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ABSTRACT. We present new quantum codes with good parameters which are constructed
from self-orthogonal algebraic geometry codes. Our method permits a wide class of
curves to be used in the formation of these codes. These results demonstrate that there is
a lot more scope for constructing self-orthogonal AG codes than was previously known.

1. INTRODUCTION

Polynomial time algorithms on quantum computers for integer prime factorization and
discrete logarithms were given by Shor [38]. This justifies the great importance of quan-
tum computation and, specifically, the relevance of quantum error-correcting codes be-
cause they protect quantum information from decoherence and quantum noise. Over
the last twenty-five years, error-correction has proved to be one of the main obstacles
to scaling up quantum computing and quantum information processing. One of the first
examples of a quantum error-correcting code is Shor’s 9-qubit code [39] which has been
generalized in a series of many papers, including [3, 4, 8, 10, 9, 22, 23, 5, 7, 13, 24, 33].
Nowadays the theory of quantum error-correcting codes is a very active area of research
(see [30, 31, 15, 16, 17, 25, 18] for some recent publications).

A classical linear error-correcting code is called self-orthogonal if it is contained in its
dual code. The CSS (Calderbank-Shor-Steane) construction [9, 40] showed that classical
self-orthogonal codes with certain properties are useful in the construction of quantum
error-correcting codes. As a result, people looking for good quantum error-correcting
codes started trying to find classical self-orthogonal codes with the required properties.

In the 1970s and early 1980s, using concepts and tools coming from algebraic geome-
try, Goppa constructed error correcting linear codes from smooth and geometrically irre-
ducible projective curves defined over a finite field (see [20, 21, 41, 27]). They are called
Goppa or algebraic geometry (AG) codes and have played an important role in the theory

2010 Mathematics Subject Classification. 94B27, 11T71, 81P70, 14G50.
Key words and phrases. Algebraic geometry codes, quantum error-correction, algebraic curves, finite

fields.
The second author was partially supported by Science Foundation Ireland Grant 13/IA/1914. The re-

mainder authors were partially supported by the Spanish Government and the EU funding program FEDER,
grants MTM2015-65764-C3-2-P and PGC2018-096446-B-C22. The first and fourth authors are also par-
tially supported by Universitat Jaume I, grant UJI-B2018-10.

1



2 F. HERNANDO, G. MCGUIRE, F. MONSERRAT, AND J. J. MOYANO-FERNÁNDEZ

of error-correcting codes. They were used to improve the Gilbert-Varshamov bound [42]
which was a surprising result at that time. In fact, every linear code can be realized as
an algebraic geometry code [37]. In the area of quantum information processing, what is
important is that AG codes provide a natural context and method for finding classical self-
orthogonal codes. Thus, researchers have focussed on finding suitable self-orthogonal AG
codes because they give rise to good quantum error-correcting codes.

Many of the properties of AG codes that give rise to good quantum error-correcting codes
were captured in the definition of Castle curves by Munuera, Sepúlveda, and Torres [35].
In [36], Munuera, Tenório and Torres use the specific properties of algebraic geometry
codes coming from Castle and weak Castle curves to provide new sequences of self-
orthogonal codes. Essentially, they use Lemma 2 and Proposition 2 of [36] to provide
those sequences.

The main purpose of this paper is to show that there is a much larger family of curves
from which to obtain self-orthogonal AG codes and good quantum codes. This family
includes Castle curves. As a demonstration we provide some examples and some families
of curves giving sequences of one-point self-orthogonal AG codes which are not covered
in [36].

This paper is laid out as follows. In Section 2 we briefly summarize the construction of
AG codes and establish some notation that will be used in the paper. In Section 3 we state
and prove the main theoretical results (Theorem 3.1 and corollaries) that generalize the
construction of Castle curves and will allow us to present the afore-mentioned sequences
of self-orthogonal codes. The next sections are devoted to applying these results and
obtaining explicit families of curves giving rise to those sequences. In Section 7, we
use them to obtain quantum codes with good parameters, and we compare our results to
previous papers.

In the numerical examples we use the computational algebra system MAGMA [6].

2. AG CODES AND THEIR DUALS

Throughout this and next section, we fix an arbitrary finite field F. Let χ be a nonsingular,
projective and geometrically irreducible curve χ of genus g over F (we will say simply
‘curve’ for abbreviation). We write F for an algebraic closure of F and χ(F′) denotes the
set of F′-valued points of χ for any field extension F′/F.

A divisor of χ is a formal sum D = ∑
r
i=1 niPi, where r is a positive integer, Pi ∈ χ(F) and

ni ∈ Z\{0} for all i = 1, . . . ,r, and moreover Pi 6= Pj if i 6= j. We will say that the divisor
D is F-rational if Dσ = D, where Dσ := ∑

r
i=1 niσ(Pi), and σ : F→ F is the Frobenius

F-automorphism. Equivalently, D can be regarded as a linear combination of places of
F(χ)/F with integer coefficients [41, Def. 1.1.8], where F(χ) denotes the function field of
χ . The support of D, denoted by Supp(D), is the set of points {P1, . . . ,Pr}, and the degree
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of D is defined as deg(D) := ∑
r
i=1 ni deg(Pi), where deg(Pi) denotes the cardinality of the

orbit of Pi under the action of σ (or, equivalently, the degree of the extension k(Pi)/F,
where k(Pi) is the residue field of Pi). Notice that a point P is F-rational (i.e. P ∈ χ(F)) if
and only if deg(P) = 1.

