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Abstract: In this paper, an approximation of the smallest set (in a given norm) to which the
state of a system can be steered (and kept inside once reached) is provided, when bounded
disturbances are present. A non-LMI geometric polytope-manipulation approach is pursued
over a Takagi-Sugeno model in order to solve this disturbance-rejection setup. Once this set is
available, the techniques in this paper compute, too, explicit controllers driving initial conditions
to such set, as well as controllers that make this set invariant. This work generalises the earlier
particular undisturbed case (i.e., just stabilization) developed in Arifo et al. (2017b).
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1. INTRODUCTION

Takagi-Sugeno fuzzy systems (also known as quasi-LPV
ones) are good option to systematically obtain linear
parameter-varying embeddings of nonlinear systems via
the sector-nonlinearity modelling approach (Tanaka et al.,
2001), when the state does not leave a given modelling
region; note, however, that TS models of a given non-
linear system are not unique and some may give better
performance than other ones (Robles et al. (2019) pursues
finding the optimal-performance T'S model); polynomial-
fuzzy models of nonlinear systems may also be obtained
(Sala and Arino, 2009), amenable to sum-of-squares tools,
but they will not be pursued in this work.

Controller design for them can be tackled with tools
derived from linear approaches, and may lie in two fields:

(1) Linear matrix inequalities (ellipsoid manipulation),
(2) Polytopic manipulation approaches (multiparametric
linear and quadratic programming).

The first “LMI” approach was pursued in Boyd et al.
(1994); Tanaka et al. (2001) and other seminal works in
the 1990s; many extensions and refinements appeared,
both in the fuzzy control community (Sala et al., 2005;
Guerra et al., 2015) and in the LPV gain-scheduling one
(Scherer, 2001; Wu and Dong, 2006; Mohammadpour and
Scherer, 2012; Sala, 2019). Nowadays, it is the mainstream
approach to Takagi-Sugeno/LPV control. Regarding the
disturbance-rejection issues to be discussed in this paper,
invariant sets in in T'S/polynomial systems under finite-
time integral disturbance bounds appear in Sala and
Pitarch (2016), under an LMI/SOS formulation.

The second “polytopic” approach was introduced in linear
robust and predictive control setups by Kerrigan (2000);
Kvasnica et al. (2004), and our team was responsible to
extend it to gain-scheduled (membership-function depen-

dent) control laws: stabilisation was addressed in Arifo
et al. (2017b), and predictive control was addressed in
Arifio et al. (2017a). The first theoretical advantage of
the geometric polytopic approach is that it can incorpo-
rate saturation in control action and the definition of the
modelling region out of which the TS model is invalid,
and such sets may even be non-symmetric. The second
and most important advantage is that it can be proved
asymptotically exact, i.e., the domain of attraction of a
given system (“maximal” contractive set) can be obtained
with progressively better accuracy as some Polya-related
parameters increase. Given the conservatism in most LMI
Lyapunov function choices and controller structure, as well
as in the handling of saturation, basically the polytopic ap-
proach can theoretically beat any LMI formulation of the
problem, even with multi-step or membership-dependent
Lyapunov functions, under some assumptions. Despite its
theoretical elegance, the most important drawback of the
polytopic framework is that it scales poorly to systems
with high order or a high number of inputs.

This work pursues finding the “smallest” region into which
a closed-loop disturbance-rejection controller can keep the
state into (for any membership shape), i.e., changing the
“maximal” invariant set goal in prior works to a sort of
“minimal” one ! . Actually, the procedure does not assume
any specific controller; on the contrary, the controller
minimising the size of such zone is sought, too. In a later
stage, a controller steering the state to that small region
around the origin is also constructed.

The structure of this paper is as follows: next section dis-
cusses preliminary ideas, notation and problem statement.
Section 3 discusses modifications to the key one-step-set

L The concept of minimal invariant set is difficult to define; we
will actually pursue a norm-minimisation goal, as discussed in later
sections.
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concept under disturbances in a T'S setup. Section 4 uses
such one-step set to propose an algorithm to compute a
minimum-norm feasible set for our disturbance rejection
problem. Section 5 provides the controller that, under
zero initial condition, keeps the state inside the previously
obtained set, and Section 6 builds up the controller that
drives the state to such minimum-norm region around the
origin. A numerical example is presented in Section 7 and
a conclusion section closes this paper.

