Distributed implementation of Grafcets through
IEC 61499

Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez
Department of Systems Engineering and Design
Universitat Jaume 1
Castellon, Spain
{omiguel, romeroj} @uji.es

Abstract—A Grafcet is a standardized model for describing
the behavior of systems which is popular among automation
engineers. As the Grafcet standard excludes implementation
details, the models are typically translated to automation soft-
ware. Such software was traditionally programmed in one of
the languages specified in IEC 61131-3. Nowadays, automation
software is increasingly modelled in IEC 61499 which facilitates
designing distributed control systems. In this paper, we define
a standardized translation methodology, so that automation
engineers can benefit from the advantages of IEC 61499 while
continuing to use Grafcet. We discuss the differences between
Grafcet and IEC 61499. We translated a Grafcet model into
an IEC 61499 application to illustrate the process and derive
guidelines for application designers. For the core concepts of
Grafcet, we present the corresponding structure in IEC 61499.

Index Terms—IEC 60848, GRAFCET, IEC 61499, modelling
control systems

I. INTRODUCTION

Models are used widely in scientific fields because they are
designed to abstract from highly complex real-world phenom-
ena. In engineering, modelling approaches are increasingly
required to design large and complex systems [1]. In industry,
several levels of modelling can be attained depending on the
goal that has to be achieved. In manufacturing industries,
SysML [2] has emerged as one of the most complete tools
for describing the whole productive chain. On the other hand,
model-driven engineering in automation is based on the use
of different modelling approaches, some alternatives are Petri
nets, statecharts or GRAFCET, each of them with its own
description capabilities. Among them, GRAFCET is one of the
most extensive and provides a very intuitive and descriptive
graphical visualization. This standard [3] was designed as a
graphical modelling language that is tailored for a specific
domain (domain-specific modelling language, DSML). It is
used to formally specify the functioning of a system in so-
called “Grafcets”, which are state-based models. They are
comparable to statecharts [4], but are based on Petri nets and
better suitable for the domain because they are available as an
industrial standard (IEC 60848) [5].

Misinterpretations of the system functionality may be
avoided when using well-defined modelling languages instead
of textual requirements. In general, DSMLs may improve
productivity and quality of the software and facilitate platform-

Bianca Wiesmayr, Alois Zoitl, Member, IEEE
LIT Cyber-Physical Systems Lab
Johannes Kepler University Linz

Linz, Austria
{bianca.wiesmayr, alois.zoitl} @jku.at

independent design. Formal specifications such as state ma-
chines provide a basis for automated validation and verification
of models, which can reveal errors at early stages of the
development process [6]. These advantages of DSMLs explain
the popularity of GRAFCET among automation engineers.

Even though GRAFCET could be used for modelling dis-
tributed control systems, traditionally the controllers modelled
with Grafcet have been implemented in a centralized way, i.e.,
the control algorithm resulting from the model is executed
in a single control device. This restriction is not an intrinsic
feature of the GRAFCET standard whose description level
defines the system behavior but not the implementation details.
This limitations in the implementations are introduced by
the software resources available for implementing the control
algorithms from this kind of models.

In industries involving automation processes, control algo-
rithms modelled with Grafcet are usually implemented fol-
lowing the standard IEC 61131 [7], which still constitutes the
main driving force in these environments [8]. As the standard
supports a variety of graphical and textual programming
languages, developers can flexibly choose the most suitable
language for each part of a software project. Generally, the
available development environments cover functionality for
design, validation, and implementation aspects. The recently
published object-oriented extensions [9] further increase the
scope of the standard. Thanks to this versatility, the know-how
in industry is nowadays consolidated and widespread. Limita-
tions of these programming languages include the difficulty of
encapsulation and the lack of support for distributed systems.

New challenging tasks for software development are emerg-
ing due to the increased adoption of Industry-4.0-principles
that require designing distributed control applications. Such
software runs on numerous hardware nodes which form a
System of Systems. In such environments, the newer standard
IEC 61499 may be more suitable, as it was designed as an
executable DSML for networked control systems. The appli-
cation design is independent of a system configuration, which
allows designing distributed control systems. The centralized
application model can be distributed across multiple devices,
so that each part of the application can run on a different
resource.

