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Abstract 1 

Alzheimer disease (AD) is associated with brain network dysfunction. Network-2 

based investigations of brain connectivity have mainly focused on alterations in the 3 

strength of connectivity, however, the network breakdown in AD spectrum is a complex 4 

scenario in which multiple pathways of connectivity are affected. In order to integrate 5 

connectivity changes that occur under AD-related conditions, here we developed a 6 

novel metric that computes the connectivity distance between cortical regions at the 7 

voxel-level (or nodes). We studied 114 individuals with mild cognitive impairment, 24 8 

with AD and 27 healthy controls. Results showed that areas of the default mode 9 

network, salience network, and fronto-parietal network, display a remarkable network 10 

separation, or greater connectivity distances, from the rest of the brain. Furthermore, 11 

this greater connectivity distance was associated with lower global cognition. Overall, 12 

the investigation of AD-related changes in paths and distances of connectivity provides 13 

a novel framework for characterizing subjects with cognitive impairment; a framework 14 

that integrates the overall network topology changes of the brain and avoids biases 15 

toward unreferenced connectivity effects.   16 



Introduction 1 

Alzheimer’s disease (AD) is the most prevalent form of dementia with an 2 

estimated 46.8-million people affected worldwide (Prince et al., 2015). Despite the 3 

global impact of AD on society, its etiology remains poorly understood. AD is 4 

characterized by a progressive loss of cognitive function that frequently affects elderly 5 

individuals, also known as late-onset AD. This sets an unpropitious stage for growing 6 

difficulties in everyday activities. Accumulating evidence from experimental and 7 

neuroimaging studies support that AD symptomatology and clinical course may be 8 

explained by large-scale brain system dysfunction more so than by focal disruptions 9 

among unrelated brain areas (Dai and He, 2014; Delbeuck et al.,b 2003; He et al., 2009;  10 

Palop et al., 2007; Brier et al., 2014a; Badhwar et al., 2017). For instance, accumulation 11 

of neuropathological markers of AD, namely extracellular amyloid plaques and 12 

intracellular neurofibrillary tangles, is related to extensive neuronal loss along large-13 

scale brain systems of the association cortex (Buckner et al., 2005, 2009; Myers et al., 14 

2014; Schöll et al., 2016; Sepulcre et al., 2016, 2017a; Hall et al., 2017; Palmqvist et al., 15 

2018). Within these affected neural networks, the so called default mode network 16 

(DMN), which mainly includes precuneus, medial prefrontal cortex (PFC) and inferior 17 

parietal cortex (Raichle et al., 2001), has been extensively associated with AD. For 18 

instance, DMN regions are affected by atrophy in AD (Chapleau et al., 2016; Schroeter 19 

et al., 2009; Wang et al., 2015; Yang et al., 2012). Also, fMRI studies show that AD 20 

patients present alterations in the activity of DMN areas during memory tasks (Li et al., 21 

2015; Schwindt and Black, 2009). Moreover, hypometabolism of precuneus, lateral 22 

temporal-parietal and posterior cingulate measured with fluorodeoxyglucose uptake on 23 

positron emission tomography is considered as a biomarker of AD in preclinical stages 24 

(Jagust et al., 2007; Sperling et al., 2011).  Given the suggested involvement of brain 25 

networks in the pathophysiology of AD many studies have been focused on 26 

investigating network features of the human brain using resting-state functional 27 

magnetic resonance imaging (rs-fMRI). Thus, it have been shown alterations of 28 

connectivity in areas of the DMN, in individuals with AD, and also along early stages of 29 

the disease such as in individuals with mild cognitive impairment (MCI) (Allen et al., 30 

2007; Brier et al., 2012; Damoiseaux et al., 2012; Greicius et al., 2004; Li et al., 2002; 31 

Sorg et al., 2007). Crucially, neuroimaging evidence also suggests that the 32 

pathophysiologic process leading up to AD begins years or decades before any clinical 33 



symptoms occur (Jack et al., 2010, 2013; Hampel et al., 2011). In this regard, rs-fMRI 1 

studies have shown connectivity changes in heteromodal and limbic cortical networks 2 

among cognitively normal elderly persons with and without elevated brain amyloid 3 

and/or tau (Drzezga et al., 2011; Hedden et al., 2009; Yvette I. Sheline et al., 2010) as 4 

well as in those with a genetic risk for AD (Machulda et al., 2011; Yvette I Sheline et 5 

al., 2010). Such rich neuroimaging evidence positions functional connectivity measures 6 

as potentially significant markers of in vivo network dysfunction of brain systems along 7 

the AD continuum (Dennis and Thompson, 2014; Dickerson and Sperling, 2009; 8 

Sheline and Raichle, 2013).  9 

Proper detection of connectivity changes across the AD spectrum requires 10 

methods that comprehensively assess the complexity of whole-brain systems. In the last 11 

decade, graph theory, a branch of mathematics concerned with the formal analysis of 12 

graphs composed of nodes (vertices) connected by links (edges), has been regularly 13 

used (see Tijms et al., 2013 for review). When applied to rs-fMRI data, graph theory 14 

reveals brain networks composed of regions/voxels (as nodes) with links between them 15 

(e.g., the correlation of fMRI signal between two regions) (Rubinov and Sporns, 2010). 16 

Using graph theory-based methods, previous rs-fMRI studies have shown AD-related 17 

alterations in measures of network segregation (Supekar et al., 2008; Xiang et al., 2013; 18 

Brier et al., 2014b; Sun et al., 2014; Toussaint et al., 2014; Kim et al., 2015; Deng et al., 19 

2016), integration (Deng et al., 2016; Kim et al., 2015; Minati et al., 2014; Sanz-Arigita 20 

et al., 2010; Wang et al., 2013; Xiang et al., 2013), modularity (Brier et al., 2014b; Sun 21 

et al., 2014) and centrality (Dai et al., 2015; Kim et al., 2015; McCarthy et al., 2014; 22 

Toussaint et al., 2014). Furthermore, graph theory metrics have been demonstrated as 23 

strong classifier variables for distinguishing individuals across the AD spectrum such as 24 

distinguishing MCI individuals who progress to AD (Hojjati et al., 2017; Hu et al., 25 

