
Analysis of Threading Libraries for High Performance Computing

Adrián Castelló
Universitat Jaume I

Castellón de la Plana, Spain
Email: adcastel@uji.es

Rafael Mayo Gual
Universitat Jaume I

Castellón de la Plana, Spain
Email: mayo@uji.es

Sangmin Seo
Ground X

Seoul, Korea
Email: seo.sangmin@gmail.com

Pavan Balaji
Argonne National Laboratory

Lemmont, USA
Email: balaji@anl.gov

Enrique S. Quintana-Ortı́
Universitat Politècnica de València

València, Spain
Email: quintana@disca.upv.es

Antonio J. Peña
Barcelona Supercomputing Center (BSC)

Barcelona, Spain
Email: antonio.pena@bsc.es

Abstract—With the appearance of multi-/many core machines,
applications and runtime systems evolved in order to exploit the
new on-node concurrency brought by new software paradigms.
POSIX threads (Pthreads) was widely-adopted for that purpose
and it remains as the most used threading solution in current
hardware. Lightweight thread (LWT) libraries emerged as an
alternative offering lighter mechanisms to tackle the massive
concurrency of current hardware. In this paper, we analyze
in detail the most representative threading libraries including
Pthread- and LWT-based solutions. In addition, to examine
the suitability of LWTs for different use cases, we develop
a set of microbenchmarks consisting of OpenMP patterns
commonly found in current parallel codes, and we compare the
results using threading libraries and OpenMP implementations.
Moreover, we study the semantics offered by threading libraries
in order to expose the similarities among different LWT ap-
plication programming interfaces and their advantages over
Pthreads. This study exposes that LWT libraries outperform
solutions based on operating system threads when tasks and
nested parallelism are required.

Index Terms—Lightweight Threads, OpenMP, GLT, POSIX
Threads, Programming Models

1. Introduction
In the past few years, the number of cores per processor

has increased steadily, reaching impressive counts such as
the 260 cores per socket in the Sunway TaihuLight su-
percomputer [1], which was ranked #1 for the first time
in the June 2016 TOP500 list [2]. This trend indicates
that upcoming exascale systems may well feature a large
number of cores. Therefore, future applications will have
to accommodate this massive concurrency by deploying a
large number of threads and/or tasks in order to extract
a significant fraction of the computational power of such
hardware.

Current solutions for extracting on-node parallelism are
based on operating system (OS) threads in both low- or high-
level libraries. Examples of this usage are Pthreads [3]
for the former and programming models (PMs) such as
OpenMP [4] for the latter. However, performing thread
management in the OS increases the cost of these operations
(e.g. creation, context-switch, or synchronization). As a con-
sequence, leveraging OS threads to exploit a massive degree

of hardware parallelism may be inefficient. In response to
this problem, dynamic scheduling and lightweight threads
(LWTs) (also known as user-level threads, or ULTs) models
were first proposed in [5] in order to deal with the required
levels of parallelism, offering more efficient management,
context switching and synchronization operations. These
thread solutions rely on threads that are managed in the user-
space so that the OS is only minimally involved and, hence,
the overhead is lower.

To illustrate this, Figure 1 highlights the time spent when
creating OS thread and user-level threads (ULTs). In this
example, one thread is created for each core in a machine
with two Intel Xeon E5-2695v4 (2.10 GHz) CPUs and 128
GB of memory. For the OS threads, we employ the GNU C
6.1 library [6], and Argobots (07-2018) threads for the ULT
case [7]. The time difference is caused by the implication of
the OS and by the features of each type of thread.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

m
s
)

of Threads

OS
ULT

Figure 1: Cost of creating OS threads and ULTs.

For tackling the OS overhead, a number of LWT li-
braries have been implemented for specific OSs, such as
Windows Fibers [8] and Solaris Threads [9]; for
specific hardware such as TiNy-threads [10] for the
Cyclops64 cellular architecture; or for network services such
as Capriccio [11]. Other solutions emerged to support
specific higher-level PMs. This is the case of Converse
Threads [12] [13] for Charm++ [14]; and Nanos++

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

LWTs [15] for task parallelism in OmpSs [16]. More-
over, general-purpose solutions have emerged such as GNU
Portable Threads [17], StackThreads/PM [18],
ProtoThreads [19], MPC [20], MassiveThreads [21],
Qthreads [22], and Argobots [7]. Other solutions
that abstract LWT facilities include Cilk [23], Intel
TBB [24], and Go [25]. In addition, solutions like
Stackless Python [26] and Protothreads [19] are
more focused on stackless threads.

In spite of their potential performance benefits, none
of these LWT software solutions has been significantly
adopted to date. The easier code development via directive-
based PMs, in combination with the lack of a standard/
specification, hinder portability and require a considerable
effort to translate code from one library to another. In order
to tackle this situation, a common application programming
interface (API), called Generic Lightweight Threads (GLT),
was presented in [27]. This API unifies LWT solutions under
a unique set of semantics, becoming the first step toward
a standard/specification. GLT is currently implemented on
top of Qthreads, MassiveThreads, and Argobots.
One further step is presented in [28] and [29], where we
explain the semantical mapping between the OpenMP and
OmpSs PMs and LWTs and implement both high-level so-
lutions on top of the GLT API.

In this paper we demonstrate the usability and perfor-
mance benefits of LWT solutions. We analyze several thread-
ing solutions from a semantic point of view, identifying
their strong and weak points. Moreover, we offer a detailed
performance study using OpenMP because of its position
as the de facto standard parallel PM for multi/many-core
architectures. Our results reveal that the performance of most
of the LWT solutions is similar and that these are as efficient
as OS threads in some simple scenarios, while outperforming
them in many more complex cases.

In our previous work [30], we compared several LWT
solutions and used the OpenMP PM as the baseline. In this
study we expand that work adding Pthreads library to
our semantic and functional analysis of threading libraries
in order to highlight the overhead (if any) introduced by
the OpenMP implementations. The purpose of this paper is
to present the first comparison of threading libraries from
a semantic point of view, along with a complete perfor-
mance evaluation that aims to demonstrate that LWTs are
a promising replacement for Pthreads used both as low-
level libraries and as the base implementation for high-level
PMs.

The contributions of this paper are as follows: (1) an
extensive description of the current and most-used thread-
ing solutions; (2) an analysis of their APIs; and (3) a
performance analysis designed to illustrate the benefits of
leveraging LWTs instead of OS threads.

The rest of the paper is organized as follows.
Section 2 reviews in detail the threading solutions. Sec-

tion 3 presents an analysis of the different LWT approaches.
Section 4 introduces the different parallel patterns that are
analyzed. Section 5 provides implementation details on the
microbenchmarks we developed for this paper. Section 6
analyzes the performance of LWT libraries. Section 7 briefly
reviews related work. Section 8 closes the paper with con-

clusions.

2. Threading Libraries
In this section we describe the two types of threading

libraries, OS threads and LWTs, that are analyzed and evalu-
ated in this paper. Moreover, we briefly present the OpenMP
PM, for which production implementations are currently
based on Pthreads.

For the evaluation of the libraries, from the point of
view of OS threads, we have selected Pthreads because
this is a standard library that matches the current hard-
ware concurrency. In the case of LWTs, Qthreads and
MassiveThreads have been selected because these are
among the most used lightweight threading models in high-
performance computing (HPC). In addition, Converse
Threads and Argobots were chosen because they cor-
respond to the first (and still currently used) LWT library
and the most flexible solution, respectively. Despite Go is
not HPC-oriented, we have also included it as representative
of the high-level abstracted LWT implementations.

Prior to highlight the strengths and weaknesses of each
solution, we present a summary of the most used func-
tions when programming with threads. Table 1 lists the
nomenclature of each API for different functionality. This
includes initialization and finalization functions that set up
and destroy the threads environment, as well as the threads/
tasklets management (creation, join and yield).
TABLE 1: Summary of the most used functions in mi-
crobenchmark implementations using threads. Pth, Arg, Qth,
Mth, CTh, and Go identify the threading libraries Pthreads,
Argobots, Qthreads, MassiveThreads, Converse Threads, and
Go, respectively.

