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The evolution of quantum light through linear optical devices can be described by the scattering matrix S
of the system. For linear optical systems with m possible modes, the evolution of n input photons is given by
a unitary matrix U = ϕm,M (S), derived from a known homomorphism, ϕm,M , which depends on the size of the
resulting Hilbert space of the possible photon states, M. We present a method to decide whether a given unitary
evolution U for n photons in m modes can be achieved with linear optics or not and the inverse transformation
ϕ−1

m,M when the transformation can be implemented. Together with previous results, the method can be used to
find a simple optical system which implements any quantum operation within the reach of linear optics. The
results come from studying the adjoint map between the Lie algebras corresponding to the Lie groups of the
relevant unitary matrices.
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I. INTRODUCTION

The action of a linear optical device can be described for
classical (coherent) light fields as well as for single photon
states using unitary matrices. The unitary transformations
induced by linear optical devices for generic n-photon states
of m modes are difficult to compute due to the indistinguisha-
bility of photons. Our paper studies the evolution of states
of light through a linear optical interferometer acting on n
photons in m different modes. These devices are also called
linear optics multiports and conserve the total number of
photons.

More precisely, we provide a prescription to assess whether
a particular unitary U acting on the space of n-photon states
distributed on m modes can be realized by a linear optical
setup, cf. Theorem 1, and, if it can, give a recipe to build a
device implementing it, cf. Theorem 2. Throughout the text,
we will provide two worked examples of the method.

We will work in the Hilbert space Hm,n of the quantum
states |ψ〉 of n photons in m modes, with superpositions of the
form

|ψ〉 =
∑

n1+···+nm=n

αn1,...,nm |n1 · · · nm〉,

where |n1 · · · nm〉 is a state with nk photons in the kth mode.
This space is isomorphic to CM , where

M = dimC Hm,n =
(

m + n − 1

n

)
,
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since each photon number state is orthogonal to the rest:

〈n′
1 · · · n′

m|n1 · · · nm〉 = δn′
1n1 · · · δn′

mnm .

Linear interferometers are described by m × m unitary matri-
ces S ∈ U(m) (the unitary group of m × m unitary matrices).
The interferometer characterized by S naturally induces a
transformation ϕm,M (S) of arbitrary input states

|ψ〉 → ϕm,M (S)|ψ〉.
To understand the action of the interferometer S on multiple
photon states we need to study the underlying transformation
ϕm,M from U(m) to the U(M ), the group containing the unitary
matrix U which gives the evolution of the n-photon state
in Hm,n. Aaronson and Arkhipov [1] give a nice algebraic
description of the resulting one-to-one correspondence, which
turns out to be a group homomorphism we call the (m, M )-
photonic homomorphism (see also Refs. [2–4] for alternative
descriptions).

This paper gives the inverse transformation ϕ−1
m,M (S), pro-

viding a way to implement any possible linear interferometer.
Apart from being interesting in itself, this result also has
applications to linear optics quantum computing [5,6] and
in boson sampling, a problem which could prove quantum
systems can outperform classical computers [1,7].

Organization of the paper

In Sec. II, we give an informal overview of the results.
First, Secs. II A and II B introduce the basic concepts we need.
Then, in Sec. II C, we give a general explanation of our results.
Section II D presents the concept of the adjoint representation,
which is fundamental in our method. Section II E describes
our preferred basis when working with unitary algebras and
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Sec. II F introduces the state space we will use for our guided
examples in the rest of the paper.

Section III gives a necessary and sufficient condition for a
unitary to be implemented with linear optics and Secs. III A
and III B show concrete examples of operations which cannot
and can be implemented with linear optics, respectively.

Section IV shows the method that finds the scattering ma-
trix of the linear system which gives a given unitary operation
U (if it exists). Section IV A shows the necessary steps, which
are illustrated for an example in Sec. IV B.

Section V gives the detailed proofs of the theorems on
which our results are based.

Finally, Sec. VI discusses the importance of our results and
their limitations.

II. OUTLINE OF THE RESULTS AND DEFINITIONS

A. Optical realizations and their implementation

Any linear interferometer with m modes is completely
described by an m × m unitary scattering matrix S which has
a limited number of degrees of freedom, 2m2 − 1. This means
that, except for trivial cases when n = 1 or m = 1, linear
multiports can only provide a limited subset of all the possible
operations over n photons in m modes, which are described by
M × M unitary matrices U with 2M2 − 1 degrees of freedom
[8].

The scattering matrices S are elements of the unitary group
U(m) and any general evolution U on Hm,n is an element of
the unitary group U(M ). The subgroup of all the operations
which can be implemented with linear optics is described by
the image subgroup of ϕm,M , imϕm,M = {B ∈ U(M ) : ∃ A ∈
U(m) such that ϕm,M (A) = B}.