The aforementioned features of IEC 61499 open the door for

the distributed implementation of Grafcet models. This paper
proposes a well-defined methodology to create control soft-
ware based on IEC 61499 which behaves like the GRAFCET
specification of the system. It allows automation engineers to
create distributed designs, while providing application devel-
opers access to a standardized, high-level modelling technique.
The model behavior of both is compared in Section III to
provide a detailed understanding of the underlying concepts.
Section IV contains translation patterns for implementing
language features of GRAFCET in IEC 61499. An application
example (Section V) is implemented in Eclipse 4diac [10], a
development environment for IEC 61499-based applications
to show the applicability of the developed translation patterns.
The paper is concluded in Section VI.

II. RELATED WORK

When selecting a target language for implementing
Grafcets, readability and maintainability are important fac-
tors [5]. Grafcets have therefore been mostly translated to
IEC 61131 programs using the languages SFC (graphical) and
ST (Structured Text, textual).

An approach that allows translating a Grafcet into ST code
is discussed in [11] where the elements and the behavior of
a Grafcet are described by a Control Interpreted Petri Net
(CIPN). Thus, an algorithm that assures the correct behavior
of CIPNs, which can be easily translated to ST, can be also
applied to Grafcets. Similarly, some publications treat the
implementation of Signal Interpreted Petri Nets (SIPN) in
SFC. SIPN partially describe the functionality of GRAFCET
[12], [13].

An approach for direct translation from GRAFCET to SFC
was shown for example in [14]. A normalization was applied
to the Grafcet to remove hierarchical elements because, un-
like GRAFCET, SFC does not support hierarchical elements.
Hierarchy is however a common tool to reduce the system
complexity by abstracting from lower-level details and to
facilitate understanding models of large systems. IEC 60848
has several mechanisms for creating hierarchical models by
using language elements such as macrosteps that enclose
other Grafcets and so-called partial Grafcets [3]. A translation
algorithm to ST that preserves the (hierarchial) structure of
the Grafcet was therefore proposed [5]. Other languages were
treated in [15], [16], but they have poorer readability.

Despite the similarities between GRAFCET and SFC,
this programming language has some limitations, hence, no
method for fully translating Grafcet models to SFC lan-
guage while retaining hierarchical structures exists. Some
approaches, as in [14], include the hierarchical elements within
a single Grafcet model, which allows its translation to PLC
code. [5].

IEC 61499 is a promising candidate for implementing
Grafcet models [5]. The execution is event-based and therefore
matches GRAFCET better than the cyclic model of IEC 61131,
and hierarchical elements are supported. While no direct trans-
formation from GRAFCET to IEC 61499 is hitherto available,
IEC 61131-3 code could be reused within individual FBs. This

approach however does not allow creating distributed control
nor reusing FBs. Additionally, translations of IEC 61131-
programs to IEC 61499-models have been performed for FB
networks [17] and for SFC [18]. IEC 61499-models were
compared to statecharts and Petri nets in [19], resulting in
an approach to integrate Petri nets and IEC 61499 [20].

The goal of this paper is to provide structured guidelines for
creating an IEC 61499-application directly from a GRAFCET
specification to take a step towards automated translation.
Language features are carefully analyzed in order to create
modular, well-structured applications.

III. COMPARING THE MODEL BEHAVIOR

GRAFCET is a modelling language for describing the
behavior of a given system. The main model elements are
steps, which can have some associated actions. The steps are
connected via directed links which have a transition with an
associated condition. In IEC 61499-models, an application
is defined completely via Function Blocks (FB) and their
interconnections. Among the different types of FB, the Basic
Function Block (BFB) has a state diagram, which is called
“Execution Control Chart” (ECC) and is semantically similar
to GRAFCET. An ECC is composed of several states, which
can have some associated actions. States are connected via
transitions with associated conditions.

GRAFCET is proposed as a tool for modelling IEC 61499
applications because their main characteristics are similar.
The IEC 61499 ECC is based on IEC 61131 SFC, which
was again derived from GRAFCET [21]. Nevertheless, as
some differences exist between both languages, they will be
explained based on the two example graphs shown in Fig. 1.

1) Number of active states in the model: When entering
parallel sequences, the ECC evaluates the transitions sequen-
tially starting from the highest priority. As a result, exactly
one state is active at any time. In contrast, GRAFCET clears
all transitions whose condition evaluates to TRUE and all
destination states are marked as active (“multiple marking”).
In our graphical example, a parallel sequence occurs after S1.
Let @ = 2 and b = 3, then the GRAFCET sets S2 and S3
active. The ECC only sets S2 active, because the transition
from S1 to S2 has the highest priority (shown in the circle
at the transition origin). The Grafcet is equivalent to the ECC
if the condition b > 1 is replaced by a < 1 && b > 1, i.e.,
GRAFCET’s selection of sequences is equivalent to ECC if
conditions are exclusive.