Function Pth Arg Qth MTh CTh Go
(pthread) (ABT) (qthreads) (myth)

Init – init initialize init ConverseInit –
Thread create thread create fork create CthCreate go
Tasklet – task create – – CmiSyncSend –
Yield yield thread yield yield yield CthYield –
Join join thread free readFF join – channel
End – finalize finalize fini ConverseExit –

2.1. Pthreads API
Pthreads [31] offers three PMs that differ in how

the threads are bound and which thread is in control. An
important agent in these PMs is the kernel scheduled entity
(KSE). KSEs can be managed directly by the OS kernel and
the PM changes depending on the threads–KSE mapping.

The library–thread model contains a single KSE, and
several threads are scheduled and executed on top of it. This
relationship is N:1 and may limit concurrency because a
single thread is scheduled at a time. This approach is adopted
by the GNU Portable Threads library [32].

The hybrid model is composed of a set of KSEs, each
managing several threads in an M:N relationship. Since LWT
libraries follow this hybrid approach, the Pthreads API
should be able to accommodate the PM offered by LWTs.

The kernel–thread model employs one KSE for each
thread that is generated (1:1 relationship).This increases the
overhead of the management mechanism because the OS
kernel is involved in the scheduling and execution of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

threads. This is probably the most used implementation of
the Pthreads API and it is integrated into the GNU C
library [6].

Pthreads does not expose KSEs as part of the API,
although these are present in its execution model. Hence,
the Pthreads implementations interpret KSEs differently,
leading to the previously discussed mappings between KSEs
and threads (N:1, 1:1, or M:N). Therefore, users do not have
control over this mapping; instead, they have to follow the
mapping offered by the threading implementation. Although
some implementations offer functionality for this mapping
(e.g., pthread_setaffinity_np in the GNU C li-
brary), this is not supported by the standard and, therefore,
changing the underlying Pthreads implementation may
produce a misbehavior in the application/runtime.

2.1.1. OpenMP over Pthreads
High-level parallel PMs have been implemented on top

of Pthreads in order to promote programming produc-
tivity by easing the use of parallel techniques. The most
well-known example is OpenMP, an API that supports
multi-platform shared-memory multiprocessing program-
ming. Currently, there exist implementations of OpenMP
for most platforms, processor architectures, and operating
systems. OpenMP exposes a directive-based PM that helps
users accelerate their codes exploiting hardware parallelism
by adding annotations to the code. At compile time, these
annotations are converted to runtime function calls. Intel and
GNU provide two commonly used OpenMP implementa-
tions that leverage Pthreads in order to exploit concur-
rency. These runtimes automatically create all the necessary
structures and distribute the work among Pthreads.

Since version 3.0, OpenMP supports the concept of
tasks, which constitute different pieces of code that may be
executed in parallel, and each can be different (e.g., only
computation, I/O, communication, etc.). In contrast with
work-sharing constructs, distinct OpenMP implementations
leverage different mechanisms for task management. In par-
ticular, while the GNU version implements a shared task
queue for all threads, the Intel implementation incorporates
one task queue per thread and integrates an advanced work-
stealing procedure for load balancing.

2.2. Converse Threads
Converse Threads [12] [13] was one of the first

LWT implementations, developed at the University of Illi-
nois in 1996. It is a parallel language-integration solution
designed to enable the interaction of different PMs.

Although Converse Threads was designed and de-
veloped more than 20 years ago as a general-purpose so-
lution, it remains in use because it composes the underly-
ing layer of the Charm++ implementation [14]. Since its
creation, Converse Threads has been extended with
several modules (e.g., client–server) that expand the basic
functionality and adapt the PM to diverse application sce-
narios. This continuous development maintains Converse
Threads as an appealing solution for HPC environments.

The Converse Threads PM offers two hierarchical
thread levels: process (OS threads) and work units. Processes
allocate queues where work units are stored. Users may se-

lect the number of active processes by means of environment
variables.

As an innovative feature, Converse Threads ex-
poses two types of work units: ULTs and Messages. ULTs
are the base of the LWT solutions, and they represent a
migratable (a ULT is executed by an OS thread, paused, and
resumed by another OS thread), yieldable, and suspendable
work unit with its own stack. A “message” represents a
piece of code that is executed atomically. Messages lack
an own stack and thus cannot be migrated, yielded, or
suspended. Instead, these constructs are recommended for
inter-ULT communication, for short nonblocking tasks, and
as synchronization mechanisms. In addition, only messages
can be inserted into other thread’s queues and this situation
reduces flexibility because some codes (e.g., a blocking
code) cannot be executed as a message.

Figure 2 depicts the PM offered by Converse
Threads, showing the interaction of Converse
Threads processes via messages. In that scenario,
Process 0 sends a message to Process 1 that is scheduled
and executed. Once Process 1 completes the execution
of the ULTs, it communicates to Process 0 the work
completion via the insertion of a message into the queue of
Process 0.

Figure 2: Converse Threads PM and process interac-
tion.

From the point of view of the PM, Converse
Threads allows different execution modes, aimed to dif-
ferent scenarios. The behavior is selected with the function
ConverseInit, which initializes the environment. If the
“normal” mode is selected, threads operate like MPI pro-
cesses and all the threads execute the overall code. The user
is able to select the code portion to execute depending on the
thread id. In the “return” mode, Converse Threads cre-
ates one thread that acts as the master. This thread dispatchs
the work to other threads by sending messages.

The Converse Threads scheduler is a priority sys-
tem that supports efficiently stackless and standard threads.
This scheduler accomodates two strategies: First-In-First-
Out (FIFO) and Last-In-First-Out (LIFO). In order to en-
hance the flexibility of Converse Threads, this library
also allows user-defined schedulers that interact with threads.

To complete this concurrent environment, the
Converse Threads library offers several concurrent
implementations of data structures developed specifically for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

this PM, including queues and lists that are automatically
managed by the library.

2.3. MassiveThreads
MassiveThreads [21] was developed at the Uni-

versity of Tokyo (Japan) in 2014. This LWT library is a
recursion-oriented solution that tackles the thread blocking
problem when an I/O operation is executed. In addition, this
solution provides a tuned load balancing mechanism among
threads via work-stealing.

MassiveThreads is a consolidated solution in con-
tinuous development which can be used in current hardware
systems.

As almost every other LWT solution does,
MassiveThreads offers two hierarchical levels:
Workers (the OS thread) and ULTs. Each worker includes
its own work unit queue that is managed by a scheduler.
The representation of the PM is illustrated in Figures 3
and 4. The default queue scheduler follows the work-first
scheduling policy (Figure 3): when a new ULT is created,
it is immediately executed, and the current ULT is moved
into a ready queue. In this scenario, Worker 0 generates
a new ULT and the Main task (labeled as M) is moved
to the queue. Then, M may be stolen by idle Workers.
Although this policy benefits recursive codes, because
of the exploitation of data locality, this behavior can be
transformed into a help-first policy (Figure 4) at compile
time. The help-first policy prevents the worker from
executing the new ULTs unless a yield function is called.
Therefore, Worker 0 generates a certain number of ULTs
that are stored in the queue, and Worker 1 steals the lastly
created ULT.

Figure 3: MassiveThreads PMs with Work-first policy.

The number of workers that are spawned by the
MassiveThreads environment is selected by the user via
the environment variable MYTH_NUM_WORKERS. Once the
application is launched, this number cannot be modified.

In contrast with Converse Threads,
MassiveThreads does not allow the introduction
of work units into other Workers’ queues. Therefore, all the
work units are created into the current Worker’s queue and
the load balance is pursued with a work-stealing mechanism
that allows an idle Worker to gain access to the ready
queue of other Workers and to steal a ULT from there.
The work-stealing mechanism is also depicted in Figures 3
and 4.

Figure 4: MassiveThreads PMs with Help-first policy.

Once the work units are in the queues, the execution
follows the LIFO policy for each worker’s work, and a FIFO
policy in case of work-stealing. This algorithm was selected
because this scheduling policy is known to be efficient for
recursive task parallelism.