2016; Khazaee et al., 2015). However, most graph theory metrics investigating how 26 

brain communication is broken down in AD are often based on the direct strengths or 27 

the shortest paths connecting nodes, overlooking the many indirect routes by which 28 

information flow is spread in the brain. AD alters connectivity in the human brain at 29 

multiple locations and with multiple levels of intensity, in which distributed changes in 30 

large-scale systems, such as the default mode or cortico-limbic networks, can be under-31 

detected if variations in the indirect connectivity between cerebral areas are not taken 32 

into account in neuroimaging network analysis. Thus, an investigation of network 33 



organization able to reveal the connectivity strength of a node within a network, 1 

considering direct and indirect connectivity routes, is needed. 2 

To advance the current understanding of AD-related alterations in connectivity 3 

in a more comprehensive framework, here we use a graph theory metric based on 4 

stepwise functional connectivity (SFC) analysis (Sepulcre et al., 2012). SFC is a method 5 

to estimate the number of paths between two nodes of a network at a given step 6 

distance. The method proposed here calculates the relative network distance of every 7 

voxel in the brain and quantifies the precise or optimal location of that voxel with 8 

reference to all other voxels (Gao et al., 2018; Qian et al., 2018). In other words, the 9 

optimal connectivity distance metric captures the distance at which two nodes reach 10 

their maximal degree of connectivity. Thus, while SFC allows us to compare the 11 

number of paths between two nodes within a specific distance, optimal connectivity 12 

distance allows us to determine the step at which two nodes show the maximum rate of 13 

paths. In this framework, functionally connected nodes (either through direct or indirect 14 

connections) reach their maximal rate of connectivity at a lower distance than sparsely 15 

connected nodes. In this study, we investigate this optimal distance property in the 16 

functional connectivity networks of healthy controls, MCI and AD individuals. 17 

Furthermore, a subsample of MCI was followed up for a period of two years to track 18 

clinical status. We hypothesized that progression to AD would be related to greater 19 

disintegration in connectivity distance. In particular, we hypothesized that the AD group 20 

would display larger connectivity distances between nodes than the MCI group, and that 21 

MCI group would display larger connectivity distances between nodes than the control 22 

group. In base to the revised literature, we hypothesize that these differences would be 23 

especially relevant in heteromodal networks such as DMN. Overall, here we provide a 24 

comprehensive framework to investigate brain network changes across the AD 25 

spectrum. 26 



Methods 1 

Participants 2 

We recruited 165 participants, comprising of 24 patients with AD, 114 patients 3 

with MCI, and 27 healthy control subjects from dementia units of the Valencian 4 

community healthcare system in Spain (Table 1). Control participants were recruited 5 

from patient’s relatives and/or friends. AD and MCI diagnosis were made by 6 

experienced neurologists and based on clinical and neuropsychological evidence. The 7 

AD group was composed of patients that met revised criteria for probable AD 8 

(McKhann, 2011) and showed a Clinical Dementia Rating (CDR) score of 1 (mild AD). 9 

For the MCI group, inclusion criteria included (1) memory complaints (self-report, or 10 

confirmed by an informant); (2) objective memory impairment assessed with the logical 11 

memory subtest II from the Wechsler memory scale-III (WMS-III; Wechsler, 1997a); 12 

(3) essentially intact activities of daily living; (4) no evidence of dementia; and (5) a 13 

CDR score of 0.5. Cognitively normal individuals were included in the control group if 14 

they had no memory complaints, normal performance on the neuropsychological 15 

assessment (see below), and a CDR score of 0. None of the participants in the study had 16 

any of the following clinical characteristics: (1) other nervous system diseases such as a 17 

brain tumor, cerebrovascular disease, encephalitis, epilepsy, or met criteria for other 18 

dementias different from AD; (2) Geriatric Depression Scale (Martínez et al., 2002; 19 

Yesavage et al., 1982) score ≥ 6; (3) visible brain abnormalities reported by an 20 

experienced radiologist in magnetic resonance images, such as leukoaraiosis and 21 

infarction; (4) current psychiatric disorder or use of psychoactive medication. 22 

All participants underwent a structured clinical interview and a 23 

neuropsychological assessment (Table 1) that included the Mini-Mental State 24 

Examination (MMSE; Folstein et al., 1975), Functional Activities Questionnaire (FAQ; 25 

Pfeffer et al., 1982), a short form of Boston naming test (Serrano et al., 2001), Verbal 26 

fluency test (semantic and phonetic), logical memory subtests (I and II) and Digit 27 

subtest (forward and backward) from the WMS-III (Wechsler, 1997a), and similarities 28 

subtests from Wechsler adult intelligence scale-III (WAIS-III; Wechsler, 1997b). A 29 

subsample of MCI patients was followed up clinically with periodic neuropsychological 30 

assessment and clinical interviews (every 6 months) for a period of 2 years. These 31 

patients were classified into two groups depending on progression to AD (Table 1). The 32 



MCI progressor group (MCIp; N=17) was comprised of MCI patients who received an 1 

AD diagnosis (based on the criteria explained previously) between the 1-year and 2-year 2 

imaging and clinical visit. The MCI non-progressor group (MCInp; N=35) was 3 

comprised of individuals that showed no clinical change within two years from the 4 

baseline session. All MCI participants that did not complete follow up clinical visits 5 

were excluded. Thus, MCIp and MCInp were subsamples of the baseline MCI 6 

population of 114 individuals.  7 

                        ---------------------------------------------------------------------- 8 

Place Table 1 about here 9 

                        ---------------------------------------------------------------------- 10 

Participants were informed of the nature of the research and provided written 11 

informed consent prior to their participation in the study. The Institutional Review 12 

Board of the Universitat Jaume I of Castellón approved this research study. All study 13 

procedures conformed to the Code of Ethics of the World Medical Association. 14 

Image acquisition 15 

Imaging sessions consisted of a resting state scan in which participants were 16 

instructed to rest with their eyes closed and not sleep or think about anything in 17 

particular. Images were acquired on a 3T scanner (Siemens Trio). Participants were 18 

placed in a supine position in the MRI scanner, and their heads were immobilized with 19 

cushions to reduce motion artifacts. For the rs-fMRI, a total of 270 volumes were 20 

recorded over 9 min using a gradient-echo T2*-weighted echo-planar imaging sequence 21 

(TR, 2000 ms; TE, 30 ms; matrix, 64 x 64; voxel size, 3.8 x 3.8 mm; flip angle, 90°; 22 

slice thickness, 3.5 mm; slice gap, 0.5 mm). We acquired 33 interleaved axial slices 23 

covering the entire brain, parallel to the anterior–posterior commissure plane. 24 

Image preprocessing 25 

rs-fMRI data processing was performed with the Data Processing Assistant for 26 

Resting-State toolbox (DPARSFA, http://rfmri.org/DPARSF; Chao-Gan and Yu-Feng, 27 

2010), based on Statistical Parametric Mapping (SPM12, 28 

http://www.fil.ion.ucl.ac.uk/spm), and the Resting-State fMRI Data Analysis Toolkit  29 

(http://www.restfmri.net; Song et al., 2011). Preprocessing included the following: 1) 30 



removal of first five volumes of each raw rs-fMRI dataset to allow for T1 equilibration; 1 

