sequence of either
directed or undirected edges. However, alternative sequences might also be present
in real-world spatial networks and corresponding sequences could easily be defined.
Despite such heterogeneity, some roads might also be affected by speed limits such
that movements along such network sections are decelerated.

Given a collection of random point locations (a spatial point pattern) over a traffic
network where the locations themselves are assumed to be governed by an underlying
stochastic mechanism (a spatial point process), one could be interested in the descrip-
tion of egdewise, nodewise or pathwise characteristics such as the number of events
that felt onto a specific road segment or took place within a certain neighborhood
structure or along a path. Such characteristics have been addressed by Eckardt and
Mateu (2017) by means of edgewise, nodewise and pathwise counting measures, first-
order intensity functions as well as various K -functions for directed, undirected and
mixed networks. Unlike alternative adaptations of Ripley’s K -function to the network
domain, these K -functions are related to the expected number of events that fall into a
certain distance d subject to an integer-valued threshold ξ which, in turn, is computed
as the number of vertices from i to j such that d(i, j) ≤ ξ holds (see Eckardt and
Mateu (2017) for a detailed treatment and specification of alternative second-order
point process characteristics).

We note that different from the linear network formalism presented in Ang et al.
(2012), Baddeley et al. (2014), and Baddeley et al. (2017) among others, where the
point pattern over the network is initially given independent on the structure network
itself, and both configurations are only joint a posteriori, the above specification of the
traffic network in the form of a graph through interconnected edges and sets of vertices
is the base used to compute awide range of different point process characteristics. Note
that in our context, the specification of the particular subgraph structures determines
the calculation of, for example, the nodewise first-order intensity function. That is,
unlike the linear network formalism, the computation of network intensity functions is
initially linked to the structural specificity of the network and thus explicitly controls
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for the structural constraints of the network on the point locations. In consequence, the
specification and thus the characteristics of the graph strongly determine the charac-
teristics of the point pattern such that different specifications of one particular network
might lead to slightly varying locally computed point pattern characteristics, for exam-
ple edgewise intensity functions. At the same time, the global information on the point
pattern over the complete graph will yield similar results, which also holds for more
globally computed characteristics such as pathwise intensity function.

Despite first-order characteristics, one might also be interested in the variation or
association between pairs of edges, neighborhood structures or paths. However, con-
sidering two disjoint edges, neighborhood structures or paths, multiple second-order
characteristics can be defined addressing either similar or diverse shapes. That is, the
second-order edgewise intensity function could either refer to pairs of directed edges,
pairs of undirected edges or, alternatively, consider pairs of one directed and of one
undirected edge. In addition, pairs of directed edges might also have a diametrical
orientation in the network. Similarly, for second-order neighborhood characteristics,
one could be interested in the characterization of events that fell into two neighbor-
hoods in case of undirected or mixed networks, or consider either two sets of parents,
two sets of children or only one set of parents and one set of children. In addition, for
higher-order neighborhood structures, one could also consider pairs of ancestors or
descendants.

An illustrationof three different pairs of paths is shown inFig. 1. Figure 1ahighlights
twoundirected paths joiningv3 tov6 andv4 tov11. In contrast, twodiametrically shifted
paths are shown in Fig. 1b. Finally, Fig. 1c contains one undirected path (v9 to v5) and
one directed path (v6 to v3). For any of these paired paths, one might be interested
in the expected number of points, the variation in number of points or the correlation
between the number of points that felt onto both paths. In addition, as for classical
spatial point patterns, one could also be interested in the probability of an event in
path a given an event in path b.

2.3 Recapitulating first-order network intensity functions

Before we discuss the second-order statistics for spatial networks, we briefly present
the basic ideas of counting measures and statistics with respect to points contained
in SE(G) for different types of networks and recapitulate different first-order network
intensity functions. Here, we first treat undirected graphs and discuss directed and
partially directed graphs consecutively. Extension to higher-order characteristics is
straightforward and follows naturally as generalizations of well-known point pattern
characteristics. In general, three different types of network intensity functions can be
addressed referring to different levels of network resolutions. These are the edgewise,
the nodewise and the pathwise intensity functions.

Following the ideas and notation of Eckardt and Mateu (2017), we address the
set of nodes at fixed locations sv = (xv, yv) contained in a spatial network G by
Vs(G) and refer to the set of edge intervals connecting pairs of fixed locations in G
by SEs (G) = {se1, . . . , sek }. In addition, we express the locations of a point process
X(s̃) over SEs (G) by s̃ = (x̃, ỹ). The location of node vi is svi = (xvi , yvi ). Clearly,
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under this definition, point patterns are only allowed to occur within a given edge
interval contained in G. That is, the locations s̃ are said to occur randomly within
edge intervals spanned between any two fixed locations svi and sv j of sv , for example
on road segments. By this, we understand a path as a sequence of consecutive edge
intervals and the distance dG(vi , v j ) between any two nodes in Vs(G) is the number of
consecutive edges joining vi and v j , that is, the length of a path. Hence, the shortest
path distance is the minimum number of consecutive edges needed to move from vi
to v j along a network.

