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Abstract

We consider the Newton method on symmetric quartic polynomials. The parameter space is divided into different regions
with different dynamical behaviours. In this paper, we study the dynamics for values of the parameter on the bifurcations curves
that separate those regions, checking its dynamical behaviour due to the presence of multiple roots. We also consider a modified
Newton method and we prove that this method is always conjugate to the rational map m

n
z2 when it is applied on polynomials

with two roots of multiplicity m and n, respectively.

1 Introduction

Newton method is the best known algorithm for finding the
roots of an equation F (z) = 0. The study of the global dy-
namics of this method goes back to Ernest Schröder and Artur
Caley who considered the method applied to low degree poly-
nomials as a rational map defined on the Riemann sphere. This
global study provides important implications at computational
level (see for instance [4]).

The dynamics of Newton method has been widely studied for
low degree polynomials. Although there is not a general study
on the dynamics of Newton method for high order polynomi-
als, several results on concrete families of polynomials have
been approached. In [1] and [2] we consider quartic and quin-
tic polynomials, respectively.

In [1] we study the Newton method applied on symmetric quar-
tic polynomials, because they frequently appear in the dynam-
ical study of other families of iterative methods (see [3], for
example). We select the family of symmetric quartic polyno-
mials with two real parameters, thus the parameter space is R2.

From the theoretical point of view these results are a first step
for having a better understanding of Newton’s method applied
to quartic polynomials. In that paper we show the existence
of bifurcations curves separating the parameter space into dif-
ferent regions where different dynamical behaviours are exhib-
ited and we carry out the dynamical study of Newton method
in each region.

In this paper we study the dynamics for values of the param-
eter on the bifurcations curves. The following section is de-
voted to recall the main results obtained in [1]. In Section 3,
we study the dynamics of Newton method on the bifurcation
curves, checking that its dynamical behaviour is more compli-
cated due to the presence of multiple roots. In the last section
we consider a modified Newton method in order to improve
this study. Finally, we prove that this method is always conju-
gate to the rational map m

n z2 when it is applied on polynomials
with two roots of multiplicity m and n, respectively (Theorem
5).
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2 Previous results

In [1], we study some topological properties of the parameter
and dynamical plane of Newton’s method applied to the family
of four degree symmetric polynomials:

pa,b := pa,b(z) = z4 + az3 + bz2 + az + 1,(1)

when a and b are real parameters. In that paper, we split the
parameter plane into twelve regions in which the roots of the
polynomials p, p′ and p′′ have simple zeroes. We only study the
parameter plane for a ≥ 0 because of the symmetry. We deter-
mine in which of those parameter regions it can be guaranteed
that, except for a measure zero set (which is no relevant from
the numerical point of view), any seed in dynamical plane con-
verges to a root of p (Proposition 1 and Proposition 2). We also
give numerical evidences that a more complicated and chaotic
dynamics is possible in other regions.

The expression of the Newton’s map applied to pa,b writes as

N := Na,b(z) = z− pa,b(z)

p′a,b(z)
= z− z4 + az3 + bz2 + az + 1

4z3 + 3az2 + 2bz + a
.

(2)
The critical points of N are the solutions of N ′(z) = 0; that
is, the roots of p and p′′. For each root of p, ri(a, b) := ri, i =
1, · · · , 4, we define its basin of attraction, Aa,b(ri), as the set
of points in the complex plane which tend to ri under the New-
ton’s map iteration. In general, Aa,b(ri) may have infinitely
many connected components but only one of them, called im-
mediate basin of attraction of ri, contains z = ri.

Primary bifurcations correspond to parameters (a, b) for which
the roots of p, p′ or p′′ collide and we denote them as Li, i =
1, ..., 5. The connected components of the complement of this
set of parameters define regions in the parameter plane where
the polynomials p, p′, and p′′ have simple roots. In each of
those regions the Newton’s methods Na,b need not be, in gen-
eral, dynamically equivalent.

The roots of p (x) are given by

x =
y± ±

√
y2± − 4

2
,

where

y± =
−a±

√
a2 − 4b+ 8

2
.