MassiveThreads includes a mechanism for I/O han-
dling that consists of three procedures, namely, (1) register-
ing a new file descriptor, (2) performing the I/O call, and
(3) polling to resume blocked threads. With this mechanism,
MassiveThreads tackles the blocking thread problem by
overlapping communication and computation.

In order to enhance portability from Pthreads to
MassiveThreads, the latter provides a Pthreads-like
API. This feature allows programmers to convert their
legacy codes into MassiveThreads applications with-
out much effort. Moreover, it allows the use of high-level
PMs that are currently written on top of Pthreads, with
MassiveThreads as the underlying library.

2.4. Qthreads
Qthreads [22] was developed at Sandia National Lab-

oratories in 2008 as a general-purpose LWT implementation
based on the full/empty bit design. The feature that distin-
guishes this LWT PM is the use of a hierarchy of three levels
instead of the two-level structure of other approaches. The
new level is located between the OS thread (called Shepherd)
and the work units (ULTs), and it is known as Worker.
Shepherds and Workers may be bound to several types of
hardware resources (nodes, sockets, cores, or processing
units) with the unique restriction that the Shepherd boundary
level may lie at a higher level than the Worker level.

Depending on the level of the Shepherds, these may
manage one or more Workers. On the one hand, when a
Shepherd is bound to a node, it may manage up to n Workers,
where n is the number of logical cores. On the other hand,
when a Shepherd is bound to a logical core, it only manages
one Worker bound to the same core. These configurations are
determined via a few environment variables.

Depending on the number of Shepherds (single or mul-
tiple) the user is allowed to select the work unit sched-
uler during the library configuration step. Figure 5 depicts
the Qthreads system when one Shepherd is bound to a
core and one Worker (omitted for simplicity) is spawned
per Shepherd. The scheduler configurations integrate work-
stealing in order to attain a fair work-load balance among

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Shepherds. In addition, Qthreads enables creating ULTs
for specific Shepherds, and those ULTs cannot be stolen by
other Shepherds. In Figure 5, Shepherd 1 is not able to steal
the last ULT (Assigned ULT), so it steals the previous ULT.

Figure 5: Qthreads PM.

Qthreads allows that a large number of ULTs access
any word in memory. Associated full/empty bits are used
for synchronization among ULTs as well as for leveraging
mutex mechanisms. This access to memory requires hidden
synchronization, which may severely impact performance.

A large number of distributed structures such as queues,
dictionaries, or pools, are offered along with for loop and
reduction functionalities. ULT-aware system call functions
are also part of the Qthreads API.

2.5. Argobots
Argobots [7] was developed in 2015 at Argonne Na-

tional Laboratory. It is presented as a mechanism-oriented
LWT solution. This entails that, in addition to being possible
to use as a low-level library, it offers the mechanism for
building different environments. Therefore, it allows pro-
grammers to create their own PM.

Thanks to its development approach, this PM gives
the programmer an absolute control over all the resources.
In contrast with previous LWT solutions, the OS threads
(named Execution Streams, ES) may be dynamically cre-
ated by the user at runtime instead of at the initialization
point with environment variables. Since those ESs are in-
dependent, there is no need for an internal synchronization
mechanism. Users may also decide the number of required
work unit pools, as well as which ESs have access to
each pool. These pools may be configured with different
access patterns, depending on the number of producers and
consumers. For example, a queue may be accessed by a
single ES in order to create ULTs, while it may be accessed
by several ESs for executing the work units, and vice-versa.

Although a default scheduler is defined for each pool,
in Argobots programmers can create their own instances
and apply them individually to the desired pools. The default
scheduler implements a LIFO policy and only allowed ESs
may interact with the scheduler. Furthermore, Argobots
supports stackable schedulers, enabling dynamic changes
to the scheduling policy that may benefit code portions.
The Argobots flexibility is represented in Figure 6. This

Figure 6: Argobots PM using one private pool for ES 0
and a shared pool for ES 1 and ES 2.

feature enables the programmer to create different environ-
ments inside a unique code. As an example, in Figure 6,
ES 0 features its own private queue, while ESs 1 and 2
share a work unit queue. This complete flexibility increases
programming difficulty but, at the same time, improves code
adaptability.

Argobots presents two types of work units: ULTs and
Tasklets (as Converse Threads does). The difference is
that Tasklets are an atomic piece of work and therefore, it
cannot yield, migrate, and/or pause. Argobots low-level
API offers a high variety of functionality that enables im-
plementing other LWT solutions and low/high-level runtimes
on top of Argobots.

2.6. Go
Go [25], developed by Google in 2009, is an object-

oriented programming language focused on concurrency that
is practically hidden to programmers. This library abstracts
the existence of LWTs from users with the aim of increasing
coding productivity in web-service scenarios. This language
supports concurrency by means of goroutines which are
ULTs executed by the underlying threads. The number of
threads can be decided by the user at execution time via the
environment variable GOMAXPROCS. In addition, users are
able to specify the number of threads for a specific code
portion at runtime. Due to the LWT abstraction, Go is the

Figure 7: Go PM.

less flexible solution among those reviewed in this paper. The
Go mechanisms offered to the programmers include: in the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

creation step, the goroutine call; and in the joining step,
the creation of a communication channel. In the creation
step, all threads share a global queue where goroutines
are stored. This queue is managed by a scheduler that is
responsible for assigning the ULTs to idle threads. This
global and unique queue needs a synchronization mechanism
that may impact performance in case a high number of
threads is used. Figure 7 depicts the interactions between
Go processes and the shared queue.

The synchronization procedure implemented in Go is
an out–of–order communication channel that may deliver
higher performance than the sequential mechanisms. How-
ever, it is the programmer’s responsibility to identify which
goroutine has sent the message by checking the returned
value.

2.7. Generic Lightweight Threads
GLT [27], developed at Universitat Jaume I de Castelló

in 2016, is a generic solution that joins, under a unique PM,
the semantics of several widely-used LWT libraries. This
is the first effort toward creating a standard in the field of
LWTs. The GLT PM is formed by a set of GLT_threads,
in a number that is specified by means of the environment
variable GLT_NUM_THREADS. Each GLT_thread con-
tains the OS thread, a work unit queue, and a scheduler. As
Argobots does, GLT allows the use of two types of work
units: ULTs and Tasklets (namely GLT_ult and GLT_-
tasklet). The GLT scheduling policy is implementation-
defined. Therefore, its configurations directly depend on the
approaches that are offered by the LWT implementation.

The GLT API is currently implemented on top of
Argobots, Qthreads, and MassiveThreads. There-
fore, a code written with GLT can be executed by those li-
braries without any code modification. GLT also implements
the Pthreads API in order to transparently execute legacy
codes over LWTs.

3. Analysis of Threading Libraries
In this section, we first analyze the threading libraries

from a semantic point of view, highlighting the most signif-
icant features in the field of this type of solutions. Next, we
classify the threading implementations from the perspective
of ease of use.

3.1. Semantic Analysis
We present a semantical analysis of the threading solu-

tions in order to highlight the different features offered to
programmers. Threading solutions were designed to extract
the computational power of many-/multi-core architectures.
LWT solutions provide a programming model close to that
of OS threads. However, since LWTs are executed in the
user-space, they avoid som of the overhead experienced by
conventional OS threading mechanisms. LWT libraries lie on
top of OS threads (OS threads execute the LWTs); however
these are created at the beginning of execution and they
are not managed by the OS during the application runtime.
Although LWT solutions show some common features, each
library offers its own functionality and PM.

The most important features of the threading libraries
from the PM perspective are summarized in Table 2.

TABLE 2: Summary of the execution and scheduling func-
tionality offered by the LWT libraries. Pth, Arg, Qth, Mth,
CTh and Go identify the threading libraries Pthreads, Argo-
bots, Qthreads, MassiveThreads, Converse Threads, and Go,
respectively.

