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Abstract

Colloidal 2D nanoplatelet  heterostructures are particularly interesting as they combine strong

confinement of excitons in 2D materials with a wide range of possible semiconductor junctions

due to a template-free, solution-based growth. Here we present the synthesis of a ternary 2D

architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and

finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier

between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it

can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to

an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct

transitions.  The  core/barrier/crown  configuration  further  enables  two-photon  fluorescence

upconversion, and, due to a high nonlinear absorption cross section, even allows to upconvert

three near-infrared photons into a single green photon. These results demonstrate the capability

of  2D  heterostructured  nanoplatelets  to  combine  weak  and  strong  confinement  regimes  to

engineer their opto-electronic properties.

Keywords nanoplatelets, ternary architecture, photoluminescence, k·p calculations, fluorescence

upconversion
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Combining semiconductors at the nanoscale offers the possibility to tune electron and hole wave

functions and their corresponding overlap, by choosing materials with the appropriate valence

and  conduction  band  offset.  In  colloidal  nanocrystals,  such  wave  function  engineering  has

already resulted in type-I (e.g. CdSe/ZnS)1–3 and type-II (e.g. CdTe/CdSe) quantum dots (QDs),4

as well as intermediate systems such as CdSe/CdS QDs5–7 where, in a regime of strong quantum

confinement, the small conduction band offset leads to an electron delocalization over the entire

heterostructure, while the hole remains confined to the CdSe core region (referred to as a quasi-

type-II  band  offset).8 Type-I,  type-II  and  quasi-type-II  colloidal  heteronanocrystals  can  be

synthesized  in  a  variety  of  shapes  such  as  0D  dot-in-dot,5 1D  rod-in-rod,9 2D  core-crown

nanocrystals,10 or heterostructures with mixed dimensionality such as dot-in-rods11 and dot-in-

plates.12 Heteronanocrystals offer a myriad of advantages, for instance a large absorption cross

sections  and  sizeable  Stokes  shifts  in  giant-shell  QDs,  efficient  nonlinear  emission  due  to

reduced Auger recombination rates in quasi-type-II QDs, or polarized absorption and emission

properties in anisotropic QDs.6,13

Among the different colloidal nanostructures, 2D nanoplatelets (NPLs) take a specific position.

They combine strong and weak quantum confinement regimes, which yields on the one hand a

band-edge emission peak at discrete wavelengths,14–16 and on the other hand a large band-edge

oscillator strength and fast emission lifetime that scales with the area of the NPL.17 The thickness

can be controlled with monolayer precision, resulting in narrow emission line widths that are

homogeneously broadened at room temperature.16 Due to the large NPL volume enabling weakly

confined 2D excitons, they also exhibit a high two-photon absorption coefficient,18 and the 2D

shape  leads  to  opportunities  for  self-assembly  and  ultrafast  Förster  energy  transfer  between

NPLs.19
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Recently, a variety of Cd-based NPL heterostructures have been synthesized, which can further

shape the electron and hole wave functions.20–24 In the case of concentric hetero-NPLs, type-I

CdSe/ZnS NPLs yield fast photoluminescence (PL) lifetime,25 in combination with a red shift of

the band edge, while quasi-type-II CdSe/CdS core/shell NPLs combine an even larger red shifted

emission with a reduced PL decay rate.26 One can also laterally extend the NPLs by growing a

second material around the NPL edges. Interestingly, in this so-called core/crown configuration,

the CdSe/CdS conduction band offset of ca. 300 meV is sufficient to retain the exciton confined

to the core, yielding a type-I heterostructure,10,26,27 highlighting the benefits of combining weak

with strong confinement in 2D hetero NPLs. Type-II core/crown heterostructures, finally, have

been also been produced, in the form of in CdSe/CdTe or CdS/ZnSe NPLs,28–30 as well as alloyed

crown and multi-crown (CdSe/CdSe1-xTex, CdSe/CdSe1-xTex/CdS) heterostructured NPLs .30–33

Considering the elements above, we created an even more elaborate ternary heterostructure, that

allows to further engineer emission properties and carrier dynamics in 2D nanoplatelets. In this

manuscript,  we  present  the  insertion  of  a  type-I  barrier  in  the  CdSe/CdTe  type-II  junction,

through synthesis of CdSe/CdS/CdTe core/barrier/crown NPLs. Ternary architectures are known

to increase the lifetime of charge-separated excitons or are engineered to control excited-state

carrier dynamics,34 and have been developed as efficient dual-emitters.34–36 In addition, they make

excellent up-conversion phosphors by creating hole- or electron-specific tunneling barriers. Our

ternary architecture was chosen due to its potentially interesting band alignment, with a cascaded

conduction band alignment permitting electron relaxation into the CdSe region, while the holes

remain confined to either CdSe or CdTe due to the CdS valence band barrier. As a result, next to

the extended exciton lifetime due to the charge-separated exciton, we also obtained two-photon
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and even three-photon upconversion fluorescence, the latter mediated by the efficient nonlinear

absorption coefficient enabled in 2D NPLs as discussed by Scott et al.18

Result and Discussion

Based on our previous work, we first synthesized 4.5 monolayer (ML) thick CdSe NPLs with

controlled thickness and aspect ratio.37 A typical sample is shown in Figure 1a, and has lateral

dimensions of 36 nm by 4.2 nm. Following Dubertret  et al.,10,28 we synthesized CdSe/CdS and

CdSe/CdTe  core/crown 2D NPLs as  a  reference  for  our  CdSe/CdS/CdTe  core/barrier/crown

(CBC) NPLs. CdSe/CdS NPLs show the typical features of a type-I heterostructure, with the

absence of a red shift of the emission peak after crown growth, and a fast, monoexponential PL

decay with a 3.3 ns lifetime (SI, Figure S1). CdSe/CdTe NPLs on the other hand display a strong

band-edge red shift, with a PL emission at 637 nm and an extended PL lifetime of 124 ns (SI,

Figure S2), representative for type-II heterostructures. Based on these syntheses, we adopted a

multi-step, one-pot approach to create both CdS barrier and final CdTe crown. CdS and CdTe

growth solutions were added consecutively, without intermediate isolation and purification of the

CdSe/CdS NPLs. The 4.5 ML CdSe core NPLs were dispersed in 1-octadecene (ODE) along

with cadmium propionate (Cd(Prop)2). After degassing at 110°C, the reaction temperature was

increased to 235°C and the CdS growth solution (containing sulfur dissolved in ODE, oleic acid

and cadmium acetate dihydrate, Cd(OAc)2.2H2O) was added dropwise for 2 min using a syringe

pump, at a rate of 3 mL per hour. After the injection of the CdS growth solution, the reaction was

stirred for another 5 min at 235°C. An aliquot was collected at  that point to verify the CdS

barrier thickness and to compare with the final CBC NPLs. As the CdS growth was executed

under  high  cadmium  excess  (Cd:S  ratio  of  112:1),  we  only  added  additional  Te
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(trioctylphosphine telluride dissolved in ODE) in the second step, again dropwise over the course

of 3 min at a rate of 3 mL per hour, followed by stirring for another 5 min. In Figure 1, we show

transmission electron microscopy (TEM) images, depicting the result of a typical reaction, where

we obtained CdSe/CdS NPLs with dimensions of 37 nm by 5.5 nm (Figure 1b) and finally, after

CdTe crown growth, CBC NPLs of 52 nm by 9.1 nm (Figure 1c).  A scheme depicting the

synthesis route is shown in Figure 1d.

Figure 1. TEM images of (a) CdSe core, (b) CdSe/CdS core/barrier and (c) CdSe/CdS/CdTe
core/barrier/crown NPLs (scale bars: 50 nm). (d) Schematic representation of the synthesis of
core/barrier/crown NPLs.

