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Abstract

Sepsis is a life threatening condition that can be treated
if detected early. This paper presents a study of the appli-
cation of a Ring Topology Echo State Network (ESN) al-
gorithm to a sepsis prediction task based on ICU records.
The implemented algorithm is compared with commonly
used classifiers and a combination of both approaches. Fi-
nally, we address how different causal strategies on filling
missing record values affected the final classification per-
formances. Having a dataset with a limited number of time
entries per patient, the F1-Score = 14,79% obtained in the
cross-validation stage after optimisation suggests that fur-
ther research is needed in order for the ESN to capture the
temporal dynamics of the problem at hand.

1. Introduction

Sepsis is defined as “life-threatening organ dysfunction
caused by a dysregulated host response to infection” [1].
This condition can be detected using physiological mea-
sures, such as, heart rate, temperature and laboratory mea-
sures of body fluids analysis. Furthermore, it was identi-
fied that any 2 of 3 clinical variables Glasgow Coma Scale
score of 13 or less, systolic blood pressure of 100 mm Hg
or less, and respiratory rate 22/min or greater offered pre-
dictive validity. For patients in the ICU, sepsis prediction
is compromised due to the effects of the prescribed treat-
ment. For instance, drugs that help to attenuate the patient
symptoms have an impact on physiological measurements
(temperature, heart rate, etc.). In turn, mechanical ventila-
tors do not allow to take the respiration rate into account
in order to detect sepsis. In [2], a data-driven probabilis-
tic model was found to be able to improve the prediction
of sepsis relative to some of commonly used theoretical
thresholds.

On the other hand, Machine Learning approaches have
been applied in the medical field in contexts such as ar-

rhythmia detection [3], death prediction [4], and even
death prediction in the presence of sepsis [5]. Hence, we
decided to study such techniques for sepsis detection in
ICU patients.

Our study was aimed at assessing the application of
Echo State Network (ESN) algorithms to predict the oc-
currence of sepsis in ICU data, with an anticipation of 6
hours. For this goal, we explored the influence of the input
parameters and optimised them and compared the results
obtained using the ESN with standard classifiers. Finally,
we implemented a simple combination of both classic clas-
sifiers and ESNs. Additionally, our work addressed the ef-
fect that different strategies in the replacement of the miss-
ing ICU data had on the results obtained using the ESN.

The trained algorithms can be tested with an unreleased
dataset that has never been shown to the classifiers. Their
performance is rated according to a utility function that
penalises excessively early, late, or false detection and
favours timely sepsis detection.

2. Methods

The dataset utilised was provided by the organisation of
the Physionet Challenge 2019 and consists of physiologi-
cal, laboratory and demographic measurements of 40,336
patients from the ICU of two different hospitals (20,336
from one and 20,000 from the second). The readings were
registered hourly, with missing values appearing as NaN
(not a number). At any point in time, a Sepsis Label in-
dicating the presence of sepsis is provided. Specifically,
we count on 40 measurements over 1,552,210 hours, thus
making 62,088,400 values, in which 70% are NaN. Fur-
thermore, sepsis samples amount to 1.80% of the total.

2.1. Preprocessing

In order to force a 6h anticipation in the classification
task, the provided data counts already on a 6h shift applied
to the Sepsis Labels.



In section 3.4 we study the replacement of the NaN
missing ICU record values by means of:

1. Substitution by zero (constant value);
2. Substitution by the mean value of the patient records;
3. Substitution by a random value assuming a normal dis-
tribution with the mean and standard deviation of the orig-
inal records;
4. Substitution by the value corresponding to the interpo-
lation of the measurements around the missing entries.

The substitutions were applied taking into account the
causality of the problem, in which we could only have ac-
cess to the past measurements until the current time and
ignored the future values to simulate the real-time use case.

2.2. Echo State Network

The main algorithm chosen for the sepsis classification
task consisted in a Ring Topology Echo State Network
(ESN). ESNs are a particular subset of recurrent neural
networks that leverage Reservoir Computing properties of
mapping the input data to a high-dimensional space and
simplifying the training given the fact that only output
layer weights are trained. Random inner connections are
set and kept constant. In a successful implementation, 3
conditions are met: a)The recurrent network exhibits dif-
ferent dynamics for inputs that differ significantly, b)The
network provides similar outputs when similar inputs are
given, c)The reservoir exhibits a fading memory where
temporal dynamics play a relevant role that decays over
time.

