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Abstract Archetypoid analysis (ADA) has proven to be a successful unsu-
pervised statistical technique to identify extreme observations in the periph-
ery of the data cloud, both in classical multivariate data and functional data.
However, two questions remain open in this field: the use of ADA for outlier
detection and its scalability. We propose to use robust functional archetypoids
and adjusted boxplot to pinpoint functional outliers. Furthermore, we present
a new archetypoid algorithm for obtaining results from large data sets in rea-
sonable time. Functional time series are occurring in many practical problems,
so this paper focuses on functional data settings. The new algorithm for de-
tecting functional anomalies, called CRO-FADALARA, can be used with both
univariate and multivariate curves. Our proposal for outlier detection is com-
pared with all the state-of-the-art methods in a controlled study, showing a
good performance. Furthermore, CRO-FADALARA is applied to two large
time series data sets, where outliers curves are discussed and the reduction in
computational time is clearly stated. A third case study with a small ECG
data set is discussed, given its importance in functional data scenarios. All
data, R code and a new R package are freely available.
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KU Leuven, Department of Computer Science
Celestijnenlaan 200A box 2402, 3001 Leuven, Belgium
E-mail: guillermovinue@gmail.com

I. Epifanio
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1 Introduction

Archetypoid analysis (ADA) (Vinué et al., 2015) is an extension of archetype
analysis (AA) (Cutler and Breiman, 1994) and has become a useful unsuper-
vised statistical technique for finding extreme observations. Evidence of this
is the number of successful applications, both with classical continuous multi-
variate data, functional data and other kind of data (binary data, shapes, etc.),
such as ergonomy and anthropometry (Vinué et al., 2015; Epifanio et al., 2018;
Alcacer et al., 2020), weather temperatures and the study of human develop-
ment around the world (Epifanio, 2016; Epifanio et al., 2020), hyperspectral
imagery (Sun et al., 2017; Cabero and Epifanio, 2019), sports (Vinué and Epi-
fanio, 2017, 2019), social sciences (Cabero and Epifanio, 2020), financial time
series (Moliner and Epifanio, 2019) and water networks (Millán-Roures et al.,
2018). However, there are still two open questions in archetypoids theory: ex-
ploiting its use for anomaly detection and scalability. We address both in this
paper.

In the current era of big data, a lot of the data that is generated every day
is time series in nature. A time series is a sequence of data points indexed in
time order. Time series analysis and functional data analysis (FDA) are two
different statistical methodologies to approach time series, being time series
analysis a model-based design, whereas FDA is not.

The idea of FDA is to consider observed data as single functional entities,
rather than as a sequence of individual observations. The term functional
refers to the intrinsic structure of the observed data, rather than to their
explicit form. Then, in FDA each curve is a datum. Assuming that a datum
for replication i arrives as a set of discrete measured values, yi1, . . . , yin, the
first thing to do is to convert these values to a function xi with values xi(t)
computable for any value of the parameter t. The conversion from discrete
data to underlying functions involves smoothing, so that a pair of adjacent
data values, yj and yj+1 are linked together to some extent and are not too
different from each other. By smooth, we mean that function xi has one or
more derivatives, denoted by Dxi, D

2xi, and so on, so that Dmxi refers to the
derivative of order m, and Dmxi(t) is the value of that derivative at argument
t. Additionally, FDA works well in cases where time series contain missing
data or where points in time are not successive equally spaced. Thus, FDA
offers a wider range of possibilities to analyze time-dependent data.

In view of the above considerations, we are going to use FDA as our analytic
tool for time-dependent data. There are currently two references that excel in
providing an introduction to FDA: Ramsay and Silverman (2005) and Ramsay
et al. (2009). The R package roahd also proposes an advanced analysis of high
dimensional functional data using robust nonparametric statistics (Tarabelloni
et al., 2018).

As with any other field of statistics, outliers can seriously impact the mod-
eling of functional data, leading to incorrect conclusions. An outlier is defined
as the curve generated by a stochastic process different from the rest of the
curves, which are assumed to be identically distributed (Febrero et al., 2008).
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A taxonomy of different types of functional outliers was set up in Hubert
et al. (2015), in terms of defining the main characteristics of each one. Ar-
ribas and Romo (2014) also provided an interesting overview of the outliers
types in multivariate functional analysis, focusing particularly on shape out-
liers. Curves that exhibit outlying behavior during a very short time period are
called isolated outliers. On the contrary, a long time outlying activity indicates
persistent outliers. Three types of persistent outliers can be distinguished: (i)
shift/magnitude outliers, which are identical to the other curves, but are moved
away; (ii) amplitude outliers, which are identical to the other curves, but their
scale differs; (iii) shape outliers, which are curves whose shape differs from the
majority (although they might not stand out at any time point).

In order to structure a large multivariate or functional data set, cluster-
ing is the traditional way for grouping observations, such that similar points
are gathered together and separated from dissimilar ones. If the goal is in-
vestigating the typical data points, the average is very likely to be a good
data representation. However, the average does not serve well if the goal is
to identify a set of contrasting categories. Archetypes, the pure types of data,
are extreme points in the periphery of the data cloud. Therefore, they are
the correct form for obtaining a contrasting categorization. When archetypes
are real observations they are known as archetypoids. The main feature of
archetypoid analysis is that each datum is expressed as a mixture of archety-
poids. Therefore, it allows us to identify not only extreme observations, but
also the approximation of other observations according to the archetypoids.
In both multivariate and functional scenarios, an outlier is an observation
that lies outside the different patterns observed in data. Because archetypes
and archetypoids are derived from extreme observations, it is very likely that
some of them would correspond with any outlier present in the data set, if the
residuals are not moderated. In other words, they are sensitive to anomalies.
In order to avoid this influence of outliers, robust procedures must be con-
sidered. Robust analysis is the field of statistics that allows us to avoid the
outlier effects. Its basic principle is to fit the majority of the data, after which
anomalies are identified as those points which possess large residuals from the
robust solution (Rousseeuw and Leroy, 1987).

A first attempt to formulate the robust version of archetypes was described
in Eugster and Leisch (2011). A further improvement has been presented in
Moliner and Epifanio (2019), where the new objective function is the bisquare
family of loss functions defined from R+ to R. This second attempt is show-
ing better performance in terms of obtaining a more robust solution. How-
ever, it does not explain how to pinpoint outliers. An iterative procedure for
identifying outlier functions based on classical archetypoids was presented in
Millán-Roures et al. (2018). This approach is not based on robust features, so
it suffers from a high false positive rate. This was highlighted in the simulation
study discussed in Millán-Roures et al. (2018). As a consequence of the above,
the question of using archetypoids for anomaly detection using robust features
remains open. To fill this gap, we propose a new procedure that combines the
use of robust archetypoids and the adjusted boxplot for skewed distributions.
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The resulting algorithm is called CRO-FADA in the functional setting. This
is a non-iterative algorithm, unlike Millán-Roures et al. (2018).

