
Fair Cellular Throughput Optimization
with the Aid of Coordinated Drones

Edgar Arribas
IMDEA Networks Institute

Universidad Carlos III de Madrid

edgar.arribas@imdea.org

Vincenzo Mancuso
IMDEA Networks Institute

vincenzo.mancuso@imdea.org

Vicent Cholvi
Universitat Jaume I

vcholvi@uji.es

Abstract—The interest on flexible air-to-ground channels from
aerial base stations to enhance users access by seeking good line-
of-sight connectivity from the air has increased in the past years.
In this paper, we propose a deployable analytical framework for
the 3-D placement of a fleet of coordinated drone relay stations to
optimize network capacity according to α-fairness metrics. We
formulate a mixed-integer non-convex program, which results
to be intractable. Therefore, we design a near-optimal heuristic
that can solve the problem in real-time applications. We assess
the performance of our proposal by simulation, using a realistic
urban topology, and study pros and cons of using drone relay
stations in both static and dynamic scenarios, when popular
events gather masses of users in limited areas.

I. INTRODUCTION

Cellular infrastructures are evolving towards flexible and

reconfigurable solutions, able to cope with high densities of

users. The fifth generation (5G) of networks [1] will include

novel network paradigms, like smart and flexible relaying [2].

Precise beamforming and efficient cooperative transmission

techniques will enable to operate broadband wireless backhaul

links [3], which are key to promote the use of mobile relays.

Mobile relays can be mounted on vehicles and drones, so

to move the network with the users, by moving relays where

the fixed network cannot sustain the user demand [4]. Guo and

O’Farrel [5] derived the capacity of OFDMA cellular networks

like LTE/LTE-A in presence of relays reusing cellular frequen-

cies. Although they do not model the use of drones, they show

interference is the main limiting factor, so that relays like

drones do need to be operated onto orthogonal frequencies,

which gives additional advantages in terms of simplified re-

source allocation control [6]. Thus, we study the case of drones

and base stations (BSs) transmitting on orthogonal bands.

Current works study optimal drone placement in oversimpli-

fied cases, neglecting inter-drone interference and fairness. We

focus instead on the optimization of 3-D positions for a fleet

of coordinated drone relays, as shown in Figure 1, based on

the α-fairness metric—a high-level generalization of fairness

metrics to target maximum throughput, proportional fairness

or max-min fairness in one framework [7]. We model random

variations of signals, interference from relays and BSs, use of

slotted time-frequency resources, cell selection and resource

allocation schemes. Concretely, we adopt stochastic models

for path-loss and availability of line-of-sight (LoS) and non-

LoS (NLoS) links, and cast our problem into an OFDMA-like

resource allocation scheme.

Finding the optimal drone positions is an NP-complete

problem. However, we leverage a class of algorithms designed

Figure 1: Reference scenario: multi-drone-aided network.

for optimization with intertwined variables: Extremal Opti-

mization (EO) [8], which run in polynomial time. EO is based

on iteratively picking the “least fit” element of a discrete set

and change its parameters to improve the utility function.
We therefore formulate a suitable utility function, targeting

α-fair user throughput, and design PD-EOA: a Partially-

Distributed EO Algorithm that iteratively updates the position

of the least fit drone, i.e., the drone relay that contributes the

least to the utility function. Although EO is a form of central-

ized algorithms originally introduced for static optimization,

we use such technique to design a partially distributed algo-

rithm that works dynamically, as the system evolves.
We validate our proposal and assess its performance by

simulations in realistic static and dynamic scenarios. As an

illustration, we evaluate the performance of PD-EOA when

users move towards a stadium before a sport event, so that their

density grows over time. Our analysis unveils that the role of

interference from drones and the stochastic characterization of

LoS between drones and users make the optimization problem

intractable, yet we are able to provide a near-optimal heuristic.

II. RELATED WORK

Non-terrestrial mobile relays have been investigated over

several paradigms. Satellite networks [9] provide service to

big areas, but users only achieve low rates upon high costs.

Besides, satellites cannot adjust to users topology. In contrast,

drone relays move dynamically at low altitudes and serve

smaller target regions on demand, where the ground network

cannot sustain the high demand from dense spots. The Loon

project by Google [10] assesed the operation of aerial stations

on high-altitude platforms (balloons), hovering some kilome-

ters high and slowly drifting. Google provided basic network

access to remote low-served areas. We instead focus on fleets

of small relays flying at few hundreds of meters that serve

broadband links and are easily repositioned on small time

scales. Drone relays are also different from fixed relays and

device-to-device approaches [11], since drone networks are



neither fixed nor unplanned, and the channel propagation is

impacted by the LoS state, which varies over time.