For every rational function f on χ , not identically 0, the divisor of f is

( f ) := ∑
P∈χ(F)

νP( f )P

where, for each point P ∈ χ(F), νP denotes the discrete valuation at P defined as follows:
for any z belonging to the local ring Oχ,P of χ at P, νP(z) is defined as the non-negative
integer m such that z = utm, u being a unit and t a generator of the maximal ideal of Oχ,P.
A point P ∈ χ(F) is said to be a zero (resp. a pole) of f if νP( f ) > 0 (resp., νP( f ) < 0).
Notice that ( f ) = ( f )0− ( f )∞, where ( f )0 = ∑νP( f )>0 νP( f )P is the divisor of zeroes of
f and ( f )∞ = ∑νP( f )<0 νP( f )P) is the divisor of poles of f .

A divisor D as above is effective if ni > 0 for all i = 1, . . . ,r; we write then D ≥ 0. Also,
given two divisors D and D′, the notation D≥D′ means that the divisor D−D′ is effective.
We also consider the following finite-dimensional F-vector space associated with D:

L (D) :={ f ∈ F(χ) | D+( f )≥ 0}∪{0},

where ( f ) denotes the divisor associated to f .

For a fixed set of F-rational points P := {P1,P2, . . . ,PN} on χ , set D := P1+P2+ · · ·+PN ,
and let G be another F-rational divisor of χ whose support is disjoint from P . Consider
the F-vector space

Ω(D) := {ω ∈Ω(χ) | (ω)≥ D}∪{0},
where Ω(χ) is the F(χ)-vector space of rational differential forms over χ , and (ω) de-
notes the divisor associated to any ω ∈Ω(χ).

Definition 2.1. The AG code associated to the triple (χ,D,G) is the linear code C(D,G)

of length N over F given by the image of the linear map

evP : L (G)→ FN

defined by evP( f ) := ( f (P1), f (P2), . . . , f (PN)).

It can be seen that its dual code, C(D,G)⊥, coincides with the image of the map resP :
Ω(G−D)→ FN defined by resP(ω) = (resP1(ω), . . . , resPN (ω)), where resPi(ω) stands
for the residue of ω at Pi for all i = 1, . . . ,N. Furthermore, if ω is a differential form in
Ω(χ) with simple poles at Pi and such that resPi(ω) = 1 for all i = 1, . . . ,N, then it holds
that

C(D,G)⊥ =C(D,(ω)+D−G)

(see, for instance, [12, Lemma 1.38]). Notice that a differential ω with these conditions
does always exist.
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Definition 2.2. The code C(D,G) is said to be self-orthogonal if C(D,G)⊆C(D,G)⊥.

There is a particular class of curves among those satisfying the definition of AG codes.
These are called Castle and weak Castle (pointed) curves, see [36, 35]. A pointed curve
is a pair (χ,P), where χ is a curve and P ∈ χ(F) is a rational point on χ .

Castle and weak Castle curves are defined taking into consideration the following notion.
Let χ be a curve and P an F-rational point on χ , and consider the valuation vP (attached
to the local ring) at P. The set

Γ(P) :=
{
− vP( f ) : f ∈

∞⋃
k=0

L (kP)
}

is an additive semigroup of Z which is called the Weierstraß semigroup at the rational
point P of χ . We say that a pointed curve (χ,P) is Castle if

(1) Γ(P) is symmetric, i.e., h ∈ Γ(P) if and only if 2g−1−h /∈ Γ(Q) for all h.
(2) If s := min{h ∈ Γ(P) : h 6= 0}, then #χ(F) = qs+1.

If we substitute condition (2) by

(2’) There exist a morphism ϕ : χ → F∪ {∞} with (ϕ)∞ = `P as well as elements
a1,a2, . . . ,ar ∈ F such that ϕ−1(ai)⊆ χ(F) and #ϕ−1(ai) = ` for all i = 1, . . . ,r,

then the pointed curve (χ,P) is said to be weak Castle. Notice that the terminology makes
sense, since Castle curves are always weak Castle curves [35].

3. MAIN RESULTS

We start this section with some definitions and conventions. An affine plane curve over F
will be a curve C defined by an equation g(x,y) = 0, where g(x,y) ∈ F[x,y], (x,y) being
affine coordinates. Considering projective coordinates (X : Y : Z) such that x = X/Z
and y = Y/Z, we will denote by χC the projectivization of C, and by πC : χ̃C → χC the
associated normalization morphism; in this way χ̃C is a nonsingular model of χC.