The classical archetypoid algorithm still has an important weakness: poor
scalability (and therefore low efficiency). This is because the coefficients that
represent how much each archetypoid contributes to the approximation of each
individual must be recalculated every time that a new set of archetypoids is
identified. To address these issues, we present a new algorithm, called CRO-
FADALARA in the functional setting, based on a sampling strategy. The use
of sampling enables any method to deal with large data sets well. A second
version of CRO-FADALARA using parallel computing is also presented, with
the aim of further decreasing the computational time by using the full power
of the computer. As a final remark, most of the approaches developed so far
for functional outlier detection were restricted to univariate curves. Arribas
and Romo (2014) and Hubert et al. (2015) were the first two proposals to
identify multivariate functional outliers. Arribas and Romo (2014) combine
the Modified Band Depth and the Modified Epigraph Index to create a graph-
ical representation called outliergram. This methodology is mainly devoted
to detect shape outliers, but magnitude outliers can also appear at the bot-
tom corners of the plot. On the other hand, Hubert et al. (2015) also use
depth functions and distance measures derived from them. CRO-FADALARA
accepts as many variables as desired. We have applied CRO-FADALARA to
three different time series databases. For the first two cases, in order to inspect
the results, we have created two interactive web applications, one per data set,
using the R package shiny (Chang et al., 2017).

The main novelties and innovations of this work consist of:

– proposing a new method based on robust functional ADA and the adjusted
boxplot for skewed distributions to detect functional outliers: CRO-FADA.

– showing the good performance of CRO-FADA in comparison with func-
tional benchmark methods in a simulation study.

– presenting a new archetypoid algorithm, CRO-FADALARA, which is able
to scale to large functional data sets (not only with univariate but also
with multivariate). The idea also serves for scaling ADA for multivariate
classical data.

– showing the dramatic reduction in computational time of CRO-FADALARA
with respect to CRO-FADA.

– showing how CRO-FADALARA can be used in a common case study for
anomaly detection and how its results can be inspected with a web appli-
cation.

– presenting the new R package adamethods https://cran.r-project.

org/package=adamethods, that includes all the archetypoid-based algo-
rithms and is on the Comprehensive R Archive Network (R Core Team,
2018).

This paper adheres to the best practices of reproducible research, by mak-
ing freely available all data and R code used (including the web applications) at
https://www.uv.es/vivigui/softw/code_and_data_crofadalara.zip. They

https://cran.r-project.org/package=adamethods
https://cran.r-project.org/package=adamethods
https://www.uv.es/vivigui/softw/code_and_data_crofadalara.zip
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can also be found in the supplementary material of the paper. The rest of the
paper is organized as follows. Section 2 introduces all the previous work related
to both classical, functional and robust archetypoids, as well as to functional
outlier detection methods. The proposed method is introduced in Section 3.
In Section 4 our main results are exposed. Section 5 ends the paper with some
conclusions.

2 Related work

2.1 ADA for classical multivariate data

In ADA, archetypes correspond to real observed cases (the so-called archety-
poids). Let X be an n× p matrix of real numbers representing a multivariate
data set with n observations and p variables. For a given number of archety-
poids g, the goal of ADA is to obtain the n × g coefficient matrix α and the
g × n matrix β which minimize the following residual sum of squares (RSS):

RSS =

n∑
i=1

‖xi −
g∑

j=1

αijzj‖2 =

n∑
i=1

‖xi −
g∑

j=1

αij

n∑
l=1

βjlxl‖2, (1)

under the constraints

1)

g∑
j=1

αij = 1 with αij ≥ 0 and i = 1, . . . , n and

2)

n∑
l=1

βjl = 1 with βjl ∈ {0, 1} and j = 1, . . . , g i.e., βjl = 1 for one and only

one l and βjl = 0 otherwise.

On the one hand, constraint 1) implies that the predictors of xi are con-

vex combinations of the collection of archetypoids zj , x̂i =

g∑
j=1

αijzj . The α

coefficients represent how much each archetypoid contributes to the approx-
imation of each observation. On the other hand, constraint 2) means that
archetypoids are real data points. The g × p matrix Z = βX characterizes
the archetypal patterns in the data. Archetypoids are computed with the R
package Anthropometry (Vinué, 2017).

The archetypoid algorithm has two phases: a BUILD phase and a SWAP
phase. In the BUILD step, an initial set of archetypoids is determined. In the
algorithm described in Vinué et al. (2015), there were three options to compute
this set from the results of the AA algorithm defined by Cutler and Breiman
(1994). From our practical experiments, the three options give very close or
even the same results. Our goal in this paper is to speed up computations
to make ADA feasible for large data. Therefore, only one option is going to
be used now. This consists in computing the Euclidean distance between the
g archetypes and all the individuals, and choosing the nearest ones. Finally,
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the SWAP phase tries to improve the current set of archetypoids by exchang-
ing selected cases for unselected cases and by checking whether or not these
replacements reduce the RSS objective function. Note that in order to avoid
local minima, the AA algorithm is started several times with different initial
archetypes, which are randomly selected. This strategy is also useful for avoid-
ing local minima derived from the choice of a redescending M-estimator. In any
case, the problem should not be very severe in view of the good performance
obtained using only a small number of restartings.

2.2 ADA for functional data

In FDA, the values of the p variables of the classical multivariate data be-
come function values with a continuous index t. The database here is made
up of the set of {x1(t), . . . , xn(t)} univariate functions with t ∈ [a, b]. It is
always assumed that the functions belong to a Hilbert space, fulfill reasonable
smoothness conditions and are square-integrable functions on [a, b]. The tran-
sition of ADA to deal with functional data was explained in Epifanio (2016).
In functional archetypoid analysis (FADA), vectors are replaced by functions.
Similarly to ADA, the goal of FADA is to find g archetypoid functions zj(t)
in the sample, in such a way that the other sampled functions can be approx-
imated through the mixtures of these archetypoids. The interpretation of the
matrices α and β remains the same as in ADA. In Eq. 1, the vector norm is

replaced by the L2-functional norm, ||f ||2 =< f, f >=
∫ b

a
f(t)2d(t).

In practice, the functions are not observed continuously, but rather in a
finite set of time points. A first approach could be to discretize the functions
to a grid of p equally spaced values from a to b and to apply ADA to the
n × p matrix X. However, this is not computationally feasible, especially in
the case of dealing with large data sets (Epifanio, 2016). The most popular
alternative is to use basis function expansions. A basis function system is a
set of functions Bh that are linearly independent of each other. Each function
xi(t) is constructed as a linear combination of these basis functions, xi(t) =
p∑

h=1

bhi Bh(t) = b′iB, where ′ stands for transpose, bi is the vector of length

p of the coefficients and B is the functional vector whose elements are the
basis functions. The residual sum of squares (RSS) of the FADA problem is
computed now as follows:

RSS =

n∑
i=1

‖xi−
g∑

j=1

αijzj‖2 =

n∑
i=1

‖xi−
g∑

j=1

αij

n∑
l=1

βjlxl‖2 =

n∑
i=1

a′iWai, (2)

where a′i = b′i −
g∑

j=1

αij

n∑
l=1

βjlb
′
l and W is the order m symmetric matrix

with the inner products of the pairs of basis functions, wm1,m2
=

∫
Bm1

Bm2
.
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If the functions are expressed in an orthonormal basis, W is the order p
identity matrix and functional archetypoids can be obtained as in the classical
multivariate case simply by applying ADA to the basis coefficients. Otherwise,
numerical integration has to be used to compute W as a first step.

Ideally, basis functions should be able to reproduce any feature of interest
of the original data. This approach has the advantage of being more compu-
tationally efficient, because the number of coefficients of the basis functions
is usually smaller than the original number of time points. This is a common
procedure in FDA (Ramsay and Silverman, 2005, Section 4.5).