Definition 1. A matrix U ∈ U(M ) is an (m, n)-optical
realization if U ∈ imϕm,M .

In this paper, we relate these groups to give a decision crite-
rion that checks if any particular operator U is in imϕm,M (it is
an (m, n)-optical realization) and, if it is possible, compute the
inverse ϕ−1

m,M (U ) and recover the unitary matrix S of the linear
interferometer which gives the desired evolution. Once we
find S, we can use previous known results which tell us how
to build any desired multiport with a fixed scattering matrix
using only beam splitters and phase shifters [9] or only beam
splitters [10,11], closing the full circle for the experimental
implementation of U .

B. Linear optical evolution from the unitary (group)
and Hermitian (algebra) matrices point of view

The map ϕm,M is a differentiable group homomorphism [1]
and it induces an algebra homomorphism, dϕm,M , as described
by the commutative diagram,

,

which relates the unitary groups U(m) and U(M ) containing
the scattering matrix S and the n-photon evolution opera-
tor U , respectively, to the algebras u(m) and u(M ), whose

elements correspond to anti-Hermitian matrices iHS and iHU

which give an equivalent description of the evolution through
exponentiation of the Hamiltonians HS and HU (S = eiHS and
U = eiHU ) [12,13].

Both the homomorphism ϕm,M and the differential dϕm,M

can be described in terms of the the photon creation, â†
k , and

annihilation, âk , operators for mode k [14], which act on states
with nk photons in the kth mode following

â†
k |nk〉k =

√
nk + 1|nk + 1〉k,

âk|nk〉k = √
nk|nk − 1〉k, n � 1, âk|0〉k = |0〉k . (1)

The homomorphism ϕm,M can be understood from studying
the evolution of the creation operators â†

k in the Heisenberg
picture under the action of a unitary U , â†

k −→ Uâ†
kU †. For

an n-photon input state,

|n1n2 . . . nm〉 =
m∏

k=1

(
â†nk

k√
nk!

)
|00 . . . 0〉, (2)

the output state after a linear interferometer is described from
the elements of S as [2–4]

U |n1n2 . . . nm〉 =
m∏

k=1

1√
nk!

⎛
⎝ m∑

j=1

S jkâ†
j

⎞
⎠

nk

|00 . . . 0〉. (3)

We can also write the elements of U from the permanent of
different submatrices of S [4].

From the differential dϕm,M [13], we can write the effective
Hamiltonian HU of a linear optical transformation as

〈p|iHU |q〉 = 〈p|
m∑

l=1

m∑
j=1

iHS jl â
†
j âl |q〉, (4)

where |p〉 and |q〉 are the photon number states in our Hilbert
space. The same results can be reached from alternative points
of view [12,15–18].

C. Summary of the results

The main design procedure is based on a simple basis
decomposition in the image subalgebra of the Hamiltonian,
with a detour due to the complications that appear when
finding matrix logarithms.

If we know the desired final Hamiltonian, HU , we can
check if it can be implemented with linear optics by looking
for a linear combination,

iHU =
∑

i

Xibi, (5)

of elements of the basis {bi} of the image subalgebra d ⊆
u(M ) for i = 1, . . . , m2. The elements bi = ϕm,M (ai ) are the
image of the elements of a basis {ai} of u(m). HU can be
implemented with linear optics if Eq. (5) has a solution. Since
ϕm,M is a linear transformation, the effective Hamiltonian in
u(m) is

iHS =
∑

i

Xiai (6)
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for the same coefficients Xi. Now, S = eiHS is the unitary
matrix of the desired linear interferometer, for which there are
known methods for an experimental implementation [9–11].

The problem reduces to solving Eq. (5), which can be
expressed as a system of M × M linear equations, one for
each matrix element, and m2 indeterminates (the size of the
basis). If the system is not consistent, we know HU cannot be
implemented exactly using only linear optics.

Unfortunately, finding whether a given unitary U ∈ U(M )
is an optical realization is more involved. In principle, it
seems we could just take iHU = logU and proceed as before,
but, unlike the exponential map, the matrix logarithm is a
multivalued function. Computing the matrix logarithm of a
unitary numerically presents some challenges, particularly if
it has degenerate eigenvalues, as many interesting operations,
such as the quantum Fourier transform, do. However, there
are reliable methods to obtain a Hamiltonian matrix from a
unitary [19].

The greatest obstacle is choosing the correct branch when
we are restricted to a subgroup. For a unitary in the image
subgroup, we need to guarantee that the logarithm branch we
choose is in the image subalgebra iHU ∈ d. Otherwise, we will
not be able to find a decomposition in terms of the basis of the
image subalgebra, even if U can really be implemented.