For every a ∈ F, La (resp., L∞) will denote the affine line over F defined by the equation
x = a (resp., the projective line over F, called line at infinity, with equation Z = 0).

Definition 3.1. An affine plane curve C over F is said to have only one place at infinity if it
is geometrically irreducible, there exists an F-rational point Q∞ such that χC(F)∩L∞(F)=
{Q∞}, χC has only one branch at Q∞ and this branch is defined over F. We impose the
additional condition that C is not a line.

Notice that, in the situation of Definition 3.1, there exists a unique point P∞ ∈ χ̃C(F) such
that πC(P∞) = Q∞ and, moreover, P∞ is F-rational. Since χ̃C \{P∞} and C are isomorphic,
we will identify the points of both curves.
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If C1 and C2 are affine or projective plane curves (with respective equations A = 0 and
B = 0) and Q is any point, then we write IQ(C1,C2) (and also IQ(A,B)) for the intersection
multiplicity of C1 and C2 at Q, see [27, Def. 2.22]. The intersection multiplicity is positive
if and only if Q is a point on both C1 and C2.

Definition 3.2. Given two affine plane curves C1 and C2 over F, we will say that C1 and C2
are transversal if IQ(C1,C2) = 1 for all Q ∈C1(F)∩C2(F). Also, we will say that C1 and
C2 are F-transversal if they are transversal and, in addition, all the points in C1(F)∩C2(F)
are F-rational.

Fixing a curve C, for every subset A of F, we will define PA by

PA := {(α,β ) ∈C(F) : α ∈A }

and we will be studying the polynomial (where A is finite)

fA (x) := ∏
a∈A

(x−a)

and its derivative f ′A (x). We will consider the divisor of zeros of the rational function
f ′A (x), and if

( f ′A (x))0 = c1Q1 + · · ·+ csQs +mP∞

where the Qi are points in the affine chart and P∞ is the point at infinity of the curve, then
we define a divisor M by M = c1Q1+ · · ·+csQs = ( f ′A (x))0−mP∞. It is easy to show that
the divisor M is F-rational. We call M the divisor of affine zeroes of the rational function
defined by the derivative f ′A (z).

Theorem 3.1. Let C be a smooth affine plane curve over F with only one place at infinity.
Let g be the genus of χ̃C and let

A = {a ∈ F |C and La are F-transversal}.

Let fA (z) := ∏a∈A (z− a) ∈ F[z]. Let M be the divisor of affine zeroes of the rational
function of χ̃C defined by the derivative f ′A (z), as defined above.

Then the following hold:

(a) If D is the divisor ∑P∈PA
P, and G is another F-rational divisor such that Supp(G)∩

Supp(D) = /0, then

C(D,G)⊥ =C(D,(2g−2+deg(D)−deg(M))P∞ +M−G).

(b) If, in addition, 2G≤ (2g−2+deg(D)−deg(M))P∞+M then C(D,G)⊆C(D,G)⊥.

Proof. (a) For all Q = (a,b) ∈PA let xQ := x− a. In view of the choice of A ,
the image of xQ at the local ring at Q is a uniformizing parameter. Consider the
following differential form of χ̃C:

ω =

(
∑

a∈A

1
x−a

)
dx.
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Clearly, for any P = (α,β ) ∈PA , we have

ω =

(
∑

a∈A

1
xP +α−a

)
dxP =

f ′A (xP +α)

∏a∈A (xP +α−a)
dxP.

Therefore ω has poles at the points of PA , which are of order 1 and have residue
1. Since C and La are F-transversal for every root a of fA , the associated divisor
to ω is

(ω) = (deg(D)+2g−2−deg(M))P∞−D+M,

and the result now follows from [27, Th. 2.72].
(b) It follows immediately from (a).

�

The following corollary (that is straightforward from Theorem 3.1) concerns AG codes
defined from divisors of type G = mP∞ and yields a range of values of m for which the
associated code is self-orthogonal.

Corollary 3.2. Assume the notation and hypotheses of Theorem 3.1 and suppose that
G = mP∞ with m ∈ N. Then C(D,G)⊆C(D,G)⊥ if 2m≤ 2g−2+deg(D)−deg(M).

In the specific case of curves defined by a separable equation F(y) = H(x), the degree
of the divisor M mentioned in the statement of Theorem 3.1 can be explicitly computed
from the equation of C and the degree of the polynomial f ′A :

Corollary 3.3. Assume the notation and hypotheses of Corollary 3.2 and suppose that C
has an equation of the type F(y) = H(x), where F,H are polynomials with coefficients in
F. Then deg(M) = deg( f ′A ) ·deg(F).

Furthermore, C(D,G)⊆C(D,G)⊥ if

2m≤ 2g−2+deg(D)−deg( f ′A ) ·deg(F).

Proof. Let a1, . . . ,ar ∈ F be the distinct roots of the polynomial f ′A (z) and consider the
decomposition f ′A (z) = δ ∑

r
i=1(z−ai)

ki , δ ∈F\{0}. For each i= 1, . . . ,r, let b1,i, . . . ,bsi,i

be the different roots of F(y)−H(ai) and consider the decomposition

F(y)−H(ai) =
si

∏
j=1

(y−b j,i)
γ j,i.