Real data is usually expressed in several dimensions. This is also the case
of functional data. The key point in multivariate functional data is to compute
an inner product between multivariate functions. The simplest definition is to
sum the inner products of the multivariate functions. Thus, the squared norm
of a P-variate function is the sum of the squared norms of the P components.
This means that FADA for P-variate functions is equivalent to P independent
FADA, with shared matrices α and β.

In the interest of illustration, the bivariate case will be defined. Let fi(t) =

(xi(t), yi(t)) be a bivariate function. Its squared norm is ||f ||2 =
∫ b

a
xi(t)

2dt+∫ b

a
yi(t)

2dt. In addition, let bx
i and by

i be the vectors of length p of the
coefficients for xi and yi for the basis functions Bh. The residual sum of squares
is computed in this case as follows:

RSS =

n∑
i=1

‖fi −
g∑

j=1

αijzj‖2 =

n∑
i=1

‖fi −
g∑

j=1

αij

n∑
l=1

βjlfl‖2

=

n∑
i=1

‖xi −
g∑

j=1

αij

n∑
l=1

βjlxl‖2 +

n∑
i=1

‖yi −
g∑

j=1

αij

n∑
l=1

βjlyl‖2

=

n∑
i=1

ax′

iWax
i +

n∑
i=1

ay′

iWay
i,

(3)

where ax′

i = bx′

i−
g∑

j=1

αij

n∑
l=1

βjlb
x′

l and ay′

i = by′

i−
g∑

j=1

αij

n∑
l=1

βjlb
y′

l. The

predictors of fi are convex combinations of the collection of archetypoids zj ,

f̂i =

g∑
j=1

αijzj . The union of bx
i and by

i results in the set of data observations.

Again, if the basis functions are orthonormal, FADA reduces to apply standard
ADA for the n × 2p coefficient matrix composed by joining the coefficient
matrix for x and y components.

2.3 Robust ADA and FADA

As shown in previous sections, RSS is formulated as the sum of the squared
(vectorial or functional) norm of the residuals, ri (i = 1, . . . , n), namely,
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RSS =

n∑
i=1

‖ri‖2 =

n∑
i=1

‖xi − x̂i‖2 in the classical multivariate case, RSS =

n∑
i=1

‖ri(·)‖2 =

n∑
i=1

‖xi(·)− x̂i(·)‖2 in the univariate functional case and RSS =

n∑
i=1

‖ri(·)‖2 =

n∑
i=1

‖fi(·)− f̂i(·)‖2 in the multivariate functional case. Note that

the residuals ri are vectors (ri) in the classical multivariate case, functions
(ri(·)) in the univariate functional case and vector-valued functions (ri(·)) in
the multivariate functional case.

This formulation based on the least squared loss function is not robust
because large residuals have large effects. M-estimators are often used as a
robust replacement of the least squared loss. They aim to decrease the effect
of outliers by replacing the squared residuals by a less rapidly increasing loss
function. Sinova et al. (2018) proposed M-estimators in the functional setting
as:

θ̂H(·) = argmins∈H

n∑
i=1

ρc(||xi(·)− s(·)||H) = ρc(||ri(·)||H), (4)

where ρc is a loss function and || · ||H is a norm for a Hilbert space H. In
Sinova et al. (2018), the conditions of the loss function ρc for functional M-
estimators are fully described. The most remarkable aspects are: (i) ρc is a
continuous and non-decreasing function, whose domain definition is from R+

to R; (ii) ρc(0) = 0; (iii) ρc(x)/x should tend towards zero, when x tends
towards zero; (iv) ρc should be differentiable, and both ρ′ and φ(x) = ρ′(x)/x
should be continuous and bounded, where we assume that φ(0) := limx→0

ρ′(x)/x exists and is finite. The standard least squared loss function ρ(x) = x2

does not satisfy this last condition (ρ′ is not bounded). In Sinova et al. (2018),
we can also find details about properties of functional M-estimators, such as
their consistency and robustness by means of their breakdown point and their
influence function.

For obtaining a robust estimation of functional archetypoids, we use the
same definition of M-estimators as in Sinova et al. (2018). Specifically, RSS
in Eqs. (1), (2) and (3) is replaced by

∑n
i=1 ρc(||ri||), where || · || respectively

denotes the Euclidean norm for vectors, the L2-norm for univariate functions
and the corresponding norm for P -variate functions. For example, the robust
estimation of functional archetypoids for the univariate functional case would
be exactly as Eq. (4), where s(·) =

∑g
j=1 αij

∑n
l=1 βjlx(·)l.

We choose the Tukey biweight or bisquare family of loss function (Beaton
and Tukey, 1974), following the ideas of Moliner and Epifanio (2019). This
loss function has a very good performance with extreme outliers. Therefore,
ρc(||ri||) is given by:

ρc(||ri||) =

{
c2/6× ((1− (1− ||ri||2/c2)3)) if 0 ≤ ||ri|| ≤ c
c2/6 if c < ||ri||.

(5)
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The tuning parameter c will be obtained from the calculation of a user-
given quantile of the vector containing the non-zero residual norms. As ex-
plained in Sinova et al. (2018), the M-estimators are not scale equivariant in
general. As a consequence, the choice of c should be data-dependent. Other
approaches have used the Huber loss function as an alternative to bisquare
(Sun et al., 2017; Chen et al., 2014). However, it is important to emphasize
that the bisquare family deals better with extreme outliers, since the norm of
residuals larger than c contribute the same to the loss, which is not the case
with the Huber family.

The acronyms for robust ADA and robust FADA are R-ADA and R-FADA,
respectively.

2.4 Outlier detection in skewed distributions

According to the robust statistics theory, outliers will be the points showing
large residuals. However, the main question here is how to decide if a residual is
“large”. In Least Median of Squares (LMS) regression, residuals are compared
with a robust estimation of the standard deviation (Rousseeuw and Leroy,
1987). However, ADA and FADA are distribution free, so an estimate of the
standard deviation of the norm of the residuals is hard to find. In addition,
the distribution of the norm of ADA and FADA residuals has the peculiarity
to be highly skewed. We have considered two alternatives to cope with this
issue:

(i) Nonparametric (i.e., distribution-free) tolerance intervals (Young, 2010).
Tolerance intervals provide limits within which at least a certain proportion
of the population falls, with a given confidence level. Therefore, they can
be used to find uncommon values.

(ii) The adjusted boxplot for skewed distributions (Hubert and Vandervieren,
2008), which is detailed next.

Classical boxplot classifies as potential outliers all points outside this in-
terval (fence):

[Q1 − 1.5 IQR;Q3 + 1.5 IQR], (6)

where Q1 is the first quartile, Q3 is the third quartile and IQR = Q3 −Q1 is
the interquartile range. The adjusted boxplot uses this alternative fence:

[Q1 − 1.5 eaMC IQR;Q3 + 1.5 ebMC IQR], (7)

where MC is the medcouple. For a univariate sample {x1, . . . , xn}, the med-
couple is defined as MC = median

xi≤Q2≤xj

h(xi, xj), where Q2 is the sample me-

dian and where for all xi 6= xj the kernel function h is given by h(xi, xj) =
(xj−Q2)−(Q2−xi)

(xj−xi)
.
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When MC ≥ 0 (positive skewness) then a = −4 and b = 3 in Eq. 7. When
MC < 0 (negative skewness) then a = −3 and b = 4 in Eq. 7 (D’Orazio, 2018).