We explicitly note that these definitions lead to fundamentally different concepts
of length as considered in Ang et al. (2012), Baddeley et al. (2014) and Baddeley et al.
(2017) who defined the length of a path as the sum over Euclidean distances between
consecutive nodes contained in a path, and in Rakshit et al. (2017) who also considered
alternativemetric distances.By this, the shortest path distance is theminimumofmetric
distance totals of all paths joining two locations and it is not defined as the minimum
number of traversed edges along a path.Unlike the abovemetrics, the present definition
related to the number of edges along a path allows for the specification of polynomial
non-circular areas of the network. Also our definition allows for the formulation of
alternative point pattern characteristics such as the network pair correlation or network
K -function defined over the set of points along different edge intervals whose ends are
reachable along the network in ξ or less steps. While the linear network framework
characteristics are defined through discs with their relative versions yielding circular-
type relations, the proposed graph theoretic formulations related to the number of
edge intervals traversed along a path do not yield necessarily circular relations, which
implicitly control for the general non-unique edge–vertex distribution and specification
of the network. That is, for example, the number of traffic accidents might be closely
related to external factors as speed limitations due to overcrowded streets such that
high numbers of accidents are more likely to happen along high-speed areas such as
motorways which usually consist of less crossings compared to dense traffic areas in
the city center.

2.3.1 First-order network intensity functions for undirected networks

Let N (sei ) be the number of points that fall into the undirected edge interval sei and
dsei denote an infinitesimal interval containing sei such that N (dsei ) = N (sei +dsei )−
N (sei ). Then, we have for the first-order edgewise intensity function

λ(sei ) = lim|dsei |→0
{E [

N (dsei )
]
/|dsei |} (1)

Using this expression, we obtain the nodewise mean intensity function λ(vi ) for any
given node vi contained in G by averaging (1) over the set of adjacent nodes.

Besides, apart from any such average intensities of points per neighborhood, one
can define neighborhood intensity functions using the set of incident edges. To this
end, let �(vi ) denote the set of edge intervals with endpoint vi , N (�(vi )) be the number
of points in �(vi ) and d�(vi ) denote an infinitesimal area covering �(vi ). By this, we
define the non-averaged neighborhood intensity function λ(ne(vi )) as
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λ(ne(vi )) = lim|d�(vi )|→0
{E [N (d�(vi ))] /|d�(vi )|}. (2)

Using the same ideas as for λ(vi ) and λ(ne(vi )), we can define an averaged and a
non-averaged version of pathwise intensity functions for a path πi j joining vi to v j (cf.
Eckardt and Mateu (2017)). As for (2), writing ℘i j to denote the set of edge intervals
traversed once along πi j , we define the non-average pathwise intensity function as

λ(π∗
i j ) = lim|d℘i j |→0

{E [
N (d℘i j )

] |d℘i j |} (3)

where N (d℘i j ) = N (℘i j + d℘i j ) − N (℘i j ) and |d℘i j | is the area contained in d℘i j .
We note that in the classical formulation of an intensity function, we only take

the number of neighbors within a particular distance from an event of interest. But
here, as we go deeper into the geometry of the network, we are able to provide more
specific intensity function that highlights many other possible configurations of the
points depending on whether they are in the same path or neighborhood.

2.3.2 First-order network intensity functions for directed networks

To cover directed graphs, slight modifications of the previous notations are required.
To this end, let N (sinei ) express the number of events on an edge leading to and N (soutei )

be the number of events on an edge departing from a vertex of interest, and dsinei and
dsoutei denote infinitesimal intervals containing sinei and soutei .

Substitution of N (sinei ) or N (soutei ) for N (sei ) in (1) yields the directed first-order
edgewise intensity functions whose average, in turn, leads to the parentwise mean
intensity function λin(vi ) and the childrenwise mean intensity function λout(vi ). As
in the undirected case, one can define non-averaging versions of λin(vi ) and λout(vi )

with respect to the sets of incident edge intervals with head or tail vi , namely incident
edge intervals pointing to vi (λ(pa(vi ))) and incident edge intervals departing from
vi (λ(ch(vi ))). Defining �in(vi ) (resp. �out(vi )) as the set of edge intervals pointing
to (resp. departing from) vi and using the same terminology as before, we obtain
the non-averaging parentwise (resp. childrenwise) intensity function by substitut-
ing N (d�in(vi )) (resp. N (d�out(vi ))) for N (d�(vi )) and d�in(vi ) (resp. d�out(vi )) for
d�(vi ) in (2).