We need a method to find a Hermitian matrix in the form
given by Eq. (4). These matrices have a strong structure. The
only nonzero elements are in positions which correspond to
transitions between states that are, at most, one photon away
from each other (for input states |p〉 and |q〉 that only differ
in the photon number in two positions, one mode giving the
photon to the other [13]).

The main contribution of our method is giving an alter-
native way of finding a suitable basis decomposition, when
there is one, by using the adjoint representation. The method
avoids using the usual matrix logarithm calculations. There is
no need to compute any eigenvalues and we mostly use simple
linear algebra methods (matrix multiplication and Gaussian
elimination to solve linear systems). If the operation U cannot
be implemented, we prove it and, if it can, we give a complete
description in terms of a linear interferometers.

D. The adjoint representation

We will find the inverse of ϕm,M using the adjoint repre-
sentation, which gives an alternative way of describing linear
interferometers and can help to study the evolution of unitary
operators [20].

Let AdU : u(M ) → u(M ) be the adjoint map defined
by AdU (iHU ) = UiHUU † [21]. We can also define AdS :
u(m) → u(m) for the scattering matrix so AdS (iHS ) =
SiHSS†.

When U is an optical realization, the group of linear inter-
ferometers can be equally described by m × m unitaries S, by
M × M unitaries U in the image subgroup or by the Hermitian
matrices HS and HU with iHS and iHU in the associated unitary
algebra and image subalgebra. Additionally, if U is in the
image subalgebra, the adjoint will also describe the same
physical system. Finding the inverse in this representation is
easier and this is the path we choose.

The adjoint map is conceptually similar to computing the
evolution in the Heisenberg picture. The terms â†

j âl in the
effective Hamiltonian given by Eq. (4) evolve under the action
of the adjoint as

Uâ†
j âlU

† = Uâ†
jU

†UâlU
†, (7)

which, for the definition we use of the adjoint, is the product
of the evolutions of the corresponding creation and destruction
operators under U −1 = U † in the Heisenberg picture.

In our derivation, we use the fact that, for linear transfor-
mations, we can relate the adjoint representations of S and
U = ϕm,M (S) so

AdS (v) = dϕ−1
m,M (AdU (dϕm,M (v))) (8)

for any v ∈ u(m).

E. Bases for the u(m) algebra and the image subalgebra

Consider the canonical basis {|1〉 = |1, 0, . . . , 0〉, |2〉 =
|0, 1, . . . , 0〉, . . . , |m〉 = |0, . . . , 0, 1〉} of Cm. The matrices

e jk := i

2
(| j〉〈k| + |k〉〈 j|),

(9)

f jk :=1

2
(| j〉〈k| − |k〉〈 j|),

give a basis of u(m). The real linear combinations of the
matrices

e jk for k � j = 1, . . . , m,
(10)

f jk for k < j = 1, . . . , m,

give any desired antihermitian matrix in the algebra.
Observe that e jk = ek j and f jk = − fk j . From Eq. (4), we

see the basis of u(m) transforms into

dϕm,M (e jk ) = i

2
(â†

j âk + â†
k â j ) 
= 0,

dϕm,M ( f jk ) =1

2
(â†

j âk − â†
k â j ) 
= 0,

and therefore the map dϕm,M is injective and gives a basis of
the image subalgebra.

F. Example space: Five photons in two modes

To illustrate our results, we will give a few examples using
linear interferometers with m = 2 modes and n = 5 input
photons, for which we have a Hilbert space of dimension
M = (2+5−1

5

) = 6. We choose the basis

{|5, 0〉, |4, 1〉, |3, 2〉, |2, 3〉, |1, 4〉, |0, 5〉} (11)

of C6. For our reference bases, the ith basis element corre-
sponds to a column vector filled with zeros except for a single
1 in the ith row.

The (2,6)-photonic homomorphism will be denoted as
ϕ2,6 : U (2) → U (6). The basis for C2 will be

{|1, 0〉, |0, 1〉}. (12)
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We study how AdU acts on d = dϕ2,6(u(2)) using the basis
{e11, e12, e22, f12} of u(2),

e11 = i

(
1 0
0 0

)
e12 = i

2

(
0 1
1 0

)
,

e22 = i

(
0 0
0 1

)
f12 = 1

2

(
0 1

−1 0

)
. (13)

The U and iHU matrices in these examples are given
for the state order of the basis in Eq. (11), i.e., U11 =
〈1|U |1〉 = 〈50|U |50〉, . . ., U32 = 〈3|U |2〉 = 〈32|U |41〉, . . .,
U66 = 〈6|U |6〉 = 〈05|U |05〉. The same applies to S and iHS

and the basis in Eq. (12).
For a given iHS ∈ u(2), the corresponding element in the

image subalgebra d, iHU = dϕ2,6(iHS ), is given by [13]