When dealing with skewed distributions, the classical boxplot flags many
regular observations as potential outliers. The adjusted boxplot modifies the
whiskers such that the skewness is taken into account.

As we were developing the methodology, we carried out several preliminary
tests comparing the performance of adjusted boxplots and tolerance intervals.
From these experiments, we have verified that the adjusted boxplot gives a
more accurate solution than the tolerance intervals, in terms of identifying
more true outliers and fewer false outliers, so we will use the adjusted boxplot
in our outlier detection method by default. Thus, the acronym for robust
FADA aimed to outlier detection is RO-FADA.

2.5 Functional outlier detection methods

Several contributions devoted to detect outliers in functional data, together
with their related software, can be found in the literature. We introduce them
here because we will compare our methodology with all of them. The follow-
ing is a detailed explanation of the methods. We give them a representative
acronym (between parentheses). Most of them are based on the idea of func-
tional depth (Hubert et al., 2017). Arribas and Romo (2014) took advantage
of the relation between two functional depths and created a visualization, the
outliergram (OUG), mainly focused on detecting shape outliers. OUG is in
the R package roahd (Tarabelloni et al., 2018). Febrero et al. (2007) defined a
new statistic following the idea of the likelihood ratio test (LRT). A somewhat
similar idea was described in Febrero et al. (2008), where the functional depth
for every curve is computed. If the depth is lower than a threshold, the curve
is an outlier. The cutoff value is determined with a bootstrap procedure based
on either trimming (TRIM) or weighting the sample (POND). LRT, TRIM
and POND are in the R package fda.usc (Febrero-Bande and Oviedo de la
Fuente, 2012). Sun and Genton (2011) presented the functional boxplot (FB),
which is based on the center outward ordering induced by band depth for func-
tional data. FB is in the R package fda (Ramsay et al., 2017). For multivariate
functional data, the functional outlier map (FOM) was proposed by Hubert
et al. (2015) as a graphical tool to detect outliers based on functional depths.
FOM is in the R package mrfDepth (Segaert et al., 2017). It is also worth
pointing out that the techniques contained in roahd are also implemented for
multivariate functional data.

Other methods are based on other ideas. Rousseeuw and Leroy (1987) used
the robust Mahalanobis distance but considering the functions as multivariate
observations (RMAH). In Hyndman and Shahid Ullah (2007), a procedure
using the robust principal components and the integrated squared forecast
error was proposed (ISFE). RMAH and ISFE are in the R package rainbow
(Shang and Hyndman, 2016) (LRT, TRIM and POND can also be used with
this package). The methods that were proposed by Hyndman (2010) are like
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the functional highest density region boxplot (HDR). The R function to use
HDR is extracted from rainbow (it cannot be directly used with the package).
In Azcorra et al. (2018), the massive unsupervised outlier detection (MUOD)
method was described. In this case, multivariate data are represented by means
of parallel coordinates. Then, tools from FDA are used. MUOD is in the R
package muod. Ramaswamy et al. (2000) proposed the k-nearest neighbors
outlier detection method (kNNo). Each point’s anomaly score is the distance
to its kth nearest neighbor in the data set. Then, all points are ranked based
on this distance. The higher an example’s score is, the more anomalous it is.
kNNo is in the R package adamethods. Millán-Roures et al. (2018) was a first
attempt at using an ADA-based procedure for outlier detection in functional
settings (FOADA). The detection is based on iteratively applying ADA and
the robust Mahalanobis distance to the α coefficients. The algorithm iterates
until no more outliers are found. Even though FOADA is the most similar
approach to our new proposal, note the differences with our method, which
is a non-iterative method, based on the use of the residuals (not on the α
coefficients) and the adjusted boxplot.

3 Method: CRO-FADALARA (Cleaning and Robust Outlier
FADA for LARge Applications)

Our approach consists in two phases. The first one is a cleaning procedure.
The second one is RO-FADALARA (Robust Outlier FADA for LARge Appli-
cations). The outcome of the method is a set of outliers, together with the
importance that each variable had in the outlier detection. As usual, archety-
poids are also returned. Details of both phases are given next.

3.1 Phase I: Cleaning

The idea of this first phase is to clean the most evident outliers. Points that
deviate either over the whole curve (amplitude outliers) or in a small interval
(isolated outliers) will be the ones that this phase will mostly detect. This will
allow RO-FADALARA to focus primarily on hidden behaviours (mainly shape
outliers). The classical boxplot is used for this purpose. The curve is considered
discretely and if the majority of the points are pointwise mild outliers, i.e., they
lie between one point five times and three times the interquartile range below
the lower quartile or above the upper quartile, then the curve is identified as
an outlier function. We have considered the majority as more than 80% of the
points. However, if one of the points is an extreme outlier, i.e., it is more than
three times the interquartile range from the lower or upper quartile (beyond
the outer fences), then we also consider it as an outlier function. Note that this
cleaning step is also added to RO-FADA, which then becomes the CRO-FADA
algorithm.
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3.2 Phase II: RO-FADALARA

The CLARA (Clustering LARge Applications) algorithm (Kaufman and Rousseeuw,
1990) has inspired us to develop its counterpart method for archetypoids. The
basic idea is to slice the data into several small samples instead of working
with the entire data set. This is an iterative algorithm and the procedure in
each iteration can be summarized as follows:

1. Obtain a sample s of the data set.
2. Apply R-FADA to s and obtain its archetypoids gs.
3. For the whole data set, compute the matrix of coefficients αgs , the vector

of residuals residgs and the number RSSgs , with respect to gs.
4. If RSSgs is smaller than the previously saved RSS, then save RSSgs , residgs

and gs.

Once all the iterations are done, the outliers are computed using the ad-
justed boxplot with the norm of final residgs . Algorithm 1 describes this pro-
cedure.

Note that steps 1 from 4 can serve not only for scaling R-FADA, but also
for obtaining the archetypoids in a big dataset of any kind, by simply replacing
R-FADA with R-ADA or any other ADA algorithm.

3.3 Computational details of CRO-FADALARA

The use of the sampling strategy enables archetypoid analysis to deal with
large data and generate results in reasonable time. However, more time can
still be saved by taking advantage of the ever-increasing processing power of
modern computers. Nowadays, most computers are equipped with multiple
processors (cores) with adequate amount of memory available. Parallel pro-
gramming techniques benefit from multiple cores. Thus, parallelizing an algo-
rithm can be used for returning quick outputs and make it efficient at the same
time. According to these premises, we have also developed a parallel version
of CRO-FADALARA. To that end, we have used the R package doParallel,
which provides a stable framework to perform tasks in parallel by providing the
ability to allocate cores to R (Ooi et al., 2017). Both non-parallel and parallel
versions of CRO-FADALARA are available in the R package adamethods.

In practical terms, we would like to point out that the non-parallel and
parallel algorithms can provide slightly different results. From our investiga-
tion, this is due to the different way in which the seed to ensure reproducible
results is set in non-parallel and parallel scenarios. Since both algorithms show
a good and very similar performance, we let the final decision about which al-
gorithm to run be up to the user, only maybe at the expense of a somewhat
less optimal solution.
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Algorithm 1 RO-FADALARA

Input: data frame d ∈ Rn×p, number of archetypoids g, number of samples N , number
of random observations in each sample si,i=1,...,N , |si| = m (m < n,N > 1)

Note to the input: m and N are related via N = 1 + (n−m)/(m− g).

Output: g archetypoids and the set of outliers associated.