2) slice timing correction for interleaved acquisitions (the middle slice was used as the 2 

reference point); 3) head motion correction using a six-parameter (rigid body) linear 3 

transformation with a two-pass procedure (registered to the first image and then 4 

registered to the mean of the images after the first realignment); 4) spatial normalization 5 

to the Montreal Neurological Institute (MNI) atlas template. Voxel size was set at 5 × 5 6 

× 5 mm3 for computational efficiency; 5) removal of spurious variance through linear 7 

regression: including 24 parameters from the head motion correction step [6 head 8 

motion parameters, 6 head motion parameters one time point before, and the 12 9 

corresponding squared items; (Friston et al., 1996)], scrubbing with regression [signal 10 

spike regression as well as 1 back and 2 forward neighbors; (Chao-Gan et al., 2013)] at 11 

time points with a frame-wise displacement (FD)>0.5mm (Jenkinson et al., 2002), linear 12 

and quadratic trends, global signal, white matter signal, and the cerebrospinal fluid 13 

signal; 6) Spatial smoothing with a 4 mm FWHM Gaussian Kernel; and 7) band-pass 14 

temporal filtering (0.01-0.08 Hz) to reduce the effect of low frequency drift and high 15 

frequency noise (Biswal et al., 1995; Lowe et al., 1998). No participant had more than 2 16 

mm/degree of movement in any of the six directions, and no more than 90 volumes 17 

removed during scrubbing (1/3 of the total volumes), ensuring at least 5 minutes and 30 18 

seconds of functional data per individual. 19 

Network construction 20 

Association matrices for each participant were computed by calculating the 21 

Pearson correlation between each voxel time course and every other voxel time course 22 

within a mask of 10471 voxels covering cortical and subcortical gray matter. To 23 

perform this analysis, the preprocessed resting state images of each participant were 24 

previously converted to an N-by-M matrix, where N was the image voxels in MNI 25 

space, and M was the 265 acquisition time points. From this step, a 10471x10471 26 

matrix of Pearson correlation coefficients was obtained for each individual. Fisher z 27 

transformation was applied to normalize the variance in r-values. Then, in order to 28 

remove spurious associations all negative correlations and positive correlations that did 29 

not reach an FDR correction (Benjamini and Hochberg, 1995) threshold of p<0.05 were 30 

excluded from further analyses. Therefore, the final association matrix included only 31 

significant positive associations, as positive connectivity has been proved to drive 32 

functional connectivity network topology in the human brain (Qian et al., 2018). Given 33 



that threshold selection can change how sparsely connected graph lattices become, we 1 

replicated our analyses using association matrices that include only positive correlations 2 

(that is, without applying any threshold) as well as association matrices with a fixed 3 

edge density (that is, taking all possible connections, as well as 30% to 5% of the 4 

strongest positive correlations; Supplementary Figure 1).  5 

Optimal Connectivity Distance Analysis 6 

The Optimal connectivity distance metric is derived from SFC analysis (Gao et 7 

al., 2018; Qian et al., 2018; Sepulcre et al., 2012) (Figure 1). SFC matrices are first 8 

calculated to compute the optimal (or representative) distance between node pairs per 9 

subject. In SFC analysis, the degree of stepwise connectivity (𝐷𝑗𝑖
𝑙 ) of a voxel j for a 10 

given step distance l and a voxel i is computed from the count of all paths that (1) 11 

connect voxel j and voxel i, and (2) have an exact length of l. This count can be easily 12 

estimated by the power of adjacency matrices, where the exponent of the power 13 

represents l and xij the number of paths connecting i and j. In this sense, a larger SFC 14 

degree under the step distance l indicates stronger paths connecting two voxels via link 15 

l, while a smaller degree indicates weaker connectivity paths. SFC was calculated for up 16 

to seven-step distances, following the established methodology of our previous study 17 

showing that SFC patterns reach maximal stability for link-step distances above seven 18 

(Sepulcre et al., 2012). Each SFC matrix 𝐴𝑙 of size m-by-m can be recursively 19 

represented as follows: 20 

Equation 1:  21 

𝐴𝑙(𝑖, 𝑗) = {

𝐴(𝑖, 𝑗)  [𝑖 ≠ 𝑗, 𝑙 = 1]

∑
𝐴𝑙−1(𝑖, 𝑘) − min (𝐴𝑙−1)

max(𝐴𝑙−1) − min (𝐴𝑙−1)
 

𝐴(𝑘, 𝑗) − min (𝐴)

max(𝐴) − min (𝐴)

𝑚

𝑘=1

 [𝑖 ≠ 𝑗, 𝑙 ≥ 2]
 22 

Here, 𝐴𝑙 is the functional connectivity matrix with a step distance of l, and 𝐴 is 23 

the correlation matrix after Fisher transformation. We calculated SFC from step 24 

distances 1 to 7. Matrices were then normalized between 0 and 1, keeping the final 25 

distribution of values intact while making them comparable across step distances.  26 

After SFC estimation, optimal connectivity distance was calculated. Optimal 27 

connectivity distance (𝑂𝐷𝑗𝑖) for each pair of voxels was computed as the distance l 28 

(across the seven-step distances) at which the relative degree of stepwise connectivity is 29 



maximized. Thus, we obtained an optimal connectivity distance matrix for each subject 1 

where values ranged from 1 to 7 [based on the diameter of functional connectivity 2 

graphs (Diez and Sepulcre, 2018; Sepulcre et al., 2012)]. This range allowed a full 3 

exploration of different network distances. Then, we element-wise compared all 4 

normalized SFC matrices, and found the maximum corresponding SFC degree value. 5 

Then, we assigned that corresponding distance step matrix that belongs to as the optimal 6 

distance (OD in Equation 2) value (from 1 to 7).   7 

Equation 2:  8 

𝑂𝐷(𝑖, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙  (
𝐴𝑙(𝑖, 𝑗) − min(𝐴𝑙)

max(𝐴𝑙) − min(𝐴𝑙)
) 9 

Finally, we calculated the average optimal connectivity distance for each voxel 10 

to obtain a single metric per voxel. This single-voxel metric represents how close a 11 

voxel is in average from any other voxel of the brain, with distance as the number of 12 

link-steps required for a pair of voxels to reach maximum degree of connectivity. This 13 

metric is based on the hypothesis that the brain is hierarchically organized, from 14 

unimodal regions (i.e., brain regions processing information from a single sensory 15 

modality) to multimodal or heteromodal regions (i.e., brain regions integrating 16 

information from diverse sensory modalities) where information flow presumably 17 

converges (Mesulam, 1998; Sepulcre et al., 2012). Within this framework we can expect 18 

that, on average, voxels in multimodal brain areas are characterized by lower distance 19 