The CBC NPLs show the typical absorption features at 508 nm and 567 nm for the band-edge

transitions of CdSe core and CdTe crown respectively (Figure 2a), while a CdS absorption onset

can be discerned around 400 nm. The spectral position of the absorption peaks confirms that the

4.5 ML thickness does not change when growing the CdS and CdTe crown.14 As the heavy hole-

electron transition for a 4.5 ML CdTe NPLs was expected around 554 nm (SI, Figure S2a),14 the

red  shifted  value  may  be  due  to  some  inclusion  of  sulfur  into  the  CdTe  crown.38,39 In  the

fluorescence spectrum, we measured three emission peaks (Figure 2b), two spectrally narrow

signals at 510 nm and 575 nm, and a broad band at 625 nm. These can be associated with the
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CdSe band-edge, the CdTe band-edge and the indirect exciton transition, respectively, which are

typically quenched in CdSe/CdTe NPLs (SI,  Figure S3).28,30 Indeed, while in our CdSe/CdTe

reference  sample  no  more  than  0.001%  of  the  total  spectrum  consists  of  CdSe  band-edge

emission (SI, Figure S3), in the sample shown in Figure 2,  about 5% of the total area under the

emission spectrum can be assigned to the combined CdSe and CdTe band-edge emission peaks

(SI, Figure S4). The indirect character of the emission at 625 nm is revealed by the extension of

the PL decay time to 182 ns (Figure 2c). The lifetime of the direct transitions (from CdSe and

CdTe) of CBC NPLs was also measured, and compared with core-only and core/barrier NPLs

(SI, Figure S5). The PL decay curve was fitted with a tri-exponential function, from which the

amplitude-weighted average life time was calculated. The average lifetime of the CdSe emission

decreases from the core-only to the CdSe/CdS NPLs, and the value of 3.9 ns is similar to our

CdSe/CdS reference sample (SI,  Figure S1). The CdSe PL lifetime is even slightly shorter in

CBC NPLs, which we attribute to Förster resonance energy transfer from the CdSe core to the

CdTe crown. The lifetime of the emission at 575 nm of CBC NPLs equals 76 ns, however, as the

CdTe emission is weak and superposed on the type-II  emission,  we cannot  disentangle both

contributions.
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Figure 2. (a) Absorbance and (b) PL spectra of CdSe, CdSe/CdS and CdSe/CdS/CdTe NPLs,
respectively. (c) PL decay trace of the type-II transition monitored at 625 nm.

PL excitation  (PLE)  spectroscopy  supports  that  the  emission  peaks  originate  from a  single

heterostructure. First, when monitoring the emission at 510 nm for CdSe core-only, CdSe/CdS

core/barrier and CdSe/CdS/CdTe CBC NPLs, we observed that this emission peak can be excited

via the  CdSe  absorption,  and  by  comparing  core-only  CdSe  with  CdSe/CdS  and

CdSe/CdS/CdTe, a small increase from 420 nm onward indicates that the CdSe emission can be

excited  via the CdS absorption as well (Figure 3a). Second, the emission associated with the

indirect transition in CBC NPLs, which we monitored at 625 nm, can be excited  via the same

absorption features that lead to the 510 nm CdSe band-edge emission in those heterostructures,

as well as the CdTe absorption, confirming that we indeed probe a single heterostructure (Figure

3b).  We have  also  used  another  sample  of  CBC NPLs (Batch5)  with  more  prominent  CdS
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absorption (i.e. a wider CdS barrier) and performed the PLE measurements as mentioned above

(Figure S6).  Here we more clearly observed the CdS absorption for all  the PLE spectra,  in

addition to the CdSe and CdTe features, again supporting the CBC structure.  

Figure 3. (a) PLE spectra, monitored at the CdSe emission at 510 nm for CdSe, CdSe/CdS and
CdSe/CdS/CdTe NPLs. (b) PLE spectra of the CdSe/CdS/CdTe CBC NPLs monitored at 510 nm
and at the 625 nm indirect transition. (c) PL spectra of a CBC NPL thin film and of a single CBC
NPL at room temperature (Batch5). Inset: Micrograph of the single CBC NPL. (d) Plot of the PL
decay times against PL peak positions of the CBC samples (red squares) compared with the
CdSe/CdTe reference samples (blue squares).

To further confirm the ternary heterostructures we have performed high-angle annular dark-field

scanning TEM energy dispersive X-ray spectroscopy (HAADF  STEM-EDS). However, while

we clearly observed the Se, S, and Te signals in the EDS maps, we also noticed a significant

electron-beam-induced degradation of the CBC NPLs (SI, Figure S7), hindering a clear mapping

on a single-particle level. We therefore resorted to single-NPL optical spectroscopy.  Figure 3c

shows a comparison of the PL spectrum of a single CBC NPL (SNP) with the corresponding

close-packed thin film. Both the direct CdSe transition and the type-II emission of the CBC

NPLs are clearly observed on a single NPL, with a decrease in full-width-at-half-maximum for
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the CdSe emission, from 13.6 nm in the thin film to about 10-11 nm for different single NPLs

(SI, Figure S8, Table S1). A single-particle micrograph of CBC is shown in the inset of Figure

3c. Note that we did not discern the CdTe emission in this sample (Figure 3a, SI, Figure S6),

however, this is explained by the relatively small CdTe crown (SI, Table S2). Overall, about 2 in

10 NPLs did only show the type-II emission, indicative of NPLs with an incomplete CdS barrier,

and a minor fraction (2 out of 50 NPLs) only showed the CdSe emission,  suggest that they

contain no CdTe crown. We did not observe particles that either show emission at other emission

wavelengths that the ones above, or at the wavelength of the CdTe NPL band-edge emission,

leading  to  the  conclusion  that  the  synthesis  does  not  lead  to  co-nucleation  of  separate

nanocrystals, and that the CdTe emission observed in the ensemble PL spectrum should also

pertain to the CBC NPLs, as also demonstrated by the PL excitation spectroscopy.

Controlling the barrier and crown dimensions was achieved by injecting different amounts of Cd/

S and Te growth solutions, always maintaining a fixed injection rate of 3 mL per hour (Table S2

and Figure S9). In all cases the reaction solution was stirred for 5 min before the injection of the

Te solution. The resulting PL peak position of the type-II transition can be varied between 617

nm  and  642  nm,  similar  to  CdSe/CdTe  NPLs  without  a  CdS  barrier  (Figure  S10).  A

measurement of the PL decay of the indirect transition in the different samples (Figure S10c)

shows first that the PL decay time in CdSe/CdTe is dependent on the crown size. However,

independent of these results, inclusion of a CdS barrier leads to an increased PL lifetime (Figure

3d and SI,  Table S3) when compared to CdSe/CdTe core/crown NPLs that emit at a similar

wavelength. Note, for both CBC and CdSe/CdTe NPLs we started from a CdSe core with similar

dimensions. The data above are in line with the presence of a type-I CdS barrier for the hole,

inserted between the CdSe core and the CdTe crown, leading to a reduced electron-hole overlap.
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Hence,  taking  the  transmission  electron  microscopy,  which  showed  that  we  grow  larger

structures upon addition of CdS and then CdTe, the comparison between ensemble and single-

particle PL spectra, which confirmed that CdSe and broad peaks are reproduced on a single-

particle level, PL excitation spectra, which demonstrate that the CdTe emission can be excitated

via the CdSe absorption, and the spectral and temporal tunability of the broad emission with

crown dimensions, we can conclude that we synthesized CBC ternary heterostructured NPLs,

which exhibit both direct CdSe and CdTe emission, and as well and an indirect emission peak.