2. PRELIMINARIES

This section will discuss Takagi-Sugeno systems with dis-
turbances and the method to compute invariant and con-
tractive sets.

2.1 Takagi-Sugeno Fuzzy Model

Consider a discrete-time nonlinear system:

Tpy1 = f(@k, uk, Vk) (1)
such that f has continuous partial derivatives, where xy €
R™ represents the state vector, uy € R™ stands for the
control actions and vy € W € R? are the disturbances at
time instant k.

It is well known that, under mild C! assumptions, such
system can be expressed (locally in a compact region X of
the state-space Tanaka et al. (2001), denoted as modelling
region), as a T'S fuzzy system with 7 rules or local models:

T
i1 = f(ular), wp, uk, o) = Y pa(ax) (Aizg+Biug+ Epv)

i=1
(2)
where A;, B;, F; are the so-called consequent model
matrices and p; () represents membership functions such
that the vector of membership functions p(zy) belongs to
the (r — 1)-dimensional standard simplex A C R", defined
as:

r
A={p=(1,...,r) ER"| Z/h‘:l, wi>04i:1...r}

i=1
()
Given an arbitrary set 2, notation AQ will denote the
linear scaling of the set 2 by A > 0. If Q is defined as
Q:={z € R*": M(x) < 0}, for an arbitrary vector of
constraint functions M (-), the scaled set is AQ := {z :
M\~ lz) <0}
Definition 1. (Kerrigan (2000)). A set Q@ C X is control
A-contractive (given 0 < A < 1) for the system (1) if
and only if, for any x in  there exists an admissible
input such that the successor state lies in AQ, i.e., if
r€Q=3FueclU: f(x,u,v) € X2Vv € W. A A-contractive
set in € is maximal if any other A-contractive set in € is
a subset of the said maximal one.
Definition 2. Given an arbitrary target set €2, the one-step
set Q(N) is the set of states z in X from which the next
state of system (1) can be driven to © with an admissible
u € U for all possible disturbance values, i.e.,

Q) ={zeXFuelU: f(z,u,v) € Q Vv € W}

Efficient computational characterisation of the one-step set
Q in Definition 2 can only be easily carried out for special

cases of f; for instance, the linear case (Kerrigan, 2000).
For the TS systems (2), an approximated (asymptotically
exact) solution can be obtain using the Polya’s theorem
(Sala and Arino, 2007). This algorithm is presented in
Arino et al. (2017b), used in disturbance-free stabilisation
problems.

Given any expression f (4, T, u,v) being f an homogeneous
polynomial in y of degree dy, we will denote by

T d—dy
Po(f.d) - (z@ ¥

referred to as Polya expansion of f, which is, again, an
homogeneous polynomial of degree d in p. The coefficients

of such polynomial will be denoted as Poy "d], which are

themselves functions of (z,u,v), for 1 < i < Ng, Ng =

&R

For instance, if f = E?zl piAix, then Po(f.3) =

u:l”Pp[lf’d] + ,u%ugPo_[f’d] + ,um%Poéf"d] + uglfogf’d}, with

Poil = Ay, Pl = (24, + A)z, Po? = (A, +

249)x, Po[f A Asx. For details on Polya-related ma-
nipulations, see, for instance, Sala and Arifio (2007); Ar-

ifio et al. (2017b). Note: the fact that Pogf A are linear

functions of state and input when f comes from (2) is
important, and will be later exploited.

Polya’s Theorem says that if f (#, ,u,v) > 0, there exists
a large enough d such that poll (z,u,v) > 0 for all i.