So, the curves:

L1 : = {(a, b) ∈ R2 | a2 − 4b+ 8 = 0},
L2 : = {(a, b) ∈ R2 | b = 2a− 2},
L3 : = {(a, b) ∈ R2 | b = −2a− 2},

separate the plane into different regions, depending on the
number of real and complex roots contained in each of them.

There are one specific choice of the parameters, (a, b) = (4, 6),
for which p4,6(x) has a unique root of multiplicity four. The
bifurcations of the roots along the curves L1 ∪ L2 ∪ L3 are of
different nature. When the parameters (a, b) 6= (4, 6) are in
L1 the polynomial pa,b exhibits two roots of multiplicity two.
These two double roots are complex for 0 ≤ a < 4 and real for
a > 4. When the parameters (a, b) 6= (4, 6) are in L2 ∪ L3 the
polynomial pa,b has a double real root and two simple roots.
The roots of p′(x) = 4x3 + 3ax2 + 2bx + a are also stud-
ied. The number of real roots of p′ (x) gives us the number of
vertical asymptotes of the Newton’s operator. On the curve

L4 := {(a, b) ∈ R2|27a4+108a2−108a2b−9a2b2+32b3 = 0},

p′ (x) has two real roots, one simple and one double. This
curve delimits the regions where p′ (x) has one or three real
roots.

Finally, the roots of p′′(x), c1 and c2, collide on the curve

L5 := {(a, b) ∈ R2 | b = 3a2/8}.

The curves L1∪· · ·∪L5 define the primary bifurcation param-
eters and the connected components of the complement in the
parameter plane:

{(a, b) ∈ R2 , a ≥ 0} \
5⋃

i=1

Li,

denoted byR, are formed by parameter values where the poly-
nomials p, p′ and p′′ have a constant number of simple roots.
The number of real roots of p, p′ and p′′ in each region is shown
in the following table.

Regions Roots of p (x) Roots of p′ (x) Roots of p′′ (x)
R1 2 1 2
R2 0 1 0
R3 0 1 2
R4 0 3 2
R5 4 3 2
R6 2 3 2
R7 2 1 0
R8 0 1 2
R9 0 3 2
R10 4 3 2
R11 2 3 2
R12 0 1 0

Table 1. Regions where the zeroes of p, p′ and p′′ are simple.

In (Figure 1) we draw these bifurcations curves and the regions
Ri for a, b real parameters.
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Figure 1: Regions in parameter plane bounded by the curves L1, L2, L3, L4 and L5 and two zooms. The curves L6 and L7, corresponding to
a collision of the roots of p and p′′.

Afterwards, we study the dynamical behaviour of the Newton
method in each of these regions obtaining the following results:

Firstly, we show that if the polynomial p has four different real
roots all initial conditions converge to one of them:

PROPOSITION 1 If the polynomial pa,b has four different real
roots then, except for a measure zero set, all initial conditions
converge to one of them, that is:

F(Na,b) = A(r1) ∪A(r2) ∪A(r3) ∪A(r4).

If p has two real roots (regionsR1,R6,R7 andR11), depend-
ing on the region under consideration, the dynamics of Na,b

can be from simple (that is, the free critical points are cap-
tured and the Fatou set coincide with the union of the attracting
basins of the zeroes of pa,b) to rich (that is either one or both of
the free critical points are allowable to do their own dynamics
and the Fatou set is not reduced to points whose orbits converge
to one of the roots of pa,b). For example, all initial conditions
converge to one of the roots of p if (a, b) ∈ R7:

PROPOSITION 2 Let (a, b) ∈ R7. Then, except for a measure
zero set, all initial conditions converge to one of the roots of p,
that is:

F(Na,b) = A(r1) ∪A(r2) ∪A(r3) ∪A(r4).