Notice that the points in the support of M are those in the set {Qi, j :=(ai,b j,i)}1≤i≤r; 1≤ j≤si .

The coefficient in M of one of the points Qi, j is νQi, j( f ′A (x)), where νQi, j is the valuation
defined by the curve C at Qi, j; then

νQi, j( f ′A (x)) = ki · IQi, j(F(y)−H(x), f ′A (x)) = ki · γ j,i · IQi, j(y−b j,i,x−ai) = ki · γ j,i,
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therefore

deg(M) =
r

∑
i=1

ki

si

∑
j=1

γ j,i =
r

∑
i=1

ki deg(F) = deg( f ′A ) ·deg(F).

The last part of the statement follows from Corollary 3.2. �

Remark 3.4. In practice, the main difficulty in applying Corollary 3.3 is that the polyno-
mial fA (z) and its derivative need to be known and can be hard to compute. We give an
example of this now.

Example 3.5. The curve y3− y = x2− x10 has 1215 affine rational points over F36 . The
polynomial fA (z) can be computed using MAGMA and has degree 405. Furthermore, its
derivative has degree 324. Applying Corollary 3.3 gives self-orthogonal curves for m in
the range 17≤ m≤ 129.

This is an interesting example because the curve is maximal (recall that a curve defined
over Fq of genus g is maximal over Fq if the number of projective Fq-rational points is
equal to q+1+2g

√
q, see [41] ). Maximal curves are desirable in coding theory because

the length of the corresponding codes is very good.

We are unable to compute fA (z) by hand in this example. In the next sections we will
give some infinite families of curves where we are able to compute fA (z) by hand.

Next we present a special case of Corollary 3.3, where the range of values of m for which
the codes C(D,mP∞) are self-orthogonal depends only on the genus of C and deg(F). This
bound can be used when fA (z) is not known.

Corollary 3.6. Assume the notation and hypotheses of Corollary 3.2 and suppose that C
has an equation of the type F(y) = H(x), where F,H are polynomials with coefficients in
F. Then C(D,G)⊆C(D,G)⊥ if

2m≤ 2g−2+deg(F).

Proof. First we will prove that deg(D) = #A · deg(F). Notice that deg(D) coincides
with the cardinality of PA ; hence it is enough to show that #P{a} = deg(F) for every
a ∈A . For this purpose, notice that IP(C,La) = 1 for all P ∈P{a} because C and La are
transversal. Then

#P{a} = ∑
P∈P{a}

IP(C,La) = ∑
P∈P{a}

IP(F(y)−H(x),x−a)

= ∑
P=(a,b)∈P{a}

IP(F(y)−H(a),x−a)

= ∑
P=(a,b)∈P{a}

IP(y−b,x−a) = deg(F),

where the last two equalities are deduced from the fact that C and La are F-transversal.
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Finally, the result follows from

deg(M) = deg( f ′A ) ·deg(F)

≤ (deg( fA )−1) ·deg(F) = (#A −1) ·deg(F) = deg(D)−deg(F),

where the first equality is consequence of Corollary 3.3. �

Remark 3.7. There are examples where this bound is tight, in the sense that C(D,G) ⊆
C(D,G)⊥ when 2m≤ 2g−2+deg(F), and C(D,G) 6⊆C(D,G)⊥ for the smallest m with
2m> 2g−2+deg(F). One example is y27−y= x2 over F36 , the number of rational points
is N = 1431+ 1. The derivative f ′A (z) = 2z52 + 1 so it is not constant. The genus is 13
and deg(F) = 27 so 2m≤ 2g−2+deg(F) becomes m≤ 25. We confirm with MAGMA
that for 1 < m≤ 25 we have that C(D,G)⊆C(D,G)⊥ but not for m = 26.

To finish this section, we prove that the AG codes coming from Corollary 3.3 arise from
weak Castle curves.

Proposition 3.8. If C is a curve satisfying the hypotheses of Corollary 3.3 then the pointed
curve (χ̃C,P∞) is weak Castle.

Proof. Assume the notation of Theorem 3.1 and suppose, without loss of generality, that
0 ∈A .

Consider an arbitrary element a ∈A and the divisor (x−a) of the rational function x−a.
Since La and C are F-transversal one has that P{a} ⊆ χ̃C(F) and

(x−a) = ∑
P∈P{a}

P− (ρ−ηa)P∞,

where ρ := IQ∞
(L∞,χC) and, for every a ∈ A , ηa equals IQ∞

(χLa,χC) if Q∞ belongs to
χLa , and 0 otherwise.

Notice that, independently of a ∈A , the point Q∞ belongs to χLa if and only if Q∞ = (0 :
1 : 0); moreover, in this case, IQ∞

(χLa,χC) equals multQ∞
(χC) (the multiplicity of χC at

Q∞) because the line La is not tangent to χC at Q∞ (notice that C is not a line). This shows
that the value ηa does not depend on a and that ρ−ηa > 0. Therefore

(x−a)0 = ∑
P∈P{a}

P and (x−a)∞ = (ρ−η0)P∞.