K3

In this paper, we will use controllers wich are a polynomial
in the membership functions, being its coefficients consid-
ered as decision variables. If we denote as @ the set of such
decision variables, the control law will be represented by
u = g(u, @), being g assumed an homogeneous polynomial
of degree ¢ in the memberships. The closed-loop equations
will be:

Ty = f(/JM:Ij?g(/J’? ’(_1,),’[)) (4)

In this way, the number of inputs has been expanded, so
the initial fuzzy control design problem (finding u(u,x))
can now be stated as finding a “non-fuzzy” control law
@(zx) because the membership dependence has been ex-
plicity fixed to be in the form of the said homogeneous
polynomial. So if an unique control action is considered
we would have a non-fuzzy control (¢ = 0), the standard
PCD-like control would amount to ¢ = 1 but more complex
parameterisations can be considered for any arbitrarily
large ¢, subject to computational resources availability.

For instance, in a system (2), we could set up a control
u = g(p,u) = Y;_, pill; so we can write (4) as x4 =
Dic1 2y Mattj(Aix + Bifig). Setting @; = —Kjx would
conform the standard PDC controller in, say, Tanaka et al.
(2001); in Arifio et al. (2017b) a non-PDC piecewise affine
structure @; = —Kjx 4+ m; was proposed, where [ denoted
a particular polyhedron in a partition of the state space
resulting from optimisation. Such structure will be used,
too, in this work.
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Regarding input saturation, it can be easily proven that
u = g(u, ) € U if each coefficient in @ is in U; abusing the
notation, this will be expressed as the constraint @ € U.

Problem statement. The paper Arino et al. (2017Db)
presents a polytopic inner approzimation of the one step
set denoted as Q5 where parameter ¢ defines the controller
complexity and d defines the required Polya expansion
degree. However, the above-cited paper does not consider
disturbances in its developments, so incorporating them is
the objective of this work.

Formally, we seek to obtain the minimum scaling v such
that there exists a A-contractive set C* with [|z|, < v
for all x € C*, being the chosen norm p = 1 or p =
00. Actually, minor modifications will allow to find the
minimum « such that C* € yP being P any user-defined
compact polyhedron.

3. ONE-STEP SET UNDER BOUNDED
DISTURBANCES

Based in the disturbance-free ideas in Arifo et al. (2017b),
if Q is a polyhedral set, i.e. Q := {z € X : Rozx < lq},
then, for a system (2), an inner approximation? to the
ideal one-step set Q(f?) in Definition 2 is:

é;\yd(ﬂ) ={zeX|JuelU:
POEL’d] (z,a,v) <0 YoeW Vi} (5)

where L(u,z,u,v) = Rgf(,u, z,g(p, 1),v) — lg and trivial
manipulations are assumed in (5) to express L as an
homogeneous polynomial of degree ¢ + 1 in pu.

Note that the approximation of the one step set is done
for all possible values of the membership functions, i.e., it
is a so-called shape-independent approach.

Note that Qg\ﬁd(Q) will get larger if either ¢ or d are
increased, asymptotically approaching the ideal one-step
set with large values of complexity of the control law and
Polya expansions, as discussed in footnote 2 and references
therein.

[Ld]

Multi-parametric linear programming. Note that Po;

is a linear function of (x, @, v), to be denoted by
POEL’d] = Gz’ |:§:| + HZ'U

hence, evaluating (5) is needed only in the vertices of W,
i.e., vert(W) = {wy, ..., wr}. Thus, we can express (5) as
a finite set of linear constraints, so Qi" 4(€) is a polyhedron:

2 Except in the case f is of degree 1 in u, Q(9) involves check-
ing if a homogeneous polynomial in the memberships fulfills some
inequalities; this can be reduced to copositive programming which
is a computationally hard problem that can be approximated by
Polya relaxations: exact computation of Q(€2) is out of reach but a
progressively tighter sequence of approximations can be easily built,
see Arifio et al. (2017b) for details.

Q)y(Q):={zeX|ueU:

G| o] <-Huy viih ©

Actually, Qvi‘ 4(9) is the projection over X of a polyhe-
dron in the product state-input space, details omitted for
brevity Ariflo et al. (2017b).