2) Structuring mechanisms: Structuring complex systems
hierarchically creates an abstract model of high-level behavior.
IEC 61499 applications are composed of FB instances. Within
these FBs, an ECC can control the behavior of individual
blocks. Unlike other state-based models, the ECC itself does
not support hierarchy.

GRAFCET modelling introduces some mechanisms that
allow regulating the behavior and structure. These mechanisms
are based on the fact that the whole behavior of a system
can be defined in the form of different partial Grafcets with
the proper interconnection and hierarchy between them. The

STAR

-t— INIT
S1H ALG1
|
= [a > 1] -1 b >1]
S2H— ALG2 S3H ALG3
-1 IN_EVT -1+ IN_EVT
1
S4
[sTarT]™ INIT—yg9’— ALG1 OUTL
[a »= 1] [b >= 1]
q

S2 — ALG2 0UT2 S3 — ALG3

INPUT_EVENT INPUT_EVENT
S TR

Fig. 1. Basic example for comparing the language specifications of
GRAFCET (top) and ECC (bottom). The models are composed of the same
language elements, but have a different execution behavior.

specific mechanisms to structure applications are forcing steps
in other partial Grafcets or encapsulating the functioning of
other partial Grafcets within a step. The encapsulation of
functionality can be done either by an enclosure, which will
execute a partial Grafcet as long as the enclosing step is active,
or by a macro-step, which is a compact representation of a
partial Grafcet that is executed from start to finish.

3) Action Elements: In both models, a state or step may
have any number of actions. Each ECC action can consist of
an algorithm and an output event, while GRAFCET actions
deal with the modification of system variables or executing
algorithms. As models in IEC 61499 are executed event-
driven, FBs send output events to trigger the following FBs. In
Fig. 1, this is reflected in the actions associated to S1 and S2.
While they take the form of algorithms and output event in the
ECC, they are modelled as an action in the Grafcet, which may
modify a variable that works as a signal. This fact highlights
a difference in the way that both standards treat data. While
IEC 61499 generally uses events as signals, Grafcets (and
their implementations in IEC 61131) usually handle signals by
“parametrizing” their data, for instance, assigning a boolean
value to create a rising/falling edge.

4) Transient steps: Upon entering an ECC state, the cor-
responding action is executed. Some types of actions in
GRAFCET are only executed when the corresponding step
is stable, i.e., all outgoing transitions evaluate to false. Hence,
the step remains active until an associated condition of the
enabled transitions becomes true. In our example, consider
the START state and assume a = 2. As soon as an INIT event
occurs, state S1 is reached and the left transition is crossed. S1

is transient (i.e., unstable) and its action is not executed, but
S2 is stable. Exceptions are “Actions on activation”. Like ECC
actions, they are executed once when their execution condition
is fulfilled.

Some GRAFCET principles do not have a corresponding
item in IEC 61499-models or are postulated differently:

5) Nature of the actions: GRAFCET modelling provides
a compact representation of actions, independently of where
and how they will be executed. Nevertheless, IEC 61499
takes care of the nature of the action, requiring a different
implementation. GRAFCET actions that involve resources or
services to be deployed must be implemented with ECC
actions that contain at least an output event. However, if a
GRAFCET action does not require these services or only
affects its behavior, it can be implemented in the algorithmic
part of an ECC action.

6) Action types: GRAFCET actions can be modelled as
stored or continuous actions. Stored actions are executed
once when the activation condition is fulfilled (upon enter-
ing/leaving a step, receiving an event, or crossing a transition).
In contrast, continuous actions are executed as long as the
activation condition is fulfilled, which can be just being
in a specific step or, once within a given step, fulfilling
another boolean expression which can involve variables and/or
temporal constraints. Nevertheless, within an ECC, only one
type of actions is allowed, which are all executed when their
corresponding state is entered.

7) Time-triggered conditions: GRAFCET allows defining
time-dependant conditions for transitions and action execu-
tions. For example, a transition is cleared after the source step
has been active for the specified time. In IEC 61499, blocking
the execution of FBs is forbidden and therefore waiting is not
possible.