Extensions of pathwise intensity functions to directed networks follow naturally as
a generalization of λ(πi j ). For the directed path �πi j pointing to v j , we have

λ(�πi j ) = (|N�π |)−1
∑

vi∈�πi j

λ(sei ) (4)

where N�π is the cardinality of consecutive edge intervals along �πi j . We note that in
general, different from nodewise calculations, (4) is defined for an ordered pair of
endpoints of a directed path such that λ(�πi j ) and λ(�π j i ) refer to different sequences
of edge intervals contained in G. However, �πi j and �π jk are allowed to have a common
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endpoint, for example v j . Apart from (4), we define the directed non-average pathwise
intensity function λ(�π∗

i j ) as

λ(�π∗
i j ) = lim

|d �℘i j |→0
{E [

N (d �℘i j )
]
/|d �℘i j |} (5)

where �℘i j is the set of edges intervals traversed once along a directed path with root
vi and head v j , d �℘i j is an infinitesimal interval contained in �℘i j and |d �℘i j | is the area
covered by d �℘i j .

Apart from directed pathwise intensity functions, one could also consider the infor-
mation contained in the ancestors or descendants of a distinct node. For example,
writing ℘−i

i j for the set of edge intervals contained in de(vi ), a modification of (5)

yields to λ(an(v j )) = lim|d℘
− j
i j |→0

{E
[
N (d℘

− j
i j )

]
/|d℘

− j
i j |}.

2.3.3 First-order network intensity functions for partially directed networks

As partially directed networks are defined as hybrids of directed and undirected net-
works, we obtain various types of network intensity function as union over the directed
and the undirected intensity functions. Using the results of Sects. 2.3.1 and 2.3.2, we
obtain the nodewise mean intensity function for partial networks λcg(vi ) by

λcg(vi ) = (| degcg(vi ))|)−1λout(vi ) ∪ λin(vi ) ∪ λ(vi ). (6)

Alternative versions of (6) follow naturally by modification of the union sets. For
example, the union pa(·)∪ch(·)would only consider directed adjacent edges, whereas
the union ne(·) ∪ ch(·) will exclude any edge pointing to a node of interest. Using
the previous results for directed and undirected networks, we can define non-average
versions of (6) as unions over λ(ne(vi )), λ(pa(vi )) and λ(ch(vi )) such as the fami-
lywise intensity function λcg(fam(vi )) = λ(pa(vi )) ∪ λ(ch(vi )) which expresses the
expected number of counts along all directed edge intervals which are incident to node
vi .

2.4 Second-order intensity and covariance density functions for planar networks

Having point patterns over spatial networks under study, one could be interested in
the variation of intensity functions among two different graph entities, e.g., the pairs
of distinct edges, neighborhoods or paths contained in the graph. For classical point
pattern statistics, such variations are usually expressed by means of second-order
properties of the point pattern such as the second-order intensity or the auto- and
cross-covariance density functions. This section covers extensions of both functions
to pairs of distinct edge intervals, pairs of distinct nodewise sets of edge intervals or
pairs of sequences of edge intervals contained in spatial networks. These functions can
then be used to characterize the locations of events over the spatial network, which in
turn could exhibit randomness, clustering or regularity.
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Table 1 Edgewise second-order intensity functions

Type of network Second-order intensity Auto-covariance Counting measures

Undirected λ(sei , se j ) γ (sei , se j ) N (dsei )N (dse j )

Directed λ(soutei , soute j ) γ (soutei , soute j ) N (dsoutei )N (dsoute j )

Directed λ(sinei , s
in
e j ) γ (sinei , s

in
e j ) N (dsinei )N (dsine j )

Directed λ(sinei , s
out
e j ) γ (sinei , s

out
e j ) N (dsinei )N (dsoute j )

Partially directed λ(sei , s
out
e j ) γ (sei , s

out
e j ) N (dsei )N (dsoute j )

Partially directed λ(sei , s
in
e j ) γ (sei , s

in
e j ) N (dsei )N (dsine j )

2.4.1 Edgewise second-order intensity and covariance density functions

Consider sei and se j denote two distinct edge intervals of possibly different shape or
length contained in G. Then, for any distinct edge intervals contained in any such pair,
we can define either directed or undirected counting measures. First, assume that G
is undirected. Then, using the same notation as before, we obtain the second-order
edgewise intensity function λ(sei , se j ) as

λ(sei , se j ) = lim|dsei ,dse j |→0
{E [

N (dsei )N (dse j )
]
/|dsei × dse j |} (7)

where sei �= se j . Less formally, λ(sei , se j ) is the expected number of counts for
pairs of distinct undirected edge intervals. However, although (7) can be used to
define edgewise versions of Ripleys’ K -function (Ripley 1976), it does not provide a
suitable characterization of the theoretical properties of the spatial point pattern usually
expressed by the location and scale under different spatial model specifications, for
example the first two moments of a particular theoretical point process distribution.
The counterpart version of the K -function based on (7) would reflect the number of
edgewise neighbors and provides different information from the one obtained using a
linear K -function which does not consider edgewise, nodewise or pathwise structures.

An alternative second-order characteristic which better describes these theoretical
properties of the spatial point pattern subject to these two distributional parameters is
the edgewise covariance density function γ (sei , se j ):

γ (sei , se j ) = λ(sei , se j ) − λ(sei )λ(se j ).