The Algorithm 1 presented at Arifio et al. (2017Db), re-
peated here for convenience, is the base of the sets com-
puted in this work. As the one step set is restricted to poly-
topic sets, the computational geometry tools in the MPT
toolbox, see Kvasnica et al. (2004), allow implementing the
above algorithm to find the A-contractive set, C} in a few
lines of MATLAB code.

Algorithm 1 Computation of the maximal A-contractive
set C2.(Q)
Inputs: ¢, d, Q, A\, X, U.
(1) Make i =0, C} = Q
(2) Repeat :
(a) i=i+1
(b) €' = Q5 (ACL,) NQ
Until C} = C} ;;
(3) Set CX = C3; END.

Note that, in a disturbance-free setting, if C* is control
A-contractive, then any scaling 7C*, with v < 1 is A-
contractive, too, for a TS system (Arifio et al., 2017b,
Proposition 2). However, that does not hold in disturbed
systems as we are considering here: indeed, reducing the
size of the states makes the disturbance vector compar-
atively “larger” with respect to the state so contraction
rate gets slower. This requires some algorithmic changes
to Arino et al. (2017b), which will be discussed in next
sections of this manuscript.

4. MINIMAL-NORM DISTURBANCE REJECTION
SET

Continuing with the above discussion motivating this
section, it is easy to understand that there is a minimum
region inside which there does not exists any A-contractive
set under disturbances; indeed x = 0 will forcefully entail
zy # 0 for v # 0, as the “equilibrium” control u = 0
cannot reject unmeasurable disturbances at the same time
instant.

As stated in the introduction, the goal of this paper is
driving the state to a small invariant (contractive with
A = 1) set around the origin. In order to compare the
different A-contractive sets the p-norm of a compact set 2
is defined as:

12l = gleaé‘: zlp (7)

In this work, the results obtained with ||z||~ = max;(z;),
llz|l1 =3, |zi| will be compared in the example section.

The bisection algorithm below can solve this problem,
given a termination tolerance e, contraction rate A and
complexity parameters ¢ (controller) and d (Polya expan-
sion).
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Algorithm 2 Computation of minimum A-contractive set
C/\

m
Inputs: ¢, d, A\, X, U.

(1) Compute the set C), := CA (X) with Algorithm 1. If
such set is empty then END [disturbances are too large
and no contractive set is found in the whole modelling region].

(2) Define © as the polytope Vi := {z € X : ||z|, < 1}
and 7 := [|C), ||, with p =1 or p = c0.

(3) Define 79 = v and 71 = 0.
(4) Let v = 22521 Compute C2 (v92) with Algorithm 1.
(5) if C2,(y9) is empty, let y1 = 1, else let C), = C2 (v2)
and yo = 7.
if 79 —y1 > € then go to ste else
(6) if yo —~ hen g p 4 else END

The basic idea of the above algorithm is that small sets
Q must render Algorithm 1 infeasible, as earlier discussed
and, on the other hand, if a disturbance is very large (and,
say, the system is unstable or control saturation is tight)
there may not exist A-contractive sets in the modelling
region X. This justifies the initial algorithm step, which
starts the iteration with the maximal contractive set in the
whole modelling region X. If feasible, the bisection steps
try to shrink the set in which A-contractive sets are found
until smaller trials render infeasible.

Thus, the algorithm obtains (within a tolerance €) the
minimum scaling v* = [|C})||, such that there exist a
contractive set C with ||C|, < ~*, as pursued in our
problem statement. Indeed, ||C),[, < 7* ensues from
the fact that C;), C ~*Vj, being V; the unit-norm level
set defined in step 2 of Algorithm 2. Note that, due to
the scaling property, any C), from any iteration was a
polyhedral Lyapunov level set in Arino et al. (2017b),
but Lyapunov level sets are not meaningful in disturbance
rejection in a strict interpretation (of course, bounded-
real lemma and like results (Boyd et al., 1994) induce
quadratic forms proving attenuation, passivity, invariance,
etc.; the sets Cﬁl are the polyhedral analogue in polytopic-
manipulation approaches).