IV. TRANSLATION PATTERNS

The differences between GRAFCET and ECC have to be
considered when translating models. As shown in Fig. 1, an
ECC can implement the functionality of several GRAFCET
steps. Developers should avoid implementing the system be-
havior in a single FB/ECC, as this hinders reuse and main-
tainability of the design [22]. When creating an IEC 61499
implementation, not only requirements concerning application
distribution and/or modularity need to be considered, but
also language constraints. While IEC 61499-applications are
designed to be distributable across several devices, this is not
possible for individual FBs.

We therefore derived several patterns for common
GRAFCET features that need to be translated to IEC 61499
and we outline guidelines for structuring the resulting imple-
mentation. The patterns refer to two categories: application
structure patterns and functionality implementation patterns.
Examples of these patterns are included in Figs. 2 to 12.

A. Application structure patterns

1) Distributing the Grafcet behavior across subapplica-
tions: Steps belonging to a modular unit and Grafcet parts

Devicel Device2

DEV_EN DEV_CNFf

Fig. 2. Normalization of Grafcet model to be suitable for implementation in
IEC 61499.

that will run on separate devices should first be identified in
the Grafcet model. To envisage a standardized implementation,
this classification identifies the model parts that will later
be implemented as individual subapplications to allow reuse
and distribution. Subapplications contain a network of FBs
and are blocks with an interface (like FBs). The interface
of these subapplications will be comprised of (1) input event
ports that allow initialization or execution requests, (2) output
events that trigger subsequent application parts and confirm
the completion of actions and (3) ingoing and outgoing data
connections from/to other subapplications with parameters for
correct functioning.

Inside each subapplication, we suggest to implement the
Grafcet logic within the ECC of one or several basic FBs.
They are part of the subapplication network, together with
FBs dedicated to input data collection, output modification,
and additional required functionalities (e.g., timers).

It is simpler to implement the effect of Grafcet transitions
within an ECC. We therefore suggest modifying the original
Grafcet so that distributed or modular elements are connected
by a transition whose condition is always true. This is achieved
by additional empty states at the end of each single marking
distributed subapplication. That transition can thus be directly
modelled by an event connection in the IEC 61499-application.
An example of this modification is presented in Fig. 2, where
a Grafcet consisting of two modules has been modified to
include additional steps and an always true condition between
different modular parts with single marking. The individual
parts are highlighted by colors. Each part will be implemented
within a different subapplication linked by an event connec-
tion.

2) Distributing functionality using Macrosteps: Macrosteps
are a structuring mechanism in GRAFCET that is useful
for compacting sequences of steps, defined by a partial
GRAFCET, into a single step without adding any other special
functionality. This structuring mechanism from Grafcet will
be used to identify the number of BFBs needed in each

MO

LINIT INIT Init — INITO EOQ
—=—ENABLE CNF Iyer¥ 1 ENABLE
& REQ L S
InBcialized [a]
1_ peity N 1 J
DeInit — INITO E6 b — CNF

Fig. 4. Translating a normalized macrostep to a BFB.

subapplication. As ECC only supports one active state at a
given time, the different processes within a subapplication
must be divided into chains where only single marking is
allowed. Continuing the example presented in Fig. 2, the
compact representation will be composed of three macrosteps
as shown in Fig. 3, where a macrostep has been assigned to
each single-marked line.

Each of these macrosteps can now be implemented sys-
tematically as an ECC that is comprised of (1) initialization
procedures, and (2) control algorithms. In Fig. 4, the macrostep
MO from the preceding example is presented. In the left part,
a sequence of states initializes the FB until an idle state
“Initialized” is reached. The control algorithms (right part) are
executed as soon as an event arrives at the “ENABLE” input.
The FB updates its variables from the input upon receiving an
event at the “REQ” input, thus, the behavior of the algorithms
may vary over time. The REQ event is sent as an output
event by the preceding FBs in the network. This request
event allows to implement different execution policies such
as periodic calls to algorithms, cyclic calls, call-on-variable-
updates, round robin in parallel processes, etc. by correctly
handling the events. After the execution of the sequence has
finished, an output event is sent at the “CNF” port right before
returning to the idle state. This event will initiate the next
macrostep and trigger the execution of another FB.

3) Parallelism and synchronizing sequences: By splitting
the Grafcet behavior across different FBs, we have recreated
the behavior of sequences of steps where only a single step is
active. Nevertheless, GRAFCET supports parallelism and syn-
chronization of sequences, behavior that can be mimicked by
properly interconnecting the instantiated BFBs that implement
the Grafcet logic.