〈p|iHU |q〉 = 〈p|
m∑

l=1

m∑
j=1

iHS jl â
†
j âl |q〉. (14)

The matrices {ai} in the basis of u(2), ordered as in
Eqs. (13), give us a basis {b1, b2, b3, b4} of the image subspace
d ⊆ u(M ), with bi = dϕ2,6(ai ), where

b1 : = dϕ2,6(e11) = iâ†
1â1 = in̂1

= i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

5 0 0 0 0 0
0 4 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

b2 : = dϕ2,6(e12) = i

2
(â†

1â2 + â†
2â1)

= i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

5 0 0 0 0√
5 0 2

√
2 0 0 0

0 2
√

2 0 3 0 0

0 0 3 0 2
√

2 0

0 0 0 2
√

2 0
√

5

0 0 0 0
√

5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

b3 : = dϕ2,6(e22) = iâ†
2â2 = in̂2

= i

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 3 0 0
0 0 0 0 4 0
0 0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎠, (17)

b4 : = dϕ2,6( f12) = 1

2
(â†

1â2 − â†
2â1)

= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0
√

5 0 0 0 0
−√

5 0 2
√

2 0 0 0
0 −2

√
2 0 3 0 0

0 0 −3 0 2
√

2 0
0 0 0 −2

√
2 0

√
5

0 0 0 0 −√
5 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(18)

III. EXISTENCE OF A UNITARY EVOLUTION
VIA LINEAR OPTICS

The adjoint representation gives us a necessary and suffi-
cient condition for the implementation of any given unitary
operator U with linear interferometers.

Theorem 1. U ∈ imϕm,M ⇐⇒ AdU |d is an automorphism.
Theorem 1 gives a criterion to decide whether a matrix

U ∈ U(M ) is an (n, m)-optical realization or not. A quantum
operation U can be implemented with linear optics if and
only if AdU |d is an automorphism (for any v in the image
subalgebra d, the adjoint UvU † remains in the subalgebra).
We only need to see this is the case for a basis of d, which can
be obtained by transforming the elements of a basis of u(m)
by the algebra homomorphism dϕm,M .

We can choose a basis of u(m) {a1, · · · , am} following
Eqs. (9) and (10) so any element in the algebra can be
expressed as a real linear combination of the ai matrices. For
that basis, the matrices bi = dϕm,M (ai ) form a basis for d.

U is an optical realization if and only if, for any v that is a
real linear combination of the computed bi, we can also write
UvU † in the same basis. There must exist real coefficients Xi j

such that

UbiU
† =

m2∑
j=1

Xi jb j, i = 1, . . . , m2. (19)

To check whether a given U can be realized with linear
optics, we need to satisfy m2 equations with M × M complex
matrices, one for each element of the basis, for a total of m2M2

independent real equations [22] with m4 indeterminates. If the
system is consistent, U is an (n, m)-optical realization.

A. Example 1: An impossible operation

In our example state space, see Sec. II F, to decide whether
a matrix U is a (2,6)-optical realization or not, by Theorem
1, we have to compute Ad U and see if Ad U (v) ∈ d for any
v ∈ d.

The adjoint is linear and it is enough to verify the property
for the vectors in the basis {b1, b2, b3, b4} of d. This leads to a
real linear system with 22 · 62 equations,

Ad U (b j ) =
4∑

k=1

Xjkbk, j = 1, . . . , 4, (20)

in the 24 indeterminates Xjk belonging to R. If the system is
consistent, then U is a (2,6)-photonic realization.

First, we are going to use Theorem 1 to show that not every
unitary 6 × 6 matrix is a (2,6)-optical realization. If we take
the matrix

U =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, (21)
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the system Eqs. (20) is inconsistent. Consider, for instance, Eqs. (20) for b2,

Ub2U
† = X21b1 + X22b2 + X23b3 + X24b4, (22)

which, in matrix form, is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 3i
2 0

√
2i 0

0 0
√

2i
√

5i
2 0 0

3i
2

√
2i 0 0 0 0

0
√

5i
2 0 0 0 0√

2i 0 0 0 0
√

5i
2

0 0 0 0
√

5i
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5iX21
iX22

2

√
5 +

√
5X24
2 0 0 0 0

iX22
2

√
5 −

√
5X24
2 4iX21 + iX23

√
2iX22 + √

2X24 0 0 0

0
√

2iX22 − √
2X24 3iX21 + 2iX23

3i
2 X22 + 3X24

2 0 0

0 0 3i
2 X22 − 3X24

2 2iX21 + 3iX23

√
2iX22 + √

2X24 0

0 0 0
√

2iX22 − √
2X24 iX21 + 4iX23

iX22
2

√
5 +

√
5X24
2

0 0 0 0 iX22
2

√
5 −

√
5X24
2 5iX23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

The system is clearly inconsistent. In the first row, we see two constants, 3i
2 and