An Echo State Network consists of an Input layer, a
Reservoir and an Output layer.

First, random weights (i.e., mask) map the input to a
highly dimensional space, distributing the input along neu-
rons that behave differently so that unique responses are
shown for different inputs. Once distributed, inputs need to
be converted to a nonlinear space by means of an activation
function (such as a sigmoid or hyperbolic tangents tanh).
The reservoir’s internal weights, must recreate a sparsely
connected network that preserves the reservoir properties.
Finally, the output weights are the only weights subject
to training. The training procedure is often guided by the
problem of solving the reservoir system presented below.

Ŝ = Esn×W (1)

In eq.1, the classification of samples consists in obtaining
the sepsis labels Ŝ, i.e. the product of the the reservoir
state holding the sample data Esn and the output weights
W that take into account the contribution of the different
neurons.

2.2.1. Topology and ESN formulation

Recent ESN research drawing upon ring topologies has
shown how these networks have successfully been applied
to cross-database clinical contexts such as the detection of
ventricular heartbeats [6]. We chose to work with the same
topology and a zero centred sigmoid nonlinear mapping
function f(x) = (1 + e−x)−1 − 0.5. Our mask was con-
tinuous, randomly generated, uniformly distributed around
0 and counted on an additive offset per neuron.

Since we counted on a full dataset where the number
of samples (s) exceeded 1 million, the ESN reservoir ma-
trix that needs to be numerically inverted has dimensions
Esn = Esns,N , which turn to be the computationally lim-
iting factor. Instead of trying to numerically solve a system
based on computing the pseudo-inverse matrix of the ESN
matrix, we adopted the normal equation formulation pre-
sented in [7]. Following eq.1, the reservoir equations are:

EsnT × S =
[
EsnTEsn

]
W (2)

[
EsnTEsn

]∗ × [
EsnT × S

]
=W (3)

where S represents the known sepsis labels for the train-
ing records, Esn is the reservoir matrix holding the in-
formation, W are the output weights, (T ) stands for ma-
trix transposition and (∗) corresponds to the numerical
pseudo-inverse. The advantage of adopting the linear
equation formulation lies in the fact that the matrix that
needs to be inverted has a constrained dimension of R ≡[
EsnTEsn

]
= RN,N , significantly less computationally

demanding using the LU and Moore-Penrose methods.
The ESN states are represented by:

Esnn,t = f(γInputt + η(WEsn × Esnn−1,t−1)) (4)

where, Esnn,t is the state of neuron n at time t, f is the
activation function, γ is the input scaling factor applied to
the masked data Inputt and η is the memory or leakage pa-
rameter controlling the strength between the fixed internal
neuron connectionsWEsn. The equation captures the tem-
poral and neighbouring neuron dependencies. In the case
of the ring topology, we have a WEsn connection matrix
that consists of a square matrix with ones in the subdiago-
nal.

The optimisation approach was based in the exploration
of different regimes for the input scaling and memory pa-
rameters (γ, η). We computed bidimensional grid searches
and looked for the best Area Under the Receiver Operating
Characteristic Curve (AUC) score by means of a 10-Fold
stratified cross-validation strategy, ensuring that no patient
is used simultaneously in the training and test subsets.



3. Results

In this section we present a comparison of sepsis clas-
sification performances of the ESN and other classifiers.
Regarding the problem that the absence of values posed,
we first adopted the strategy of substituting the missing
NaN values by zeros and proceeded with the exploration of
other approaches reported below. All performances are re-
ported in the form of percentages %. We used the AUC to
guide our parameter optimisation, and proceeded to apply
the optimal threshold and compute the corresponding F1-
score, Precision (Pr), Recall (Re) and Accuracy (ACC) for
the highest AUC point (η, γ). We checked for robustness of
the ESN and input mask dependence by means of ensem-
bles (5-10 networks) that yield 2-3% increases in AUC.
When reporting performances we use F1-score, given that
it combines Pr and Re, which are the most important met-
rics in extremely imbalanced data sets like ours.

3.1. Echo State Network Parameters

In the case of the ESN, we started assessing the influ-
ence of the amount of neurons employed (N). The reser-
voir size is a key element for a reservoir computer to be
able to either find similarities or tell samples apart. Since
its use is motivated by a high dimensional nonlinear map-
ping, the number of neurons must be greater than the num-
ber of features provided at any given point. In order to find
out an optimal regime for our network to work, we used
the first data subset of 5000 patients and conducted a grid
search on several reservoir sizes (of N neurons) scanning
over the same ranges of memory and input scaling param-
eters (η, γ ∈ [0; 10]).