Thus, satellites, balloons or terrestrial relays cannot face

scenarios as the ones we study, since protocol designs, technol-

ogy constraints and signal propagation are radically different.

Moving drones to optimal locations to maximize various

metrics is actively being investigated in the literature. Al-

Hourani et al. [12] derived optimal altitude for one drone

to maximize coverage, while Hayajneh et al. [13] derived

optimum drone altitude to minimize outages and bit-error rate.

Mozaffari et al. [14] found optimal locations for multiple non-

interfering drones to minimize the total transmission power.

Guo et al. [4] studied the generic use of drones as relays.

Their approach provides more throughput in low-connectivity

areas, but does not account for issues like spectral efficiency.

Andryeyev et al. [15] estimate drone positions to increase cel-

lular capacity through a self-organization algorithm based on

repulsion from BSs and drones, and attraction by mobile users.

These works provide valuable and foundational contribu-

tion, but do not study problems like fair capacity maximization

when drones assist cellular networks, neither provide realistic

frameworks to integrate drone relays into current cellular

networks, which is what we target with our approach.

III. SYSTEM MODEL

We derive an analytical framework to find optimal 3-D loca-

tions of drone relays, given the position of users and ground

BSs. We target α-fair instantaneous user rates by selecting

drone positions as a function of the resource allocation policy

adopted by ground BSs and drones the users can attach to.

A. Reference Scenario

We consider a ground surface S where a set G of G ground

BSs (gBS) provide service to a set U of U user equipments

(UEs). The positions of each gBS g and user u are known

and denoted as Πg = (Xg, Y g) and πu = (xu, yu). We also

consider a fleet A of A aerial BSs (aBS) as mobile relays,

carried by drones. We assume the system operator offers user

access through two bands, one used by gBSs and another used

by aBSs, so aBSs and gBSs do not interfere. We denote by

Πa=(Xa, Ya, ha) the 3-D position of each aBS a∈A, and by

B=G∪A the set of all BSs b∈B that form the whole network.

We assume that aBSs connect to the closest gBS through

wireless links with finite rate constraints. Operators usually

install gBSs on top of buildings or towers, so we assume that

gBS-aBS links are free of obstacles. We denote the limit on

the gBS-aBS link capacity as τa, and assume that it can be

computed based on the position of a ∈ A.

The interference from aBSs affects the Signal-to-Noise-

and-Interference Ratio (SINR) that UEs receive, and hence

the air-to-ground link capacity changes depending on the aBS
positions. The propagation channel model from air to ground

differs from conventional ground channels, and it is based on

the LoS likelihood between aBSs and users, as we detail next.

B. Path-loss and Interference

The conditions for the BS-UE access channels differ much

depending whether users attach to a gBS or an aBS. While

the ground attenuation for gBS-UE links follows conventional

path-loss models based on slow and fast fading, aBS-UE

channels suffer additional attenuation depending on the LoS

state, referred in the literature as an excess attenuation [16].
The LoS-likelihood is a complex function of the elevation

angle between user u ∈ U and aBS a ∈ A:

PLoS(a, u) =

(

1 + β1 · e
−β2

(

180

π
arctan

(

ha
ra,u

)

−β1

))−1

, (1)

where ha is the height of a, and β1 and β2 depend on the

number of obstructions per unit area, buildings height, etc., as

shown in [12], based on ITU recommendations [17]. In Eq. (1),

arctan(ha/ra,u) is the elevation angle, derived from the aBS
height ha and the distance between user u and the ground

projection of drone a, ra,u=‖(Xa,Ya)−πu‖. Safety, legislation

and technology restrict drones to fly only at few hundreds of

meters, so the ground distance has the same order as the drone

height. Thus, the LoS varies sensibly with user and drone

positions, and affect air-to-ground channel conditions.
The higher a drone hovers, the more likely it is to have LoS.