The general band structure, derived from bulk band offsets and depicted in Figure 4a and Figure

4b shows how CdSe emission can be obtained when exciting the CdSe core directly, or when

carriers relax in this  region  via excitation of the CdS barrier.  To explain the CdTe emission

however,  one needs  to  invoke a  barrier  for  electron  relaxation  as  well.  This  barrier  may be

caused by strain at the CdS/CdTe interface or be induced directly by the electron-hole Coulomb

interactions,  and  was  investigated  in  further  detail  with  k·p calculations.   To  this  purpose,

different CBC heterostructures were considered. We started by calculating the band structure of a

CBC NPL with a narrow CdS barrier, comparable to experimental sample Batch3 (Figure 4c),

and  a  CBC NPL with  a  wide CdS barrier,  comparable  to  sample  Batch4  (Figure 4d).  The

narrow-barrier NPL has a CdSe core of 25 nm by 5 nm, a CdS barrier of 1 nm by 1 nm, and a

CdTe crown of 15 nm by 5 nm. The wide-barrier NPL has the same core and CdTe crown

dimensions,  but  the  CdS barrier  is  15  nm by 5  nm.  Both  NPLs  have  a  4.5  ML thickness,

assuming  the  CdSe  lattice  constant  prior  to  strain  relaxation.  Electron  and  hole  states  are

calculated with single-band  k·p Hamiltonians,  including dielectric  mismatch with the organic

medium and strain in the continuum elastic approximation (see SI for details on the calculation). 
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Figure 4. (a-b): Conduction and valence band alignment in the CBC heterostructure, considering
unstrained band offsets. (a) A hot electron-hole pair is created. (b) The hole relaxes faster than
the electron, conditioning the potential  landscape that the hot electron sees at the moment of
relaxation. (c-d) Schematic of the CBC NPLs under study, resembling Batch3 with a narrow CdS
barrier (c), and Batch4 with a wider barrier (d). (e-g) Potential landscape seen by a photo-excited
valence band hole for a narrow-barrier sample, with a 2D in-plane cross section (e), and 1D
profiles along x- (f) and y- semi-axes (g), as depicted in (e). In the 1D plots, red and green lines
show the potential excluding and including the influence of strain. The origin of energies is taken
at the top of the CdTe band. (h-j) Same as (e-g), but for conduction band electrons. Blue lines in
(i) and (j) panels show the potential including the Coulomb attraction exerted by the hole ground
state localized in the CdTe crown. The origin of energies is taken at the bottom of the CdSe
band.

As we are interested in determining the origin of the CdTe emission, calculations are based on

the consideration that the hot electron-hole pair relaxes as shown in Figure 4. Initially, the hot

electron and hot hole have high energy and barely feel the band offset profiles (Figure 4a). The

hole relaxes faster than the electron, because the larger band offset and heavier mass (SI, Table

S4) provide a higher density of states, favoring phonon-mediated decay. This implies that the hot

electron likely sees the Coulomb potential generated by the hole that has already relaxed to the
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CdTe crown band edge. The resulting potential landscape seen by valence band holes is shown in

Figure 4f and Figure 4g. The self-energy repulsion due to dielectric mismatch, Vself, shifts down

the potential energy about 100 meV for all three materials, but it does not affect the relative band

alignment. The main term affecting the band alignment is the unstrained band offset, Vbo, which

turns CdS into a 0.48 eV high valence band barrier between the CdSe core and the CdTe crown

(red line). Strain (SI,  Figure S11) somewhat modifies the overall potential (green line, and SI,

Figure S12 for calculations on the CBC NPL with wide CdS barrier), yet in any case, it yields

only minor modifications as compared to Vbo. 

Figure 4i and Figure 4j show the potential landscape seen by the electrons. In this case we have

a cascaded band alignment, again mainly set by Vbo (red lines in 1D plots). Here strain does play

a role. It raises (lowers) the potential in the CdSe (CdS) region, thus reducing the CdSe-CdS

barrier from ~0.25 eV to ~0.20 eV. In addition, strain on the CdS/CdTe interface gives rise to a

narrow potential well (barrier) on the CdS (CdTe) side (green line). In principle, this feature is

capable of inducing localized states on the CdS barrier and/or confined states in the CdTe crown,

which will now see a barrier up to 60 meV for narrow CdS and up to 80 meV for wide CdS. The

inclusion of the Coulomb interaction with the hole ground state, localized in the CdTe crown,

further enhances the depth of the barrier at the CdS/CdTe interface (Figure 4i and 4j, blue line),

up to 90 meV for narrow CdS and up to 110 meV for wide CdS. The features are again shared

qualitatively  by  wide  and  narrow  barrier  NPLs  (SI,  Figure  S12),  although  the  effect  is

quantitatively stronger on the wide ones, because the CdTe side of the interface is slightly more

compressed by strain (SI, Figure S11).

These calculations  already reveal  that  band bending due to  strain and Coulomb interactions,

which leads to local potential wells, can capture charges in a ground- or high-energy state, with a
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wave function that can localize in either in CdSe core or CdTe crown (see SI, section on  k·p

calculations for electron and hole wave function localization as a function of energy), they do not

yet yield direct insight in the possibility for CdTe or CdSe band-edge emission. To this end, we

also evaluated if the CdS barrier can influence the nonradiative decay of photo-excited electron-

hole pairs, and yield metastable states which can recombine radiatively in CdTe and CdSe before

forming the indirect exciton. We assumed that the nonradiative decay is driven by phonons. The

carrier-phonon coupling Hamiltonian, and hence the ensuing decay rate, is related to the inter-

level  energy spacing –which  determines  the  density  of  available  acoustic  or  optical  phonon

modes– and the carrier-phonon matrix  element.40 Figure 5  shows that  the inter-level  energy

spacing is similar in both cases studied (narrow and wide barrier), therefore, we focused on the

carrier-phonon matrix element. Within the dipolar approximation, the element is proportional to

¿ ⟨ f|r⃗|i ⟩∨¿, where i and f are the initial and final electron or hole states. Hence the relaxation is

determined by the wave function overlap between initial and final states.

Figure 5. (a-b): Normalized fraction of the hole density that is localized in the CdSe core for

different states with  Ag symmetry,  |Ag , n ⟩, for narrow- (a) and wide-barrier (b) NPLs. A 100

meV scale bar is included in the figures to illustrate the energy scale. The insets show a few
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representative envelope wave functions. The states are almost completely localized either in the
CdTe crown or in the CdSe core. (c-d): Same plot for the density of electrons localized in the
CdTe crown. Low-energy states remain confined to the CdSe core,  while  high energy states
delocalize over the entire NPL. (e-f) Normalized fraction of the electron density localized in the
CdTe crown for different states, in a NPL with narrow (e) and wide (f) CdS barrier,  and a CdTe
crown of 15 nm × 1 nm (narrow along the y-direction). The insets show a few envelope wave
functions. In (f), the  n = 16 state shows strong localization in CdTe, while all other states at
lower energy are almost completely localized in CdSe and CdS.

Figure 5, panels (a) and (b) represent the fraction of the hole charge density localized inside the

CdSe core for narrow and wide barrier NPLs, respectively. We consider holes with Ag symmetry

(within the D2h group), |Ag , n ⟩ , although the same observations hold for different symmetries. As

expected, hole states localize either in the CdTe crown (with a nearly zero CdSe core density) or

in the CdSe core (CdSe core density nearly one). Low-energy states mostly localize in the crown,

while high-energy states can be either in the crown or in the core. Very little charge density is

localized  in  the  CdS  barrier,  and  we  found  no  states  within  the  energetic  window that  we

consider (up to 0.8 eV above the ground state) that are delocalized over both core and crown.