Ancillary function:

r-fada(si)
i=1,...,N

=

{
(i) Apply R-FADA on si to compute gsi archetypoids.
(ii) For every observation in d, compute αgsi

, residgsi
and RSSgsi

.

for i = 1→ N do
if i == 1 then

1. Generate s1 ⊂ d, |s1| = r1, r1 = {r11, . . . , r1m}.
2. Use r-fada(s1) to get gs1 , αgs1

, residgs1
and RSSgs1

.
end if
if i == 2 then

3. Generate s2 ⊂ d, gs1 ∈ s2, |s2| = g + r2, r2 = {r21, . . . , r2(m−g)} * r1.
4. Use r-fada(s2) to get gs2 , αgs2

, residgs2
and RSSgs2

.
end if
5. Retain gaux = gsj ,j=1 or j=2 such that RSSaux = min(RSSgs1

,RSSgs2
).

if i > 2 then
6. Generate si ⊂ d, gaux ∈ si, |si| = g + ri,
ri = {ri1, . . . , ri(m−g)} * {r1, r2, . . . , ri−1}.

7. Use r-fada(si) to get gsi , αgsi
, residgsi

and RSSgsi
.

if RSSgsi
< RSSaux then

8. RSSaux = RSSgsi
, residgaux = residgsi

and gaux = gsi .
end if

end if
end for
9. Apply the adjusted boxplot to the norm of residgaux to get outliersgaux .
return gaux and outliersgaux .

3.4 Variable importance

In the case of multivariate functional data, the importance that each variable
had in the outlier detection process is also provided as complementary infor-
mation. Both local and marginal relative importances are detailed. The local
(casewise) relative importance refers to the outlier observation itself, the other
observations are not considered. In computational terms, this means dividing
the residual of the observation in each variable with respect to its total resid-
ual. In the marginal relative importance the other points are considered, since
the value of the outlier observation is compared with the remaining points. In
computational terms, this means dividing the residual of the observation with
respect to the sum of all the residuals inside each variable. The important fact
to remark here is that this procedure works because the functional variables
are in the same scale, after standardizing. Otherwise, this interpretation could
not be done.
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3.5 Web applications

The web applications that we have developed allow the users to plot all the
outliers and compare them with the non-outliers and the representative of each
group of outliers. In any real situation, the number of anomalies is unknown,
so there is no guarantee that the outlier detection method is providing the
most accurate results. Furthermore, in anomaly detection settings, it is well-
known that automatic methods should only be the first step, to be followed
by human examination. In this context, the apps also offer to the domain
experts the possibility of changing the category of the outliers curves in case
some of them are not outliers, according to their expertise. A new database is
automatically generated with the updated information. While interacting with
the app, the users can also save any plot of interest and generate a document
with them for further editing.

4 Results

To the best of our knowledge, there are not large time series databases pub-
licly available, especially for the multivariate case. In spite of this, we have
found two data sets with almost 14000 and 10000 observations, respectively,
which we do believe that they can serve for illustration purposes. The first
one comes from a gas sensor experiment where 8 variables were measured for
six gaseous substances (Vergara et al., 2012; Rodŕıguez-Luján et al., 2014).
This data set is particularly suitable to illustrate the noticeable reduction in
computational time of CRO-FADALARA with respect to CRO-FADA. The
second data set comes from the astronomy domain and is related to a com-
mon anomaly detection problem (Rebbapragada et al., 2009). In the field of
astronomy, the development of powerful telescopes and detector technologies
has led to a massive amount of data. One major challenge is to detect as-
tronomical objects with anomalous physical properties. Therefore, this is an
interesting case study to discuss the outliers that CRO-FADALARA discovers.

An electrocardiogram (ECG) is a measure of how the electrical activity
of the heart changes over time. An ECG dataset is comprised of different
components, or waves, that represent the electrical activity in specific regions
of the heart. The processing of ECG records as functional data has become
an important field of research. Hence, it is also worth using our methodology
with this data, regardless of the size of the database.

In Section 4.1 we firstly carry out a numerical simulation with controlled
data to evaluate the performance of CRO-FADA. All the scripts to reproduce
these results can be found in the folder “Simulation” of the supplementary
material code. Section 4.2 is devoted to the gas sensor data set (scripts in
the folder “Drift data”). Section 4.3 deals with the starlight-curve data set
from the astrophysics domain (scripts in the folder “Starlight data”). Sec-
tion 4.4 shows the additional application to ECG data (scripts in the folder
“ECG data”). In short, we aim to answer the following questions:
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– How does CRO-FADA perform compared to other functional data anomaly
detection algorithms?

– How do the parallel and non-parallel CRO-FADALARA perform compared
to CRO-FADA with large multivariate functional data sets?

– How can CRO-FADALARA be used in an anomaly detection problem?

The algorithms were executed in a workstation with an Intel i7 processor
running at 2.40 GHz with 8 Gb of RAM and 3 cores under Linux (Fedora
release 27) with R version 3.4.4. For both gas sensor and light-curves data
sets, we have fixed the number of random observations in each sample to
m = 100, the number of archetypoids to g = 3 and the quantile to compute
the parameter c of the bisquare loss function to the 0.75 quantile (the third
quartile).

4.1 Simulation study

In order to check the performance of our method, we have carried out a
simulation study with several state-of-the-art benchmark methods. We have
created a set of F = 100 functions observed at 50 equidistant points be-
tween 0 and 1. Initially, the 100 functions are generated from the main model
X1(t) = 30t(1 − t)3/2 + ε(t). Then, we have replaced some of these functions
by a number of shape, amplitude, isolated and shift outliers according to an
outlier rate. We denote this rate as ∆. These contaminated functions are the
outliers that the methods have to identify.

The shape outliers are generated using the same model as in Febrero et
al. (2008), Fraiman and Svarc (2013), Arribas and Romo (2014) and Millán-
Roures et al. (2018). It is defined as X2(t) = 30t3/2(1 − t) + ε(t). Both in
X1 and X2, t ∈ [0, 1] and ε(t) is a Gaussian process with zero mean and
covariance function γ(s, t) = 0.3exp(−|s− t|/0.3). The amplitude outliers are
generated by adding 3 to the mean from the main model. The isolated outliers
are generated by adding the values of a standard normal density to the first
14 observed points of the mean from the main model. The shift outliers are
generated by translating the mean of the main model in −0.1 time units. Fig.
1 displays the type of outliers (obtained with /Simulation/do plots.R). We
have run 100 simulations. The accuracy of the methods is evaluated in terms
of recall (percentage of true outliers detected), precision (percentage of true
outliers in the set of outliers detected) and false positive rate (percentage of
points that are not outliers, that are identified as outliers).

All the methods described in Section 2.5 are used as our benchmarking
framework. The R functions related to the aforementioned packages have been
used with their default parameters. Classical ADA with Frobenius norm was
used. For kNNo, we have fixed an outlier rate of 0.01 for all cases (i.e., the
believed proportion of outliers is 1% (1 of 100 functions)).

Table 1 shows the results for shape outliers, when the outlier rate is fixed
to 0 (no outliers), 0.02 and 0.05. When there are no outliers, CRO-FADA
shows a similar performance to the others. HDR and LRT do not find false
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Fig. 1 Outlier types used in the simulation study. Outliers are in red color.