Concept Pth Arg Qth MTh CTh Go

Hierarchy Levels 1 2 3 2 2 2
work unit Types 1 2 1 1 2 1
Thread Support D D D D D D
Tasklet Support D D
Group Control D D D D D
Yield D D D D
Yield To D
Global work unit Queue D D D
Private work unit Queue D D D D D
Plug-in Scheduler D D D D D
Stackable Scheduler D
Group Scheduler D

3.1.1. Hierarchical Levels
This number indicates the number of layers inside each

PM. Each layer offers its own features and aims for different
purposes. The main difference between OS threads and
LWTs is that the former only contains one level, Pthread
itself, while LWTs feature at least two levels. The lowest
level in each library is the OS thread representation. In
addition, in the case of LWTs, this level usually includes
a queue for work units and a scheduler. This object re-
ceives different names depending on the library: Execution
Stream in Argobots, Shepherd in Qthreads, Worker in
MassiveThreads, Processor in Converse Threads,
and Thread in Go. Users may decide the number of elements
to spawn via environment variables (Group Control row).
This number can also be set by programmers at runtime in
the case of Argobots. Pthreads, schedulers, and queues
may be created at runtime by the programmer using the LWT
APIs.

Qthreads presents an additional level located in be-
tween the two already presented. This level is formed by
workers that execute the work units and are managed by the
Shepherds. This feature enables further hardware adaptabil-
ity depending on the combination of hardware and applica-
tions.

Work units are at the top level of this hierarchy. These are
usually ULTs but, in the case of Argobots and Converse
Threads, these may also be a Tasklet. These work units are
executed by a OS thread of the lower level or by a Worker
in Qthreads.
3.1.2. Work Units

The main work units in threading libraries are ULTs
in the case of LWT solutions and Pthreads in the OS
threading implementation. Both types of threads are indepen-
dent, yieldable and, migratable featuring their own private
stack. The main difference is that LWTs are managed in
the user space while OS threads are managed by the OS.
In addition, Argobots and Converse Threads support
an additional work unit called Tasklet: an atomic piece of
code that shares the stack with its executor; in other words,
these may be considered as a function pointer. Tasklets (also

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

known as Tasks) are lighter work units than ULTs and are
intended for codes that do not block or context switch.

These work units are stored inside pools/queues waiting
to be executed. These structures are also PM-dependent and
set the library behavior. In the case of Argobots and
Pthreads, these structures may be created by the user.
This increase of difficulty also leads to higher flexibility.
Conversely, Qthreads, MassiveThreads, Converse
Threads and Go hide that feature to users, and the environ-
ment may be modified only via environment variables or at
compilation time. Go only allows the use of one shared pool
while Qthreads, MassiveThreads, and Converse
Threads by default assign one queue/pool per OS thread.
3.1.3. ULT Management

Another feature that defines the PM is the functionality
that a programmer is allowed to use over the work units.
Go is the most restrictive solution. This implementation
does not include basic threading operations (such as yield,
cancel, or resume) which are exposed by other libraries.
Moreover, only one shared queue is employed, and hence
the scheduling options are reduced. At the other extreme,
Argobots includes not only the common functionality but
also an improvement of the yield call. The yield_to
function allows the programmer to pause a current work
unit and start (or resume) another ULT without asking the
scheduler. In addition, Argobots enables programmers to
create their own environment.

All these features yield Argobots as the most flexi-
ble solution. The other solutions present default schedulers
and environment configurations. As a novelty, Qthreads
enables programmers to create work units for a specific
Shepherd. In the case of MassiveThreads, it only cre-
ates work units inside the current Worker’s queue and an
internal work-stealing mechanism ensures the load balance.
Although some Pthreads implementations allow the use
of yield functions, this functionality is not included in the
API specification. To identify this, the corresponding API
function names are appended with the _np suffix that means
“non-portable”.

3.2. Usage Difficulty Analysis
Although semantics are important when selecting a li-

brary for generating a code solution, the adoption of a PM is
also dependent on its ease of use. From this perspective, we
classify the presented libraries into three levels depending on
the features that are offered to the programmers for building
their application/PM environment.

In the easy level, we include Go and
MassiveThreads, because of the reduced number
of features that depend on the programmer. In the former,
the user is responsible of selecting the number of OS
threads and then creating and joining the ULTs. In the
latter, the programmer also needs to allocate the resources
and select whether the scheduler may use a Work-first or a
Help-first strategy.

In the medium level we find Qthreads. In this solution
the programmer is involved in more decisions which may
affect performance. The users may select a combination
of the number of Shepherds and Workers via environment
variables. In addition, the users may decide the boundaries

of each element (e.g., node, socket, core, or processing
unit). Once the environment is set, at the coding level the
programmer decides whether the ULTs is bound or not to a
specific Shepherd.

In the difficult level we include the three remain-
ing solutions: Pthreads, Converse Threads, and
Argobots, though for different reasons. While not being
a LWT solution, Pthreads enforces the use of low-level
functionality if the programmer wants to generate an en-
vironment where Pthreads share structures and interact
among them. Converse Threads offers three distinct
models of execution and each model follows its own rules.
This feature forces programmers to understand deeply each
one of the models in order to select the most appropriate
in each case. For all scenarios, programmers may man-
age the ULTs in addition to the Tasklets (or messages)
for communication among Processors. Argobots offers
complete flexibility for environment generation. In addition,
this environment can be changed at run time so one part
of the application can behave totally different from others.
In this LWT library the programmer indicates the number
of Execution Streams, the number of pools, the relationship
among Execution Streams and pools, which scheduler policy
follows each pool, etc. As usual, increasing the flexibility in
the library implies more control yet also more work from
the programmers.

4. Parallel Code Patterns
Many scientific applications may benefit from the use

of OpenMP in order to shorten their execution time. The
basic mechanism consists of using OpenMP pragmas in
order to hint the compiler the code that can be executed
concurrently. The compiler translates these directives into
OpenMP runtime calls and, at run time, the code is executed
in parallel. In this section, we present the most common
parallel patterns and explain how current OpenMP runtimes
convert the pragmas into parallel code. These patterns will
be the basis for our performance evaluation of the different
threading solutions.

4.1. For Loop
The most frequently used OpenMP directive and prob-

ably also the shortest path to produce parallel code is
#pragma omp parallel for. It can be placed right
before a parallel loop composed of independent iterations
and produces code where each thread executes a subset of
the iteration space. This thread management is transparent
to programmers, who are in charge of annotating the paral-
lelizable code with the pragma.

Widely-used OpenMP runtimes, such as gcc and icc,
handle this scenario similarly. The master thread sets a
pointer to a function call containing the parallel code in each
thread data structure and it is also responsible for calling
the function. Besides, all threads wait in a barrier (unless
a nowait clause is present) at the end of the parallelized
loop.

In the case of LWT solutions, the main thread generates
one work unit per thread and divides the number of iterations
among them. This work unit contains a function pointer to
be executed. All the arguments are passed via a structure that
contains critical information (e.g., the number of iterations,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

1 void for_lwt(void * args)
{

3 arg_for *arg = (arg_for*) args;
for (int i = arg.ini; i < arg.fini; i++)

5 code(i);
}

7 ...
//Main function

9 //Allocate memory for structures
ULT * lwts[NUM_ULTS]; arg_for * args[NUM_ULTS];

11

for (int i = 0; i < NUM_ULTS; i++)
13 {

//Calculate the number of iterations per LWT
15 ...

//Arguments initialization
17 args[i].ini = XXX; args[i].fini = XXX;

//LWT creation
19 create_lwt(for_lwt, args[i], lwts[i]);

}
21

lwt_yield();
23

//Wait for LWT completion
25 for (int i = 0; i < NUM_ULTS; i++)

join_lwt(lwts[i]);

Listing 1: OpenMP for loop parallelism implemented with
LWT solutions.

variables, etc.) that is necessary to execute the function.
Listing 1 shows an abstraction of how the OpenMP for
loop pragma with a static scheduler is translated into LWT
code. Lines 1–6 compose the function that is executed inside
the ULTs. Lines 8–26 are part of the main function where
the data structures for ULTs and arguments are initially
allocated (Line 10); Lines 12–20 correspond to the division
of the number of iterations among the number of ULTs, the
argument initialization, and the ULT creation (line 19). Line
22 allows the main thread to call the scheduler and execute a
ready ULT. Once the control is returned to the main function,
all the ULTs are joined (line 26) and the work is completed.
This example highlights the complexity of the code utilizing
low-level LWT APIs.