In Fig. 5, both parallelism and synchronization are illus-
trated. Parallelizing the execution is supported by a fanout
of output events. In our example, the source “CNF” event is
connected to the “ENABLE” event of every BFB that should

work in parallel. Synchronization of sequences is supported
by including the block E_REND. This block sends an output
event after each input port has received an event. Both,
parallelism and synchronization, can be established between
subapplications or between processes inside a subapplication,
because the interfaces of subapplications and FBs are struc-
turally equivalent.

INIT
DEV_EN-

Fig. 5. Parallelism and synchronization in IEC 61499.

B. Functionality implementation patterns

1) Stored actions: To represent the various types of stored
actions, additional states and proper transitions may be needed
in the ECC. Actions on activation are easily translatable,
because their behavior is equivalent to ECC actions. Both
are defined to be activated upon state entry, even if the
state is transient. Actions on deactivation can be modelled
by introducing an additional state that holds the action. This
state is entered when the exit conditions are met (see Fig. 6).
Actions on event can be modelled by an additional state that
holds the action. This state is entered whenever the trigger
event is received and the ECC then returns to the original or
idle state (see Fig. 7). Finally, actions at the clearing can be
modelled as an action on activation in the step that follows the
transition, or as an action on deactivation in the step preceding
the transition.

2) Continuous actions: In IEC 61499, a continuous action
(Section III-6) can be implemented with a START/STOP logic.
Introducing an additional ECC state ensures that the action is
executed as long as the step is active: It is started in the first
state and stopped in the second one. The algorithms ensure
that the activation/deactivation are performed correctly and
safely. The output events are required to update data outputs.
As a simple example (Fig. 8), consider activating a digital
output. The algorithms will modify the boolean value of the

[condition = TRUE]
S1 1 ALG2
S1 S1_ExitAction— ALG2 i
\1 —— [cond=TRUE]

Fig. 6. An action on deactivation was added to an intermediate state, from
which S2 is entered immediately.

1Trig_ev
«— S1 H ALG1
[cond TRUE] b\ \
TRIG_EV —— [cond=TRUE]
sz S1_ev — ALG1
S2

Fig. 7. Action on event is added to S1_ev which is entered when a TRIG_EV
event arrives, then S1 is set active again.

output variable and an output event triggers a FB that handles
the hardware access. In GRAFCET, continuous actions can

S1 [CONT
S1 — Act_CONT UPDATE
N
[cond = TRUE] —~ [cond=TRUE]
»
S2 — Deact_CONT UPDATE
- S2

Fig. 8. A continuous action is modelled by two states which are activate and
deactivate the continuous action CONT.

have an additional condition, i.e., they are only executed if the
additional condition is fulfilled (Fig. 9). ECC algorithms can
have additional if-conditions to control their execution (written
e.g. in Structured Text), while sending output events can only
be controlled via ECC transitions. The conditional continuous
action can be interpreted as a continuous action combined with
additional transitions as shown in the right image of Fig. 9.
This version mimics the same behavior: the action is executed
as long as the boolean condition cl is true and the step S1 is
active, and, as soon as c2 becomes true, the step S2 is reached.
Taking this transformation into account, the Grafcet on the
right can be directly translated to an ECC using the previous
pattern, resulting in an equivalent ECC as shown in Fig. 10.
In the resulting ECC, the exclusive conditions such as ¢2 and
c1&c2 have been implemented with the priorities of transition
evaluation, choosing always the shortest path to the following

I
cl S].
|
S1 [CONT 1 |
+ o w1 | s conT
S2 T c2 cl&c2
S2

Fig. 9. Functional interpretation of a conditional continuous action (left) as
a continuous action with additional transitions (right).

sirica—- [c1]

\ S1_act — Act_CONT UPDATE

[NOT(c1) OR c2]

[c2]

l [NOT(c1)]

S2 4 [c2]—@S1 deact — Deact_CONT UPDATE

Fig. 10. ECC of a conditional continuous action in GRAFCET such as the
example presented in Fig. 9.

state. In addition, the deactivation procedure of the continuous
action has been implemented in a single state from which the
next state is decided. Continuous actions in GRAFCET are
only executed if the step in which they are placed is stable
(Section III-4). In Fig. 11, an example of an unstable step with
its translation pattern is presented. The unstable step has been
modelled with an additional ECC state holding the continuous
action in the case that the step is stable. The transition with
higher priority bypasses the action execution.