Shape
∆ = 0 ∆ = 0.02 ∆ = 0.05
FPR TPR Precision FPR TPR Precision FPR

CRO-FADA 2 (2.78) 98.5 (8.6) 76.8 (24.6) 1.08 (1.76) 94.4 (19.3) 87.3 (20.8) 0.88 (1.76)
OUG 2.6 (1.75) 97 (11.9) 53.9 (21.9) 2.27 (1.69) 96 (9) 76.3 (14.2) 1.81 (1.39)
RMAH 1.67 (1.36) 99.5 (5) 69.5 (22.7) 1.24 (1.14) 99.2 (3.9) 88.8 (11.5) 0.77 (0.84)
ISFE 3.91 (2.1) 64 (44.4) 27.9 (24) 3.83 (2.01) 48.8 (41.4) 34.9 (27.3) 4 (2.01)
LRT 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
TRIM 0.94 (0.51) 92.5 (17.9) 99.2 (6) 0.02 (0.14) 63.2 (28.4) 99.2 (6) 0.02 (0.15)
POND 1.27 (0.98) 100 (0) 70.7 (20.2) 1.09 (0.92) 99.2 (3.9) 90.1 (10) 0.65 (0.68)
FOM 0.73 (1.11) 90.5 (21) 84.5 (20.4) 0.52 (0.73) 70.2 (30.7) 92.9 (12.3) 0.37 (0.66)
FB 0.01 (0.1) 31.5 (32.3) 98.2 (13.5) 0.01 (0.1) 29.8 (23) 99.6 (3.8) 0.01 (0.11)
HDR 0 (0) 79 (34.9) 79 (34.9) 0.43 (0.71) 74.8 (18.6) 74.8 (18.6) 1.33 (0.98)
MUOD 18.28 (3.7) 98.5 (8.6) 20.6 (10.1) 8.87 (3.16) 100 (0) 48.1 (11.5) 6.36 (2.95)
kNNo 1 (0) 50 (0) 100 (0) 0 (0) 20 (0) 100 (0) 0 (0)
FOADA 5.33 (3.16) 98.5 (11.1) 39.8 (20.7) 4.16 (2.85) 99 (5.2) 63.4 (16.7) 3.62 (2.59)

Table 1 Synthetic data with shape outliers for three different outlier rates (0%, 2% and
5%). Mean and standard deviation (in parentheses) of the True Positive Rate (TPR, also
called Recall), Precision and False Positive Rate (FPR) over 100 simulation runs.

outliers. In fact, LRT does not find anything even when there are outliers.
MUOD is obtaining a lot of false positives in all cases. This undermines its
high recall when there are outliers in the data. When ∆ = 0.02, CRO-FADA
has a very good recall, an acceptable precision and a small false positive rate.
OUG, RMAH, TRIM, POND and FOM are the other methods that have
a similar good performance in the three aspects. This CRO-FADA, OUG,
RMAH and POND noteworthy performance remains when ∆ = 0.05. However,
the recall of TRIM and FOM deteriorates. OUG has increased its precision in
this case. FOADA shows a good recall when there are outliers in the data but
its precision is not that good and its false positive rate is one of the highest in
all cases.

Table 2 shows the results for amplitude, isolated and shift outliers, where
the outlier rate is fixed to 0.05. For the amplitude outliers, CRO-FADA has
a great performance in terms of its recall, as is the case with RMAH, POND,
FOM, MUOD and FOADA. CRO-FADA has a smaller precision than RMAH,
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∆ = 0.05
Amplitude Isolated Shift

TPR Precision FPR TPR Precision FPR TPR Precision FPR
CRO-FADA 100 (0) 77.0 (20.3) 2.22 (2.62) 92.2 (19.7) 90.5 (13.6) 0.71 (1.17) 94.2 (18) 89.6 (16.8) 0.68 (1.32)
OUG 0 (0) 0 (0) 2.66 (1.87) 21.4 (18.9) 36.5 (28.8) 1.96 (1.51) 86.2 (15) 74 (15.5) 1.82 (1.35)
RMAH 100 (0) 87.1 (11.7) 0.89 (0.89) 76.2 (28.7) 85.6 (18.1) 0.74 (0.9) 98.4 (5.5) 88.7 (12.5) 0.79 (0.95)
ISFE 38.6 (36.9) 31.4 (26.4) 3.91 (2) 99.4 (6) 61.3 (14.8) 3.77 (2.12) 50.2 (40.9) 34.8 (26.8) 4.28 (2.22)
LRT 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
TRIM 82.6 (34.5) 98.4 (11.5) 0.02 (0.15) 67.2 (27.6) 98.3 (11.2) 0.03 (0.18) 55.6 (27.2) 98.5 (11.1) 0.02 (0.15)
POND 100 (0) 90.6 (10.4) 0.63 (0.76) 98.8 (4.8) 92.4 (9.8) 0.49 (0.68) 98.6 (5.1) 90.4 (10.2) 0.62 (0.69)
FOM 100 (0) 95.2 (9.1) 0.33 (0.66) 78.2 (30.6) 93.3 (12.3) 0.39 (0.79) 76 (28.1) 94.3 (9.9) 0.32 (0.57)
FB 94.6 (11) 99.8 (1.7) 0.01 (0.11) 55.6 (43.4) 98.6 (12) 0.01 (0.11) 33.6 (26.5) 99.6 (3.7) 0.01 (0.11)
HDR 65.4 (21.1) 65.4 (21.1) 1.82 (1.11) 56.2 (22.3) 56.2 (22.3) 2.31 (1.18) 74 (19) 74 (19) 1.37 (1)
MUOD 100 (0) 30 (5.6) 12.86 (3.34) 99.8 (2) 31.1 (7.8) 12.53 (3.84) 99 (4.4) 29.4 (8.2) 13.48 (3.89)
kNNo 20 (0) 100 (0) 0 (0) 19.8 (2) 99 (10) 0.01 (0.11) 19.8 (2) 99 (10) 0.01 (0.11)
FOADA 100 (0) 74.6 (15.9) 2.14 (1.68) 98.8 (6.9) 69.1 (16.6) 2.78 (2.06) 99.4 (4.5) 68.2 (17.2) 2.99 (2.27)

Table 2 Synthetic data with amplitude, isolated, and shift outliers, with an outlier rate
of 5%. Mean and standard deviation (in parentheses) of the True Positive Rate (TPR, also
called Recall), Precision and False Positive Rate (FPR) over 100 simulation runs.

POND and FOM. MUOD identifies all the true positives at the expense of
identifying a lot of false positives (this is a constant behaviour, as can be seen
in all the scenarios). For isolated outliers, CRO-FADA is also a liable method
and only POND and FOADA remain as a valid competitors (although FOADA
has a lower precision and a higher false positive rate). ISFE could be also
highlighted, but its false positive rate is remarkable. For shift outliers, CRO-
FADA and POND are again very good. FOADA is also good at recall, but
not in terms of precision and false positives. RMAH is once again a powerful
alternative. OUG performs here relatively well. It is important to remember
that OUG was defined to detect shape outliers. Results of Table 1 and Table
2 can be obtained with /Simulation/do simul comp tpr pre fpr.R.

Table 3 shows the results for all the outlier types together, where the
outlier rate is fixed to 0.02. Real problems usually present outliers of differ-
ent types. CRO-FADA and POND are again the best methods, followed by
RMAH, HDR and FOM. MUOD and ISFE return too many false positives. It
is worth mentioning that kNNo does not have a good performance when the
real amount of outliers is not known. Results of Table 3 can be obtained with
/Simulation/do simul comp all tpr pre fpr.R.