As discussed in Sect. 2.3, several different second-order edgewise intensity and
covariance functions can be defined. An overview of second-order edgewise intensity
functions and edgewise auto-covariance functions which can be defined for directed,
undirected and partially directed networks is given in Table 1.
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Table 2 Nodewise second-order intensity functions where � f am (v j ) = �in(v j )) ∪ N (d�out(v j ))

Type of network Second-order intensity Auto-covariance Counting measures

Undirected λ(ne(vi ), ne(v j )) γ (ne(vi ), ne(v j )) N (d�(vi ))N (d�(v j ))

Directed λ(pa(vi ), pa(v j )) γ (pa(vi ), pa(v j )) N (d�in(vi ))N (d�in(v j ))

Directed λ(ch(vi ), ch(v j )) γ (ch(vi ), ch(v j )) N (d�out(vi ))N (d�out(v j ))

Directed λ(pa(vi ), ch(v j )) γ (pa(vi ), ch(v j )) N (d�in(vi ))N (d�out(v j ))

Directed λ(fam(vi ), fam(v j )) γ (fam(vi ), fam(v j )) N (d� f am (vi ))N (d� f am (v j ))

Partially directed λ(ne(vi ), pa(vi )) γ (ne(vi ), pa(vi ) N (d�(vi ))N (d�in(vi ))

Partially directed λ(ne(vi ), ch(vi )) γ (ne(vi ), ch(vi )) N (d�(vi ))N (d�out(vi ))

Partially directed λ(ne(vi ), fam(v j )) γ (ne(vi ), fam(v j )) N (d�(vi )), N (d� f am (v j ))

2.4.2 Nodewise second-order intensity and covariance density functions

Similar to the edgewise second-order intensity functions, we could also be interested in
the characterization of variations among distinct subsets of edge intervals contained in
a spatial network. For this, one could address either the pairwise variation with respect
to distinct nodes such as the second-order or covariance density functions for pairs of
neighbors, or the pairwise variation with respect to an identical vertex, for example
the variation of intensities between the parents and children of a specific node.

Given two sets of distinct neighborhoods ne(vi ) and ne(v j ) where vi �= v j , the
nodewise second-order intensity function λ(ne(vi ), ne(v j )) results directly from gen-
eralization of (7). Using the same arguments as for the edgewise second-order intensity
function, the auto-covariance density function γ (ne(vi ), ne(v j )) can also be computed
from λ(ne(vi )) and λ(ne(v j )), the non-averaged nodewise intensity functions of vi
and v j as defined in (2). An overview of different nodewise second-order intensity
and auto-covariance functions is given in Table 2.

2.4.3 Pathwise second-order intensity and covariance density functions

Lastly, we can also consider the variations among distinct pairs of paths contained in
a network. In general, any such variation can be defined for pairs of paths with either
common or different endpoints such as V -structures in the form of πi j and πik , inverse

V -structures in the form of πi j and πh j , elliptic O-structures in the form of π
(1)
i j and

π
(2)
i j where any edge interval is only allowed to traverse once in either π

(1)
i j or in π

(2)
i j ,

or in the form of two distinct paths πi j and πkl .
In general, for π∗

i j and π∗
kl and adopting the same ideas as before, we have

λ(π∗
i j , π

∗
kl) = lim|d℘i j ,d℘kl |→0

{E [
N (d℘i j )N (d℘kl)

]
/|d℘i j × d℘kl |}

and γ (π∗
i j , π

∗
kl) = λ(π∗

i j , π
∗
kl) − λ(π∗

i j )λ(π∗
kl) where λ(π∗

i j ) and λ(π∗
kl) are non-

averaged pathwise first-order intensity functions as introduced in (3).
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Table 3 Pathwise second-order intensity functions

Type of network Second-order intensity Auto-covariance Counting measures

Undirected λ(π∗
i j , π

∗
kl ) γ (π∗

i j , π
∗
kl ) N (d℘i j ), N (d℘kl )

Directed λ(�π∗
i j , �π∗

kl ) γ (�π∗
i j , �π∗

kl ) N (d �℘i j ), N (d �℘kl )

Directed λ(an(v j ), an(vk )) γ (an(v j ), an(vk )) N (d℘
− j
i j ), N (d℘−k

lk )

Directed λ(de(v j ), de(vk )) γ (de(v j ), de(vk )) N (d℘
− j
j i ), N (d℘−k

kl )

Directed λ(an(v j ), de(vk )) γ (an(v j ), de(vk )) N (d℘
− j
i j ), N (d℘−k

kl )

Partially directed λ(π∗
i j , �π∗

kl ) γ (π∗
i j , �π∗

kl ) N (d℘i j ), N (d �℘kl )

Partially directed λ(π∗
i j , an(vk )) γ (π∗

i j , an(vk )) N (d℘i j ), N (d℘−k
lk )

Partially directed λ(π∗
i j , de(vk )) γ (π∗

i j , de(vk )) N (d℘i j ), N (d℘−k
kl )

As for the edgewise and nodewise second-order characteristics, various types of
pathwise second-order intensity and auto-covariance functions can easily be intro-
duced, see Table 3 for a detailed list. We remark that differently from edgewise or
nodewise calculations, the second-order pathwise properties either include or exclude
the endpoint of a directed path such that λ(π∗

i j , π
∗
k j ) �= λ(de j i , ani j ). That is, while the

edge interval se j = (v j−1, v j ) is included by �π∗
i j , it is excluded by an(v j ) as an(v j )

only considers all edge interval along the path �π∗
i j−1.