4.2. Task Parallelism
Task parallelism appeared in the OpenMP 3.0 speci-

fication as a solution to parallelize unbounded loops and
recursive codes. Its usage, however, has been spread to all
types of applications that contain pieces of code that can
be executed in parallel or that present dependencies among
them. In the second case, the runtime generates a directed
acyclic graph of tasks and their dependencies. OpenMP
tasking follows the LWT approach in the sense that tasks
are pieces of enqueued code waiting to be executed by an
idle thread. This is expressed with the pragma #pragma
omp task. However, different OpenMP runtimes leverage
their own internal approach for tasking. More concretely,
gcc OpenMP creates a shared queue to store tasks. This
queue is accessed by all the team’s threads. In contrast, icc
allocates one private queue for each thread in the team. This
implementation reduces the contention generated by a shared
queue. It also implements a work-stealing mechanism for
load-balancing purposes. This mechanism is used when a
thread’s task queue is empty and the thread becomes idle.

Storing a high number of tasks can reduce performance
because of contention and the cost of queue reallocation;
therefore, gcc and icc include a non-configurable cutoff
mechanism. Once a specific number of tasks are stored
(64 times the number of threads for gcc and 256 in a
thread’s queue in the case of icc), the new non-dependent
tasks avoid the queues and are executed immediately. The
situations described in the following two subsections can
occur, depending on the code that creates the tasks.

4.2.1. Single Region
In this scenario, a thread executing a single or

master OpenMP region (#pragma omp single or
#pragma omp master) creates all the tasks in that re-
gion. Meanwhile, the other threads in the team execute them.
Once the thread that creates the tasks completes its work, it
joins the others in the task execution process.

The OpenMP implementation in gcc uses one shared
queue for all threads and the created tasks are pushed into
that queue. The threads in the team compete for access to a
task. The protection of the queue is enforced via mutex and
thus contention can increase with the number of threads.
Conversely, icc OpenMP uses one private queue for each
thread. This situation triggers the work-stealing because the
other threads are idle. The performance in this scenario is
also affected by contention because all threads are trying
to gain access to the queue. The effectiveness of the work-
stealing mechanism may well affect performance.

When using the threading solutions, the main thread
generates one work unit per OpenMP task and, as in the
for loop scenario, the work unit is created with the function
pointer and the necessary data.

4.2.2. Parallel Region
This scenario occurs when all the threads in a team

execute parallel code that creates tasks. During execution,
the threads push the new tasks into the task queue (if the
cutoff value is not reached), and once this is done, the threads
execute the tasks. For gcc OpenMP, threads compete to
gain access to the shared queue twice: the first time in order
to create the tasks and the second time to obtain tasks to
execute. In icc OpenMP, each thread generates the tasks
into its own queue. With this approach, work-stealing is
almost nonexistent thanks to a better load balance.

When threading libraries are employed, we have two
different parallel levels. The first is mapped to the parallel
region, where the main thread generates a work unit for each
thread with the function pointer of the region. Then, each
thread executes the parallel region creating its own work
units which are the OpenMP tasks.

4.3. Nested Parallel Constructs
When one or more parallel pragmas are found inside a

parallel code, we have nested parallelism. In this case, for
the first pragma, the runtime spawns a team of threads and.
for the second pragma, each thread in the team becomes
the master thread of its new threads’ team. In this scenario,
the number of active threads grows quadratically. Nested
parallelism is not frequent in current applications because
performance drops when the number of threads exceeds the
number of cores (oversubscription). However, this can still

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

occur in some situations that the user may be unaware of. For
example, a programmer accelerates the code with OpenMP
pragmas and, in this concurrent code, threads invoke external
library functions that are parallelized using also OpenMP
pragmas.

The way OpenMP solutions manage nested parallelism
differs. The icc OpenMP runtime fulfills the new thread
teams reusing idle threads (if any) or creating new threads.
Conversely, gcc OpenMP does not reuse the idle threads;
therefore, each time an OpenMP pragma is executed, a new
team of threads is created. Since the idle threads are not
deleted (but stored in a thread pool), the number of active
threads in the system may increase exponentially. To repro-
duce this scenario, we have implemented a code consisting
of two nested for loops, each with its own #pragma omp
parallel for directive.

With LWT libraries, the outer for loop implementation
follows the behavior of that pattern and each work unit
executes a range of iterations of the outer loop. Then each
work unit creates as many work units as number of threads
and divide the iterations of the inner loop among these.

5. Microbenchmark Implementation Details
In this section, we discuss how we adapted our mi-

crobenchmarks implementing the patterns described in Sec-
tion 4 to the specifics of each LWT library. 1

5.1. Pthreads
Although Pthreads is the supporting library used in

production OpenMP and other high-level PMs, we also
used this solution as a low-level threading option for our
microbenchmarks. In those cases where OpenMP tasks are
employed, we generate one Pthreads per task and limit
the available number of cores by means of the taskset
command. The thread management relies on the OS itself
for all the microbenchmarks.

5.2. Converse Threads
For Converse Threads, we employ the “return”

mode and leverage Messages. The former enables us to
follow the OpenMP approach, where there is one master
thread while the other processes are treated as slaves. The
usage of Messages is necessary because this is the only type
of work unit that can be pushed into other threads’ queues,
and therefore the only way to mimic OpenMP’s behavior. In
this scenario, the master thread creates as many Messages
as threads and pushes them onto other threads’ queues.
This limitation, however, prevents the use of Converse
Threads to support parallel codes because messages can-
not yield and hence the requirements of OpenMP are not
fulfilled.

5.3. MassiveThreads
We have analyzed both Work-first and Help-first policies.

However, only the best of these is shown in Section 6. The
difference among these two policies lies on the way a new
work unit is treated. While the former pushes the current
work unit into the queue and executes the recently created

1. Available at https://github.com/adcastel/ULT work/tree/master/lwt
microbenchmarks

work unit, the latter pushes new work units into the queues
while the current task continues its execution.

5.4. Qthreads
With its three levels of hierarchy, Qthreads accom-

modates multiple possibilities in order to attain high perfor-
mance in a variety of situations. We have tested a set of
combinations, including one Shepherd managing the com-
plete node (it manages up to 72 Workers), one Shepherd per
socket (each manages up to 36 Workers), and one Shepherd
per core (each manages just one Worker). After a preliminary
analysis, we chose two combinations: one Shepherd bound
to a node and one Shepherd per core. The first choice is more
efficient when there is a reduced number of work units, at the
cost of increasing the load imbalance; the second option is
more appropriate for scenarios with a higher number of work
units. In the presentation of our results we discarded the
option with a single Shepherd per socket because it offered
lower performance than the other choices for all scenarios.

We also test the functions qthread_fork and
qthread_fork_to, which differ in the work queue where
the new work unit is stored. While the former pushes the
work unit into the current Shepherd’s queue, the latter
pushes the work unit into a different Shepherd’s queue. If
qthread_fork_to is chosen, the main thread distributes
the work using a round-robin dispatch. Hence, four imple-
mentations have been evaluated for each test: qthread_-
fork with one Shepherd per node, qthread_fork with
one Shepherd per core, qthread_fork_to with one
Shepherd per node, and qthread_fork_to with one
Shepherd per core.

5.5. Argobots
The flexibility offered by Argobots is two-fold. On

the one hand, two different types of work units can be used:
ULTs and Tasklets. On the other hand, the work unit pools
can be private for each thread or shared among all of them.
If the private pool option is selected, the main thread needs
to dispatch the work units directly to each thread’s pool in
a round-robin fashion. Therefore, four possible implementa-
tions have been tested. Since Tasklet does not have its own
stack and is not yieldable, in those scenarios that require two
steps of parallelism (nested and task parallelism), the first of
them is performed using ULTs.