Remark: In the problem statement our goal was an
approximation to the minimal disturbance-rejection set.
Indeed, approximations come from three sources:

(1) The needed Polya relaxations.

(2) The need of A < 1 and not A < 1 to ensure that states
outside the finally obtained set C, can be driven to
it in finite time.

(3) The fact that algorithm 1 computes a mazimal con-
tractive set inside y*Vp: even if the maximal set is
empty for v < v*, so we can assert that there does
not exist any A-contractive set whose norm is strictly
lower than v*, there may be another contractive set
inside v*V; contained in C)),.

5. CONTROLLER COMPUTATION IN THE
MINIMAL DISTURBANCE REJECTION SET

Once C), is obtained by Algorithm 2, a procedure to
compute a controller law is needed; the control law should
keep next state inside C;). This is due to the fact that the

referred algorithm output (a polyhedral set) only ensures
the existence of that control action (indeed, C) with A < 1
is contractive and, henceforth, invariant); however, the
algorithm does not explicitly compute a control law u(zx)
to close the loop with.

In order to obtain this controller two possibilities are
considered: The first one is the on-line computation of the
control action solving a linear programming problem at
each sample time. The second one is an off-line optimiza-
tion. In this case a explicit solution of the optimization
problem is obtained an the controller consists of a piece-
wise polynomial function.

5.1 On-line Controller

In on-line operation, state and membership values are
known at the time of computing the control action, so the
model 41 = A(u(zr))zr + B(p(ak))ur + E(p(zr))v,
affine in the control action ug, renders:

Tr+1 = My + Niug + Rivg (8)
with

My, == A(p(zg )z, Ng = B(u(zr)), R = E(u(zg))

and My, N and Ry are matrices known at time k once xj,
has been measured. A reasonable course of action would
be proposing a cost index depending only on the current
control action wug, choosing a suitable one in the convex
set User (vk, p(zr)) = {v € U|Vv € W My + Nyu +
Ripv € XC)}; dependence on zy is implicit in matrices
My, Ni, and Rj. In this way, there would be no need
to actually build up an explicit “fuzzy” controller , as uy
can be directly optimised in a way akin to, say, predictive
control (whose fuzzy extension appears in Arifio et al.
(2017a), using the same class of polyhedron manipulation
techniques under discussion here).

If W is a polyhedron, then the set Uxcx (zk,p(zy)) is
a polyhedron, too (elementary convexity argumentations
easily conclude that only the vertices of Q need to be
considered in the definition of Uyca (zk, p(zx)) so it is
characterised by a finite number of linear inequalities
(depending on the currently measured state and member-
ships). Optimisation of the 1 or co norms of u can be done
with plain linear programming, and optimisation of the 2
norm of u with quadratic programming; this is analogue
to (Arino et al., 2017b, Sect. 6.1) so, for brevity, the reader
is referred there for details.

5.2 off-line Controller

Multiparametric linear or quadratic programming can be
used to obtain a partition of C) so that an explicit
piecewise-affine fuzzy control law is computed in the same
way as (Arifio et al., 2017b, Sect. 6.2); the reader is, again,
referred to such work for further details.

6. CONTROLLER COMPUTATION OUTSIDE THE
MINIMAL DISTURBANCE REJECTION SET

Section 5 discussed how to keep the state inside the
invariant set Cj, if initial conditions were already in it.
Usually, most disturbance-rejection problems assume zero
initial conditions (for instance, most H ones). In our
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case, the following approaches can provide controllers for
states outside C) that drive the system’s trajectory to it
in finite time.

The basic idea roots on the fact that disturbances are
progressively less significant in relative terms as the state
gets larger. Indeed, if f(u,x,g(p,@),v) € Q for all p € A,
for all v € W then, linearity in (z, @, v) of the closed-loop
TS expression in (4) entails that f(u, 8z, g(u, fu),v) €
B for all v € BW, given § > 1, thus, evidently,
f(p, Bz, g(p, fa),v) € BQ for all v € W, as W € W.
The key for this fact to be useful is 5 being a valid (non-
saturating) control action, fu € U.