than voxels from unimodal brain areas. For example, a voxel in a unimodal region is 20 

expected to be highly connected with other voxels within its own module, requiring a 21 

low distance to reach its relative maximal degree of connectivity. On the other hand, 22 

that voxel would require a larger distance before reaching its optimal degree of 23 

connectivity with voxels in intermodal and multimodal regions, and even a much larger 24 

distance before reaching its optimal degree of connectivity with voxels in other 25 

modules. In this way, on average, such a voxel would be expected to show a moderate 26 

to large distance metric. By contrast, a voxel belonging to a multimodal region that 27 

integrates converging information flow, would be expected that show small distance 28 

with other nodes part of its main network, and intermediate distance with voxels in 29 

unimodal regions. Thus, on average, such a voxel would be expected to show a 30 

small/moderate distance metric. In summary, average optimal connectivity distance 31 



shows how close a voxel is from any other voxel of the brain. We assessed the 1 

reliability of the procedure to obtain optimal connectivity distance by computing the 2 

Intraclass Correlation Coefficient (ICC) using an independent cohort of 25 young 3 

normal individuals (10 males; mean age=22.68, SD age=1.3) who performed two rs-4 

fMRI scans one week apart. ICC was estimated separately for each voxel using the 5 

matlab IPN toolbox for Test–Retest Reliability Analysis 6 

(http://www.mathworks.com/matlabcentral/fileexchange/22122-ipn-tools-for-test-retest-7 

reliability-analysis). The image preprocessing and network construction were exactly 8 

the same as those reported above. We used FDR-derived matrices for ICC estimation 9 

and no covariates were included. After these analyses, we obtained a mean ICC across 10 

voxels of 0.41 with a standard deviation of 0.25 (Supplementary Figure 2 shows the 11 

mean optimal connectivity distance values from test and retest scans). Thus, our 12 

procedure showed on average a moderate level of reliability (Xing and Zuo, 2018). In 13 

this regard, some caution should be exercised when interpreting the results of this study. 14 

Reliability interacts with statistical power and effect size. Thus, those specific voxels 15 

with lower levels of reliability may be underpowered as compared with voxels with 16 

higher levels of reliability, biasing the finding of differences toward regions with high 17 

reliability (Zuo et al., 2019). Finally, it should be noted that the reliability of optimal 18 

connectivity distance procedure presented here is determined by the reliability of rs-19 

fMRI and the procedures followed in matrix construction. Optimal connectivity 20 

distance, as a function, will always produce the same results for the same association 21 

matrices. Thus, the reliability of optimal connectivity distance depends on how the 22 

association matrices were estimated. In this regard, a continuous work in validating 23 

techniques of matrix construction and improvements in rs-fMRI acquisition and 24 

preprocessing techniques are necessary to improve the reliability in resting state graph 25 

theory studies. In order to shed light on this issue we estimated the ICC for matrices 26 

including all positive values and for matrices with a fixed edge density of 30%, 15%, 27 

10% and 5% (see supplementary table 1). The results showed that matrices with an edge 28 

density of 30% showed the higher ICC nearly followed by FDR-derived matrices. Also, 29 

ICC decreases as the edge density decreases.  30 

At this point, it is important to note that optimal connectivity distance can be 31 

related at the theoretical level with other graph theory metrics based on distance, such 32 

as shortest path length [particularly closeness centrality (Rubinov and Sporns, 2010)]. 33 



The shortest path length metric is based in the geodesic distance between two voxels. 1 

However, shortest paths between nodes that rely on direct, but weak connections, can be 2 

frequently found. This prevents the identification of other routes of connectivity that 3 

may characterize the relationship between two nodes. For instance, if we have a pair of 4 

nodes with a direct pathway of moderate connectivity and two indirect pathways of high 5 

connectivity, any shortest path algorithm would mark the direct connectivity path as the 6 

shortest path (Figure 1 for details). However, that would overlook the predominant 7 

pattern of connectivity between the pair of nodes, which is maximized over two steps of 8 

connectivity (region A to region B, then to region C). Overall, our measure of optimal 9 

connectivity distance captures the point for which two nodes reach their maximal 10 

connectivity, considering both direct and indirect paths of connectivity. As additional 11 

analyses we estimated closeness centrality in our data in order to compare this metric 12 

with optimal connectivity distance. The shortest possible path connecting every pair of 13 

nodes was estimated for each association matrix using the Brain Connectivity Toolbox 14 

(https://sites.google.com/site/bctnet/Home). This toolbox, implemented by Dr. Olaf 15 

Sporns, calculates the closeness centrality of a weighted matrix as:  16 

(𝐿𝑖𝑗
𝑤 )

−1
=

𝑛 − 1

𝛴𝑗∈𝑁,𝑗≠𝑖𝑑𝑖𝑗
𝑤 17 

Where 𝑑𝑖𝑗
𝑤 is the shortest weighted path between i and j. 18 

dⅈj
w = ∑ 𝑓(𝑤𝑢𝑣)

𝑎𝑢𝑣∈𝑔𝑖↔𝑗
𝑤

 19 

Where f is a map from weight to length and 𝑔𝑖↔𝑗
𝑤  is the shortest weighted path between i 20 

and j (see Rubinov and Sporns, 2010).  21 

As complementary analyses, we also compared optimal connectivity distance with 22 

degree centrality. We include this analysis because degree centrality is probably the 23 

most generalized and straightforward graph theory metric. Degree centrality was 24 

estimated as the weighted count of connections for each node:  25 

𝑘𝑖
𝑤 =  ∑ 𝑤𝑖𝑗

𝑗∈𝑁
 26 

 27 



  ---------------------------------------------------------------------- 1 

    Place Figure 1 about here 2 

                        ---------------------------------------------------------------------- 3 

 4 

Statistical analyses   5 

Voxel-wise analyses were performed using general linear models as 6 

implemented in SPM12. Whole-brain two-sample t-test models comparing each group 7 

were estimated, including age, gender and the individual mean frame-wise displacement 8 

(FD) as covariates of no interest. These analyses aimed to identify specific regions 9 

showing between-group differences in optimal distance. In secondary analyses, we 10 

investigated how our optimal connectivity distance metric related to global cognitive 11 

decline. To this end, we estimated voxel-wise linear regression models between optimal 12 

distance and MMSE scores. Age, gender and the individual mean FD were included as 13 

covariates. This analysis was performed taking into account all patients (MCI and AD), 14 

as well as separate groups. MMSE is a screening test not designed to evaluate cognitive 15 

functioning in cognitively normal individuals. Accordingly, most participants of the 16 

control group obtained the maximum score. Given this ceiling effect, the control group 17 

was not included in correlation analyses. Statistical inference for all analyses was 18 

performed using the threshold-free cluster enhancement method (Smith and Nichols, 19 