This is a consequence of the high and relatively wide type-I CdS barrier. Using a narrow barrier

(Figure 5a), this effect is reduced, however, lowest-lying states still have an either CdSe-core or

CdTe-crown localization, justifying a long-lived metastable hole state for the CdSe core. 

Panels (c) and (d) of Figure 5 show the electron density in the CdTe crown. Because CdSe offers

the lowest potential, low energy states are mostly localized in the core and barrier (CdTe crown

charge densities are nearly zero), but here the localization in the crown increases gradually with

state energy. A few states appear with dominant (over 70%) charge density in the crown, in spite

of CdTe having high energy (Figure 4h-4j). Such states partly arise from the small strain barrier

on the CdS/CdTe interface. Nevertheless, the barrier is quite shallow and, unlike in the case of
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holes, one finds electron states with partial localization in both CdSe core and CdTe crown even

for a wide CdS barrier, and no long-lived electron state is derived. 

However,  in  accordance  with  the  experimental  dimensions  of  the  CBC NPLs,  an  important

geometrical consideration still  has to be considered: the presence a CdTe crown with limited

width (SI, Table S2, Batch2). To this end, we calculated electron states for the CBC NPLs with

crown with that is reduced from 5 nm to 1 nm. The resulting electron density is plotted in Figure

5e-5f.  Interestingly, for a wide CdS barrier, the n = 16 state arises as an isolated state with large

(almost 80%) localization in the CdTe crown, while neighboring states and lower-lying states

have  densities  well  below  10%.  When  compared  to  the  wide  crown  (Figure  5d),  where

neighboring states reached densities of 20%, one notices that the narrow crown translates into a

better separation of states localized in the core and states localized in the crown. These results

are consistent with experimental data, where Batch2 NPLs for instance show a distinct emission

from the CdTe crown with a relative weight of 6.7% (SI,  Figure S9). The role of the CdTe

crown width can be interpreted as follows. Because the NPLs have in-plane anisotropy, electron

states are more sensitive to the confinement in the narrow direction (width) than to that in the

long direction (length). When growing wide CdTe crowns, electron states -even if low in energy-

are prone to deposit part of their charge in the CdTe crown to minimize confinement energy. If

the crown is narrow, this is no longer possible and states with more definite localization (in CdSe

core or in CdTe crown) are enabled. 

Associated relaxation rates derived from ¿ ⟨ f|r⃗|i ⟩∨¿ are discussed in the supporting information

(SI,  Figure S13), and support our conclusions. For valence band holes, the large (bulk) band-

offsets turns CdS into a high potential barrier, leading to hole states which are localized either in

the CdSe core or in the CdTe crown. This implies excited hole states localized in CdSe have
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slow phonon-mediated  recombination  rates  towards the CdTe crown,  and explains  the CdSe

emission observed. For conduction band electrons, a moderate potential barrier forms at the CdS/

CdTe interface, producing excited electron states that are largely (for 70-80%) localized in the

CdTe crown. Electron localization either in CdSe or in CdTe is further favored by the presence

of  a  narrow  CdTe  crown.  Altogether,  calculations  yield  metastable  electron  states  mainly

localized in CdTe, with relatively slow phonon decay rates towards CdSe, which are consistent

with the CdTe emission observed.

Clearly, experimental data and k·p calculations support the formation of CdSe/CdS/CdTe CBC

heterostructures with distinct type-II as well as CdSe and CdTe band-edge emission features. The

ternary heterostructure combines an indirect ground state with direct excited-state transitions,

and  should  therefore  allow for  fluorescence  upconversion.  As  reported  previously,  colloidal

nanocrystals  are  particularly  well  suited  for  fluorescence  upconversion,41–43 in  particular

CdSe:Te/CdS/CdSe,44 PbSe/CdSe/CdS45 and  PbS/CdS-CdSe/ZnS46 QDs  have  already

demonstrated relatively high upconversion efficiencies (of the order of several percent) of near

infrared light. Here we excited sample Batch2 with 5 ns pulses at a repetition rate of 10 Hz,

probing the CBC NPL transient fluorescence spectrum to investigate the upconversion process.

Excitation  wavelengths  were  selected  in  order  to  distinguish  between  linear  and  nonlinear

excitation (Figure 6). For CBC NPLs, 460 nm is energetic enough to directly excite the CdSe

region, and obtain CdSe band-edge fluorescence in the single-photon regime. In contrast, using a

pump wavelength of 580 nm or 640 nm, we can excite only the CdTe or the indirect transition,

respectively, which requires two photons for detection of the excited-state CdSe emission. The

transient decays at 515 nm and 620 nm, corresponding to the CdSe band edge and the indirect

transition respectively, are well fitted with a biexponential function (Figure 6f), with lifetimes of
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τ1
515

=8.4 ns , τ2
515

=100 ns  and  τ1
620

=78ns , τ2
620

=390 ns,  corroborating  our  time-resolved  PL

decay measurements. 

Figure 6. NPL band alignment and photo-excitation schemes. (a) Linear excitation of the CdSe
core at  ex = 460 nm (exciting the CdTe crown and the indirect transition as well). (b) Linear
excitation of the CdTe crown (and the indirect transition) using  ex = 580 nm. (c) Two-photon
upconversion excitation of the CdSe core  via the indirect  transition,  using  ex = 640 nm. (d)
Pump-probe two-photon upconversion excitation of the CdSe core using a 640 nm excitation
combined with a 1064 nm intraband absorption. (e) Three-photon upconversion excitation of the
CdSe core, using two 1064 nm photons to excite the CdTe crown  via two-photon absorption,
followed by a 1064 nm intraband excitation. (f) NPL fluorescence decay (ex = 460 nm, fluency
53 µJ/cm2) for the CdSe band-edge emission at 515 nm (green trace) and the indirect transition at
620 nm (red trace). The spectrum depicted in the inset is calculated from the time-integrated
emission decay. The band-edge emission for the different transitions (CdSe, CdTe peak and the
indirect transition,) with the respective collection wavelength are marked in green, red and grey
respectively.

First,  a  power  series  for  different  excitation  wavelengths  was  acquired  to  check  for  the

dependence of fluorescence intensity on excitation fluency and ensure that we excite the CBC

NPLs below the saturation regime (SI,  Figure S14). Second, by exciting the sample with two

640 nm photons, we observed upconverted fluorescence at 515 nm arising from the CdSe core

(Figure  7).  The  excitation  proceeds  through the  formation  of  an  indirect  transition  exciton,
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followed by either Auger recombination or intraband absorption to excite the hole into the CdSe

region. The process was well fitted with a simplified Poisson distribution for the probability to

absorb photon pairs: 

F LUC=( I 2

2!
+2 ∙

I 3

3 !
+3 ∙

I 4

4 !
+4 ∙

I5

5 !
+5 ∙

I 6

6 !
+…) ∙ e−I ∙ ϵUC   ,  I=

I ex

I sat ,UC

FLUC equals the upconverted fluorescence intensity, and  ϵUC<1 is the upconversion efficiency,

i.e. the probability to heat up a hole and for it to be captured in the CdSe region before cooling.

The saturation intensity was obtained asI sat ,UC 510
e x640 =181 mJ /cm2, and confirmed that we observed

the upconverted fluorescence well below the saturation regime. 