5.6. Go
This library enables only one implementation due to its

unique shared work unit queue. All work units need to be
pushed into this queue, as the gcc OpenMP task implemen-
tation does. Therefore, only one possibility is analyzed.

6. Performance Evaluation
In this section, we first review the work dispatch/syn-

chronization in both threading solutions and the OpenMP
PM. Next, we analyze the different parallel code patterns
presented in Section 4 (see implementation details in Sec-
tion 5). The experiments were performed on an Intel 36-
core (72 hardware threads) server composed by two In-
tel Xeon E5-2695v4 (2.10 GHz) CPUs and 128 GB of
memory. GNU’s gcc 6.1 compiler was used to com-
pile the LWT libraries and OpenMP examples. Intel icc

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

compiler 17.0.1 was used to evaluate the performance of
the OpenMP implementations, linked with the OpenMP
Intel Runtime 20160808 version. For LWT libraries,
we employed Argobots, Converse Threads, and
Go libraries updated to 07-2018, Qthreads 1.10, and
MassiveThreads 0.95. All results are the average of
500 executions. The maximum relative standard deviation
observed in each experiment is between 2% and 5%. Please,
note that the microbenchmarks’ codes are well-balanced so
all OpenMP solutions may offer their best performance.

6.1. Basic Functionality
In the OpenMP implementations, a master thread (or

work unit) is in charge of creating secondary threads (or
work units), and then distributing the work among these
slaves. Once this is done, the master completes its work and
waits for the synchronization that indicates that the overall
work is completed. This completion can be enforced using
different mechanisms, such as barriers, messages, or thread
joins.

Although parallel codes may vary depending on different
features, such as granularity, the type of code, or the data
locality, the work dispatch and join steps are clearly critical
for performance, especially in fine-grained codes.

Figure 8 shows the overhead in terms of time spent
creating a single work unit for each thread. In this sce-
nario, the main thread creates and dispatches the work
units. As expected, increasing the number of created
work units increases the execution time. As an exception,
MassiveThreads (labeled as MTH) maintains the per-
formance because the new work units are created into the
master’s own queue. Intel and GNU OpenMP runtimes,
labeled as ICC and GCC, follow the trend of LWT solutions.
Go’s performance corresponds to the usage of a single shared
queue, and therefore, contention is added when the number
of threads is increased.

Converse Threads and Argobots Tasklet, labeled
as CTH and ABT(T), employ the tasklets to yield the best
performance, thanks to its nature, offering slightly higher
performance than Argobots when ULTs (ABT(U)) are
used and being two times faster than the Qthreads (QTH)
implementation. As expected, the results show that creating
Pthreads (PTH) is more expensive than creating LWTs
(excluding the Go implementation) because the OS is re-
sponsible for managing the creation. The difference between
the Pthreads and OpenMP implementations appears when
all threads are created in a previous parallel section (in
OpenMP), and hence the time spent corresponds only to the
cost of performing the actual work.

Figure 9 displays the time required by the master thread
to complete the distinct implementations of the joining
mechanism. More concretely, gcc OpenMP and Converse
Threads (labeled as GCC and CTH, respectively) employ
a barrier which results in an increment of time with the
number of threads. Although Converse Threads uses
Tasklets, this mechanism does not benefit from it. The
marked increase of time in icc OpenMP is due to the
use of more than one thread per CPU. The master thread
accesses memory allocated by other threads and therefore
the overhead is increased. The remaining libraries use a join

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

m
s
)

of Threads

GCC
ICC

ABT(U)
ABT(T)

QTH
MTH
CTH
GO

PTH

Figure 8: Time of creating one work unit for each thread.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

s
)

of Threads

GCC
ICC

ABT(U)
ABT(T)

QTH
MTH
CTH
GO

PTH

Figure 9: Time of joining one work unit for each thread.

mechanism; while Go implements an out–of–order chan-
nel communication, Qthreads and Argobots follow a
sequential algorithm that checks the status of the memory
word or work unit, respectively. The main difference is that
Argobots checks the status and deallocates the work unit
structure. MassiveThreads and Pthreads deliver the
lowest performance. In the former case, since the main task
can be executed by any Worker, each time a thread is joined,
several checks are triggered. In the latter case, the OS itself
waits until the thread has finished its work and frees the
allocated memory.

6.2. Code Patterns
In order to maintain a fair comparison among patterns,

and at the same time, avoid code modification, we have
selected a BLAS-1 function that matches perfectly the fine-
grained approach of LWTs and is highly parallelizable. We
implement a scal function, which multiplies (and over-
writes) the components of a vector by a scalar. We avoid
coarse-grained codes because in those, the thread manage-
ment overhead is totally hidden by the execution time.

In the scenarios where loops (for loop and nested for
loop) are employed, the iterations are divided among the
number of threads. In the task-parallel cases, one task is
created for each vector element attaining a markedly fine-
grained code. This extreme fine level of granularity is chosen
in order to understand the behavior of each LWT solution,
because this type of parallelism does not hide the thread
management overhead. Conversely, if the execution time of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

a piece of code is sufficiently long, the overhead is hidden,
and therefore there is no significant performance difference
between using LWTs or OS threads.

6.3. For Loop
For this test, we have created a vector with 1,000

elements that results in a 1,000-iteration for loop. Fig-
ure 10 illustrates the results. The implementations used
in this experiment are Argobots with private pools,
Qthreads using a single Shepherd per CPU, and the
MassiveThreads Help-first policy, because these at-
tain higher performance than the alternative configura-
tions for each LWT solution. While Argobots (ABT(T)
and ABT(U)) presents the highest performance thanks to
its low creation and join times (see Figures 8 and 9),
the alternative solutions experiment a notable overhead
when increasing the number of threads. Qthreads (QTH)
shows a low execution time because of its small join
time, but this behavior changes when using more Shep-
herds than the number of cores (36). Once this num-
ber is reached, the total time constantly increases because
of the resource sharing overheads. MassiveThreads,
Pthreads, and Converse Threads (labeled MTH,
PTH, and CTH, respectively) are 25 times slower than
Argobots or icc. MassiveThreads suffers from
work-stealing and Pthreads from OS management over-
heads. When Converse Threads uses more threads than
physical cores, the performance drops due to synchroniza-
tion. Although Go suffers from contention due to the shared
queue, its performance is close to the HPC-oriented solutions
thanks to its small overhead in the joining mechanism. The
performance of the OpenMP Intel and GNU implementations
(labeled as ICC and GCC) is close to that of Argobots and
Qthreads, respectively.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

s
)

of Threads

GCC
ICC

ABT(U)
ABT(T)

QTH
MTH
CTH
GO

PTH

Figure 10: Execution time of 1,000-iteration for loop.

6.4. Task Parallelism
For task parallelism, we also used a 1,000-element vec-

tor, creating a task per vector element. Figure 11 exposes
the execution time when the 1,000 tasks are created by
a single thread in a single region. In this case, the LWT
implementations correspond to Argobots with one private
pool per thread, Qthreads using one Shepherd per core,
and MassiveThreads with the Work-first scheduler pol-
icy. The OpenMP environment has been modified by setting
the OMP WAIT POLICY variable to passive in order

to decrease the overhead caused by the contention in the
task queue. In this scenario, both Argobots work units
(Tasklets and ULTs) obtain the highest performance. The
reason for this resides on its lighter management mechanisms
and its ES independence, which avoid internal synchroniza-
tion procedures. The elevate number of work units increases
the difference between Argobots ULTs and Tasklets. This
demonstrates that when the code does not need any context
switch (e.g. blocking call, communication, I/O), the use of
Tasklets improves performance. Argobots Tasklets are a
copy of Converse Threads Messages and hence the
proximity of their results. Both stackless units reduce the
execution time by a factor of two compared with ULT
implementations.