2009). Given that our procedure could lead to non-normal distributions, nonparametric 20 

permutation testing (5000 permutations) as implemented in the Computational Anatomy 21 

Toolbox 12 (CAT12, http://www.neuro.uni-jena.de/cat/) was used to detect statistically 22 

significant differences at p<0.05, family-wise error (FWE) corrected. Statistical maps 23 

were visualized with BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia et al., 24 

2013). 25 



Results 1 

Group differences in Optimal Connectivity Distance 2 

We found a significant difference in optimal connectivity distance between study 3 

groups (Figure 2 and Supplementary Table 2 and 3; please see also Supplementary 4 

Figure 1 for a comparison with the closeness centrality and degree centrality metrics). 5 

In general, AD participants showed higher distances than cognitively normal controls 6 

and MCI individuals. In particular, our results indicated that the regions with most 7 

distance increase were the so called cortical hubs, including the dorsolateral PFC, dorsal 8 

anterior cingulate, precuneus and inferior parietal lobe. Furthermore, increases in 9 

distance in other regions relevant in AD such as fusiform gyrus, parahippocampal gyrus, 10 

hippocampus and amygdala were also shown. A similar spatial pattern of differences, 11 

although to a lesser extent, was obtained when comparing MCI with cognitively normal 12 

controls. Reciprocal contrasts (controls>AD, controls>MCI, and MCI>AD) did not 13 

show significant results. 14 

When MCI subgroups were compared with AD and cognitively normal control 15 

groups, we found a consistent cross-sectional pattern in which optimal connectivity 16 

distances increased in all mild cognitively impaired groups, including the MCI group 17 

not yet progressed to AD (Figure 2 and Supplementary Table 2). More specifically, 18 

MCInp group compared to controls showed strong increase in optimal connectivity 19 

distances in cortical hubs and areas related with AD, including dorsolateral PFC, dorsal 20 

anterior cingulate, precuneus, inferior parietal lobe, temporal cortex, fusiform gyrus, 21 

parahippocampal gyrus, hippocampus and amygdala. MCIp group showed significant 22 

changes in network distances in similar regions as MCInp but in lesser extend, although 23 

it is important to note that this analysis was constrained to 17 MCI progressors. In 24 

addition, we did not find significant differences between MCInp and MCIp groups. 25 

When compared to the AD group, MCInp displayed lower optimal connectivity 26 

distances than AD mainly in dorsolateral PFC, dorsal anterior cingulate and inferior 27 

parietal lobe, while MCIp only showed lower distances than AD in the cerebellum and 28 

subcortical regions (thalamus, putamen and midbrain). Reciprocal contrasts 29 

(controls>MCInp, controls>MCIp, MCInp>AD and MCIp>AD) did not show any 30 

significant results.  31 

                        ---------------------------------------------------------------------- 32 
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 3 

Finally, in order to test the stability of our results, we applied different statistical 4 

thresholds to the association matrices to compute the graph theory metric 5 

(Supplementary Figure 1). These analyses showed that the results were stable up to 6 

15% density, with a loss of almost all the observed differences at 5% density. This 7 

pattern is consistent with the idea that at lower densities most of the indirect routes are 8 

not considered for the analysis, and therefore affecting optimal connectivity distance. 9 

Furthermore, we estimated closeness centrality and degree centrality measures in order 10 

to compare these metrics with optimal connectivity distance. As shown in 11 

Supplementary Figure 1, closeness centrality was able to detect significant differences 12 

between AD and controls in precuneus, dorsolateral PFC, inferior parietal lobe, medial 13 

PFC and inferior temporal gyrus. Furthermore, degree centrality was able to detect 14 

significant differences between AD and controls in precuneus, middle temporal gyrus, 15 

postcentral gyrus, precentral gyrus and middle occipital gyrus. However, optimal 16 

distance was sensitive enough to detect higher magnitude differences in these regions as 17 

well as in regions not detected with these metrics.     18 

Association between Optimal Connectivity Distance and Cognitive Decline 19 

When MMSE scores were used to investigate the association between optimal 20 

connectivity distance of the cerebral network and global cognitive decline, we found a 21 

negative association between optimal distance and MMSE in bilateral dorsolateral PFC, 22 

medial PFC, anterior cingulate, precuneus, inferior parietal lobe, insula, thalamus, 23 

putamen, midbrain and cerebellum (Figure 3 and Supplementary Table 4). These 24 

results indicated that higher MMSE scores were associated with lower the distances in 25 

these regions. Complementary analyses showed that these results were driven by a 26 

relationship between MMSE and optimal connectivity distance in MCI group, and 27 

especially in the MCInp group (Supplementary Figure 2). Specific analysis using the 28 

17 MCIp participants did not show significant results. We did not find any brain regions 29 

showing positive associations between optimal distance estimates and MMSE scores. In 30 

order to specifically study if optimal distance improves the explaining differences in 31 



MMSE scores over degree centrality, we performed a regression model for each voxel 1 

including MMSE as dependent variable and optimal distance, degree centrality, age, 2 

gender and mean FD as independent variables. Then we calculated the relative decrease 3 

in the variance of residuals of this model and the model excluding optimal connectivity 4 

distance. Results of this analysis suggested a better goodness of fit in the model which 5 

included optimal connectivity distance in almost all voxels (see Supplementary Figure 6 

2). 7 

                        ---------------------------------------------------------------------- 8 
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Discussion 1 

The human brain is a dynamic network of connectivity susceptible to damage 2 

from neurodegenerative disorders, such as AD. However, the brain exhibits a 3 

remarkable ability to adapt to diverse types of lesions, particularly if they take place 4 

over longer periods of time. It has thus been frequently postulated that 5 

neurodegenerative processes can lead not only to decreased but also to increased 6 

connectivity changes across specific brain networks (Schultz et al., 2017; Sepulcre et 7 

al., 2017b). This scenario increases the complexity required to understand brain network 8 

changes related to the AD pathophysiologic process. Unpredicted readjustments in 9 

segregation and integration of connectivity can take place and coexist in several 10 

networks, along with the more direct effects associated with neurodegenerative damage 11 

(Dennis and Thompson, 2014; Dickerson and Sperling, 2009; Sepulcre et al., 2017b; 12 

Sheline and Raichle, 2013). In other words, changes in distinct networks may cascade 13 

multiform changes to other networks in the human brain. Therefore, we believe it is 14 

imperative to develop network metrics that account for the overall performance of the 15 

brain connectivity by describing nodal properties of distance and position of voxels with 16 

respect to the rest of the voxels in the entire network (and not just their strength or 17 

number of direct connections). In this study, we employed such a metric (Gao et al., 18 