However, the signal also attenuates with the distance and, in

multi-aBS scenarios as we discuss in this paper, interference

from other aBSs is an important parameter to consider. Thus,

optimal drone hovering altitude depends on all aBSs.
As obtained in [12], the average attenuation (in dB units) of

an air-to-ground channel is based on the LoS likelihood from

Eq. (1). Hence, for all drone a ∈ A and user u ∈ U :

LA(a, u) = 20 log10

(

4πfA
c

·
√

h2
a + r2a,u

)

+

+ PLoS(a, u) · (ξLoS − ξNLoS) + ξNLoS , (2)

where ξLoS , ξNLoS are the excess attenuation components

discussed above in LoS and NLoS conditions respectively, fA
is the carrier band in Hz and c is the speed of light in m/s.

Ground gBS-UE links experience an attenuation based on

the well known path-loss model with slow fading (in dB units):

LG(g, u) = 10ηG log10

(

4πfG
c

· ‖Πg − πu‖

)

+N (0, σ2
G), (3)

where ηG>2 is the ground path-loss exponent, fG is the carrier

band in Hz, and σG is the standard deviation of the gaussian

variable N (0, σ2

G), modelling the effects of shadowing.
To measure the network capacity, we consider that the BSs

serve ground users with the rate corresponding to the Shannon

capacity, according to the SINR of the link. The bands used by

gBSs and aBSs have bandwidth of WG and WA, respectively.
With the above, SINRs for links (g, u) and (a, u) are:

γG
g,u =

P g
Tx · 10−LG(g,u)/10

Ng,u + IGg,u
, γA

a,u =
P a
Tx · 10−LA(a,u)/10

Na,u + IAa,u
, (4)

where P g
Tx and P a

Tx are the transmission power of the BSs

g ∈ G and a ∈ A, respectively, Ng,u and Na,u represent

thermal noise, and IGg,u and IAa,u are interferences that user u
suffers from gBSs or aBSs, respectively. While for ground

connections the position of the interfering gBS in G\{g} is

fixed and known so that the interference IGg,u is a constant

value,1 the 3-D position of an aBS is variable and directly

affects the interfering signals received by user u, i.e.:

IAa,u =
∑

a′∈A\{a}

P a
Tx · 10−LA(a′,u)/10, ∀a ∈ A. (5)

1Average interference in gBSs is fixed because gBSs do not move, al-
though instantaneous values are random fluctuations from slow and fast fading.



C. Cell Selection and Resource Allocation

BSs cannot provide service to unlimited users. Hence, we

assume that each gBS or aBS can serve Umax users at most.

Users perform cell selection as in LTE networks, before the

optimization: first, UEs select the BS with strongest Signal-to-

Noise Ratio (SNR); if the link request is rejected, then the UE

performs cell re-selection, and tries to attach to the BS with

next strongest SNR observed, until the user gets attached. We

denote the gBS to which user u attaches as gu. This best-SNR

policy is the one currently adopted in LTE networks [18].
We assume that gBSs and aBSs schedule users using an

OFDMA system (like in LTE). BSs have a finite set of physical

resource blocks (PRB)—the smallest unit of time-frequency

resources—organized in subframes. Thus, the minimum band-

width allocated to a user is the bandwidth of one PRB per

frame. We denote as Wmin

G and Wmin

A the minimum bandwidth

that a gBS or an aBS can allocate to a single user.

IV. OPTIMAL FAIR THROUGHPUT BY DRONE POSITIONING

Here we derive an analytic framework for the 3-D positions

of aBSs, to optimize throughputs based on α-fairness. De-

pending on the value of α≥0—the fairness level—we capture

different fairness criterias such as proportional fairness (α=1),

max-min fairness (α→+∞) or the maximum capacity (α=0).
Denoting by Tb,u the access link throughput between BS

b∈B=G∪A and user u∈U , we have the following utility:

Uα
thr =















1
1−α

·
∑

u∈U

(

∑

b∈B

Tb,u

)1−α

, α 6= 1;

∑

u∈U

log

(

∑

b∈B

Tb,u

)

, α = 1.

(6)

Throughput Problem T : Given G gBSs, A aBSs hovering

at heights in the range [hmin, hmax], U UEs that may connect

to either a gBS or an aBSs, each of which serves Umax UEs

at most, and a backhaul capacity τa, find the optimal position

of aBSs, optimal user association, and the optimal user re-

source allocation so to maximize the α-fair throughput utility.