In particular, #P{a} = ρ−η0.

Now, consider the morphism f : χ̃C → P1 associated with the rational function defined
by x. From the previous paragraphs, it holds that ( f )∞ = (ρ−η0)P∞ and, for all a ∈A ,
f−1(a) = P{a} ⊆ χ̃C(F) and # f−1(a) = ρ−η0. Hence, taking into account [36, Prop. 3
(2)], the pointed curve (χ̃C,P∞) is weak Castle. �
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Remark 3.9. We would like to comment on how our results differ from the results in [36]
and [19]. All the families of curves in [36] satisfy the hypotheses of Lemma 2 in that
paper. Under the assumptions (and notation) of Theorem 3.1, the pointed curve (χ̃C,P∞)

satisfies the hypotheses of [36, Lemma 2] if and only if the polynomial f ′A (z) is a nonzero
constant (if and only if the divisor M in Theorem 3.1 is the zero divisor). In this paper we
will present some families with non-constant derivative, which are the first of this kind as
far as we are aware.

To emphasize this point, we partition the curves satisfying the hypotheses of Theorem 3.1
into two types:
Type I: those where f ′A (z) is a nonzero constant.
Type II: those where f ′A (z) is not constant.

The curves in [36] are of Type I and many of the codes introduced in our paper come
from curves of Type II. Therefore, we are presenting a new type of code. By Proposition
3.8 both types of curves are weak Castle. Most of the Type II curves in this paper are not
Castle, as we will see.

The curves provided in [19] are either of Type I or are not one-point AG codes. All codes
in our paper are one-point AG codes, and hence our results and examples are different
from [19]. Also, all the sets A in [19] are multiplicative subgroups after removing 0.

Families of self-orthogonal AG codes. The aim of this subsection is to provide a lemma
which will allow us to obtain several families of curves satisfying the hypotheses of Corol-
lary 3.3 and, therefore, to obtain families of self-orthogonal AG codes.

Lemma 3.10. Let F be a finite field of characteristic p and let C be an affine plane curve
over F with equation

F(y) = H(x),

where F and H are polynomials with coefficients in F such that F ′(y) is a nonzero constant
and gcd(deg(H), p) = 1. Then

(a) C is smooth.
(b) If deg(H)> deg(F) or H(x) = x` with ` ∈ N such that ` < deg(F) and moreover

gcd(deg(F), `) = 1, then C has only one place at infinity.
(c) The genus of χ̃C is 1

2(deg(F)−1)(deg(H)−1).

Proof. Statement (a) is obvious, since the partial derivative with respect to y of the defin-
ing equation of C is a nonzero constant. We split the proof of (b) in two cases:

Case 1: deg(H) > deg(F). In this case, (0 : 1 : 0) is the unique intersection point of
χC and the line at infinity. Set L := F(y)−H(x), F0 := y, F1 := x, δ0 = d1 := deg(H),
δ1 := degy Resx(L,F1) and d2 := gcd(δ0,δ1), where Resx(L,F1) denotes the resultant (with
respect to x) of L and F1.
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It is easily checked that Resx(L,F1) = ±(F(y)−H(0)). Therefore, δ1 = deg(F) and
d2 = 1. Since d2 = 1 and d1

d2
δ1 is a multiple of δ0, Proposition 3.5 of [11] (see also the

original source [1] by Abhyankar) implies that C has only one place at infinity.

Case 2: H(x) = x` with ` < deg(F) and gcd(deg(F), `) = 1. In this case, Q := (1 : 0 : 0)
is the unique intersection point of χC and the line at infinity. Setting m := deg(F) one has
that the equation of χC (in projective coordinates X ,Y and Z) is

a0Y m +a1Y m−1Z + · · ·+a1Y Zm−1 +amZm−X `Zm−` = 0,

where ai ∈ F for all i = 0, . . . ,m and a0 6= 0. Taking coordinates u := Y/X and v := Z/X
in the affine chart U defined by X 6= 0 (to which Q belongs), the equation of the restriction
of χC to U has the form

h(u,v)− vm−` = 0,

where h is an homogeneous polynomial of degree m such that h(1,0) 6= 0 and Q is the
origin. Hence, C has a unique tangent at Q (defined by v = 0). Performing finitely many
successive quadratic transformations we can obtain a resolution of singularities of C at Q
(so that, by composition of them, we get the normalization morphism πC : χ̃C→ χC); see
e.g. [2, Lecture 18]. The quadratic transformation (with center Q) defined by u = u′ and
v = u′v′ gives rise to the following equation of the proper transform C′ of C:

(u′)`h(1,v′)− (v′)m−` = 0.

Hence, C′ meets the exceptional line at a point that is F-rational. Since gcd(`,m− `) =

1, it is not difficult to see that all the proper transforms involved in the process meet
each exceptional line at a unique F-rational point, and that the last proper transform has
multiplicity one at every point. Since the points of χ̃C are in one-to-one correspondence
with the branches of χC [26, Th. 5.29], it follows that C has only one branch at Q (which
is F-rational).