√
2i, which should be equal to zero, which is

impossible.
Therefore, since AdU is not an automorphism of d, we have that U /∈ Im(ϕ2,6) by Theorem 1 and U is not a (2,6)-optical

realization.
Another way to show that inconsistency is noticing that, if v ∈ d, then 〈n′

1, n′
2|v|n1, n2〉 
= 0 implies that the input state |n1, n2〉

is, at most, one photon away from the output state |n′
1, n′

2〉 (cf. Eq. (4) and Ref. [13]).
This is not the case for the given U and our basis order in Eq. (11): Notice that |2, 3〉 is two photons away from |4, 1〉, but

〈4, 1|Ad U (b2)|2, 3〉 = 〈4, 1|Ub2U
†|2, 3〉 = 〈4, 1|b2|5, 0〉 =

√
5

2
i 
= 0. (24)

B. Example 2: An optical realization

Continuing with Sec. III A, let us show that for the operator,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2

8

√
10
8

√
5

4

√
5

4

√
10
8

√
2

8√
10
8

3
√

2
8

1
4 − 1

4 − 3
√

2
8 −

√
10
8√

5
4

1
4 −

√
2

4 −
√

2
4

1
4

√
5

4√
5

4 − 1
4 −

√
2

4

√
2

4
1
4 −

√
5

4√
10
8 − 3

√
2

8
1
4

1
4 − 3

√
2

8

√
10
8√

2
8 −

√
10
8

√
5

4 −
√

5
4

√
10
8 −

√
2

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

there exists a matrix S in U (2) such that ϕ2,6(S) = U .
We start by solving the system in Eqs. (20). We write one matrix identity for each element in the {bi} basis. For instance,

for b1,

Ub1U
† = X11b1 + X12b2 + X13b3 + X14b4 (26)
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becomes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5i
2

√
5i

2 0 0 0 0√
5i

2
5i
2

√
2i 0 0 0

0
√

2i 5i
2

3i
2 0 0

0 0 3i
2

5i
2

√
2i 0

0 0 0
√

2i 5i
2

√
5i

2

0 0 0 0
√

5i
2

5i
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5iX11
iX12

2

√
5 +

√
5X14
2 0 0 0 0

iX12
2

√
5 −

√
5X14
2 4iX11 + iX13

√
2iX12 + √

2X14 0 0 0

0
√

2iX12 − √
2X14 3iX11 + 2iX13

3i
2 X12 + 3X14

2 0 0

0 0 3i
2 X12 − 3X14

2 2iX11 + 3iX13

√
2iX12 + √

2X14 0

0 0 0
√

2iX12 − √
2X14 iX11 + 4iX13

iX12
2

√
5 +

√
5X14
2

0 0 0 0 iX12
2

√
5 −

√
5X14
2 5iX13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(27)

from which we see X11 = 1
2 , X12 = 1, X13 = 1

2 and X14 = 0. If we repeat the same operation for each bi in the basis, we see the
system Eqs. (20) is consistent and its solutions are given by the matrix

X = (Xjk ) =

⎛
⎜⎜⎜⎝

1/2 1 1/2 0

1/2 0 −1/2 0

1/2 −1 1/2 0

0 0 0 −1

⎞
⎟⎟⎟⎠. (28)

Therefore, since AdU is a linear map so AdU :
dϕ2,6(u(2)) → dϕ2,6(u(2)), we know (by Theorem 1) that
there exists at least one S ∈ U (2) such that ϕ2,6(S) = U .

IV. IMPLEMENTATION OF THE POSSIBLE OPERATIONS
USING LINEAR OPTICS

When the operation can be implemented, we can give an
explicit implementation which uses the solution to the system
of equations. Let U ∈ U(M ), then Theorem 1 shows that, if
AdU |d is an automorphism, there exists an S ∈ U(m) such
that ϕm,M (S) = U . The goal is to obtain an algorithm which
provides this S.

Theorem 2. For some S = ∑
� j S� j |�〉〈 j| ∈ U(m), let AdS :

u(m) → u(m) be the adjoint map; then there exist �0, j0 such
that −i〈�0|AdS (e j0 j0 )|�0〉 = |S�0 j0 |2 
= 0 and

S = eiθ
∑
�, j

〈�|AdS ( f j j0 )|�0〉 − i〈�|AdS (e j j0 )|�0〉√−i〈�0|AdS (e j0 j0 )|�0〉
|�〉〈 j|,

(29)
with θ ∈ R.