Converse Threads attains one of the highest per-
formances (up to 12 times faster than Pthreads) thanks
to its messages and management, which are lighter than
the ULT functions. Qthreads performs slightly lower (2.5
times) than the previous solutions because of two reasons:
the use of full-empty bit checks in each memory word and
the utilization of more Shepherds than physical cores, which
requires additional synchronization. Go, icc, and gcc’s
performance lie in the middle. This situation demonstrates
that the use of an elevated number of tasks negatively
affects those solutions. The icc results reveal the effects of
the work-stealing mechanism. Workers accessing the master
thread’s queue to steal work units add contention. Go be-
haves similarly to gcc because both rely on a single shared
queue. The lowest performance is attained by Pthreads
and MassiveThreads: the former because we create
1,000 OS threads, which causes severe oversubscription; and
the latter because the work-first policy implies that, each
time a new task is created, the main task is stolen by another
thread. As a result, data locality is reduced and there is a
drop in the overall performance.

 1e-05

 0.0001

 0.001

 0.01

 0.1

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

s
)

of Threads

GCC
ICC

ABT(U)

ABT(T)
QTH
MTH

CTH
GO

PTH

Figure 11: Execution time of 1,000 tasks created into a single
region.

Another tasking scenario takes place when tasks are
created inside a parallel region. In that case, each thread
creates its own work units. This situation is a two-step
algorithm. In the first step, as in the for loop scenario,
the iterations are divided among the threads; in the second
step, the tasks are created.

In this scenario, the choices for each threading solution
are the same as in the previous test. Figure 12 displays the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

results for this experiment. The use of the two-step algo-
rithm affects negatively Go and Converse Threads. Go
suffers from contention added by the shared queue, whereas
the synchronization mechanism in Converse Threads
represents more than 70% of the total execution time. The
main reason is that Converse Threads needs additional
yield calls due to the use of Messages for the first step.
MassiveThreads is more efficient in this case, because
this library designed with for recursivity in mind. In addition,
all the threads in MassiveThreads are busy, so the work
stealing is almost non-existing. Qthreads performance is
affected negatively by adding more threads and becomes
much slower than other ULT libraries (up to 32 times
slower than Argobots). Almost all the time difference
is due to the join mechanism. Although both Argobots
implementations use ULTs (that can yield) in the first step,
the difference between ULTs and Tasklets is negligible.

On the OS threads side, icc offers the highest perfor-
mance because work stealing has disappeared. This is caused
by a perfect load balance. gcc outperforms other solutions
thanks to its cut-off mechanism (up to eight threads) and to
the wait policy value set as in the previous test, attaining
results similar to those of Qthreads. The lowest perfor-
mance comes again from the Pthreads solution due to the
oversubscription caused by the creation of 1,000 threads.

 0.0001

 0.001

 0.01

 0.1

 1

1 2 4 8 16 18 32 36 40 48 64 72

T
im

e
 (

s
)

of Threads

GCC
ICC

ABT(U)

ABT(T)
QTH
MTH

CTH
GO

PTH

Figure 12: Execution time of 1,000 tasks created into a
parallel region.

6.5. Nested Parallel Structures
In this case we have implemented a microbenchmark

composed by two nested 1,000-iteration for loops. The
choices for LWT libraries are Argobots using a private
pool for each thread, Qthreads employing one Shepherd
per Worker, and MassiveThreads with Work-first policy.
Figure 13 shows the results for this test. The trends shown
by both OS-based approaches, OpenMP and Pthreads,
are different in comparison with that of LWT libraries
shown in previous results. This behavior is caused by the
suboptimal implementation of the nested parallel structures
in the case of OpenMP and oversubscription in the case of
Pthreads. The gcc OpenMP creates new threads for each
nested pragma directive and avoids reusing idle threads. As
a result, when executing this case with 36 threads, the gcc
OpenMP spawns 35,036 threads (36 threads for the main
team, and 35 threads more for each outer loop iteration). In

 0.001

 0.01

 0.1

 1

 10

1 2 4 8 16 18 32 36

T
im

e
 (

s
)

of Threads

GCC
ICC

ABT(U)
ABT(T)

QTH
MTH
CTH
GO

PTH

Figure 13: Execution time of a nested parallel for
structure with 1,000 iterations per loop.

contrast, the icc OpenMP makes use of the idle threads.
However, this approach does present the creation of large
number of threads. Concretely, it creates 1,296 threads (36
threads for the main team, and 35 for each secondary team).
This number is considerably higher than the total number of
cores (72), causing severe oversubscription. The Pthreads
implementation performs close to the gcc solution because
it follows the same approach. As in previous tests that follow
a two step algorithm, Go and Converse Threads offer
low performance. Go suffers the contention caused by the
use of a single shared queue. In the case of Converse
Threads, the addition of yield and barrier functions slow
the execution. However, these still perform better than the
gcc and Pthreads implementations. The three general-
purpose solutions (Argobots Tasklets/ULTs, Qthreads,
and MassiveThreads) avoid oversubscription by creating
work units instead of OS threads and hence these yield the
highest performance. Avoiding the oversubscription problem
reduces the OS thread management overhead, increasing
performance with respect to the Intel OpenMP approach by
factors of 62, 21, and 25 for Argobots, Qthreads, and
MassiveThreads, respectively.

7. Related Work
Several studies have been carried among the past years

in order to accomplish two goals: show people that using
LWT can improve the current performance of parallel hard-
ware via reducing the OS threads overhead, and present
a new LWT solution that improves the already existent
libraries. Although concurrent multicore hardware is rela-
tively “new”, the concept of LWT was introduced in [5].
That work sets the foundations of LWT solutions such as
scheduling and management. Converse Threads was
later presented in [12] as one of the first low-level LWT
libraries. In [22] Qthreads was presented and compared
against the Pthreads library via a set of microbench-
marks and applications. MassiveThreads was presented
in [21] which also included a performance comparison
among MassiveThreads, Qthreads, Nanos++, Cilk,
and Intel TBB on several benchmarks. The work in [7]
describes the internals of Argobots evaluates its perfor-
mance against Qthreads and MassiveThreads using
microbenchmarks and applications. The Go environment and
its procedures are presented in [25]. Generic Lightweight

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Threads (GLT) was presented in [27], with the goal of
unifying LWT solutions under a single set of semantics. An
analogue ULT programming model is the task-based ori-
ented solutions such as CompSs [33], OmpSs [16], Intel
TBB [24] or a fine-grained OpenMP task employment [34].
These approximations hide the LWT environment by adding
an upper layer that abstracts the LWT mechanisms.

8. Conclusions
We have presented a complete analysis of a set of

threading solutions including both OS threads and LWTs.
In addition, we have performed a PM decomposition of the
threading libraries indicating their features. Finally, we have
proved, by means of experimental tests, that LWTs pro-
vide an appropiate solution for fine-grained parallel codes.
For that purpose, we have implemented the most common
OpenMP parallel patterns on top of different LWT libraries,
showing these offer a performance that is, at least, as good
as that attained with Pthreads and the OpenMP runtimes.
In the case of Intel OpenMP, we have identified some design
aspects that can lower the performance of common user code
patterns. However, current OpenMP solutions were designed
for the old concurrent hardware and it is difficult to migrate
from OS threads to other approaches. These issues may limit
its usability in near-future applications.

In summary, using LWTs in OpenMP critical patterns,
such as task or nested parallelism, can improve the perfor-
mance compared with the most-used OpenMP implementa-
tions, especially in scenarios when it is crucial to extract all
the computational power of exascale systems.

Acknowledgments
The researchers from the Universitat Jaume I and Uni-

versitat Politècnica de València were supported by project
TIN2014-53495-R of the MINECO and FEDER, and the
Generalitat Valenciana fellowship programme Vali+d 2015.
Antonio J. Peña is financed by the European Union’s Hori-
zon 2020 research and innovation program under the Marie
Sklodowska-Curie grant No. 749516. This work was par-
tially supported by the U.S. Dept. of Energy, Office of
Science, Office of Advanced Scientific Computing Research
(SC-21), under contract DE-AC02-06CH11357.

References
[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang,

W. Xue, F. Liu, F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge,
J. Zhang, Y. Wang, C. Zhou, and G. Yang, “The Sunway TaihuLight
supercomputer: System and applications,” Science China Information
Sciences, vol. 59, no. 7, p. 072001, 2016.