Overall, we can conclude that CRO-FADA is a very competitive method,
in line with the methods that show the best performances in every case. In
practical terms, we have checked that POND (and also TRIM) cannot deal
with big data files and is computationally expensive. This is not the case
for CRO-FADA when extended to CRO-FADALARA. Therefore, CRO-FADA
becomes even more useful in a context of real data.

4.2 Gas sensor data

The first data set comes from the open UC Irvine Machine Learning Repository
(Dua and Karra-Taniskidou, 2017). It contains 13910 measurements from 16
chemical sensors exposed to six gaseous substances at different concentration
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Shape, amplitude, isolated and shift
∆ = 0.02

TPR Precision FPR
CRO-FADA 94.5 (11.6) 95.6 (8.9) 0.51 (1.32)
OUG 50 (10.7) 76 (16.6) 1.63 (1.37)
RMAH 89.5 (10.6) 93.2 (7.7) 0.61 (0.71)
ISFE 69.5 (16.2) 63.4 (14.6) 3.83 (2.06)
LRT 0 (0) 0 (0) 0 (0)
TRIM 34.1 (9.9) 99.7 (3.3) 0.01 (0.11)
POND 98.6 (4.3) 95.3 (6.3) 0.47 (0.64)
FOM 80.5 (18.3) 98.4 (4.8) 0.14 (0.43)
FB 55.4 (16.8) 99.9 (1.4) 0.01 (0.11)
HDR 84.8 (10.6) 84.8 (10.6) 1.33 (0.92)
MUOD 99.1 (3.2) 63.5 (9.2) 5.26 (2.13)
kNNo 12.5 (0) 100 (0) 0 (0)
FOADA 77.9 (10.3) 81.7 (12.7) 1.72 (1.43)

Table 3 Synthetic data with shape, amplitude, isolated, and shift outliers all together, with
an outlier rate of 2%. Mean and standard deviation (in parentheses) of the True Positive
Rate (TPR, also called Recall), Precision and False Positive Rate (FPR) over 100 simulation
runs.

levels, producing a 16-channel time series 1(Vergara et al., 2012; Rodŕıguez-
Luján et al., 2014). The six gases are Ammonia, Acetaldehyde, Acetone, Ethy-
lene, Ethanol and Toluene. Two different types of features were considered in
the creation of the data set: (i) the so-called steady-state feature (DR), which
is the maximal resistance change with respect to the baseline and its DR nor-
malized version; (ii) an aggregate of variables reflecting the sensor dynamics
of the increasing/decreasing transient portion of the sensor response during
the measurement process. Values 0.1, 0.01 and 0.001 were set to obtain three
different feature values both from the increasing and decreasing portion of the
sensor response. Thus, a total of 8 features are extracted from each 16-sensor
time series: DR j, |DR| j, EMAi0.001 j, EMAi0.01 j, EMAi0.1 j, EMAd0.001 j,
EMAd0.01 j, EMAd0.1 j (j = 1, . . . , 16). EMAi and EMAd refer to the increas-
ing and decreasing situation, respectively. In practical terms, the input data for
CRO-FADA and the parallel and non-parallel versions of CRO-FADALARA
is an eight-dimensional array with 13910 rows and 16 columns. Since gas sen-
sor curves are non-periodic time series we have used the splines basis. The
number of bases is 10. Table 4 shows the RSS associated with the three
algorithms. These results can be obtained with /Drift data/do drift fada.R,
/Drift data/do drift fadalara.R and Drift data/do drift fadalara par.R. As ex-
pected, the smallest RSS is for FADA because the minimization is with respect
to the whole data set, not with respect to smaller samples, but it took three
days to be computed. CRO-FADALARA reduces computational time dramat-
ically, only at the expense of a slightly less optimal solution. The RSS of the
parallel version is also a bit less optimal than that of the non-parallel, but it
was the fastest option. In order to cope with this level of inaccuracy, the users

1 http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+

Different+Concentrations

http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
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Comp.time RSS
CRO-FADA 3 days 0.249
Non-parallel CRO-FADALARA 25 minutes 0.258
Parallel CRO-FADALARA 14 minutes 0.261

Table 4 RSS and time of CRO-FADA and non-parallel and parallel CRO-FADALARA.

EMAi0.01,   L−RI: 9.63%,   M−RI: 0.2% EMAi0.1,   L−RI: 6.55%,   M−RI: 0.1%

EMAd0.1,   L−RI: 3.1%,   M−RI: 0.07% EMAi0.001,   L−RI: 18.64%,   M−RI: 0.45%

EMAd0.001,   L−RI: 11.08%,   M−RI: 0.21% EMAd0.01,   L−RI: 8.19%,   M−RI: 0.16%

|DR|,   L−RI: 22.48%,   M−RI: 0.39% DR,   L−RI: 20.33%,   M−RI: 0.37%
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Fig. 2 Illustration of an outlier curve detected by CRO-FADALARA in the gas sensor data.
The variable importance of each variable in the outlier detection procedure is indicated. L-RI
means local relative importance and M-RI means marginal relative importance.

can change any mistakenly flagged outliers in the web application. The final
point we would like to emphasize here is that the more cores the computer
has, the faster the parallel CRO-FADALARA will return results.

In the interests of illustration, Fig. 2 displays the activity of one of the
outliers detected by non-parallel CRO-FADALARA in every variable. The
variable importance in the outlier detection procedure is also indicated. For
this observation, DR, |DR| and EMAi0.001 were the most important variables.
To make the outlier inspection more effective, Fig. 3 displays the DR and |DR|
values for the same outlier, together with a given non-outlier and the archety-
poid most related to the outlier (according to the α values of the outlier. As a
reminder, the α coefficients represent how much each archetypoid contributes
to the approximation of each observation.). The outliers can be grouped ac-
cording to their largest α with respect the archetypoids. This plot makes it
easy to compare the performance of every curve in every single variable. For
this particular example, we see that the outlier is indeed having a different per-
formance in both steady-state features with respect to the non-outlier. Only
two variables were displayed to shorten the explanation 2. Results of Fig. 2
and Fig. 3 can be obtained with /Drift data/do drift fadalara plots.R.

2 Run in R these two commands for inspecting all the results:
library(shiny) ; runUrl(‘path to/Drift data app.zip’)
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Fig. 3 Plot for an easy comparison of outliers, non-outliers and the corresponding repre-
sentative of the outliers group. Illustration for DR and |DR|.

4.2.1 Comparison of the cleaning step with other outlier detection methods

Following a Referee’s suggestion, we have compared the performance of the
cleaning step of CRO-FADALARA with two graphical methods included in
the R package roahd, namely, the functional boxplot and the multivariate
outliergram. As explained in the vignette of roahd, both methods are useful
for robustifying a functional dataset by removing amplitude (with the func-
tional boxplot) and shape (with the outliergram) outliers (Tarabelloni et al.,
2018). In terms of the software used, version 1.4 of roahd has been installed
from source and used for this analysis.

The functional boxplot is obtained by ranking functions from the center of
the distribution outwards. The procedure includes these steps: (i) computing
depth values; (ii) computing the region of 50% most central functions, and
(iii) inflating such region by a user given factor. Any function beyond these
boundaries is identified as an outlier. The multivariate outliergram extends the
univariate outliergram to the case of multivariate functional datasets. In the
univariate case, the outliergram is based on the computation of the Modified
Band Depth and Modified Epigraph Index. Such pairs are compared to a
limiting parabola, where they should be located in case of non-crossing data.
Outliers are then indicated by using a thresholding rule.