We denote as Ca,u and Cgu
u the binary decision variables

that tell whether u∈U connects to a∈A or gBS gu. Variables

Tb,u and Wb,u denote the throughput and bandwidth allocated

to access link (b, u). The resulting optimization program is:














































































maxCa,u, C
gu
u , Πa, Tb,u, Wb,u

Uα
thr

Cgu
u +

∑

a∈A Ca,u = 1, ∀u∈U ;
Tgu,u = Wgu,u · log2

(

1 + γG
gu,u

)

, ∀u∈U ;
Wmin

G · Cgu
u ≤ Wgu,u ≤ WG · Cgu

u ∀u∈U ;
∑

u∈U Wg,u ≤ WG ; ∀g∈G;
Ta,u = Wa,u · log2

(

1 + γA
a,u

)

, ∀a∈A, ∀u∈U ;
Wmin

A · Ca,u ≤ Wa,u ≤ WA · Ca,u, ∀a∈A, ∀u∈U ;
∑

u∈U Wa,u ≤ WA, ∀a∈A;
∑

u∈U Ta,u ≤ τa, ∀a∈A;
∑

u∈U,g=gu

Cg
u ≤ Umax,

∑

u∈U

Ca,u ≤ Umax, ∀g∈G, ∀a∈A;

(Xa, Ya, ha)∈Sa, hmin ≤ ha ≤ hmax, ∀a∈A.

(7)

The first constraint states that each u∈U connects only to

one BS. The second constraint gets the throughput allocated to

gBSs. The third and fourth constraints get the bandwidth al-

located to each user of gBSs, with minimum guarantees. The

fifth constraint gets the air-to-ground link rates, and the sixth

and seventh constraints get the bandwidth allocated by aBSs,

with minimum guarantees. The eighth and ninth constraints

limit the aggregate transmission rate of aBSs to their backhaul

capacity, and the maximum allowed served users by each BS,

respectively. The last constraint delimits the 3-D space within

a ball Sa centered on the current position of the drone.

The formulated problem is mixed-integer and non-convex,

hence not tractable with currently available optimizers. Note

in fact that air-to-ground links bring unavoidable non-convex

functions. Finding the optimal drone positions is an NP-

Complete problem. Indeed, the NP-Complete Minimum-

Geometric Disk-Cover (MGDC) problem [19] can be reduced,

in polynomial time, to a special instance of the problem where

users get 1 bps if a drone serves them and 0 bps otherwise.

We omit the details due to lack of space.

V. PARTIALLY-DISTRIBUTED EXTREMAL OPTIMIZATION

Problem T is hard to solve since any change in a decision

variable affects association and resource allocation of all users.

This is the kind of problems EO has been thought for. Hence,

in order to find time-efficient and near-optimal solutions, we

propose PD-EOA, a partially-distributed EO algorithm. PD-

EOA is based on the three decisions that the framework makes:

(i) 3-D aBS positions; (ii) sets of UEs attached to each gBS
and aBS; and (iii) bandwidth allocation from each gBS or

aBS to their attached UEs. PD-EOA iteratively solves these

three steps: step (i) is solved centrally with EO, step (ii)
is solved independently by users, and step (iii) is optimally

solved distributedly by each gBS and aBS, as detailed next.

The pseudocode of PD-EOA is shown in Algorithm 1. The

algorithm starts from an initial random feasible implemen-

tation of the system. Let Ug and Ua be the sets of users

attached to gBS g and aBS a, respectively. We can split

the utility into a utility provided by gBSs
(

Uα
G (Ug)

)

and by

aBSs (Uα
A(Ua)). The aBS that provides the worst utility is

aw = argmina∈A Uα
A(Ua), referred as the “least fit” aBS.

At each iteration, PD-EOA identifies and moves the least

fit aBS to a position where the system utility increases the

most (step (i)). To this end, the algorithm explores candidate

positions within a ball Sa and only considers the points of a

3-D lattice that spans equal-volume subspaces.

User attachment (step (ii)) is based on SNR, so it is

performed by users and BSs distributedly: each user requests

connection to the BS that offers the best SNR. If accepted,

it is associated to the BS, otherwise it requests association to

the BS with the next-in-list best SNR.