2.4.4 Contrasting edge-, node- and pathwise second-order intensity and covariance
density functions

The above definitions have introduced three subfamilies of second-order point char-
acteristics for spatial network point process data which in sum provide a detailed
picture on the observed network pattern, each focusing on a different scale from a
more locally to a more globally structural description of the observed events. In gen-
eral, while edgewise intensity functions are the base underpinning both the node- and
pathwise characteristics, both alternative subfamilies of network intensity functions
focus on different aspects of the point distribution over the network. Being defined
through sets of either undirected, directed or mixed sets of edge intervals which are
connected to a particular node, the proposed nodewise intensity functions reflect the
spread of points within (pairs of) polynomial (sub)areas centered at pairs of distinct
fixed nodes and are whence suitable tools for either hot- or cold-spot detection; they
are also useful to decide on regularity or clustering subject to the number of points
over different graph theoretic subsets such as the neighborhood or the parents. In par-
ticular, for directed and partially directed graphs, these characteristics could be used to
analyze the flow of events over consecutively interrelated subsets such as the parents
and children.

Different from the nodewise characteristics, the subfamily of pathwise first- and
second-order intensity functions provides helpful characteristics which describe the
intensity of points over sets of distinct interconnected edge intervals over the complete
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network and, thus, allow, for example, to evaluate and compare different routes along
the network from i to j .

3 Local indicators of spatial association for network intensity
functions

This section introduces local indicators of network associations (LISNA) functions
for network intensity which can be understood as adaptations of the primary ideas of
local analysis to the analysis of spatial point patterns over a network. In general, we
concern two different types of LISNA functions: nodewise LISNA functions (type 1)
and cross-hierarchical LISNA functions (type 2). While LISNA functions of type 1
are generalizations of Anselins’ LISA functions (Anselin 1995) to nodewise intensity
functions which can be applied to any global measure of spatial association, cross-
hierarchical LISNA functions express the variation between individual edge intervals
and different subsets of edge intervals contained in different network entities. LISNA
characteristics consider the individual contributions of a global estimator as a measure
of clustering. Before we discuss LISNA functions of types 1 and 2 in detail, we briefly
review the concept of LISA functions and related clustering approaches for the spatial
domain.

3.1 A primer on local indicator of spatial association statistics

Spatial cluster detection has stimulated an immense interest in efficient statistical
analysis tools, and several authors have contributed to this field. A local version of
Ripley’s K -function (Ripley 1976) has been proposed by Getis and Franklin (1987,
2010) in order to quantify clustering at different spatial scales. Another local statistic,
the local G statistic, was presented by Getis and Ord (1992, 2010) which allows to
assess the degree of spatial association at various levels of spatial refinement in an entire
sample or in relation to a single observation. Stoyan and Stoyan (1994) introduced
both local L- and local g-functions for the analysis of neighborhood relationships.
A local Hi statistic was introduced by Ord and Getis (2012) in order to measure the
spatial variability while avoiding the pitfalls of using the non-spatial F test for spatial
data.

We note that several authors have considered product density LISA functions for
cluster detection in spatial point patterns which will not be covered here. These LISA
functions originate in the papers of Cressie and Collins (2001a, b) who considered
bundles of product density LISA functions for the recognition of similarity groupings
in spatial subpatterns by examining individual points in the point pattern in terms of
how they relate to their adjacent points in space. Similarly, Mateu et al. (2010) used
product density LISA functions for cluster detection in the presence of substantial
clutter, and Moraga and Montes (2011) discussed the use of product density LISA
functions with respect to disease clusters.
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3.2 Local indicators of spatial network associations of type 1

3.2.1 Weighting matrices for spatial network intensity functions

To discuss spatial auto-correlation and local associations among spatial point patterns
over network structures, a suitable weighting matrix W is essential and has to be
defined prior to analysis. In general, for nodewise associations, a reasonable choice of
W is the adjacency matrix A of the network G which represents the structure of the
graph in a compact way such that the i j th entry ai j of A is one if ne(vi ) = v j and
zero otherwise. However, as we will discuss next,W is equivalently encoded by A in
most but not all cases.