It only remains to prove that χC is geometrically irreducible. Indeed, reasoning by con-
tradiction, assume that χ1 and χ2 are two different components of χC. Then both curves
χ1 and χ2 must meet at the point Q, which contradicts the conclusion of the preceding
paragraph.

Statement (c) follows from [36, Prop. 3]. �

Next, in Sections 4, 5, and 6, we will present some families of curves where our results
are applicable. From now on, q will be a power of a prime number p and N(C,qn) stands
for the number of Fqn-rational points of an affine curve C. We will make use of the notion
of trace of an element a ∈ Fqn over Fq: the trace is the sum of the conjugates of a with
respect to Fq, i.e.

TrFqn/Fq = a+aq + · · ·+aqn−1
.
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4. CURVES An,q,`

Let ` and n denote positive integers (not both equal to 1) such that gcd(p, `) = 1, and let
An,q,` be the affine curve (defined over Fqn) with equation

yqn−1
+ yqn−2

+ · · ·+ y = x`.

The following Proposition refers to the statement of Theorem 3.1.

Proposition 4.1. (1) Let C = An,q,` and let F = Fqn . Then C is smooth over F and C has
only one place at infinity. The set A in the statement of Theorem 3.1 is equal to the set of
all x-coordinates of the Fqn-rational points of C.

(2) Moreover, fA (z) = ze+1− z, where e := gcd(`(q− 1),qn− 1), and the number of
Fqn-rational points of An,q,` is N(An,q,`,qn) = qn−1 · (e+1).

Proof. (1) By Lemma 3.10, C is a smooth affine curve having one place at infinity with
genus g = (qn−1− 1)(`− 1)/2. If a is the x-coordinate of an Fqn-rational point of the
curve An,q,` then the equation TrFqn/Fq(y) = a` has qn−1 distinct solutions for y in Fqn .
Hence all the points in the intersection An,q,`(Fqn)∩La(Fqn) are Fqn-rational. Moreover,
if Q = (a,b) is one of these points, then

IQ(An,q,`,La) = I(0,b)(y
qn−1

+ yqn−2
+ · · ·+ y−a`,x) = 1

because y−b is a simple factor of yqn−1
+ yqn−2

+ · · ·+ y−a`. Therefore the set

{a ∈ Fqn | there exists b ∈ Fqn such that (a,b) ∈ An,q,`(Fqn)}

coincides with A = {a ∈ Fqn | An,q,` and La are Fqn-transversal}.

(2) Notice that, on the one hand, 0 ∈ A . On the other hand, for every a ∈ A \ {0}, we
have a`(q−1) = 1 and aqn−1 = 1 and, therefore, a is a root of ze− 1. Then every element
of A is a root of ze+1− z.

Conversely, let a be a root of ze− 1. Then a`(q−1) = 1 and, therefore, a` ∈ Fq. Hence
a∈A because the equation TrFqn/Fq(y) = a` has solutions in Fqn (by surjectivity of trace).

Finally, for every x ∈ Fqn , it holds that x` ∈ Fq if and only if either x = 0 or x`(q−1) = 1.
Hence, since yqn−1

+ yqn−2
+ · · ·+ y is the image of y by the trace of Fqn over Fq, we have

N(An,q,`,qn) = qn−1 · (gcd(`(q−1),qn−1)+1) .

�

Proposition 4.1 means that we can apply Corollary 3.3 to the curve An,q,`, and we deduce
the following result:
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Corollary 4.2. Let N := N(An,q,`,qn), let {P1, . . . ,PN} be the set of Fqn-rational points of
An,q,`, and let D = P1 + · · ·+PN be a divisor of χ̃An,q,` . Then, for any nonnegative integer
m, the AG code (defined from χ̃An,q,`) given by C(D,mP∞) is self-orthogonal if

2(m+1)≤ (qn−1−1)(`−1)+qn−1(µ ·gcd(`(q−1),qn−1)+1),

where µ := 1 if p divides gcd(`(q−1),qn−1)+1 and µ := 0 otherwise.

Remark 4.3. In [36, Example 2] the authors consider curves An,q,` with ` | (qn−1)/(q−
1) and show that, when ` ≡ 1(mod p), the pointed curves (χ̃An,q,`,P∞) satisfy the hy-
potheses of Lemma 2 of [36]. Hence, in these cases, this lemma implies that the code
C(D,mP∞) (defined as in Corollary 4.2) is self-orthogonal if

2(m+1)≤ (qn−1−1)(`−1)+qn−1(`(q−1)+1).

Corollary 4.2 gives a larger family of curves An,q,` which do not necessarily satisfy the
hypotheses of Lemma 2 of [36] (see Remark 3.9).

Lastly in this section, we show that the pointed curve (χ̃An,q,`,P∞) is almost never a Castle
curve. Proposition 2 of [36] can only be applied to (χ̃An,q,`,P∞) when the curve is Castle.