Finally, since BS utilities are additive, each gBS and aBS
can address the bandwidth allocation optimally on its own

(step (iii)). Specifically, given a BS b ∈ B=G∪A and its po-

sition, the set of attached users Ub, and the spectral efficiency

of users computed with the Shannon formula, we obtain the

following Convex Program (CP) for resource allocation:














maxwu
1

1−α
·
∑

u∈Ub

(

WV · wu · log2(1 + γV
b,u)
)1−α

;

∑

u∈Ub
wu = 1;

wu ≥ Wmin
V /WV , ∀u ∈ Ub;

(8)

where V ∈ {G,A}, and wu is the fraction of the total band-

width that BS b allocates to u. The first constraint ensures that

all the bandwidth is used. The second constraint ensures that

each user obtains at least the minimum bandwidth guaranteed.



TABLE I: OPTIMAL SOLUTION FOR THE CONVEX PROGRAM (8)

α = 0;

wu =

{

Wmin
V /WV , u 6= argmaxv∈Ub

θv ;

1− (|Ub|−1) ·Wmin
V /WV , u = argmaxv∈Ub

θv ;

α ∈]0, 1[; α = 1;

wu = θ
1/α−1

u
∑

v∈Ub
θv

, ∀u ∈ Ub; wu = 1
|Ub|

, ∀u ∈ Ub;

α → +∞;

wu =

{

Wmin
V /WV , if u /∈ J ;

1−(|Ub|−|J |)·Wmin

V /WV

θu·
∑

v∈J 1/θv
, if u ∈ J .

Algorithm 1 PD-EOA

Require: Lattice L, fleet A, users U , and Signal parameters.

1: Randomly place all a at Πa ∈ L. Define Π = {Πa}a∈A.

2: Obtain set Ub(Π) of users that connect to each b ∈ B.

3: Uα
B (Ub(Π))←optimal α-utility of each b∈B from CP (8).

4: Select a0 = argmina∈A{U
α
B (Ub(Π))}.

5: Take Πa0 = argmaxπ∈L{U
α
thr} and place a0 at Πa0 .

6: Go back to step 2 until:
• No better position is found for aBS a0.
• Maximum number of iterations κ is reached.

CP (8) is convex when α ∈ [0, 1[, α → 1 or α →+∞,

which are the cases of interest of this paper. Thus, we derive

KKT conditions [20] and find a closed-form solution. The

KKT approach is well-known and extensively studied. Thus,

we directly show the solution in Table I, where computing J
when α→+∞ takes linear time with respect to |Ub|, and is

equal to J = {u ∈ Ub | wu · θu = minv∈Ub
wv · θv}.

PD-EOA is fast and requires few iterations. We have per-

formed all the optimizations reported in less than 1 second on

a personal computer. Thus, PD-EOA suits for on-demand op-

timization to dynamically reposition drones to adapt to user’s

movements over time. The complexity is O (|L| · Umax).

VI. NUMERICAL SIMULATIONS

Here we show numerical simulations of the proposed frame-

work in static and dynamic cases over the real topology of

a dense city covered by 10 gBSs, serving 1000 users. We

validate PD-EOA in comparison with optimal results approxi-

mated with Monte-Carlo (MC) simulations in small networks

and study three significative static and dynamic scenarios:

• PPP: We place UEs through a Poisson point process.

• Stadium: we statically place 60% of the UEs in the

surroundings of a stadium, and the rest like in PPP.

• Event: 40% of the UEs move according to the random

way-point model. Rest of UEs arrive at an official sched-

uled rate of a train station and move towards the stadium.

We study drones placement, throughput and system fairness

and show results for three cases: (i) for α = 0, we get

the maximum throughput (MaxThr), (ii) for α = 1, we

optimize proportional fairness (PropFair), and (iii) for

α→+∞, we optimize the max-min fairness (MaxMin). We

use these α-values also for the ground network in absence

of drones (Ground) and to compare PD-EOA to a state-of-

the-art proposal: the Repulsion-Attraction scheme (RA) [15].

Error bars in the figures are 95% confidence intervals. Table II

gathers the used parameters. We use MATLAB R2018a to

simulate channel conditions and optimize aBS positions.

TABLE II: EVALUATION PARAMETERS

Parameter Value

ξLoS , ξNLoS , β1, β2 1.6 dB, 23 dB, 12.08, 0.11

Carrier frequencies, fG , fA 1815.1 MHz, 2.63 GHz

Bandwidths, WG , WA 18 MHz, 18 MHz

Tx power, P g
Tx, Pa

Tx 44 dBm, 25 dBm

Ground path loss exponent, ηG 3

Height range, [hmin, hmax] [40, 300] m

Urban area, |S| 10 km2

Average walking speed 2.5 m/s

Monte-Carlo runs per instance 107

Instances of simulations 1000

A. Validation of PD-EOA operation

We compare PD-EOA and optima in the PPP case. Figure 2

shows that utilities from PD-EOA and MC only differ by 1%.