Most commonly, depending on the type of the network, A is either a symmetric or
an asymmetric binary matrix of dimension V(G) × V(G). However, as we consider
local associations among different sets of nodes, namely the sets of neighbors, parents
or children, one might not only be interested in the association within and between
different sets of nodes but also in the variation of associations for different orders of
network linkages. That is, apart the graph-theoretic (first-order) definitions of neigh-
bors, parents or children as introduced in Sect. 2.1, one might also be interested in
the cumulative or the partial kth order subset of nodes where k = 2, 3, . . .. While
the cumulative second-order neighbors of node vi would include all nodes which are
connected to either vi or ne(vi ) by an edge excluding vi , the partial second-order
neighbors would only include those vertices which are joint to ne(vi ) excluding both
vi and ne(vi ). For notational simplicity, we will address the partial kth order of A by
adding a superscript k to A such that A(k) is the partial kth order adjacency matrix of
G. Similarly, W(k) denotes the spatial weighting matrix of order k.

ForA(1), the i j th element ofA(1) is only nonzero if vi and v j are joined by an edge
in G. Thus, if G is an undirected network, ai j = 1 also implies that a ji = 1 due to
the symmetry of A. Despite such first-order subsets of nodes, the definition of higher-
order neighborhoods, parents or children requires a careful distinction between the
notions of partial and cumulative subsets of nodes. Extensions to partial higher-order
adjacency matrices A(k) follow naturally as generalizations of A(1), such that a(k)

i j of

A(k) is nonzero if vi and v j are joined by k−1 interior nodes, that is, if vi is connected
to v j by a path of length k and vice versa. Different from such partial sets of order
k, cumulative sets of order k consist of all neighbors, parents or children of a distinct
node up to order k. That is, a second-order cumulative neighborhood of order k of
node vi can be understood as the union over the first-order and all partial second-order
neighbors of vi up to order k. Obviously, these are all vertices along all paths of length
k contained in the network with origin vi . Consequently, while W(k) = A(k), this
equivalence in general does not hold for cumulative subsets of order k.

3.2.2 Nodewise LISNA functions

We now turn to the discussion of LISNA functions of type 1. For this, let λV denote
a vector of dimension n × 1 of either averaged or non-averaged nodewise intensity
functions defined with respect to either the set of n neighbors, n parents, n children or
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n families contained in a network and μV be the mean of λV over G and γ
(0)
V the auto-

covariance of λV . In general, we assume the type of network elements associated with
λV to be unique such that, for example, all elements of λV are parentwise intensity
functions.

Given the k-order weighting matrix W(k) with w
(k)
i j �= 0 if vi and v j are joined

by a path of length k − 1, we obtain the auto-covariance of λV of order k as γ
(k)
V =

λV TW(k)λV/
∑n

i=1
∑n

j=1 w
(k)
i j .

Similarly, we define the auto-correlation of λV as ρ = γ (k)/γ
(0)
V which expresses

the correlation along the network in terms of distance for different lags k. As for clas-
sical spatial statistics, a general approach to characterize nodewise auto-correlations is
to compute auto-correlation statistics, namely Morans’ I statistic, Geary’s C statistic
or Getis’ and Orb’s G statistic. Assuming that W = A(1) such that wi j = 1 if and
only if vi and v j are joined by an edge interval in G, the Moran I statistics for spatial
networks is given by

I = n
∑n

i=1
∑n

j=1 wi j

∑n
i=1

∑n
j=1 wi j (λ(vi ) − μV )(λ(v j ) − μV )

∑n
i=1(λ(vi ) − μV )2

(8)

and can be understood as the ratio between the product of nodewise intensity functions
and its adjacent nodes, with the nodewise intensity functions, adjusted for the weights
used. That is, the Moran’s I statistic provides information on the correlation between
the nodewise intensity functions and the neighboring intensity function values.

Another concept of nodewise auto-correlation along spatial networks which uses
the sum of squared differences between pairs of nodewise intensity functions as its
measure of covariation is provided by Geary’s C statistic:

C = (n − 1)

2
∑n

i=1
∑n

j=1 wi j

∑n
i=1

∑n
j=1 wi j (λ(vi ) − λ(v j ))

2

∑n
i=1(λ(vi ) − μV )2

(9)

and, additionally, by Getis’ and Orb’s G statistics,

G =
∑

j

wi jλ(v j ) −
∑

j

wi jμV/n
∑

j

w2
i j − (

∑

j

wi j )
2/(n − 1)

1
2 .

Apart from these global statistics, we define a local counterpart of (8) as

Ii = (λ(vi ) − μV )
∑n

j=1(λ(v j ) − μV )2/(n − 1)

n∑

j=1

wi j (λ(v j ) − μV )

and, following the ideas of Anselin (1995), a local version of (9) as

Ci = 1
∑n

i=1 λ(vi )2/n

∑n
i=1

∑n
j=1(λ(vi ) − λ(v j ))

2

∑n
i=1 λ(vi )2
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3.3 Local indicators of spatial network associations of type 2

We now consider LISNA functions of type 2 which can be understood as a gen-
eralization of Sect. 2.4 to second-order characteristics which describe variations in
second-order network intensity functions for cross-hierarchical pairs of network enti-
ties. In general, any such cross-hierarchical pair consists of one edge interval and one
subset of diverse edge intervals such as neighbors, parents or paths. By this, different
from the previous section, LISNA functions of type 2 are not restricted to nodewise
characteristics. But, while LISNA functions of type 1 are based on averaged and non-
averaged nodewise first-order intensity functions, the present LISNA functions are
related to the second-order properties of point patterns of spatial networks and only
allow for non-averaged intensity functions.