2018; Qian et al., 2018), and found that brain functional connectivity changes across the 19 

AD spectrum are related to increased network connectivity distance within distinct 20 

heteromodal and limbic cortical areas, including the DMN. AD individuals showed 21 

larger connectivity distances than MCI individuals, and MCI individuals displayed 22 

larger connectivity distances than cognitively normal controls, suggesting in a cross-23 

sectional manner a pattern of continued distance disintegration with increased AD 24 

symptom severity. Furthermore, greater connectivity distance was associated with 25 

greater global cognitive decline, in line with the hypothesis that AD symptomatology is 26 

related to a dysfunction in large-scale brain networks. More importantly, our findings 27 

suggest that specific systems preferentially disintegrate from the rest of the human brain 28 

across disease progression and cognitive impairment. 29 

We found that across different comparisons (AD>MCI, AD>controls and 30 

MCI>controls), differences in optimal connectivity distance were specific to intrinsic 31 

functional networks encompassing multimodal and associative regions. These included 32 

differences in ventromedial PFC, precuneus/posterior cingulate, the angular gyrus 33 



which integrates the DMN (Raichle et al., 2001), in the bilateral anterior insula and 1 

dorsal anterior cingulate cortex which forms the salience network (Seeley et al., 2007), 2 

as well as in bilateral dorsolateral PFC and inferior parietal cortex which involves the 3 

fronto-parietal control network (Vincent et al., 2008). Interestingly, our results show 4 

that the most affected regions were those previously characterized as cortical hubs (i.e., 5 

dorsolateral PFC, dorsal anterior cingulate, precuneus and inferior parietal lobe), 6 

characterized by disproportionately greater connectivity to the rest of the brain than 7 

other non-hub regions (Achard, 2006; Buckner et al., 2009; Sepulcre et al., 2010). 8 

Optimal connectivity distance analysis quantifies the optimal routes of connectivity 9 

between every pair of voxels in the brain. The disruption of a link between two nodes 10 

would affect all routes of connectivity that includes that link. In this way, alterations in 11 

the optimal connectivity distance of multiple brain regions are consistent with 12 

disruption of one or several hubs, given that these regions integrate many connectivity 13 

pathways. In support of this hypothesis, our results also show high optimal connectivity 14 

distance differences in subcortical regions (i.e., thalamus, caudate, putamen and 15 

midbrain) and cerebellum. These regions form topographically organized systems with 16 

cortical areas via complex cortico-subcortical reciprocal connections (Alexander et al., 17 

1986; Haber, 2003; Ramnani, 2006). Furthermore, our results also show, but to a lesser 18 

extent, between-group differences in many other brain regions, including medial 19 

temporal structures largely associated with gray matter atrophy in AD, such as the 20 

hippocampus, parahippocampus and amygdala (Schroeter et al., 2009; Wang et al., 21 

2015; Yang et al., 2012). Together, these results indicate that AD is associated with 22 

disruption of the optimal routes of connectivity, characterized by longer or, in other 23 

words, less efficient paths. 24 

In agreement with our results, studies in AD patients investigating differences in 25 

degree centrality show a reduction in both intra-module and inter-module connectivity 26 

strength of cortical hubs that integrate the DMN, salience and frontoparietal control 27 

networks (Dai et al., 2015). Furthermore, previous studies have shown a positive 28 

relationship between regional degree of connectivity and amyloid-beta deposition in the 29 

brain (Buckner et al., 2009). In addition, cortical hubs have been implicated in pathways 30 

believed to propagate amyloid-beta pathology in AD patients (Sepulcre et al., 2013). In 31 

the present study we did not include amyloid-beta or tau measures, however we 32 

speculate that our results might be related with the abnormal accumulation of these 33 



proteins. The spatial patterns of amyloid-beta deposition overlaps with cortical hubs 1 

such as precuneus, inferior parietal, medial frontal cortex, or dorsolateral frontal cortex 2 

(Buckner et al., 2005; Myers et al., 2014; Palmqvist et al., 2017), which were the areas 3 

showing higher magnitude differences in our study. Furthermore, vivo patterns of tau 4 

distribution suggest that tau pathology is extended within the areas of DMN in advanced 5 

AD (Hall et al., 2017; Schöll et al., 2016). In this regard it is suggested that the 6 

accumulation of abnormal proteins eventually produce failure in neuronal connectivity 7 

(Palop et al., 2007). Thus, our results may reflect the consequences of this loss in 8 

connectivity within the brain hubs abnormally accumulating these proteins. This 9 

phenomenon would affect all the connectivity routes of the regions affected, increasing 10 

optimal distance not only in these regions but also in those regions more directly 11 

connected with them, which in the case of brain hubs are usually other cortical hubs 12 

(van den Heuvel and Sporns, 2011). At this point it is important to highlight that our 13 

distance metric was based on functional connectivity and not on direct anatomical 14 

connections. While functional connectivity is thought to arise from structural 15 

connectivity, studies investigating the relationship between these two metrics suggest 16 

that they do not necessarily covary, as functional connectivity may be driven not only 17 

by direct connections but also by connections via a third region without a direct 18 

structural connection (Sun et al., 2014). In fact, a recent study showed increased 19 

coupling between functional and structural networks of AD participants when analyzing 20 

DMN intra-module connectivity and the rich club structure (Dai et al., 2018). These 21 

results suggested a strengthened relationship between functional connectivity and the 22 

underlying anatomical connectivity in AD, which may imply more stringent and less-23 

dynamic brain function. Given this, further studies investigating functional and 24 

structural relationships may benefit from the use of the optimal connectivity distance 25 

metric presented here given that it accounts for direct and indirect connections.  26 

In conclusion, our results suggest that greater connectivity distance in a large set 27 

of cortical and subcortical regions is associated with greater AD symptom severity. 28 

Furthermore, greater optimal connectivity distance was related with worse global 29 

cognition. Together, these results support the network model of AD pathophysiology.30 
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Table 1. Demographic data of study participants. 1 

 Controls MCI AD  MCInp MCIp  

N 27 114 24 differencesa 35 17 differencesb 

Age (y) 71.7 

(5.4) 

73.2 

(5.6) 

75.1 

(3.5) 

F=3.9; p=0.025 73.1 

(5.6) 

75.3 

(5.9) 

F=2.5; p=0.06 

Gender (M:F) 13:14 52:62 8:16 χ2=1.4; p>0.1 18:17 6:11 χ2=2.6; p>0.1 

MMSE 29.6 

(0.8) 

27.3 

(2.2) 

21.8 

(3.2) 

F=91.1; 

p<0.001 

28.4 

(1.8) 

26.8 

(2.5) 