SO

INPUT. _EVENT

T~ Eventl

]

ALG1
[a < 8] y 4 a<o
& S1_stable — ALG1
I S2
S22 < 0]

Fig. 11. ECC of an unstable step. The action is bypassed if S1 is unstable
because the transition priority was chosen accordingly.

3) Time-triggered conditions: In GRAFCET modelling,
conditions that depend on time are very common, and they
are used for example in transitions and conditional continuous
actions. ECCs do not have an equivalent structure, however,
timeout blocks connected to the FB can be used to implement a
time-triggered behavior. To reduce the event and data interface
of the control FB, the timer FB is connected via an adapter.
An adapter extends a FB interface and groups data and
events. Consider a simple example where a transition must
be traversed 2 seconds after entering the preceding state (Fig.
12). A timer FB is connected to a timer adapter port (a so-
called plug) at the interface of the BFB. In the source state
of the time-triggered transition, the timer is set and started.
The timer FB sends an event as soon as the timeout has been
reached and the transition is traversed. Events and data through
an adapter are addressed like structured datatypes: the name
of the socket is followed by a point and the name of the event
or data (e.g. timer.START).

V. EVALUATION EXAMPLE

To exemplify the transformation principles stated above, let
us consider the example presented in Annex B of [3], the
automatic weighing-mixing. The configuration is presented in
Fig. 13. The system consists of two hoppers which contain
products A and B. The products are dispensed to a weighing

TimedTransition

INIT INITO
TimedTransition i

E Timedut

. E TimeQut
timer -
TimeQutSocket
init — setTimer timer.START init
timer.TimeOut T 2s/Xinit
\ timeout
timeout

Fig. 12. Implementation pattern for a transition triggered by a time-depending
condition. Timeout parameter is set in the algorithm: timer.DT := T#2s;

unit C. Once the desired weight of each product has been
obtained, this unit feeds both products into a mixer N, into
which a belt also feeds soluble bricks. All the products are
mixed in N and, once the mixing process has finished, the
mixture is poured, the container of the mixer returns to its
original position, and the process awaits to restart.

The standard also proposes several GRAFCET represen-
tations of the system’s functioning. For the scope of this
article, the representation involving macrosteps is specifically
interesting. An extended version of that Grafcet will be used
as the starting point for implementing a control program.

A. Implementation

Let us consider the expanded Grafcet model presented in
[3], Figure B4. The application will be distributed to four
devices, one that initiates the sequence, the weighing unit, the
belt, and the mixer. First, the distribution principles stated in
sections IV-A1 and IV-A2 were applied. They do not alter the
behavior of the original Grafcet, but lead to structural changes.

VA

Fig. 13. Automatic weighing-mixing system configuration diagram presented
in Annex B in [3].

pm - M40- ~
\

. [|

M10 } E40—/ MR }

! !

T 1 | _|_ t1/XEA40 !

| |

I L 41 H T™+ | MR w

4 |M20 M30| | }

S1

, = T ;

| 1 [42 I TM- [

| |

| |

M40 S0 ‘

——— | |

3: 1 l S40 J

\ !
P i M20-~ o ————— M30-~

/

I I |
Bl ; E20—H VA ; ; E30— BM ;
e N a Lol D \
| Lo |
I M ! | _|_ Il _3|1_ |
I 21 B (. — BM I
| [v Lo [
: —|— Cs-z-S0 : } —'— b } } —'— TD }
| | o \
| S10 [22 H VC Lol 32 M BM I
' I B |
o | +Z N +TD |
I S20 [S30 I
[(. |
\ /A /

Fig. 14. Grafcet of the described system synthesized and normalized for
implementation.

The resulting Grafcet will be translated to IEC 61499 and is
presented in Fig. 14.

The application of IV-Al has four subapplications, which
already allows distributing the application. The subapplications
are marked in different colors. They consist of a Grafcet chain
where only one state is active at a time, so according to IV-A2,
each of them can be compacted into a macrostep modelled by
a single BFB.

The transitions that connect macrosteps M40 and M10
are resolved by a simple event connection. To resolve the
parallelism between M20 and M30 and its posterior synchro-
nization the pattern described in section IV-A3 is applied.
In Fig. 15, the FBD resulting from applying the translation
patterns refering to the structure is presented. Here the four
subapplications, the parallelism, the synchronization and the
distribution in different devices can be seen.