In the rest of this section, we will assume that there is a
non-saturating control action making C;, A-contractive,
i.e., the set C), is a consequence of “uncertainty” and not
of “limits in the control action”. For instance, xx.1 =
Tk + uk + di with |dg| < 0.1 can be kept inside C;, =
[—0.1,+0.1] with |ug| < 0.1: if the control saturation limit
is larger, the said assumption will be fulfilled.

6.1 On-line controller

Given z, once memberships are measured, we can write
(8). The control goal will be minimising § such that
Tpr1 € BC,, . Of course, 3 = A can be guaranteed for
x € C), . If the above non-saturating assumption holds,
for sure there will be an scaling kC;), , & > 1 in which this
problem will be feasible. Determining the largest domain
of attraction of C;\ (i.e., largest set of initial conditions
that can be steered to C;), ) is left for further research.

6.2 Off-line controller

The explicit shape-independent solution in Section 5.2 can
be used, too, to steer states outside C,);l to it. Indeed, let
us first determine the minimum S such that z € SC) .
Then, the control action %(x) = pu(8~'x) ensures that
x4 € ABC), if it is non-saturating, i.e., @(x) € U.

7. EXAMPLE

Consider a Takagi-Sugeno system
2

w1 = Y pi(Aizk + Biug + Ejvr)
i=1
with vertex model matrices:

A= (5P a=(h0l) o
ne() ne(%)
Er = (0%5) B = (_(1)'1) (11)

The system will be subject to the following constraints in
inputs and states:

—10 < uy, < 10,

(10)

10 < 2, < 10

(12)

06
04r
02r
0

X2
-0.2F

-0.4

06

-0.6 0.4 -0.2 0 0.2 04 0.6
X1

Fig. 1. Minimal A-contractive sets: green oo-norm, red 1-
norm, blue 2-norm

Additionally, we will assume that the disturbance is
bounded by —0.3 < v;, < 0.3. The membership functions *
are:

pa(z) = (10 — (1 0)z)/20,

Following Algorithm 2, the minimal A-contractive set is
obtained, with A = 0.99, ¢ = 1 and d = 8, for both
l-norm and infinity norm optimization. Additionally, a
30 vertex polygonal approximation of a circle was also
used, with trivial modifications to the algorithms, left
to the reader, to approximate the 2-norm minimisation
disturbance-rejection problem.

po(e) =1—m(z)  (13)

The result of the three executions of the algorithm are
shown in Figure 1. Note that the resulting sets depend
on the chosen norm, i.e., there does not seem to exist a
minimal invariant set contained in all of them (indeed, the
intersection of them can be proven not invariant).

For the oc-norm case the explicit controller outlined in
Section 5.2 has been computed. The explicit controller is
formed by a partition of 141 sets; the regions conforming
the partition of the green set in Figure 1 and a simula-
tion (black line) are shown in Figure 2. The simulation
was carried out assuming uniformly distributed random
disturbances in the constraint interval [—0.3,0.3].

Finally the controllers are tested outside the minimal A-
contractive set, following the ideas in Section 6. Figure 3
shows the trajectories of the system with both approaches.
The on-line controller is shown in blue line and the
trajectory of off-line controller is shown in black.

8. CONCLUSION

This paper has presented a geometric approach to drive
the system state to the “smallest” possible invariant set
(in certain norm) around the origin, generalising earlier
disturbance-free stabilization approaches based on polyhe-
dron manipulations. Two control laws are proposed: one
for the “reaching” phase if initial conditions are outside
such small invariant set, and another one for the stationary

3 The given memberships are provided for simulation purposes only,
as results here are shape-independent , i.e., they will work for any
pair of membership functions as long as they are positive and add
up to one.
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Fig. 2. Explicit Controller partition and state trajectory

N
T

'
N
T

B -4 2 0 2 4 6
X1

Fig. 3. Trajectories of the state with on-line and off-line
controllers

situation in which the trajectories are kept under control
inside the referred invariant set.
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