Default parameters have been used when calling these two methods with
roahd. The functional boxplot returns 815 outliers and the multivariate out-
liergram, 237. As a whole, both methods identify a total of 894 unique out-
liers. The cleaning step of our method detects 723. From these numbers, we
get that a total of 432 outliers are common to both approaches. As a conclu-
sion, the union of the functional boxplot and multivariate outliergram seems
to be less conservative that our approach, with the risk of detecting too many
false positives. This experiment and the analysis discussed in Section 4.1 allow
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us to compare several methods. All the results obtained encourage us to say
that we have developed a reliable method. These results can be obtained with
/Drift data/do drift roahd.R.

4.3 Light-curve data

This second data set comes from the open UEA & UCR Time Series Classi-
fication Repository (Bagnall et al., 2018). It contains 9236 starlight-curves of
length 1024, where 1329 are Cepheid (CEPH), 2580 are Eclipsing Binary (EB)
and 5327 are RR Lyrae (RRL) (Rebbapragada et al., 2009, Section 6.2). This
is a univariate time series data. CEPH, EB and RRL are common types of
periodic variable stars and their analysis in terms of anomaly detection is very
important to astronomy. CEPH are radially pulsating supergiant stars, EB are
binary star systems in which the orbit plane of two stars lies very close. RRL
are radially pulsating stars. A light-curve is a real-valued series measuring the
magnitude of light in each image captured of the night sky over time, together
with its observational error.

In this case, the input for CRO-FADALARA is a univariate data ma-
trix with 9236 and 1024 columns. Since light-curves are periodic time series
we have used the Fourier basis. The number of bases is 15. We have ap-
plied both non-parallel and parallel CRO-FADALARA. Non-parallel CRO-
FADALARA has returned an RSS of 14.3 in 6 minutes. The parallel ver-
sion, an RSS of 14.9 in 3.5 minutes. These results can be obtained with
/Starlight data/do starlight fadalara.R and /Starlight data/do starlight fadalara par.R.
We discuss the non-parallel results, since it returned the most optimal solution.
8 CEPH, 109 EB and 25 RRL have been identified as outliers. Fig. 4 shows a
typical light-curve from each star class, together with an example of the type of
curves identified as outliers (obtained with /Starlight data/do starlight fadalara plots.R).
CEPH and RRL have similar shapes because they are both radially pulsating
stars. On the contrary, the outliers identified for them do not follow the same
periodic pattern. Regarding EB, most of the EB curves show two peaks, one
of them always around the time point 250. In general, the type of EB outliers
show a more noisy behaviour. However, for EB curves the difference between
outliers and non-outliers is not as clear as happens with CEPH and RRL 3 .

4.4 ECG data

The dataset that we have used is contained in the R package roahd and
collects the 8-lead ECG traces of 50 healthy subjects. As explained in roahd,
the 8 leads are, in order, V1, V2, V3, V4, V5, V6, D1 and D2. The signals
have been registered and smoothed over an evenly spaced grid of 1024 time

3 Run in R these two commands for inspecting all the results:
library(shiny) ; runUrl(‘path to/Starlight data app.zip’)



22 G. Vinué, I. Epifanio

Outlier
CEPH

Outlier
EB

Outlier
RRL

No outlier
CEPH

No outlier
EB

No outlier
RRL

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

−1

0

1

−2

−1

0

1

0

1

2

3

4

0

1

2

3

−1

0

1

−1

0

1

2

Timestamp

Fig. 4 Illustration of the shape of the outliers and non-outliers for the three types of stars,
Cepheid (CEPH), Eclipsing Binary (EB) and RR Lyrae (RRL).

points at 1kHz. Due to the small size of this dataset, we have used the CRO-
FADA algorithm. We have assumed that these ECG curves are non-periodic
time series, so we have used the splines basis. The number of bases is 15. Four
outliers have been identified. In the interests of illustration, Fig. 5 displays the
ECG signals of one of the outliers in every lead. For this observation, leads
V3 and V4 were the most important variables, as can be clearly appreciated
in their plot facets. Interestingly, the heart activity of this subject in D1 (the
third most important variable) is not a smooth curve, but rather shows some
rough peaks. Our method also appears to be able to detect these patterns.
These results can be reproduced with the scripts of the folder ECG data.

5 Conclusions

This paper has addressed two open questions in archetypoid analysis: func-
tional anomaly detection and scalability. Robust functional archetypoids have
been used in combination with the adjusted boxplot for detecting outliers in
highly skewed residual distributions. This new method is CRO-FADA. Fur-
thermore, we have presented a new algorithm based on a sampling strategy,
aimed at obtaining archetypoids and outliers from large databases in a faster
and more reasonable period of time. This new algorithm is CRO-FADALARA.
A parallel version of CRO-FADALARA has also been developed aimed to fur-
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Fig. 5 One of the outliers identified in the ECG data. The outlier is in black color and
the non-outlier curves are in grey. For this observation, leads V3, V4 and D1 were the most
important variables.

ther decrease the computational time, by taking advantage of the multiple
cores of a modern computer.

In many practical problems, individual observations are functions of time,
observed at a set of discrete time points. Each curve represents the activity of
a certain process of interest for each individual. If the process is known to be
continuous and smooth, curves can be treated as functional data. This study
has been focused on the FDA scenario. Outlier detection is an important topic
also in FDA. We have used synthetic data to compare CRO-FADA with all the
methods already developed for outlier detection in functional data. Different
simulations have been executed for the different types of functional outliers,
with several outlier rates. Our proposal shows one of the best performances in
all cases, in terms of recall, precision and false positive rate.

The lack of publicly available large multivariate time series databases is a
problem to check the performance of new algorithms. We have applied CRO-
FADALARA to two open databases with almost 140000 and 10000 observa-
tions, respectively. The first data set is produced from an experiment with
six gases where 8 features were extracted from a 16-channel time series. We
have used this data set to compare the results obtained with CRO-FADA and
CRO-FADALARA in terms of computational time and residual sum of squares.
CRO-FADALARA dramatically reduces time, at the expense of a slightly less
optimal results. The second application of CRO-FADALARA has concerned a
data set containing measurements from starlight-curves, related to a common
anomaly detection problem in the field of astronomy, where detecting anoma-
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lous patterns is very important. As demonstrated, CRO-FADALARA can be
very useful in anomaly detection problems. CRO-FADALARA can be used
both in the univariate and multivariate case, which highlights its added value.
A third application with a small sample of ECG data, which is a classical field
of research in functional data applications, has been also discussed. Thanks to
this study, it is possible to say that archetypoid analysis has become a fully
versatile method, which can be used with either traditional multivariate or
functional data (both univariate and multivariate), either small or large, and
with different objectives, namely the identification of extreme observations
or outlier detection. All the data and R code, including the new R package
adamethods, are freely available. We aim to incorporate new strategies in
CRO-FADALARA to get results as fast and optimal as possible. Interest-
ing future work is to delve into how to reduce the computational burden of
archetypes, where there have been some initial attempts (Mair et al., 2017;
Chen et al., 2014).
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Epifanio, I., Ibáñez, M., Simó, A.: Archetypal shapes based on landmarks and
extension to handle missing data. Advances in Data Analysis and Classifica-
tion 12, 705–735 (2018). https://doi.org/10.1007/s11634-017-0297-7
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