Figure 7. NPL fluorescence upconversion. (a) 640 nm upconversion excitation of the CdSe core.
The data was fitted by a simplified Poisson distribution for the probability to absorb photon pairs
plotted as the black dashed line. (b) Pump-probe upconversion excitation of the CdSe core using
a 640 nm excitation with fixed excitation power, combined with a second pump at 1064 nm

(yielding intraband absorption) with variable power. A fit of the power dependence a ∙ Pex
b, with

b = 1 is plotted as dashed line. (c) Two-photon excitation of the CdTe crown using 1064 nm
excitation,  monitored at  620 nm. A fit yields a  b = 1.9 power dependence.  (d) Fluorescence
upconversion, monitored at 510 nm, created by three-photon excitation using ex = 1064 nm. A fit
of the power dependence yields b = 3.3.
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Using a second excitation photon at 640 nm implies that we cannot distinguish between hot hole

creation  via Auger  recombination  of  two indirect  excitons,  or  via intraband  absorption.  We

therefore employed a pump-probe excitation scheme (Figure 6d), which comprised of an initial

640 nm excitation of the CBC NPLs at fixed excitation power (one fifth of the saturation power),

combined with a second excitation at 1064 nm, that can only lead to heating of the CdTe valence

band hole via intraband absorption. Figure 7b shows that the emission intensity at 510 nm, using

the 640 nm – 1064 nm excitation scheme, fits a linear power dependence  a ∙ Pex
b with  b = 1,

confirming that fluorescence upconversion occurs here via intraband absorption of the hole into a

higher energy state and relaxation into the CdSe core.

In order  to  assess  the  upconversion  efficiency  ϵUC,  a  comparison can  be  made between  the

number of  fluorescence  counts per  absorbed photon,  at  saturation  intensity  for two-photon (

I sat ,UC 513
e x640 ¿ and linear excitation (I sat ,lin513

e x460 ¿:

ϵ UC=
FLsat ,UC 513

e x640

FLsat ,lin513
e x460

I sat ,lin513
e x460 OD460

I sat ,UC 513
e x640 OD640

As  both  the  upconversion  (FLsat ,UC 513
e x640 ¿and  the  linear  (FLsat ,lin513

e x460 ¿fluorescence  counts  were

measured at the same NPL concentration, the relation above yields the probability to excite the

CdSe region,  i.e. the efficiency of the upconversion process. It gives a ratio of 0.014:1, which

means  that  36  absorbed  NIR  photon  pairs  are  equivalent  to  one  absorbed  visible  photon.

Compared to other colloidal nanocrystals,44–46 this efficiency is quite modest, likely due to the

relatively large crown area of 71 nm2 (compared to the overall NPL area of 338 nm2), and a

possible remedy could be to further engineer the band structure to optimize relaxation of the hot

hole toward the CdSe core.46 On the other hand, the 2D shape offers a specific benefit. Due to the
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high nonlinear absorption coefficient,18 not only two-photon, but also three-photon upconversion

is feasible. This was demonstrated by measuring the fluorescence upconversion using a 1064 nm

excitation wavelength. As a result of two-photon absorption in the CdTe crown region around

532 nm,  we  first  observed  emission  for  the  indirect  transition  at  620  nm,  with  a  quadratic

dependence on excitation fluency (Figure 7c, fitted power dependence with slope 1.9). Then,

following  intraband  absorption  through  a  third  1064  nm  excitation  photon,  we  then  again

obtained the CdSe core emission at 510 nm, here with a cubic fluency dependence (Figure 7d,

fitted power dependence with slope 3.3).

Conclusion

We  demonstrated  the  synthesis  of  a  CdSe/CdS/CdTe  2D  ternary  heterostructure  with  an

intermediate CdS barrier that separates emissive CdSe core and CdTe crown regions. This design

allowed us to tune the indirect and direct transition energies and intensities as a function of the

barrier and crown thickness. The theoretical results support the experimental data and reveal the

formation of CdSe/CdS/CdTe core/barrier/crown nanoplatelets with distinct indirect as well as

direct CdSe and CdTe band-edge transitions. While strong confinement applies to the vertical

direction,  2D  nanoplatelet  charge  carriers  are  typically  only  weakly  confined  in  the  lateral

directions, which allowed us to obtain a type-I band offset at the CdSe/CdS interface, reducing

the electron delocalization into the barrier and final CdTe crown. We obtained a heterostructure

that exhibits efficient two-photon, and by the large nonlinear absorption coefficient induced by

the 2D shape, even three-photon fluorescence upconversion. Our results demonstrate that shape-

controlled colloidal nanocrystals offer an interesting pathway toward upconverting nanoparticles
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that  can  transform near-infrared  to  visible  light,  with  potential  applications  in  near-infrared

upconversion-based photodetectors, solar cells, or biomedical imaging.47–49

 

Experimental Methods

Chemicals. Cadmium  nitrate  tetrahydrate  (99.997%),  sodium  myristate  (99%),  cadmium(II)

acetate (Cd(OAc)2; 99.995%), cadmium acetate dihydrate (Cd(OAc)2·2H2O), octadecene (ODE;

90%),  oleic  acid  (90%),  trioctylphosphine  (TOP;  90%),  propionic  acid  (99.5%)  methanol

(99.9%), hexane (95%) were purchased from Sigma-Aldrich. Cadmium oxide (99.999%) sulfur

(S; 99.9%), selenium powder (Se; 99.99%) and tellurium (Te; 99.99%) were purchased from

Strem Chemicals.

Synthesis of type-I CdSe/CdS core/crown NPLs. Cadmium myristate (Cd(Myr)2) and CdSe

NPLs were synthesized according to a published procedure.37 A 0.1M solution of ODE-S in ODE

was prepared by heating 32 mg of elemental sulfur in 10 mL of ODE. The CdS growth solution

was prepared by mixing 2 mL of the 0.1 M ODE.S solution, 3 mL of ODE, 350 l of oleic acid

and 400 mg of Cd(OAc)2.2H2O. the resulting mix is the sonicated for 2 to 3h resulting in a white

gel.  Next, in a 50 mL three neck round bottom flask, a batch of CdSe NPLs in hexane was

placed under argon flow to evaporated most of the hexane, the remaining part was then dissolved

in 12 mL of ODE and 100 mg of Cd(propionate)2 were added to the reaction mixture. It was then

stirred under vacuum at 110°C for 20 min. After this degassing step, the mixture was placed

under argon and heated to 235°C. Using a syringe pump, the CdS growth solution was added

dropwise (3 mL/h) in time varying from 2 to 12 min depending on the desired CdS thickness.
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The  solution  was  then  stirred  at  235°C  for  another  5  min,  and  allowed  to  cool  to  room

temperature. At 160 °C 2 mL of oleic acid where added. The solution was diluted in 20 mL of

hexane and then centrifuged at 6000 rpm for 10 min. The supernatant was discarded and the

precipitated NPLs were resuspended in hexane. 

Synthesis  of  type-II  CdSe/CdTe  core/crown  NPLs. First,  128  mg  of  elemental  Te  was

dissolved in 1 mL of TOP (1M TOP-Te solution). The growth solution was prepared by mixing

75 L of the 1M TOP-Te with 1mL of ODE right before injection. Next, in a 50 mL three neck

round bottom flask, a batch of CdSe NPLs in hexane was placed under argon flow to evaporate

most of the hexane, the remaining part was then dissolved in 12 mL of ODE and 100 mg of

Cd(propionate)2 were added to the reaction mixture. It was then stirred under vacuum at 110 °C

for 20 min. After this degassing step, the mixture was placed under argon and heated to 235 °C.

Using a syringe pump, the Te growth solution was added dropwise (3 mL/h). The addition was

stopped when desired and the solution was stirred at 235 °C for another 5 min, and then cooled

to room temperature. At 160 °C 2 mL of oleic acid where added. The solution was purified as

described above.