All the relevant adjoint operators can be written from
AdS (ai ) for the elements ai of the basis of u(m) and the desired
U .

Notice that

dϕm,M (Ad S (ai ))

= Ad U (dϕm,M (ai )) =
m2∑
j=1

Xi jdϕm,M (ai ) (30)

for the Xi j from the system in Eq. (19), which must be con-
sistent (otherwise we know the operation cannot be realized).
Both dϕm,M and dϕ−1

m,M are linear and

Ad S (ai ) = dϕ−1
m,M

⎛
⎝ m2∑

j=1

Xi jdϕm,M (ai )

⎞
⎠ =

m2∑
j=1

Xi jai (31)

where all the Xi j and ai are known.

A. Implementation recipe

Given an operator U , we first solve the system in Eq. (19)
(or say it cannot be realized if it is inconsistent).

Then, we try different integer pairs �, j in

|S� j |2 = −i〈�|AdS (e j j )|�〉. (32)

If the chosen |S� j |2 = 0, we have one element of S. We
continue until we find a pair �0, j0 which gives a nonzero
element of S. This S�0 j0 = eiθ |S�0 j0 | will be our reference.

We can only compute the modulus, but, if we use the same
S�0 j0 for all the �, j pairs, all the elements of S will have the
same global phase, which can be ignored. Using Eq. (31) and
Theorem 2, we can compute all the elements of a scattering
matrix S which realizes the desired operator U . The scattering
matrix, in turn, can be used to build the desired device with
linear optical elements [9–11].

B. Implementation example

In Sec. III B, we proved the existence of a matrix S ∈ U (2)
such that ϕ2,6(S) = U for the unitary operation U in Eq. (25).
To find this matrix S up to global phase, we apply Theorem 2.
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We first look for a nonzero element of S from Eq. (32):

|S� j |2 = −i〈�|AdS (e j j )|�〉. (33)

We start with � = j = 1

|S11|2 = −i〈1|AdS (e11)|1〉. (34)

We also need to use Eq. (31)

AdS (ai ) = dϕ−1
m,M

⎛
⎝ m2∑

j=1

Xi jdϕm,M (ai )

⎞
⎠ =

m2∑
j=1

Xi jai, (35)

which, for a1 = e11 and the matrix with the coefficients of the
solution in Eq. (28), gives

AdS (e11) = X11e11 + X12e12 + X13e22 + X14 f12

= i

2

(
1 1
1 1

)
,

so that

|S11|2 = 1
2 . (36)

We obtain S11 = eiθ 1√
2
. From Theorem 2, we see the remain-

ing S� j are

S� j =
√

2 exp(iθ )(〈�|AdS ( f j1)|1〉 − i〈�|AdS (e j1)|1〉). (37)

We use the same reference S11 to find the rest of the entries
in S:

S12 =
√

2 exp(iθ )(〈1|AdS ( f21)|1〉 − i〈1|AdS (e21)|1〉), (38)

S21 =
√

2 exp(iθ )(〈2|AdS ( f11)|1〉 − i〈2|AdS (e11)|1〉), (39)

S22 =
√

2 exp(iθ )(〈2|AdS ( f21)|1〉 − i〈2|AdS (e21)|1〉). (40)

All the elements can be computed from the basis
{e11, e12, e22, f12} (remembering fii = 0, e jk = ek j , and f jk =
− fk j). Apart from Ad S (e11), we need the matrices

AdS ( f21) = −AdS ( f12)

= −(X41e11 + X42e12 + X43e22 + X44 f12)

= f12 = 1

2

(
0 1

−1 0

)
, (41)

AdS (e21) = AdS (e12)

= X21e11 + X22e12 + X23e22 + X24 f12

= 1

2
e11 − 1

2
e22 = i

2

(
1 0
0 −1

)
, (42)

which give the solution

S12 =
√

2 exp(iθ )

(
0 − i

i

2

)
= eiθ 1√

2
, (43)

S21 =
√

2 exp(iθ )

(
0 − i

i

2

)
= eiθ 1√

2
, (44)

S22 =
√

2 exp(iθ )

(
−1

2
− 0

)
= eiθ −1√

2
. (45)

We can ignore the global phase θ and obtain the scattering

matrix

S = 1√
2

(
1 1
1 −1

)
. (46)

If we compute ϕ2,6(S) using Eq. (3), we can check we get the
desired evolution U .