Figure 1. Study of the AUC-Neuron dependence

Fig.1 shows that N=100 provided the highest AUC val-
ues. Once the N size was set, we conducted grid searches
in the (γ, η) parameter space using the whole dataset. Fig.2
shows a representation of the resulting parameter map.

Table 1 shows the results for the given optimal parame-
ters in terms of AUC (N=100, γ ≤ 0.001, η ∈ [0.1; 2.5] ).
The trained ESN received a positive utility score of 0.206
in the official submission of the Physionet Challenge 2019.

Figure 2. AUC - Grid search ESN parameter optimisation

Table 1. Results obtained using the AUC-optimised ESN.

Accuracy F1-Score Recall AUC
95.97 14.79 19.44 74.38

3.2. Classifier comparison

In this work we used four different classifiers available
in the scikit-learn Python package [8]: Decision Trees
(DT), Gaussian Naive-Bayes (GNB), Random Forest (RF)
and Gradient Boosting (GB) classifier. Here, we wanted
to compare the performance of our ESN in relation to the
performance obtained using different classifiers (Table 2).

Table 2. Results of different classifiers.

Classifier Accuracy F1-Score Recall AUC
DT 95.77 8.78 11.32 54.33
GNB 81.00 7.28 41.50 66.45
RF 95.28 16.80 26.51 77.21
GB 95.46 18.29 28.25 80.14

These results indicate that some classifiers may be bet-
ter suited for this specific problem than the application of
ESN, namely, the RF and GB classifiers.

3.3. Combination of ESN and classifiers

The combination of the ESN with other classifiers could
possibly increase the performance of both methods. The
combination was made by implementing the network de-
scribed in section 2 and providing the resulting neuron
states as the input for the classifiers (see results in Table 3).



Table 3. ESN-classifier combination results.

Combination Accuracy F1-Score Recall AUC
ESN + DT 95.95 6.75 8.15 52.86
ESN + GNB 88.94 6.09 19.94 61.96
ESN + RF 95.00 14.44 23.46 74.87
ESN + GB 95.14 15.34 24.51 72.49

The combined classifications suggest that despite
achieving values in some cases comparable to those of the
ESN (e.g. ESN+RF, ESN+GB), classifier performances
using the network as input are worsened when compared
to their raw input counterparts (see Tables 3 and 2).

3.4. Causal NaN Substitution Influence

In an early stage, we addressed noncausal scenarios
where a relevant cross-hospital classification (AUC >
80%) was achieved, enhanced by a minmax scaling and
NaN substitution. Given the number of missing NaN val-
ues, we saw how strategies to replace them could help al-
gorithms better capture the patterns in the data. In this
section we address different ways of causally substituting
those missing values, ranging from the simplest constant
value substitution (0), to more complex methods such as
neighbouring value interpolation. The results are presented
in Table 4, in which each number refers to the strategy de-
scribed in section 2.1

Table 4. Influence of the NaN substitution on the ESN.
Each number corresponds to the description on section 2.1.

Substitution Accuracy F1-Score Recall AUC
(1) Const. 95.97 14.79 19.44 74.38
(2) Mean 96.20 13.91 17.08 75.94
(3) Norm. 92.94 15.20 35.22 75.64
(4) Interp. 95.30 15.49 23.95 75.90

4. Conclusions

We have successfully programmed, trained, optimised
and tested a Python implementation of a Ring Topology
ESN for a Sepsis prediction task. While the sepsis predic-
tion applied to an unseen dataset provided a positive rated
utility score, the low performance achieved by the ESN rel-
ative to other classifiers in the cross-validation stage sug-
gests that further research is needed in order for the ESN
to capture the temporal dynamics of the problem at hand.
Having a highly imbalanced dataset with a limited number
of time entries per patient, we hypothesise that research
into data augmentation approaches maintaining a coher-

ence in how regularly the data is fed to the ESN in a causal
use case scenario could yield to better sepsis prediction.

Although enhanced by the use of other classifiers draw-
ing upon the mapped reservoir states, we can conclude
that no implementation based on our ESN outperforms that
of commonly used classifiers so far. Finally, while the
NaN replacement strategy plays a key role in non-causal
use case scenarios, no significant F1-Score improvements
were observed in the causal classification task.
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