Synthesis of CdSe/CdS/CdTe core/barrier/crown NPLs.  For the preparation of the CdS and

Te growth solutions, see previous sections. In a 50 mL three neck round bottom flask, a batch of

CdSe in hexane was placed under argon flow to evaporated most of the hexane, the remaining

part was then dissolved in 12 mL of ODE and 100 mg of Cd(propionate)2  were added to the

reaction mixture. It was then stirred under vacuum at 110 °C for 20 min. After this degassing

step, the mixture was placed under argon and heated to 235 °C. Using a syringe pump, the CdS

growth solution was added dropwise (3mL/h) in time varying from 1 to 12 min. Afterward, the

solution was stirred at 235 °C for another 5 min. Using a syringe pump, the Te growth solution
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was added dropwise (3 mL/h) in time varying from 2 to 16 min The solution was stirred at 235

°C for another 5 min, and then cooled to room temperature. At 160 °C, 2 mL of oleic acid were

added. The solution purified as described above.

Transmission electron microscopy. A few drops of a dilute NPL suspension in hexane were

dropped on a TEM grid (E. M. Sciences, Carbon film 300 mesh on copper) and inserted into a

JEM 1011 electron microscope.  Bright-field TEM images were recorded, and the length and

width of typically 50/75 NPLs were analyzed. To prepare the specimen for STEM-EDS analysis,

3 uL of sample (Batch3) was drop casted onto ultrathin carbon/holey carbon coated Cu grid, and

analyzed by an image-Cs-corrected JEOL JEM-2200FS TEM, with in-column filter (Ω-type) and

Bruker XFlash 5060 SDD system. The presented elemental maps are unprocessed, i.e., obtained

simply by integration of the Kα peaks of S and Se and Lα peaks of Te and Cd.   

Absorbance and time-resolved photoluminescence spectroscopy. A dilute NPL suspension in

hexane was added to a 3 mL quartz cuvette. Absorbance spectra were measured with a Cary300

Varian spectrometer. Fluorescence spectra were recorded using a Edinburgh instruments FLS920

spectrofluorometer. Time-resolved fluorescence decay traces were recorded either with a pulsed

LED (331 nm, CdSe/CdS core/crown reference samples, CdSe/CdS/CdTe Batch3), or a pulsed

laser  (405  nm,  CdSe/CdTe  core/crown  reference  samples,  CdSe/CdS/CdTe  Batch1,  Batch2,

Batch4).  PL  decay  measurements  were  performed  in  time-correlated  single  photon  mode,

selecting a region of typically 10 nm around the peak maximum. The pulse period was set to be

1-2 us when monitoring the emission around 500 nm and 10-20 us when measuring the decay

around 600 nm, to ensure complete decay between the pulses.

24



Single particle spectroscopy. Single particle PL measurements were performed on a home-built

microscope setup. The excitation wavelength (400 nm) was generated by frequency doubling a

800 nm laser (MaiTai, 80 MHz, 100 fs). The repetition rate was reduced to 1 MHz by a pulse

selector  (Spectra  Physics,  Model  3980).  The excitation  was  focused onto the  NPLs using  a

microscope  objective  (50  X,  NA  =  0.80)  and  the  photoluminescence  from  the  NPLs  was

collected  from the  same  objective.  The  pump fluence  was  around  20  µJ/cm2.  The  PL was

recorded with an EMCCD (Prom EM HS, Princeton) camera attached to a spectrometer (Acton

SP2300,  Princeton).  The  sample  was  prepared  by  drop  casting  a  dilute  CBC solution  onto

precleaned glass cover slides.

Photoluminescence  upconversion  spectroscopy.  A  dilute  solution  of  CBC  nanocrystals

dispersed in hexane was placed in 1×1 cm2 quartz cuvette. The sample was excited by a 10 Hz,

frequency tripled Nd:YAG Q-switched laser, pumping an optical parametric oscillator (Ekspla

NT342/C/3/UVE), or by the residual laser pump at 1064 nm, all with a pulse duration of 5 ns.

The  laser  excitation  was  focused  on  the  sample  and  the  fluorescence  was  collected  in  the

orthogonal  direction  using  a  20x  NA  0.4  objective,  spectrally  filtered  using  an  appropriate

dielectric filter to block the excitation laser and a monochromator (Acton SpectraPro2150i) and

measured by a photomultiplier (Hamamatsu R10699). The photomultiplier transient output was

measured by a 600 MHz digital oscilloscope (LeCroy Wavesurfer 62Xs). The pulse energy was

measured by a pyroelectric sensor (PE9-C, Ophir Optronics). Transient spectra were collected

around the florescence peak for a series of different excitation powers and subtracted for dark

noise. The spectrum was calculated by integrating the transient PMT counts using the respective

decay peak boundaries. For the 1064 nm fundamental laser line, a 594 nm long pass dielectric

filter and an RG615 color glass were used as clean up filters. The beam area was estimated using
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a high resolution CCD camera (DCU223M, Thorlabs). The setup response function (RF) was

measured to be 8 ns.

ASSOCIATED CONTENT

Supporting Information. Additional absorption, photoluminescence and TEM data. Theoretical
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1. ADDITIONAL ABSORPTION, PHOTOLUMINESCENCE AND TEM DATA
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name
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PLmax
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CdSe NPLs 507 510 8.2

CdSe/CdS
NPLs 511 513 3.3
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Figure S1. (a)  Absorption spectra,  (b)  PL spectra  and (c)  PL decay traces  of  CdSe core
(green) and CdSe/CdS core/crown (red) NPLs. For the latter, samples were excited at 331 nm
with a pulsed LED. (d) Table containing the value of absorption and PL peak maximum and
the amplitude-weighted average lifetime of CdSe core and CdSe/CdS core/crown NPLs. 

4

6

0.01

2

4

6

0.1

2

4

6

1

P
L

 In
te

ns
ity

 (
a

. u
.)

2000150010005000

Time (ns)

 CdSe NPLs
 CdSe/CdTe NPLs

Sample 
name

PLmax

(nm)
τav (ns)
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Figure S2. (a) Absorption spectra, (b) PL spectra and (c) PL decay traces of CdSe core and
CdSe/CdTe core/crown NPLs.  For  the  latter,  samples  were excited  at  405 nm.  (d)  Table
containing  the  value  of  absorption  and  PL  peak  maximum  and  the  amplitude-weighted
average lifetime of CdSe core and CdSe/CdTe core/crown NPLs.

S2



10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
L 

in
te

ns
ity

 (
a.

u.
)

750700650600550500
Wavelength (nm)

 CdSe/CdTe NPLs

Fit name Emission of Peak location (nm) FWHM (nm) Area %

Peak 1 CdSe 514 7.0 0.001

Peak 2 type-II 637 59.7 99.996

Figure S3. PL spectrum of CdSe/CdTe core/crown NPLs. The emission from the CdSe direct
transition is negligible. The table is the summary of the peak fitting results.
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Peak 1 CdSe 510 11.1 0.5

Peak 2 CdTe 574 21.0 4.2

Peak 3 type-II 625 58.8 95.3

Figure S4. PL spectrum of CdSe/CdS/CdTe CBC NPLs. In contrast with CdSe/CdTe NPLs,
clear features for the CdSe and CdTe direct transitions are observed. The table is the summary
of the peak fitting results.
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 CdSe/CdS/CdTe_em 510nm
 CdSe/CdS/CdTe_em 575nm

Name A1 τ1 A2 τ2 A3 τ3 τav (ns) 

CdSe@510 0.32 1.4 0.57 6.3 0.13 33.6 8.2

CB@510 0.43 1.6 0.59 4.6 0.03 25.1 3.9

CBC@510 0.70 1.2 0.37 4.4 0.01 30.1 2.6

CBC@575 0.38 2.9 0.31 39.4 0.26 225.2 76

CBC@625 0.24 15.6 0.47 122 0.22 481 182

Figure S5. Upper panel: PL decay traces of CdSe core (green) CdSe/CdS (yellow), and CBC
(red  and  purple)  NPLs  (Batch3)  at  different  emission  wavelength.  Lower  panel:  Table
containing the decay amplitudes and lifetimes, and the amplitude-weighted average lifetime
of the different NPLs.
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Figure S6.  (a) Absorption and PL of the CBC NPLs with wider CdS barrier (Batch5). (b)
PLE spectra of CBC NPLs at different emission wavelengths.
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after mapbefore map

Figure S7. HAADF-STEM images (leftmost and rightmost) of CBC NPLs (Batch3) showing
the degradation of the NPL structure after 19 minutes of acquisition of STEM-EDS elemental
maps (using a 1 nm spot size). The acquired elemental maps for Cd, S, Se and Te are shown
in the central panels.  
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Figure S8. (a-b) PL spectra of various single CBC NPLs, showing the presence of both CdSe
and type-II emission. For single particle PL measurement batch 5 CBC NPLs have been used,
which had PL quantum efficiency of 15%.