Similarly, Figure 3 shows that throughput is like in the optimal

case. Fairness, not shown here for lack of space, is near-

optimal as well. The figures also unveil that utility grows lin-

early with the fleet size, and the gain can be significantly large.

Utility and throughput increase with the fleet size because

more capacity, connectivity and placement options appear,

despite the interference. MaxThr is always unfair (Jain’s index

is below 0.05) because it allocates one resource block to each

user and the rest of resources to users with best channels.

Coversly, PropFair and MaxMin provide less throughput,

but compensate with higher fairness, above 0.65 and 0.95 (not

shown due to lack of space). Placing drones with PropFair

or MaxMin does not hurt fairness, yet only a limited number

of users benefit from them, which may generate undesired

behaviors. The gain with respect to Ground is remarkable,

and confirms that drone relays have huge potentials.

B. Performance evaluation in the static Stadium case

The Stadium case described here studies the network when

people gather in dense spots. Here, 60% of users are in a

stadium: 600 UEs, which is a typical case of users allocated

over the same LTE band by the same operator (i.e., we

take a stadium of 12000 seats, 4 operators, 3 LTE bands, and

60% of the attendance connected).

Results here show that increasing the fleet size is not always

beneficial. In Figure 4, utility quickly saturates for MaxMin.

Figure 5 reveals the reasons of such behavior by zooming into

the performance of stadium users and rest of users. By adding

drones, MaxThr and MaxMin do not necessarily improve

throughput for stadium users, and even incur losses. Globally,

with MaxThr it is still convenient to add drones, as they find

some user with poor signal and so inject him high throughput.

With MaxMin, clustering drones by the stadium is not conve-

nient as well, because of interference that induces low quality

at some user. PD-EOA with PropFair behaves differently

because its mathematical design does not let fairness decay.

Having many users in a dense spot is a key chance for aBSs

to increase capacity and fairness. Hence, PropFair brings

drones by the stadium, so the utility increases with the number

of drones while the fairness values remain at high values. We

also see that PropFair outperforms all schemes in terms of

throughput of users by the stadium. In fact, a few drones are

not enough to boost throughput with MaxMin, and increasing

the number of drones hovering the stadium adds interference,

which is why we see no gain in the performance of MaxMin.
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Figure 3: Network capacity validation for α ∈
{0, 1,∞}. G = 10, U = 750. Scenario: PPP.

Figure 4: Network utility for α ∈ {0, 1,∞}.
U = 1000. Scenario: Stadium with Ud = 600.
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This evaluation tells that aBSs are beneficial to help the

ground network in dense spots, except they cannot purely

maximize throughput. They cannot either “rescue” all users

with bad channel conditions, but can always provide fairness.

C. Performance evaluation in a dynamic event case

In this scenario, masses of 40 users arrive to the train

station every 5 minutes. The initial population is 400 users and

grows during 75 minutes up to 1000 users. There are 5 aBSs
hovering the area. Upon a train arrival, users walk towards the

stadium, located 1.5 km away. We use PropFair to compute

drone positions, since it conveys a good tradeoff of throughput

and fairness. Drones reposition every 5 minutes with PD-EOA.

As time passes by, e.g., after 30 min. of train arrivals, some

people have reached the stadium, while many others keep

walking towards it. At this point, the fleet is ready to serve the

users by the stadium and also the smaller masses of people that

are by the train station or on their way to the event. After one

hour, drones have repositioned, as shown in Figure 6, where

the mass at the stadium is much denser and more drones come

to assist the users by the stadium. The trajectories of drones

over 75 minutes are shown in Figure 7: the network tracks

users and dispatches drones accordingly. aBS 1 is not required

to assist the dense spot; aBSs 2 and 3 keep moving back and

forth between the train station and the stadium; and aBSs 4

and 5 move within different regions, to fairly supply the users.

Figures 8–10 illustrate performance over time. We compare

PD-EOA to the RA scheme proposed in [15], in which aBSs

are attracted by UE’s inverse SNR, and repulsed by proximity

to gBSs to avoid interference. The figures only consider

performance of users arriving over time (i.e., the attendance).