Notice that, had we tried to simply take the matrix loga-
rithm of the unitary in Eq. (25), we could have obtained results
such as

iHU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.293i −0.621i −0.878i −0.878i −0.621i −0.278i
−0.621i 0.738i −0.393i 0.393i 0.833i 0.621i
−0.878i −0.393i 2.126i 0.555i −0.393i −0.878i
−0.878i 0.393i 0.555i 1.015i −0.393i 0.878i
−0.621i 0.833i −0.393i −0.393i 2.404i −0.621i
−0.278i 0.621i −0.878i 0.878i −0.621i 1.848i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (47)

which was computed numerically and is presented rounded
to three decimal places. While this is a valid logarithm
(U = eiHU ), the matrix is not in the image subspace (it has
nonzero elements for transitions between states which are
more than one photon away). As a result, this logarithm is not
compatible with our approach using the basis of d to check
whether U can be implemented or not.

V. PROOFS OF THE MAIN RESULTS

In this section, we prove Theorems 1 and 2, which lay the
foundations for our results.

Let AdU : u(M ) → u(M ) be the adjoint map defined by
AdU (iHS ) = UiHSU † [21].

We denote by d the subalgebra dϕm,M (u(m)) ⊆ u(M ), and
by sd the subalgebra dϕm,M (su(m)) ⊆ u(M ) where su(m) is

the special unitary algebra of dimension m which gives by
exponentiation the matrices in the special unitary group which
describe any quantum evolution for a quantum state up to an
unobservable global phase shift. Notice that dϕm,M : u(m) →
d is a bijection.

A. Proof of Theorem 1

Lemma 1. Let iHU = dϕm,M (iHS ) ∈ d for iHS ∈ u(m),
then,

tr(iHU ) =
(

n + m − 1

n − 1

)
tr(iHS ).

Therefore, v ∈ sd if and only if tr(v) = 0. Moreover,

d = sd ⊕ spanR(iIM ).
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Proof. tr(iHU ) = tr(dϕm,M (iHS )) = ∑M
�

∑m
j,k〈�|iHS jkâ†

j

âk|�〉 = ∑
� jk iHS jk〈�|â†

j âk|�〉 = ∑
� jk iHS jkδ jk〈�|n̂ j |�〉 =∑

� j iHS j j〈�|n̂ j |�〉 = ∑
j iHS j j

∑
�〈�|n̂ j |�〉 = ∑

j iHS j j
nM
m =(n+m−1

n−1

)
tr(iHS ), taking into account that the sum for the

average of the photon number operator n̂ j = â†
j â j in mode j,∑

�〈�|n̂ j |�〉, must be the same for every mode (we cover all
the permutations for photon occupation). For n total photons
and M possible states, the total sum is nM, which is divided
by m for each position.

Observe that spanR(iIM ) is a subalgebra of d, since

dϕm,M (βIm) = β
∑

jk

δ jk â†
j âk = β

∑
j

n̂ j = βnIM .

Let iHU ∈ d and v = tr(iHU )
M IM ∈ spanR(iIM ), since

Re(tr(iHU )) = 0. Then iHU − v ∈ sd as tr(iHU − v) = 0,
hence iHU = (iHU − v) + v ∈ sd + spanR(iIM ). The result
follows from the fact that sd ∩ spanR(iIM ) = 0. �

Lemma 2. Let U ∈ U(M ), then AdU |d is an automor-
phism if and only if AdU |sd is an automorphism.

Proof. We first assume that AdU |d is an automorphism,
then for any v ∈ sd,

tr(AdU (v)) = tr(UvU †) = tr(v) = 0,

therefore AdU (v) ∈ sd by Lemma 1. This proves
that AdU is an endomorphism. Moreover, the kernel
is trivial, since ‖AdU (v)‖ = 0 implies ‖v‖ = 0
for any v, as can be checked for the trace norm:
‖AdU (v)‖=

√
tr(AdU (v)(AdU (v))†)=

√
tr(UvU †(UvU †)†)

=
√

tr(UvU †Uv†U †) =
√

tr(vv†) = ‖v‖.
Conversely, let us assume that AdU |sd is an automor-

phism. By Lemma 1, since d = sd ⊕ spanR(iIM ) and AdU :
spanR(iIM ) → spanR(iIM ) is the identity, then AdU |d is an
automorphism. �

We can now prove Theorem 1.
Proof. �⇒) Let U ∈ imϕm,M , then there exists iHU ∈ d

such that U = exp(iHU ), hence for any v ∈ dAdU (iHU ) =
exp(iHU )v exp(−iHU ) = v + [iHU , v] + 1

2 [iHU , [iHU , v]] +
1
3! [iHU , [iHU , [iHU , v]]] + · · · and clearly AdU (v) ∈ d, since
iHU , v ∈ d and the Lie bracket is closed in d. This proves
that AdU is an endomorphism. Moreover, the kernel is trivial,
since ‖AdU (v)‖ = 0 implies ‖v‖ = 0 for some v (see proof
of Lemma 2).