Table S1:  The peak position and FWHM of CdSe and type II emission of various single
NPLs and corresponding close-packed thin film.

CdSe/CdS/CdTe
(CBC) NPLs

Type I Type II

Peak Maximum
(nm)

FWHM
(nm)

Peak Maximum
(nm)

FWHM (nm)

Film 511.9 13.6 631.4 81.7 

SNP 1 510.0 10.8 629.9 88.2 

SNP 2 509.9 10.9 632.8 106.1 

SNP 3 510.3 10.2 632.2 109.6 

SNP 4 510.9 10.7 629.2 74.8 

SNP 5 511.5 10.6 631.3 80.6 

SNP 6 510.4 10.9 629.5 87.4 

SNP 7 509.8 11.2 633.8 90.3 
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Table S2. The dimensions (obtained from TEM) of CdS barrier and CdTe crown achieved by
injecting  different  amounts  of  Cd/S  and  Te  growth  solutions.  The  injection  rate  of  the
precursor solution was always kept at  a fixed rate  of 3 mL per  hour.  For some samples,
negative  values were be obtained when initial  and final  particle  dimensions were similar,
indicating a negligible CdS barrier and/or CdTe crown growth.

Core Core/Barrier Core/Barrier/Crown

Name 
Length × Width 
(nm x nm)

CdS solution 
injection rate 
(min)

CdS Barrier 
length × width 
(nm x nm)

Te solution 
injection 
rate (min)

CdTe crown 
length × width 
(nm x nm)

Batch1 31.1 х 6.4 2 min -0.05 × 0.4 1 min 0.8 × -0.1

Batch2 30.3 х 6.4 4 min 0.6 × 1.1 4 min 2.5 × 0.4

Batch3 35.6 х 4.2 2 min 0.9 × 0.7 3 min 7.1 × 1.8

Batch4 24.3 х 5.0 12 min 8.8 × 2.3 16 min 7.5 × 2.9

Batch5 40.5 × 5.1 3 min 2.0 × 0.8 2 min 2.6 × 0.8
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Area CdSe (%) Area CdTe (%) Area type-II (%)

Batch1 1.3 0.8 97.8

Batch2 0.5 6.7 92.8

Batch4 1.8 2.8 95.4

Figure S9.  PL spectra for core, core/barrier  and core/barrier/crown samples of (a) Batch1
(narrow barrier), (b) Batch2 (medium barrier) and (c) Batch4 (wide barrier, bottom). Next to
the indirect transitions, two additional features are observed that can be assigned to CdSe and
CdTe emission. Relative weights are reported in the table. PL spectra of Batch3 are presented
in Figure S4 and Figure 2 of the main text. 
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Sample 
Name 

Length î
Width 
(nm2)

PLmax

(nm)
τav (ns)

CdSe Core 37.5 х 5.5 513 6.7

c/c_3min 39.2 х 6.4 614 104.7

c/c_8min 40.8 х 7.0 625 53.7

c/c_15min 43.7 х 8.1 637 131.7

c/c_25min 49.2 х 9.5 646 220.7
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Figure S10. (a) Absorption spectra, (b) PL spectra and (c) PL decay traces of CdSe core and
different CdSe/CdTe core/crown NPLs respectively. TEM images of (d) CdSe core and (e)
CdSe/CdTe  core/crown  (sample  c/c_25  min)  NPLs.  (f)  Table  containing  the  dimensions,
value of PL peak maximum and the amplitude-weighted average lifetime of CdSe core and
different CdSe/CdTe core/crown NPLs.

Table S3. Table with the PL peak position and amplitude-weighted average lifetime of the
core, core/barrier and core/barrier/crown NPLs.

core core/barrier core/barrier/crown

PL_core τ_core PL_core τ_core
PL_cor
e

PL_typeII τ_typeII

Batch1 512 5.5 511 5.0 511 617 160

Batch2 512 5.8 513 4.2 513 621 157

Batch3 510 8.2 510 3.9 510 625 182

Batch4 509 4.0 513 2.7 513 642 182
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2. THEORETICAL MODELING

Purpose and Method

To better understand the opto-electronic properties of CdSe/CdS/CdTe CBC NPLs, we carried
out numerical simulations of the conduction band electrons and valence band (heavy) holes. 

In view of the picture sketched in the main text, hole states are calculated using the 
Hamiltonian:

H h=
1
2

p̂
1

mh( r⃗)
p̂+V self

❑
+V bo

h
+V strain

h
 .

Here mh is the (position dependent) hole effective mass, p the three-dimensional momentum
operator,  Vself the  self-energy  potential  arising  from the  dielectric  mismatch  between  the
inorganic NPL and the organic surroundings –which we calculate taking analytical quantum
well  expressions1,  Vbo

h  is  the  (squared-well)  valence  band offset  potential  and  Vstrain
h the

deformation potential strain Hamiltonian:

V strain
h

=(av+
b
2 )( ϵ xx+ϵ yy )+ (av−b ) ϵ zz,

with av and b the valence band deformation potentials, andϵ ij a strain tensor component.

For the electron, the full Hamiltonian reads:

H e=
1
2

p̂
1

me (r⃗ )
p̂+V self

❑
+V bo

e
+V strain

e
+V coul

e
,

where me is the electron effective mass, Vbo
e  is the conduction band offset potential, Vstrain

e the
deformation potential strain Hamiltonian:

V strain
e

=ac ( ϵ xx+ϵ yy+ϵ zz ),

with ac the conduction band deformation potential, and Vcoul
e  the Coulomb attraction exerted

by the hole ground state (localized in the CdTe crown) on the electron, which includes the
enhancement due to the low dielectric constant of the NPL surroundings. 

Strain maps are calculated in the continuous medium model by minimizing the elastic energy.
The boundary conditions are zero normal stress for the free surface. The Coulomb potential is
obtained  by solving  Poisson’s  equation  with  the  hole  ground state  as  the  source  electric
charge. Strain tensor elements, Coulomb electrostatic potential and eigenfunctions of He and
Hh are obtained using Comsol 4.2 software. The calculations are simplified by imposing D2h

symmetry  planes  to  the  rectangular  NPL,  which  allows  us  to  identify  electron  and  hole
eigenstates by their point group symmetry. Thus, we label states as |Γ , n ⟩, which is the n-th
state  of the Γ irreducible  representation.  Material  parameters  used for the calculations are
summarized in Table S3. Also, band offsets between bulk semiconductor materials are given
in Figure 4 of the main text.
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Table S4. Summary of material parameters used in the calculation.  m0 is the free electron
mass. The relative dielectric constant outside the NPL is 2 and the electron (hole) band offset
with the organic medium 2.5 eV from the bottom (top) of the conduction (valence) band of
CdSe. Band offsets are taken from Ref. 2, deformation potentials ac and av are taken from Ref.
3,  relative  dielectric  constant  are  approximate  values  between  static  and  high-frequency
dielectric constants, CdSe hole masses are taken from Ref. 4, and the rest of parameters from
Ref. 5.