In general, this section only considers LISNA functions for two different second-
order properties: the LISNA function with respect to (a) second-order non-average
intensity functions and (b) auto-covariance functions.

For (a), a generalization of Sect. 2.4 to cross-hierarchical terms yields

λ(ne(vi ), se j ) = lim|d�(vi ),dse j |→0
{E [

N (d�(vi ))N (dse j )
]
/|d�(vi ) × dse j |}.

Similarly, for (b) we have γ (ne(vi ), se j ) = λ(ne(vi ), se j ) − λ(ne(vi ))λ(se j ).
A detailed list of all possible cross-hierarchical LISNA configurations for spatial

networks is given in Table 4.

4 Application: urban disturbance-related data

This section covers an applications of LISNA type 1 functions to spatial network data
on locations of phone calls on neighbor and community disturbance recorded by local
police authorities in the City of Castellón (Spain).

4.1 Data and network

Our study is based on event data recorded along the traffic network of the City of
Castellón for whichwe defined 1611 segmenting units. Each segmenting unit is treated
as endpoint of an edge interval such that each edge interval is spanned between a pair
of vertices, namely between two distinct segmenting units. By this, we obtain a spatial
network with a mean number of adjacent nodes of 3.14. Next, we augmented each
vertex with precise coordinates and computed the length of the edge interval as the
squared geodesic distance between its geo-coded endpoints. For our analysis, we
considered a geo-referenced subsample of N = 9790 call-in events provided by the
local officials of the City of Castellón (see Fig. 2 for a visualization of the neighbor
and community disturbance point pattern over the traffic network).

Classification as neighbor and community disturbances has been performed prior
to our analysis by police officials. The phone calls have been received at local police
stations or transferred by 112 emergency services to local police call centers and geo-
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Table 4 Configurations of LINSA functions of type 2 for different types of spatial networks

Type of network Second-order intensity Auto-covariance Counting measures

Undirected λ(sei , ne(vi )) γ (sei , se j ) N (dsei )N (d�(vi ))

Undirected λ(sei , π
∗
i j ) γ (sei , π

∗
i j ) N (dsinei )N (d℘i j )

Directed λ(sinei , pa(vi )) γ (sinei , pa(vi )) N (dsinei )N (d�in(vi ))

Directed λ(soutei , pa(vi )) γ (soutei , pa(vi )) N (dsoutei )N (d�in(vi ))

Directed λ(sinei , ch(vi )) γ (sinei , ch(vi )) N (dsinei )N (d�out(vi ))

Directed λ(soutei , ch(vi )) γ (soutei , ch(vi )) N (dsoutei )N (d�out(vi ))

Directed λ(sinei , fam(vi )) γ (sinei , fam(vi )) N (dsinei )N (d� f am (vi ))

Directed λ(soutei , fam(vi )) γ (soutei , fam(vi )) N (dsoutei )N (d� f am (vi ))

Directed λ(sinei , �π∗
i j ) γ (sinei , �π∗

i j ) N (dsinei )N (d �℘i j ))

Directed λ(soutei , �π∗
i j ) γ (soutei , �π∗

i j ) N (dsoutei )N (d �℘i j ))

Directed λ(sinei , an(vi )) γ (sinei , an(vi )) N (dsinei )N (d℘−i
j i ))

Directed λ(soutei , an(vi )) γ (soutei , an(vi )) N (dsoutei )N (d℘−i
j i ))

Directed λ(sinei , de(vi )) γ (sinei , de(vi )) N (dsinei )N (d℘−i
i j )

Directed λ(soutei , de(vi )) γ (soutei , de(vi )) N (dsoutei )N (d℘−i
i j )

Partially directed λ(sinei ne(vi )) γ (sinei , se j ) N (dsinei )N (d�(vi )))

Partially directed λ(soutei , ne(vi )) γ (soutei , se j ) N (dsoutei )N (d�(vi ))

Partially directed λ(sinei , ne(vi )) γ (sinei , se j ) N (dsei )
inN (d�(vi ))

Partially directed λ(soutei , π∗
i j ) γ (soutei , π∗

i j ) N (dsoutei )N (d℘i j )

Partially directed λ(sei , pa(vi )) γ (sei , pa(vi )) N (dsei )N (d�in(vi ))

Partially directed λ(sei , ch(vi )) γ (sei , ch(vi )) N (dsei )N (d�out(vi ))

Fig. 2 Neighbor and community
disturbance events represented
as black dots recorded over the
traffic network of the City of
Castellón
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referenced indirectly by the provider based on precise address information. Using this
geo-information, we considered an event to belong to a distinct edge interval if the
coordinates fell in between the geo-coded endpoints of an edge. Adopting the network
intensity function formalism to the resulting spatial network pattern, we computed
edgewisemean intensity functions for all edge intervals contained in the traffic network
and calculated the nodewise first-order mean intensity function for neighboring nodes.
By this, we obtained average nodewise intensity values for 614 segmenting unitswhich
have been treated as input for the LISNA type 1 functions.