Nevertheless, in R1 and R6 the situation is quite different. Al-
though the smallest free critical point is captured by one root,
we still do not know in general the dynamics of the other crit-
ical point. In fact, numerical examples illustrate that, for some
parameters, there are open sets of initial conditions (in the dy-
namical plane) where the orbit do not converge to any of the
roots. Moreover, by means of the Implicit Function Theo-
rem, those bad parameter values form an open set in parameter
plane.

PROPOSITION 3 Let assume (a, b) ∈ R1 ∪ R6. Then c1 ∈
A(r2).

In the case of regionR11 there are parameter values for which
none of the free critical points is captured by any of the attract-
ing basins of the roots of p.

Finally, if p has not real roots, i.e. parameter values inRi with
i ∈ {2, 3, 4, 8, 9, 12}, the orbit of the two free critical points, c1
and c2 need not be captured by the roots of the polynomial p.
So, the Fatou set will be larger than the union of the attracting
basins of the roots of p.

PROPOSITION 4 There are parameters values (a, b) ∈
R2,R3,R8,R12 such that

A(r1) ∪A(r2) ∪A(r3) ∪A(r4)  F(Na,b).

Now, we analyze in this paper the dynamics of Newton method
for those values of the parameters that give rise to multiple
roots of p, p′ or p′′.

3 Dynamics of Newton method on the bifurca-
tion curves

If we consider parameter values on the primary bifurcation
curves, the Newton method depends only on one parameter
and we observe that the double roots are not critical points.
For a = ±4, b = 6 the polynomial has one root of multiplic-
ity four and we do not consider them. Moreover, the Newton
method has two free critical points, but one of them must be in
the basin of attraction of the double root; so, there are only one
parameter plane and we can carry out a dynamical study in the
complex plane. Let us see what happens on every curve.
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3.1 Dynamics on the curve L1

For (a, b) ∈ L1, that is, if a2 − 4b + 8 = 0 the polynomial
is p(x) = 1

4 (2 + ax + 2x2)2; so, it has two double roots
r1,2 = 1

4 (−a ±
√
−16 + a2). These fixed points are always

attractive being that |N ′(r1,2)| = 1
2 ; so, one of the critical

points

c1,2 =
1

12
(−3a±

√
3(−16 + a2)

must be in the basin of attraction of one of the roots. The pa-
rameter plane can be see in Figure 2.

Figure 2: The parameter plane of Na for complex values of a on the
bifurcation curve L1

3.2 Dynamics on the curves L2 and L3

These two curves correspond to quartic polynomials with one
double root. For (a, b) ∈ L2, that is, if b = 2a − 2 the poly-
nomial is p(x) = (1 + x)2(2 + (a − 2)x + x2), whose roots
are r = −1 and r1,2 = 1

2 (2− a±
√
−4a+ a2). As before, we

can check that x = −1 is an attractive fixed point that becomes
superattractive for a = 4. The fixed points r1,2 are always
superattractive. Moreover, there are two free critical points:

c1,2 =
1

12
(−3a±

√
3(16− 16a+ 3a2).

As r = −1 is an attractor, one of the critical points must be in
his attraction basin and the other critical points makes its own
dynamics.

Similarly, if (a, b) ∈ L3 that is b = −2a− 2, then the polyno-
mial is p(x) = (−1+x)2(2+(2+a)x+x2) and the double root
r = 1 is an attractor that becomes superattractor for a = −4.
For any other value of a, there exist two free critical points

c1,2 =
1

12
(−3a±

√
3(16 + 16a+ 3a2)

and one of them must be in the attraction basin on r = −1.
(See Figure 3).

Figure 3: The parameter plane of Na for complex values of a on the
bifurcation curve L2

3.3 Dynamics on the curve L5

Now, we show the dynamics on the bifurcation curve L5 de-
fined by

L5 = {(a, b) ∈ R2|b = 3a2/8}.

This curve consists of the set of parameter values for which the
two simple critical points c1 and c2 collide in a double critical
point located at c1 = c2 = −a/4. Under this assumption we
can treat the Newton’s map

Na := Na,b where b =
3a2

8

as a one complex parameter family of rational maps in the Rie-
mann sphere. In this case, fixed points are also critical points
and there is a unique free critical point of multiplicity two lo-
cated at −a/4.