As described in IV-A2, the subapplications are composed
of a FB network in charge or reading variables, implementing
the control algorithms and refreshing the outputs. The only
exception is in M10 where variables z and SO have to be
received from their original subapplication. The subapplication
that corresponds to M40 is shown in Fig. 16, which contains all
the possible elements described above. In this subapplication,
as SO is needed in M10, it is sent along with its event to the
subapplication that models M10.

Regarding the ECCs of the control FBs, the principles
presented in IV-B2 and IV-B3 are applied, resulting in a

M2e }
=M26_INIT z_IND——
~PsM20_ENABLE M2@_CNF—— — -

I

|

| z
|

| mMae
RENC sM4@_INIT se_INDtﬁ:
(fEEH O} PtMA@_ENABLE M40_CNF—

|
|
} M3e ~HEZ

! R (so)
~ »=M30_ENABLE M30_CNF N [\)
M36_INIT S

Fig. 15. Control application in 4diac IDE for the proposed Grafcet.

M40@_INIT~

B »-50_IND
M40_ENABLE

»-M40_CNF
S0

M40_Sensors Mao_ECC M4o_Actuators

INIT INITH INIT INIT INIT INITC
IND: REQ UPDATE: REQ
se_IN ENABLE CNF
| maa_controt foe
50} fso MR [TMp E_RTimeOut
s1 s1 THp Thm
Thim! j E_RTimeOut
Tinerxaor G Tineoutsocket

Fig. 16. Subapplication corresponding to the partial GRAFCET M40.

ECC very similar to the original GRAFCET. In Fig. 17,
the ECC corresponding to the control FB representing the
partial GRAFCET M40 is presented. The algorithms have been
condensed to contain both the activation and deactivation of
the associated action.

The presented ECC, once it is “ENABLED”, will evolve
with the calls to the “REQ” event that will refresh the value
of the input data. For this example, an event is sent to the
REQ socket whenever the input variables change in value.
This is done by plugging the IND event from the digital input
FBs directly to the REQ socket. The same implementation
procedure has been followed for the other partial Grafcets,
which is not presented for simpler cases with less elements
than the case of M40.

VI. CONCLUSIONS AND OUTLOOKS

A systematic procedure for implementing control software
in IEC 61499 departing from a Grafcet model has been
proposed. This work enables engineers to implement Grafcet
models that are distributed over several devices while keeping

E48 — E48_alg UPDATE

Init — init INITO \ initTimer Timer_X11.START
INIT 1 ENABLE Timer_X11.TimeOut
\4 E41 — E41_alg UPDATE
Initialized
\ } [true = S1]
\ INIT
~ » E42 — E42_alg UPDATE
DeInit — INITO \
1 [true = s@]
¥

S40 — S40_alg UPDATE
CNF

Fig. 17. ECC of the control FB representing the partial GRAFCET M40

the design centralized. This is a key advantage compared to
state-of-the-art implementations of Grafcet models.

This work proposes a systematic translation from
GRAFCET to IEC 61499, and introduces a variety of transla-
tion patterns. These translation patterns are possible because
of the similarities between GRAFCET and ECC, which allow
modelling most language elements of GRAFCET. Neverthe-
less, structuring mechanisms such as enclosures or forcing
steps cannot be modelled in IEC 61499 and macrostep im-
plementation is limited to simple sequences. An application
example where the proposed guidelines are used is presented,
illustrating the systematic implementation approach.

This work constitutes an important first step towards a
standardized implementation of applications, usually modelled
and implemented in a centralized fashion, in the distributed
and modular context that IEC 61499 offers. However, several
aspects require further investigation. For example, the trans-
lation patterns are presented for steps with only one action,
when more than one action is present, specifically when they
are of different types, some adjustments to the patterns or
structural changes to the model need to be done to keep the
functionality.

The execution of the algorithms is ruled by the event
generation policy. However, this aspect has not been discussed.
Several alternatives can be promising in terms of performance
depending on the context, to provide data evidence on which
policy to apply in each context further work is required.

Despite IEC 61499 being a standard that focuses on distri-
bution, issues derived of this distribution such as the commu-
nication delays between modules have not been fully studied,
and, depending on the nature of the system, it may play an
important role in the global performance.