[2] “TOP500 Supercomputer Sites,” http://www.top500.org/.
[3] B. Nichols, D. Buttlar, and J. Farrell, Pthreads programming: A POSIX

standard for better multiprocessing. ” O’Reilly Media, Inc.”, 1996.
[4] “OpenMP 4.5 specification,” www.openmp.org/.
[5] D. Stein and D. Shah, “Implementing lightweight threads,” in USENIX

Summer, 1992.
[6] “GNU C Library,” www.gnu.org/software/libc/, Accessed July 2016.
[7] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,

P. Carns, A. Castello, D. Genet, T. Herault, S. Iwasaki, P. Jindal,
S. Kale, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir,
Y. Sun, K. Taura, and P. Beckman, “Argobots: A lightweight low-level
threading and tasking framework,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 3, pp. 512–526, 2017.

[8] Microsoft MSDN Library, “Fibers,” https://msdn.microsoft.com/
en-us/library/ms682661.aspx.

[9] “Programming with Solaris Threads,” https://docs.oracle.com/.
[10] J. d. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy threads: A

thread virtual machine for the Cyclops64 cellular architecture,” in
Fifth Workshop on Massively Parallel Processing, April 2005.

[11] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable threads for Internet services,” in Proc. 19th ACM
Symposium on Operating Systems Principles, 2003, pp. 268–281.

[12] L. V. Kale, M. A. Bhandarkar, N. Jagathesan, S. Krishnan, and
J. Yelon, “Converse: An interoperable framework for parallel pro-
gramming,” in the 10th Int. Parallel Processing Symposium, 1996,
pp. 212–217.

[13] L. V. Kale, J. Yelon, and T. Knuff, “Threads for interoperable parallel
programming,” in Proceedings of the 9th International Workshop on
Languages and Compilers for Parallel Computing, 1996, pp. 534–552.

[14] L. V. Kale and S. Krishnan, CHARM++: A portable concurrent object
oriented system based on C++. ACM, 1993, vol. 28, no. 10.

[15] BSC, “Nanos++,” https://pm.bsc.es/projects/nanox/.
[16] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-

torell, and J. Planas, “OmpSs: A proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[17] “GNU Pth - The GNU Portable Threads,” http://www.gnu.org.
[18] K. Taura, K. Tabata, and A. Yonezawa, “StackThreads/MP: Integrating

futures into calling standards,” in the 7th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, 1999, pp. 60–71.

[19] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Sim-
plifying event-driven programming of memory-constrained embedded
systems,” in Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems, 2006, pp. 29–42.

[20] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A unified parallel
runtime for clusters of NUMA machines,” in 14th International Euro-
Par Conference on Parallel Processing, 2008, pp. 78–88.

[21] J. Nakashima and K. Taura, “MassiveThreads: A thread library for
high productivity languages,” in Concurrent Objects and Beyond.
Springer Berlin Heidelberg, 2014, vol. 8665, pp. 222–238.

[22] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in the Workshop
on Multithreaded Architectures and Applications, April 2008.

[23] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” Journal of Parallel and Distributed Computing, vol. 37, no. 1,
pp. 55–69, 1996.

[24] C. Pheatt, “Intel R© threading building blocks,” Journal of Computing
Sciences in Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[25] F. Schmager, N. Cameron, and J. Noble, “Gohotdraw: Evaluating the
go programming language with design patterns,” in Evaluation and
Usability of Programming Languages and Tools. ACM, 2010, p. 10.

[26] “Stackless Python,” http://www.stackless.com.
[27] A. Castelló, S. Seo, R. Mayo, P. Balaji, E. S. Quintana-Ortı́, and A. J.

Peña, “GLT: A unified API for lightweight thread libraries,” in Int.
European Conf. on Parallel and Distributed Computing, Spain, 2017.

[28] A. Castelló, R. Mayo, K. Sala, V. Beltran, P. Balaji, and A. J. Peña,
“On the adequacy of lightweight thread approaches for high-level
parallel programming models,” Future Generation Computer Systems,
vol. 84, pp. 22–31, 2018.

[29] A. Castelló, S. Seo, R. Mayo, P. Balaji, E. S. Quintana-Ortı́, and
A. J. Peña, “GLTO: On the adequacy of lightweight thread approaches
for OpenMP implementations,” in Proceedings of the International
Conference on Parallel Processing, Bristol, UK, August 2017.

[30] A. Castelló, A. J. Peña, S. Seo, R. Mayo, P. Balaji, and E. S. Quintana-
Ortı́, “A review of lightweight thread approaches for high performance
computing,” in Proceedings of the IEEE International Conference on
Cluster Computing, Taipei, Taiwan, September 2016.

[31] “Pthreads API,” http://www.cs.wm.edu/wmpthreads.html.
[32] “GNU Portable Threads,” www.gnu.org, Accessed July 2016.
[33] R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan,

C. Ramon-Cortes, and R. Sirvent, “Comp superscalar, an interoperable
programming framework,” SoftwareX, vol. 3, pp. 32–36, 2015.

[34] G. Tagliavini, D. Cesarini, and A. Marongiu, “Unleashing fine-grained
parallelism on embedded many-core accelerators with lightweight
openmp tasking,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 9, pp. 2150–2163, 2018.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Adrián Castelló received his BS degree in computer sci-
ence, the MS degree in advanced computer systems, and his
Ph.D. degree in Computer Science from Universitat Jaume
I in 2011, 2013 and 2018, respectively. He is a Post-doc
researcher at the same university and his research interests
include deep neural networks, programming models and
distributed and shared memory systems.

Rafael Mayo received the BS degree from Polytechnic Va-
lencia University in 1991. He obtained his PhD in Computer
Science in 2001 at the same University. Since October 2002
he has been an Associate Professor in the department of
Computer Science and Engineering in the University Jaume
I. Nowadays he is involved in several research efforts on
HPC energy-aware systems, cloud computing and HPC sys-
tem and development tools.

Sangmin Seo is a software engineer at Ground X. Prior to
that, he worked as an assistant computer scientist at Argonne
National Laboratory and a senior engineer at Samsung Re-
search. He received the B.S. degree in computer science and
engineering and the Ph.D. degree in electrical engineering
and computer science from Seoul National University, re-
spectively. His research interests include high-performance
computing, parallel programming models, compilers, run-
time systems, and blockchains.

Pavan Balaji holds appointments as a Computer Scientist
and Group Lead at the Argonne National Laboratory, as an
Institute Fellow of the Northwestern-Argonne Institute of
Science and Engineering at Northwestern University, and
as a Research Fellow of the Computation Institute at the
University of Chicago. He leads the Programming Models
and Runtime Systems group and his research interests in-
clude parallel programming models and runtime systems for
communication and I/O on extreme-scale supercomputing
systems, and modern system architecture.

Enrique S. Quintana-Ortı́ received the bachelor and Ph.D.
degrees in computer sciences from the Universidad Politec-
nica de Valencia, Spain, in 1992 and 1996, respectively. He
is a Professor in Computer Architecture in the Universi-
tat Poitècnica de València. Recently, he has participated/-
participates in EU projects such as TEXT, INTERTWinE,
EXA2GREEN and OPRECOMP. His current research in-
terests include parallel programming, linear algebra, energy
consumption, transprecision computing and bioinformatics
as well as advanced architectures and hardware accelerators.

Antonio J. Peña holds a BS+MS degree in Computer Engi-
neering (2006), and MS and PhD degrees in Advanced Com-
puter Systems (2010, 2013), from Universitat Jaume I, Spain.
He is currently a Sr. Researcher at Barcelona Supercomput-
ing Center (BSC), Computer Sciences Department. Antonio
works within the Programming Models group where he
leads the “Accelerators and Communications for HPC” team.
Dr. Peña is also the Manager of the BSC/UPC NVIDIA
GPU Center of Excellence. He is a Marie Sklodowska-Curie
Fellow.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2020.2970706

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