Parameter CdSe CdS CdTe Parameter CdSe CdS CdTe

me
z
  (m0) 0.11 0.14 0.09 mh

z
  (m0) 1.14 0.39 0.53

me
xy

  (m0) 0.11 0.14 0.09 mh
xy

  (m0) 0.38 0.20 0.14

ac (eV) -2.00 -2.54 -2.81 av / b (eV) 0.9/-0.8 0.4/-1.05 0.89/-1.0

C11 (GPa) 66.7 77 53.5 εr 10 10 10

C12 (GPa) 46.3 53.9 36.9 a (Å) 6.077 5.825 6.481

C44 (GPa) 22.3 23.6 20.2

Results and Discussion

We first analyzed the influence of the CdS barrier on the elastic strain. CdS has a strong
lattice mismatch (over 10%) with CdTe, which is expected to alter the CdS/CdTe interface.
Figure S11 shows the hydrostatic strain in the wide (a) and narrow (b) barrier CBC NPLs
(same as in Figure 4 of the main text). As can be seen, most of the strain concentrates on the
CdS barrier and –especially- on the first nm around the CdS/CdTe interface. By contrast, the
center of the CdSe core and the outer part of the CdTe crown are only weakly affected.

a                         b
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Figure S11. Hydrostatic strain  (ϵ xx+ϵ yy+ϵ zz ) in (a) wide and (b) narrow CdS barrier NPLs.

The  top  (bottom)  panels  show  an  in-plane  (vertical)  section  of  the  NPLs.  Positive  and
negative strain are tensile and compressive, respectively.

The strain is tensile on the CdS side and compressive on the CdTe one. Considering the sign
of  the  deformation  potentials  (Table  S4),  this  means  that  a  strain-induced  potential  well
(barrier) forms on the CdS (CdTe) side of the barrier-crown interface, as seen in Figure 4i-4j
of the main text. 

The band profile of a typical wide barrier CBC NPL is shown in  Figure S12. The figure
completes the data of Figure 4f-4j of the main text for the wide CdS barrier NPL. Left and
right columns show the potential corresponding to valence band (left) and conduction band
(right). The top graphs are a 2D map of the potential on the (x,y) plane at mid-height. The
central panels are 1D profiles along the x- semi-axis (as in Figure 4f-4j) and the bottom ones
along the y- semi-axis. The role of band-offset and strain described in the main text holds all
over the NPL plane. The Coulomb potential that the hole exerts on the electron (blue line) is
more attractive at the CdS/CdTe interface along the x-axis than at the interface along the y-
axis  (cf.  Figure  S12e-S12f).  This  is  because  the  narrow CdTe  crown  in  the  y-direction
prevents  a  buildup  of  significant  charge  density  in  that  region.  The  self-energy potential
provides  a  constant  shift  all  over  the  structure,  which  does  not  modify  the  relative  band
alignment.

a                                       d

b                                       e

c                                       f
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Figure S12. Potential landscape seen by a valence band hole (left) and a conduction band
electron (right) in wide-barrier CBC NPLs. Top panels show a 2D in-plane cross-section (for
z in the center of the NPL), while mid and bottom panels show the 1D profile along x- and y-
semi-axes. In the 1D plots, red and green lines show the potential excluding and including the
influence of strain,  respectively.  For electrons,  we add Coulomb interaction with the hole
ground state (blue line) to obtain the highest possible barrier at the CdS/CdTe interface.

The band structure shown in Figure S12 gives rise to preferential localization of electron  and
–especially– hole states either in the core or in the crown, as discussed in  Figure 5  of the
main text. This can be expected to affect the intraband transition rates from crown to core
states, facilitating the formation of meta-stable states. The precise value of transition rates
depends on the nature of the process (phononic, photonic, Auger, etc), however, quantitative
calculations are beyond the scope of this paper. Assuming phonon decay is involved, as is
often the case in colloidal quantum dots, the high surface-to-volume ratio of NPLs implies
that confined, surface and interface phonon modes are expected to play a role.6,7 These are not
well described in continuum models like k·p theory. In any case, every scattering mechanism
involves coupling the initial and final electronic states. If these are spatially separated, the
scattering becomes less efficient.

For illustration purposes, we calculated transition dipole matrix elements, which are relevant
to both photonic and phononic intraband processes. We considered that the lowest energy
electron or hole states are s-like, i.e. they form a basis of the Ag irreducible representation in
the D2h group. In turn, x-, y- and z-coordinate operators form the basis of the B3u, B2u and B1u

irreducible representations. Then, the selection rule implies that the final state f should have
B3u, B2u and B1u symmetry, for x-, y- and z-components of the photon/phonon wave expansion.
The largest dipole moments are expected along the  x-direction (the long axis of the NPL).

Then, we compute matrix elements of the kind ⟨ B3 u , n '|x|Ag ,n ⟩ to evaluate ¿ ⟨ f|r⃗|i ⟩∨¿.

We considered as the initial state i the lowest hole (electron) state localized in CdSe (CdTe),
and then computed the matrix  element  to all  lower-energy states,  to  see if  the respective
CdSe-localized hole or CdTe-localized electron state  has limited overlap with lower-lying
states and is thus long-lived. The results are summarized in  Figure S13.  Panels (a) and (b)
show the dipole matrix elements for hole transitions from the CdSe-localized state to all lower
energy states, which are mainly localized in CdTe. One can see the matrix element is orders
of magnitude smaller in wide-barrier NPLs (panel (a)) than in narrow ones (panel (b)). This is
because the strong localization either in the core or in the crown makes the overlap between
initial  and final  states  negligible.  This  finding supports  the formation  of  meta-stable  hole
states  in  the  core,  especially  in  samples  with  a  wide barrier,  which may recombine  with
electrons radiatively before non-radiative relaxation takes place. 

Panels (c) and (d) show the matrix elements for electron transitions from the CdTe crown to
CdSe core localized states. One can notice that the dipole moment is much larger than in the
case of holes. This is because electrons show partial localization on both sides of the CdS
barrier, which implies that relaxation of electrons should be much faster than for holes. The
thickness  of  the  barrier  does  make  a  large  difference  in  the  average  rates.  However,  in

S11



accordance with experimental observations, narrowing the crown width (panels (e) and (f))
does provide an additional suppression of the dipole matrix elements. This is a consequence
of  the  reduced  electron  localization  on  the  short  sides  of  the  NPL,  as  mentioned  in  the
discussion of Figure 5 in the main text.

 

c                              d

e                               f

a                              b

Figure S13. Logarithmic plot of dipole matrix element between: (a-b) the lowest hole state
localized in the CdSe core, and all states below, (c-d) the lowest electron state localized in the
CdTe crown, and all states below, (e-f) same as c-d but with narrow CdTe crown. Left and
right columns refer to wide and narrow CdS barrier CBC NPLs. The structures are the same
as in Figure 5 of the main text.
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3. ADDITIONAL FLUORESCENCE UPCONVERSION DATA

a                                           b

c                                           d

Figure S14. NPL linear saturation curves. (a-c) Linear saturation using 460 nm excitation
monitored at 620, 580, 515 nm which corresponds to the indirect transition, the CdTe crown,

and  the  CdSe  core.  Saturation  intensities  are  equals  toI sa t620

e x460 =1.65
mJ

cm2 ,  I sa t580

e x460 =2.1
mJ

cm2 ,

I sa t515

e x460 =4.2
mJ

cm2  , and are plotted as dashed vertical lines. (d) Linear saturation curve of the

indirect  transition  using  580  nm  excitation,  exciting  the  CdTe  crown  and  the  indirect

transition monitored at 620 nm. I sa t620

e x580 =7.6
mJ

cm2   and is plotted as dashed vertical line.
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