Finally, investigating how to include the behavior of the
structuring mechanisms proposed in Grafcet modelling into
IEC 61499 application design could lead to applications which
would not only contain a richer hierarchical design than
IEC 61131-programs, but also benefit from the distribution
configurability that the IEC 61499 standard offers.

ACKNOWLEDGMENTS

This work has been supported by research project 181411-
UJI-B2018-39 from Universitat Jaume I and by CEICE grant
number ACIF/2018/244.

REFERENCES

[1] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven software engi-
neering in practice. Synthesis lectures on software engineering, Morgan
& Claypool, 2nd edition ed., 2017.

[2] Object Management Group, “OMG systems modeling language (OMG
SysML): Version 1.6,” November 2019.

[3] IEC, “IEC 60848: GRAFCET specification language for sequential
function charts,” tech. rep., International Electrotechnical Commission
(IEC), 2002.

[4] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231-274, 1987.

[5] R. Julius, M. Schiirenberg, F. Schumacher, and A. Fay, “Transformation
of GRAFCET to PLC code including hierarchical structures,” Control
Engineering Practice, vol. 64, pp. 173-194, 2017.

[6]

[7]
[8]

[9]
(10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

M. Volter, DSL engineering: Designing, implementing and using
domain-specific languages. Lexington, KY: CreateSpace Independent
Publishing Platform, 2010-2013.

IEC, “IEC 61131 - programmable controllers, part 3: Programming
languages,” 2013.

V. Vyatkin, “Software engineering in industrial automation: State-of-the-
art review,” IEEE Transactions on Industrial Informatics, vol. 9, no. 3,
pp. 1234-1249, 2013.

B. Werner, “Object-oriented extensions for IEC 61131-3,” IEEE Indus-
trial Electronics Magazine, vol. 3, no. 4, pp. 36-39, 2009.

Eclipse 4diac, “Eclipse 4diac - the open source environment for dis-
tributed industrial automation and control systems,” 2020.

R. David and H. Alla, Discrete, continuous, and hybrid Petri nets, vol. 1.
Springer, 2005.

G. Frey, “PLC programming for hybrid systems via signal interpreted
Petri nets,” in Proc. 4th Int. Conf. Autom. Mix. Process. ADPM, pp. 189—
194, 2000.

S. Klein, X. Weng, G. Frey, J.-J. Lesage, and L. Litz, “Controller design
for an FMS using Signal Interpreted Petri Nets and SFC: validation
of both descriptions via model-checking,” in Proceedings of the 2002
American Control Conference, vol. 5, pp. 4141-4146, IEEE, 2002.

F. Schumacher and A. Fay, “Formal representation of GRAFCET to
automatically generate control code,” Control Engineering Practice,
vol. 33, pp. 84-93, 2014.

G. Frey, “Automatic implementation of Petri net based control al-
gorithms on PLC,” in Proceedings of the 2000 American Control
Conference. ACC, vol. 4, pp. 2819-2823, IEEE, 2000.

I. Jimenez, E. Lopez, and A. Ramirez, “Synthesis of ladder diagrams
from Petri nets controller models,” in Proceeding of the 2001 IEEE
International Symposium on Intelligent Control (ISIC’01), pp. 225-230,
IEEE, 2001.

M. Wenger, A. Zoitl, C. Sunder, and H. Steininger, “Transformation
of IEC 61131-3 to IEC 61499 based on a model driven development
approach,” in 7th IEEE Int. Conf. on Industrial Informatics, 2009,
(Piscataway, NJ), pp. 715-720, IEEE, 2009.

M. Riedl, C. Diedrich, and F. Naumann, “Sfc inside iec 61499,” in 2006
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 662-666, 2006.

A. Barji, N. Hagge, and B. Wagner, “Comparative study of using
CNet, IEC 61499, and statecharts for behavioral models of real-time
control applications,” in IEEE Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 750-757, 2006.

N. Hagge, “Integrating CNet and IEC 61499 function blocks,” in 2007
IEEE Conference on Emerging Technologies and Factory Automation
(EFTA 2007), pp. 506-509, 2007.

R. Schoop and A. Strelzoft, “Asynchronous and synchronous approaches
for programming distributed control systems based on standards,” Con-
trol Engineering Practice, vol. 4, pp. 855-861, jun 1996.

B. Wiesmayr, L. Sonnleithner, and A. Zoitl, “Structuring distributed
control applications for adaptability,” in ICPS 2020, Tampere. In Press.,
2020.