4.2 Global and local associations for neighbor and community disturbances

To evaluate the associations among nodewise first-order mean intensity values along
the network, we first computed the Moran I and the Geary’s C statistics. For Moran’s
I , we obtained a value of 0.32 and for Geary’s C a value of 0.58 which both indicate
a positive auto-correlation in the distribution of nodewise mean intensity functions
along the network, although it is not particularly strong. Besides the numerical char-
acteristics, we also computed Moran’s I scatterplot (Anselin 1996) which is shown
in Fig. 3. This plot compares the nodewise first-order mean intensity function of each
segmenting unit with the average value of its first-order neighboring nodes. Moran
I statistic is depicted as the slope in the scatterplot with the neighboring nodewise
intensity value on the vertical and the nodewise intensity function on the horizontal
axis. Inspecting Fig. 3, we found that almost all points in the scatterplot are placed
in the upper right quadrant which confirms our findings of positive auto-correlation,
where the slope of the regression lines indicates a moderate Moran I statistic.

To examine the order of spatial auto-correlation along the network structure, we
additionally computed correlograms and Bonferroni adjusted p values for theMoran’s
I and Geary’s C statistics. The results are shown in Fig. 4. Both correlograms show
a consistent trend for Moran’s I and Geary’s C statistics indicating the presence of a
positive auto-correlation among nodewisemean intensity functions along the network.
Looking at the p values, we found a positive association among neighboring vertices
up to order 6 for Geary’s C statistic and up to order 8 for Moran’s I statistic.

Fig. 3 Moran’s I scatterplot for the Castellón network
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Fig. 4 Correlograms and Bonferroni adjusted p values for the Castellón network: a Moran’s I , b p values
of Moran’s I statistics (solid line) and α-level of 0.99 (dashed line), cGeary’sC and (d) p values of Geary’s
C statistics and α-level of 0.99 (dashed line)

To further investigate the spatial auto-correlation among the nodewise mean inten-
sity functions, we computed different local measures of auto-correlation. For the local
Moran’s I statistic, as displayed in Fig. 5, we found high–low associations among the
nodewise mean intensity functions of neighboring vertices in the upper- and lower-
right areas as well as the left borders of the Castellón traffic network.

At the same time, high–high associations which reflect hot spots of nodewise mean
call-in intensities occurred most frequently on a vertical axis along the central area
of the traffic network. These findings express a severe clustering of neighbor and
community disturbance call-ins along the downtown areas of Castellón.

Apart from the local Moran I statistic (Fig. 5), we concerned the local Getis’ and
Orb’s G statistic. The results of the local Getis’ and Orb’s G statistic are shown in
Fig. 6.

Different from Moran’s I or Geary’s C statistics, this local statistic also differ-
entiates between high–high and low–low correlations which are treated as positive
auto-correlation by Moran’s I statistic. Inspecting this Figure, we found high values
located in the center, whereas moderate low values occurred in the outlying areas of
the Castellón traffic network. These findings indicate a strong spatial agglomeration
of neighbor and community disturbances such that all perturbations appeared within
the central areas of Castellón. One possible explanation for this local agglomeration
of public disturbances can be seen in the denseness of the traffic network and the high
population density in the city center.
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Fig. 5 Local Moran’s I computed from the Castellón network

Fig. 6 Local Getis G computed from the Castellón network
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5 Conclusions

This article concerns the second-order analysis of structured point patterns over
networks by means of network intensity functions and proposes nodewise and cross-
hierarchical types of local indicator of network association functions. We believe that
the presented methodology is immediately useful in the following sense, and could
stimulate a rich body of future research and new directions in the analysis of point
patterns and event-driven data recorded along planar networks.

Having point data over planar line structures under study, one commonly faces het-
erogeneous rather than homogeneous characteristics along the network. The expected
number of events is strongly associated with the specificity and geometrical complex-
ity of the network andmight be affected by the shape, the length and the characteristics
of individual lines. Defining edge intervals to be the core elements, network intensity
functions resolve any such methodological challenges and allow to explore the first-
and higher-order characteristics of the point patterns under control of the network
specificity. The proposed global and local network intensity functions provide infor-
mation on interactions within and between different hierarchical levels contained in
the network.

We finally note that our proposal uses graph theoretical ideas different from the
more classical way of dealing with local product densities for spatial point patterns.
Connections and differences between these two approaches are to be analyzed in a
more focused paper.
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