F=48.9; p<0.001 

FAQ 0.7 (0.8) 3.4 (3.3) 14 (7.9) F=61.4; 
p<0.001 

3.3 (3.1) 4.2 (3.1) F=34.8; p<0.001 

FDS 7.2 (0.7) 5.7 (1.2) 4.7 (1.6) F=49.9; 

p<0.001 

5.2 (0.6) 5.2 (1.2) F=49.6; p<0.001 

BDS 6.4 (1) 3.7 (1.1) 2.7 (1.3) F=77.8; 

p<0.001 

3.7 (0.6) 3.8 (1.4) F=56.4; p<0.001 

Boston 11.9 

(0.2) 

9.5 (1.9) 7.6 (3) F=107.6; 

p<0.001 

9.7 (1) 8.7 (1.6) F=88.2; p<0.001 

Phon. Flu. 13.4 

(1.9) 

8.22 

(2.8) 

5 (2.8) F=67.7; 

p<0.001 

11.2 

(1.9) 

8.3 (2.4) F=59.2; p<0.001 

Sem. Flu. 17.6 

(3.2) 

11 (3.4) 8 (3.1) F=60; p<0.001 10.7 

(1.8) 

10.2 

(3.7) 

F=51.1; p<0.001 

Imm. Recall 13.6 

(2.1) 

8.9 (3.7) 3.4 (2.9) F=108.5; 

p<0.001 

8.5 (1.8) 10.1 (3) F=83.4; p<0.001 

Del. Recall 11.7 

(2.3) 

6.4 (3.4) 1.8 (2.4) F=111.78; 

p<0.001 

8.5 (1.8) 7.9 (2.6) F=87; p<0.001 

Similarities 18.2 

(2.1) 

11.2 

(4.4) 

5.9 (4.2) F=121.1.3; 

p<0.001 

12.2 

(2.6) 

11.2 

(4.1) 

F=71.9; p<0.001 

a Statistical differences between control, MCI and AD groups 2 

b Statistical differences between control, MCInp, MCIp and AD groups 3 

Age and neuropsychological tests are presented as mean (SD). For ANOVA comparisons, 4 

Welch statistic was applied when the homoscedasticity assumption was not satisfied due to a 5 

rejection of the null hypothesis of equal variances using the Levene test (p<0.05). MCI=mild 6 

cognitive impairment; AD=Alzheimer disease; MCInp=mild cognitive impairment non-7 

progressor; MCIp=mild cognitive impairment progressor; MMSE=mini-mental state 8 

examination; FAQ=functional activities questionnaire; FDS=forward digit subtest WMS-III; 9 

BDS=backward digit subtest WMS-III; Boston=Boston naming test; Phon. Flu.=phonetic verbal 10 

fluency test; Sem. Flu.=semantic verbal fluency test; Imm. Recall=memory immediate recall; Del. 11 

Recall=delayed memory recall; Similarities=similarities subtests from Wechsler adult intelligence 12 

scale-III. 13 



Figure Legends 1 

Figure 1. Diagram of the functional connectivity approach used in the study (I). A 2 

voxel-level brain graph was obtained using a functional connectivity approach for each 3 

individual. Network distance examples in graphs with linear and equidistant topologies 4 

and paths (II). Comparison between two distance-related algorithms (gray area, III) 5 

applied on a pair of network nodes (B and D, red color) in a graph target example: 6 

shortest path solution (III-top), and optimal distance solution (III-bottom). Changes in 7 

optimal distance in a modular network, from a reference (IV-A) to a modified network 8 

state (IV-B). Application of optimal distance analysis on whole brain and complex 9 

graphs (V).  10 

Figure 2. Voxel-wise comparisons on optimal connectivity distance among Alzheimer’s 11 

disease, mild cognitive impairment (converters and non-converters), and control groups 12 

(I and II). Statistical analysis was adjusted for age, sex and mean framewise 13 

displacement. Results were corrected for multiple comparisons using threshold-free 14 

cluster enhancement (tfce) method combined with nonparametric permutation test at 15 

p<0.05 FWE corrected. The color bars show the   log-scale p-value   applicable to the 16 

image. MCI=mild cognitive impairment; MCIp=mild cognitive impairment progressors; 17 

MCInp=mild cognitive impairment non-progressors. 18 

Figure 3. Voxel-wise association between optimal connectivity distance and Mini-19 

Mental State Examination (MMSE) scores in impaired participants (Alzheimer’s 20 

disease + mild cognitive impairment groups; I). Statistical analysis was adjusted for age, 21 

sex and mean framewise displacement. Results were corrected for multiple comparisons 22 

using threshold-free cluster enhancement (tfce) method combined with nonparametric 23 

permutation test at p<0.05, FWE-corrected. The color bars show the   log-scale p-24 

value   applicable to the image. Statistically significant relationships between MMSE 25 

and optimal connectivity distance scores of representative areas in I are displayed in II 26 

(adjusted for age, sex and mean framewise displacement). Optimal connectivity distance 27 

scores were obtained using a 4 millimeter sphere centered on the coordinate at the top of 28 

each graph. 29 



Supplementary Figure Legends 1 

Supplementary Figure 1. Voxel-wise comparisons of optimal connectivity distance, 2 

closeness centrality and degree centrality between Alzheimer’s disease and control 3 

groups (I). Voxel-wise comparisons of optimal connectivity distance between 4 

Alzheimer’s disease and control groups using different thresholds in the association 5 

matrix for each individual (II). All=a threshold condition including all positive 6 

connections of association matrices; 30% to 5%= threshold conditions including 30% to 7 

5% connectivity density of association matrices. Statistical analysis was adjusted for 8 

age, sex and mean framewise displacement. Results were corrected for multiple 9 

comparisons using threshold-free cluster enhancement (tfce) method combined with 10 

nonparametric permutation test at p<0.05 few-corrected. The color bars show the   log-11 

scale p-value   applicable to the image. 12 

Supplementary Figure 2. Brain areas showing negative association between optimal 13 

connectivity distance and Mini-Mental State Examination (MMSE) scores in MCI 14 

participants and MCInp participants. Statistical analysis was adjusted for age, sex and 15 

mean framewise displacement. Results were corrected for multiple comparisons using 16 

threshold-free cluster enhancement (tfce) method combined with nonparametric 17 

permutation test at p<0.05, FWE-corrected. The color bars show the log-scale p-value 18 

applicable to the image (I). Relative decrease in the variance of residuals after including 19 

optimal connectivity distance in a regression model predicting MMSE values from 20 

degree centrality, age, gender and mean framewise displacement. The color bars show 21 

increases (warm colors) and decreases (cool colors) in the goodness of fit after 22 

including optimal connectivity distance in the model (II). Brain areas showing average 23 

optimal connectivity distance in an independent sample of 25 young individuals with 24 

two different rs-MRI scans within a week interval (III). 25 



Supplementary Tables 1 

Supplementary Table 1. ICC estimations for the different matrix construction 2 

procedures. 3 

Matrix construction 
procedure* 

Mean ICC Standard deviation ICC 

edges with p<0.05 FDR 
corrected 

0.41 0.25 

All edges 0.35 0.24 

Fixed edge density of 30% 0.45 0.24 

Fixed edge density of 15% 0.31 0.21 

Fixed edge density of 10% 0.28 0.2 

Fixed edge density of 5% 0.27 0.2 

*For all the procedures negative connections were excluded.  ICC=Intraclass Correlation 4 