⇐�) Let U ∈ U(M ) such that AdU |d is an automorphism.
There exists θ ∈ R such that exp(iθ )U ∈ SU (M ). More-
over, for any W ∈ ϕm,M (SU (m)), there exists w ∈ sd with
W = exp(w), and exp(iθ )UW (exp(iθ )U )† = U exp(w)U † =
exp(UwU †) = exp(AdU (w)), by Lemma 2, AdU (w) ∈ sd,
and so exp(AdU (w)) ∈ ϕm,M (SU (m)). Finally, by Lemma 9
of Ref. [23],

exp(iθ )U = exp(iβ )U ′,

for some β ∈ R and U ′ ∈ ϕm,M (SU (m)). Hence

U = exp(i(β − θ ))U ′ = exp(i(β − θ )IM ) exp(w′),

with w′ ∈ sd. Since [IM,w′] = 0, then

U = exp(i(β − θ )IM + w′).

Since i(β − θ )IM + w′ ∈ sd ⊕ spanR(iIM ), by Lemma 1
i(β − θ )IM + w′ ∈ d, therefore exp(i(β − θ )IM + w′) ∈
imϕm,M . �

B. Proof of Theorem 2

Proof. Let S = ∑
jk S jk| j〉〈k|. The adjoint map acting on

the tangent vectors e jk, f jk of u(m) gives
〈�|AdS (e jk )|h〉 = 〈�|Se jkS†|h〉

=
∑

s,t,μ,ν

〈�|Sst |s〉〈t |e jkS∗
μν |ν〉〈μ|h〉

= i

2

∑
s,t,μ,ν

Sst S
∗
μν〈�|s〉〈t |(| j〉〈k| + |k〉〈 j|)|ν〉〈μ|h〉

= i

2

∑
s,t,μ,ν

Sst S
∗
μν (δ�sδt jδkνδμh + δ�sδtkδ jνδμh)

= i

2
(S� jS

∗
hk + S�kS∗

h j ),

and, similarly,

〈�|AdS ( f jk )|h〉 = 1
2 (S� jS

∗
hk − S�kS∗

h j ).

This allows us to obtain

S� jS
∗
hk = 〈�|AdS ( f jk )|h〉 − i〈�|AdS (e jk )|h〉 (48)

for all �, j, h, k and, for � = h and j = k:

|S� j |2 = −i〈�|AdS (e j j )|�〉. (49)

Since the matrix S is unitary, there exists S�0 j0 
= 0 and there
is θ ∈ R with S�0 j0 = |S�0 j0 |eiθ . By Eqs. (48) and (49),

S� j = eiθ 〈�|AdS ( f j j0 )|�0〉 − i〈�|AdS (e j j0 )|�0〉√−i〈�0|AdS (e j0 j0 )|�0〉
. (50)

�

VI. CONCLUSIONS

In this paper, we give a way to check whether any given
linear operator U on n photons in m modes can be imple-
mented with linear optics or not and, if it can, provide a
explicit method to find the multiport S which gives the desired
operator.

The method tries to write the Hamiltonian corresponding
to the desired operator in terms of a linear combination of a
basis of the subalgebra of all the possible Hamiltonians.

In principle, the same analysis with a decomposition in
the basis of the image subalgebra could be directly applied to
the HU coming from computing the logarithm of the desired
operator matrix U . However, computing a suitable matrix log-
arithm is far from trivial. By using the adjoint representation,
we guarantee a simple and flexible method for any operator
U . The computation only involves matrix multiplications and
solving a linear system and avoids computing eigenvalues.

This method solves the problem completely for any
given U .

There are some limitations to this result worth mention-
ing. First, it applies only to systems which can be exactly
implemented, which, as n and m grow, become a smaller
subset of the possible matrices U . In many cases, we are more
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concerned with finding the best approximation. In a future
work, we will present a different method which finds the
linear optics evolution which is locally closest to the desired
operator in terms of some operator distance.

Second, that a particular operation cannot be implemented
has limited implications to the related quantum information
problem of whether a given quantum gate can be implemented
with linear optics or not. Apart from encoding issues (a gate
might be realized using only a subspace of the possible states),
notice that, in linear interferometers, permutations are not
trivial. For instance, the quantum Fourier transform matrix
might be realizable for some mapping of the logical states to
the photon states but not for others.

Taking into account these precautions, the inverse method
we have given can be used in quantum optics and quantum
information to search for particular quantum tasks or prim-
itives which can be implemented with linear optics, such
as particular instances of quantum cloning machines [24] or

simple quantum algorithms showing quantum advantage. In
general, the framework provided from group theory helps us
to understand better the connections between classical and
quantum evolution in linear optics.
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