Na(z) = z−
pa,3a2/8(z)

p′a,3a2/8(z)
= z−

z4 + a(z3 + z) + 3
8a

2z2 + 1

4z3 + a(3z2 + 1) + 3
4a

2z
,

In Figures 4 and 5 we plot the parameter plane of Na.
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Figure 4: The parameter plane of Na for complex values of a on the
bifurcation curve L5

Figure 5: Zoom of Na

From the symmetries described in [1], we know that those
small copies ofM3 in the parameter plane of Na are symmet-
rically located with respect the real (and complex) line. More-
over, it is possible to find numerically some real parameters
a ∈ R such that the critical point −a/4 belongs a superattract-
ing cycle of period k ≥ 2.

4 The modified Newton method for multiple
roots

As we have seen in the previous section, Newton’s method is
not a good method when we are working with a function that
has multiple roots since they are eliminated in the expression
of the rational operator. To avoid this, we can use the modified

Newton method [5] :

H (x) = x− f (x) f ′ (x)

(f ′ (x))
2 − f (x) f ′′ (x)

.(3)

Let us apply this operator on the polynomial obtained on the
curves L1, L2 and L3.

For (a, b) ∈ L1 the quartic polynomial becomes p (x) =
1
4

(
2 + ax+ 2x2

)2
and the operator writes as

H1 (x) = −
2
(
a+ 8x+ ax2

)
−8 + a2 + 4ax+ 8x2

whose fixed points coincide with the roots of the polynomial.
The derivative of this operator

H ′1 (x) =
4 (a− 16)

(
2 + ax+ 2x2

)
(−8 + a2 + 4ax+ 8x2)

2

gives also the roots of the polynomial as the only critical point.
So, every initial condition goes to a root of the polynomial.

However, if (a, b) ∈ L2 the quartic polynomial becomes
p (x) = (1 + x)

2 (
1 + (a− 2)x+ x2

)
and

H2 (x) = x−
(1 + x)

(
1 + (a− 2)x+ x2

) (
a+ (3a− 4)x+ 4x2

)
q4(x)

where

q4(x) = (a− 2)2 + 2
(
−4− a+ a2

)
x+

+
(
8− 8a+ 3a2

)
x2 + (−8 + 6a)x3 + 4x4.

In this case, the roots are also fixed points of the operator and
it is easy to check that they are also critical points. Neverthe-
less, the dynamics of this operator is more complicated because
there appear three free critical points.

Similarly, for parameter values on L3, the roots of the poly-
nomial p (x) = (x− 1)

2 (
1 + (2 + a)x+ x2

)
are fixed and

critical points of the corresponding operator. As before, there
appear three more free critical points and the dynamics of this
operator becomes more complicated.

4.1 Modified Newton method for two multiple roots

From the previous section we observe that the modified New-
ton method works really well when we the polynomial has two
double roots. As we prove in the following, this result is also
true when the multiplicity of the roots is arbitrary:

THEOREM 5 Let p(z) be a polynomial with two multiple
roots, i.e. p (z) = (z − a)

m
(z − b)

n. The operator of the
modified Newton method H (z) (Eq. (3) ) is globally analyti-
cally conjugate to the quadratic polynomial m

n z2.

Proof We prove this result by considering the conjugacy map

h (z) =
−z + b

z − a
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with the following properties

h (a) =∞, h (b) = 0, h (∞) = −1.

Then, (
h ◦H ◦ h−1

)
(z) =

m

n
z2

Therefore, for polynomials with two multiple roots, the mod-
ified Newton operator is always conjugate to the rational map
m
n z2, satisfying the following properties:

(1) The dynamics of this operator gives the circle S1(z) =
{z ∈ C : |z|2 = n

m} as the invariant Julia set.

(2) The Fatou set is defined by the two basins of attraction of
the superattracting fixed points: 0 and ∞, that correspond to
the roots a and b. �
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