Coefficient 5 

  6 



Supplementary Table 2. Differences in optimal connectivity distance between AD, 1 

MCI and control groups. 2 

 AD>control AD>MCI MCI>control 

Peak MNI coordinates [25, 14, 3] [30, -1, 3] [15, -26, -7] 
Peak TFCE value 2465.7 1903.6 630 

Peak region Right putamen  Right putamen  Midbrain 

Clusters breakdown Nº voxels Nº voxels Nº voxels 

Superior Frontal Gyrus 614 601 487 
Middle Frontal Gyrus 673 660 544 
Inferior Frontal Gyrus 469 467 305 
Medial Frontal Gyrus 392 376 295 
Rectal Gyrus 49 44 42 
Superior Temporal Gyrus 567 535 399 
Middle Temporal Gyrus 483 428 288 
Inferior Temporal Gyrus 134 129 89 
Precentral Gyrus 362 269 188 
Postcentral Gyrus 261 135 95 
Paracentral Lobule 83 36 58 
Insula 209 206 123 
Middle Cingulate Gyrus 242 241 160 
Anterior Cingulate 119 119 96 
Posterior Cingulate 92 54 63 
Precuneus 363 255 266 
Superior Parietal Lobule 102 68 56 
Inferior Parietal Lobule 345 323 158 
Supramarginal Gyrus 93 93 34 
Angular Gyrus 22 22 19 
Parahippocampa Gyrus 233 199 212 
Fusiform Gyrus 237 180 129 
Lingual Gyrus 150 48 52 
Cuneus 141 39 47 
Middle Occipital Gyrus 85 19 35 
Inferior Occipital Gyrus 55 17 38 
Thalamus 109 108 105 
Putamen 82 82 70 
Caudate 44 44 44 
Midbrain 118 118 112 
Amygdala 20 19 18 
Hippocampus 19 18 19 
Cerebellum Posterior Lobe 597 591 404 
Cerebellum Anterior Lobe 393 367 331 

AD=Alzheimer disease; MCI=Mild cognitive impairment; MNI= Montreal Neurological 3 

Institute; TFCE= Threshold-free cluster enhancement. 4 



Supplementary Table 3. Differences in optimal connectivity distance between MCI 1 

subgroups. 2 

Contrast MCInp>control MCIp>control AD>MCInp AD>MCIp 

Peak MNI coordinates [15, -26, -7] [-25, 24, 3] [35, -1, 3] [25, 4, -2] 
Peak TFCE value 800.9 468.1 510.2 373.5 
Peak region Midbrain Left insula  Right putamen  Right putamen  

Clusters breakdown Nº voxels Nº voxels Nº voxels Nº voxels 

Superior Frontal Gyrus 543 405 332 - 
Middle Frontal Gyrus 608 461 366 - 
Inferior Frontal Gyrus 410 291 238 - 
Medial Frontal Gyrus 323 203 155 - 
Rectal Gyrus 45 - 17 - 
Superior Temporal Gyrus 475 265 153 - 
Middle Temporal Gyrus 365 114 134 - 
Inferior Temporal Gyrus 105 42 71 - 
Precentral Gyrus 189 107 111 - 
Postcentral Gyrus 112 29 29 - 
Paracentral Lobule 53 11 - - 
Insula 136 107 131 - 
Middle Cingulate Gyrus 225 122 88 - 
Anterior Cingulate 118 82 53 - 
Posterior Cingulate 91 - 25 - 
Precuneus 321 77 52 - 
Superior Parietal Lobule 79 22 10 - 
Inferior Parietal Lobule 232 170 217 - 
Supramarginal Gyrus 65 46 62 - 
Angular Gyrus 22 8 10 - 
Parahippocampa Gyrus 221 72 28 - 
Fusiform Gyrus 170 40 77 - 
Lingual Gyrus 81 - 15 - 
Cuneus 101 - - - 
Middle Occipital Gyrus 71 - 9 - 
Inferior Occipital Gyrus 43 8 - - 
Thalamus 108 52 47 7 
Putamen 78 70 77 39 
Caudate 44 34 10 - 
Midbrain 114 80 80 18 
Amygdala 20 8 3 - 
Hippocampus 19 7 2 - 
Cerebellum Posterior Lobe 525 196 453 9 
Cerebellum Anterior Lobe 372 98 249 9 

AD=Alzheimer disease; MCInp=Mild cognitive impairment non-progressor; MCIp=Mild 3 

cognitive impairment progressor; MNI= Montreal Neurological Institute; TFCE= Threshold-4 

free cluster enhancement. 5 



Supplementary Table 4. Brain regions showing an association between optimal 1 

connectivity distance and global cognitive decline.  2 

Contrast MMSE negative association 

Peak MNI coordinates [-40, -66, -27] 
Peak TFCE value 452.9 

Peak region Cerebellum 

Clusters breakdown Nº voxels 

Superior Frontal Gyrus 318 
Middle Frontal Gyrus 405 
Inferior Frontal Gyrus 257 

Medial Frontal Gyrus 199 
Rectal Gyrus 27 
Superior Temporal Gyrus 282 
Middle Temporal Gyrus 266 
Inferior Temporal Gyrus 93 
Precentral Gyrus 60 
Postcentral Gyrus 21 
Insula 139 

Middle Cingulate Gyrus 131 
Anterior Cingulate 92 
Posterior Cingulate 54 
Precuneus 139 
Superior Parietal Lobule 20 
Inferior Parietal Lobule 228 
Supramarginal Gyrus 66 
Angular Gyrus 16 
Parahippocampa Gyrus 93 

Fusiform Gyrus 107 
Lingual Gyrus 7 
Middle Occipital Gyrus 8 
Thalamus 76 
Putamen 70 
Caudate 23 
Midbrain 96 
Amygdala 5 

Hippocampus 8 
Cerebellum Posterior Lobe 414 
Cerebellum Anterior Lobe 267 

MMSE= Mini-Mental State Examination; MNI= Montreal Neurological Institute; TFCE= 3 

Threshold-free cluster enhancement. 4 