Note that we never have `= qn−1 because ` is relatively prime to p.

Proposition 4.4. (1) If ` < qn−1 the pointed curve (χ̃An,q,`,P∞) is never a Castle curve.

(2) If ` > qn−1 the pointed curve (χ̃An,q,`,P∞) is a Castle curve if and only if
gcd(`,(qn−1)/(q−1)) = 1.

Proof. Let s be the smallest nonzero element of the Weierstraß semigroup at P∞. We
know that the number of (affine) points is qn−1(e+1) so the curve is Castle if and only if
s = qn−2(e+1).

Notice that e is a multiple of q−1, since e = (q−1)gcd(`,(qn−1)/(q−1)).

Proof of (1) : Suppose ` < qn−1. In this case the smallest element of the Weierstraß semi-
group is ` i.e. s = `. But we always choose ` to be relatively prime to p, so we cannot
have `= qn−2(e+1) for n > 2. Therefore the curve is never Castle in this case.

If n = 2 the curve is Castle iff `= e+1. Then e = `−1, but also e = (q−1)gcd(`,q+1).
If gcd(`,q+ 1) = 1 then ` = q, which is impossible. If gcd(`,q+ 1) > 1 then there is a
divisor of ` which is also a divisor of `−1, which is impossible.

Proof of (2) : Suppose ` > qn−1 In this case the smallest element of the Weierstraß semi-
group is qn−1 i.e. s= qn−1. The curve is Castle if and only if q= e+1. However e= q−1
if and only if gcd(`,(qn−1)/(q−1)) = 1, by the definition of e. �
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5. CURVES Bq,G

Let n be a positive integer and consider a polynomial G(x) ∈ Fq[x] such that deg(G)> q
and gcd(p,deg(G)) = 1. Consider the unique polynomial Trn(G)(z) ∈ Fq[z] with degree
at most qn−1 such that Trn(G)(a) = TrFqn/Fq(G(a)) for all a ∈ Fqn . We will assume that

(1) Trn(G) is separable, and
(2) all roots of Trn(G) belong to Fqn .

For such G, we define Bq,G to be the affine curve (over Fq) with equation yq− y = G(x).
Notice that, by [32, Th. 2.25], the set of Fqn-rational points of Bq,G is {(a,b) ∈ F2

qn |
Trn(G)(a) = 0 and bq−b = G(a)}.

The following proposition refers to the statement of Theorem 3.1.

Proposition 5.1. (1) Let C = Bq,G and let F = Fqn . Then C is smooth over F and C has
only one place at infinity. The set A in the statement of Theorem 3.1 is equal to the set of
all x-coordinates of the Fqn-rational points of C.

(2) Moreover

fA (z) = γ ·Trn(G)(z)

for some γ ∈ Fq \ {0}, and the number of Fqn-rational points of Bq,G is N(Bq,G,qn) =

q ·deg(Trn(G)).

Proof. (1) First of all, notice that the curve Bq,G is smooth and has only one place at
infinity by Lemma 3.10.

Second, if a is the x-coordinate of an Fqn-rational point of Bq,G, then the equation yq−y =
G(a) has q distinct solutions in Fqn . Indeed, since yq−y = G(a) has, at least, one solution
b ∈ Fqn , it is obvious that the set of all solutions is {b+α | α ∈ Fq}. Hence, an analogous
reasoning as in the proof of Theorem 3.1 shows that La and Bq,G are Fqn transversal.

(2) This follows from part (1) because Trn(G) is a separable polynomial and all its roots
belong to Fqn . Finally, the counting of Fqn-rational points is easy to check. �

Using Proposition 5.1 we can apply Corollary 3.3 to the curve Bq,G and deduce the fol-
lowing result:

Corollary 5.2. Let N := N(Bq,G,qn), let {P1, . . . ,PN} be the set of Fqn-rational points of
Bq,G, and let D = P1 + · · ·+PN be a divisor of χ̃Bq,G .

Then, for any nonnegative integer m, the AG code (defined from χ̃Bq,G) given by C(D,mP∞)

is self-orthogonal if

2(m+1)≤ (q−1)(deg(G)−1)+q · (deg(Trn(G))−deg(Trn(G)′)).
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For the rest of this section we will consider the special case that G(x) = Hk(x) where
Hk(x) := xqk+1 +x, and n = 2k, and gcd(n, p) = 1. First we must verify the conditions on
Hk in order to apply Corollary 5.2.

Lemma 5.3. Assume q is odd, let k be a positive integer such that gcd(p,2k) = 1, and let
n = 2k. Then (1) Trn(Hk) is separable, and (2) all roots of Trn(Hk) belong to Fqn .

Proof. Notice that, for all a ∈ Fqn , it holds that

TrFqn/Fq(Hk(a)) = TrFqn/Fq(a
qk+1)+TrFqn/Fq(a)

= 2(aqk+1 +aqk+1+q +aqk+2+q2
+ · · ·+aq2k−1+qk−1

)+TrFqn/Fq(a).