As the attendance increases, we observe in Figure 8 a utility

raise with MaxThr and PropFair, since both are oppor-

tunistic schemes. With MaxThr, the gain of PD-EOA over

RA and Ground is high, although it saturates quickly. Instead,

with PropFair, PD-EOA exhibits a smoother behavior, as its

gain keeps increasing. In contrast, with MaxMin we observe a

decay of performance over time, since the higher the number

of users, the lower the minimum achieved rate.

In all cases, the aggregated throughput increases for all

schemes and α-values, as shown in Figure 9. PropFair ex-

hibits a similar—slightly better in most of the cases—increase

than MaxThr. However, the attendance grows linearly over

time, while the throughput does not. This occurs because a

fixed number of drones cannot serve unlimited users. Clearly,

the RA scheme is not able to opportunistically take advantage

of user’s diversity and improve utility because it does not target

a throughput-based metric. In contrast, PropFair with PD-

EOA provides better throughput and fairness guarantees.

Finally, Figure 10 shows the fairness achieved over time

by the attendance. PD-EOA with PropFair and MaxMin

provide better fairness, with values over 0.63 in all cases. In

particular, with a proportionally-fair resource allocation, PD-

EOA can provide up to a 20% more fairness than RA.

VII. LESSONS LEARNT AND DISCUSSION

Our results show the importance of integrating a fleet of

drone relay stations in a cellular network. They also unveil that

optimizing drone positions to boost throughput, without con-

sidering fairness, has little relevance in presence of dense spots

of ground users. In contrast, a fair metric like PropFair

provides relevant throughput improvement opportunities and

achieves fair behaviors. Other metrics like MaxMin are useful

for cases not addressed in this paper, e.g., to bring minimal

communications in case of temporary loss of infrastructure.

The key of our scheme is the combination of centralized

drone positions and distributed resource allocation, whereas

users freely attach to their preferred BS according to a known

policy (best signal, in this paper). With that, our partially-

distributed scheme, PD-EOA, uses a few iterations to compute
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Figure 8: Attendance utility for α∈{0, 1,∞}.
A=5, U=[400, . . . , 1000]. Scenario: Event.

Figure 9: Attendance capacity for α ∈ {0, 1,∞}.
A=5, U=[400, . . . , 1000]. Scenario: Event.

Figure 10: Attendance fairness for α∈{0, 1,∞}.
A=5, U=[400, . . . , 1000]. Scenario: Event.

optimal positions for a fixed α, which states the fairness degree

in the network. Since PD-EOA is fast, it is possible to design

an almost continuous repositioning in realistic networks.

The actual implementation of PD-EOA needs further work.

It is clear that it requires exchanging signaling information be-

tween drones and a centralized orchestrator, and implementing

a mechanism to track users. Signaling (out of the scope of this

paper) incurs some overhead, depending on the frequency of

reconfigurations, to gather positions and instruct drones.

Another constraint that might hinder the performance of

drone relays is the backhaul capacity, i.e., the bandwidth that

drones can use to accommodate the demand of users towards

the core of the network. There are promising technologies to

avoid bottlenecks on such backhaul, e.g., based on mmWave

in 5G [21]. This is left for future work, yet our study already

analytically accounts for backhaul bandwidth constraints.

Regarding drone mechanicals, commercial drones can carry

small BSs, although they can fly for short time due to battery

limitations (∼30 min.). They can move at speeds of 15 m/s,

so it is possible to derive a repositioning scheme that replaces

drones that recharge on dedicated charging stations. For the

case of Section VI-C, the routes flown by drones are short

enough, and they can hover a city district in few minutes. Thus,

notwithstanding the intricacies of the analysis, the performance

evaluation discussed is relevant for realistic systems.

VIII. CONCLUSIONS

In this paper we have proposed an analytic framework to

optimize drone-aided cellular networks in terms of an α-fair

throughput utility function under realistic stochastic models.

Specifically, we have studied the integration of a coordinated

fleet of aerial base stations to complement the service offered

by ground base stations. Due to the complexity of the studied

problem, we resorted to a heuristic, and so designed PD-EOA,

a partially distributed algorithm based on extremal optimiza-

tion. PD-EOA performs near-optimally in polynomial time,

which makes it suitable for implementation in dynamically

changing environments. The performance evaluation presented

shows that PD-EOA brings significant gain and outperforms

existing approaches. It also unveils that using fairness is key

to get benefit from coordinated yet interfering drone relays.
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