Therefore:

Trn(Hk)(z) = 2(zqk+1 + zqk+1+q + zqk+2+q2
+ · · ·+ zq2k−1+qk−1

)+(z+ zq + zq2
+ · · ·+ zqn−1

)

and we can see that the degree of Trn(Hk)(z) is qn−1+qk−1. Computing the derivative we
have

Trn(Hk)
′(z) = 2zqk

+1 = 2(z+1/2)qk
.

Notice that Trn(Hk)
′ has only one root (namely −1/2) which has multiplicity qk. More-

over Hk(−1/2) = −1/4; so Trn(Hk)(−1/2) = −n/4, which is not zero because p does
not divide n. Hence Trn(Hk) is separable because it is relatively prime to its derivative.
This proves (1).

The number of Fqn-rational points of Bq,Hk is

N(Bq,Hk ,q
n) = qn +qk

which is proved in [34, Thm 20]. It then follows from the degree calculation above that

N(Bq,Hk ,q
n) = q ·deg(Trn(Hk)).

Hence all the roots of Trn(Hk) belong to Fqn . This proves (2). �

Assume then that q is odd, let k be a positive integer such that gcd(p,2k) = 1 and consider
the curve Bq,Hk over the field Fqn where n := 2k. The curve Bq,Hk satisfies the hypotheses
of Corollary 5.2; and in addition we have shown that

fA (z) =
1
2

Tr(Hk)(z) and f ′A (z) = (z+1/2)qk
.

As a consequence we may apply Corollary 5.2 to the curves Bq,Hk : yq− y = xqk+1 + x.
We get that, for any positive integer m, the associated AG code C(D,mP∞) (with D as in
Corollary 5.2) is self-orthogonal if

(5.1) 2(m+1)≤ qn.
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Remark 5.4. Notice that none of the pointed curves Bq,Hk discussed here satisfies Lemma
2 of [36] (see Remark 3.9). None of the curves Bq,Hk is Castle either, because the smallest
element of the Weierstraß semigroup is q, and the number of (affine) rational points is not
equal to q2. Hence [36, Prop. 2] cannot be applied.

6. CURVES Cq,`

Let ` be a positive integer such that gcd(p, `) = 1. Let Cqs,` be the affine plane curve
defined by the equation yqs− y = x`. We consider the curve over Fqn .

We consider two special cases here, firstly when s = 1 and n = 2, and secondly for arbi-
trary s > 1 and n with an extra hypothesis.

6.1. Curves Cq,`. Assume that q is odd and 2gcd(`,q+1) divides q+1. Let Cq,` be the
affine plane curve defined by the equation yq− y = x`. We consider the curve over Fq2 .

The following Proposition refers to the statement of Theorem 3.1.

Proposition 6.1. (1) Let C =Cq,` and F = Fq2 . Then C is smooth over F and C has only
one place at infinity. The set A in the statement of Theorem 3.1 is equal to the set of all
x-coordinates of the Fq2-rational points of C.

(2) Moreover, fA (z) = ze+1− z, where e := gcd(`(q− 1),q2− 1), and the number of
Fq2-rational points of C is N(Cq,`,q2) = q · (e+1).

Proof. By Lemma 3.10 it holds that Cq,` is smooth, it has only one place at infinity, and
the genus of χ̃Cq,` is (q−1)(`−1)/2. The set of Fq2-rational points of Cq,` is

{(a,b) ∈ Fq2 | bq−b = a`}

which implies TrFq2/Fq(a
`) = 0. For each a with TrFq2/Fq(a

`) = 0 there are q solutions

for b. Then a`+ a`q = 0 which implies a = 0 or a`(q−1) = −1. If a 6= 0, the assumption
2gcd(`,q+1) divides q+1 implies that there are e solutions for a, where e := gcd(`(q−
1),q2−1). So N(Cq,`,q2) = q(e+1).

Similar arguments to those given in Section 4 for An,q,` show that the curve Cq,` sat-
isfies the hypotheses of Theorem 3.1 for F = Fq2 , and that the set A consists of the
x-coordinates of the Fq2-rational points. Moreover, it is easy to check that

fA (z) = ze+1− z.

�

Proposition 6.1 means that we can apply Corollary 3.3 to the curve Cq,`, and we deduce
the following result:
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Corollary 6.2. Let N := N(Cq,`,q2), let {P1, . . . ,PN} be the set of Fq2-rational points of
Cq,`, and let D = P1 + · · ·+PN be a divisor of χ̃Cq,` .

Then, for any nonnegative integer m, the AG code (defined from χ̃Cq,`) given by C(D,mP∞)

is self-orthogonal if

2(m+1)≤ (q−1)(`−1)+q(e+1)−µ · eq

where µ := 0 if p divides e+1 and µ := 1 otherwise.

Remark 6.3. Notice that the derivative f ′A (z) is constant if and only if p divides e+ 1.
Lemma 2 of [36] (see Remark 3.9) can only be applied if p divides e+ 1. Our result
includes the case that p does not divide e+1.

Proposition 6.4. (1) If ` < q the pointed curve (χ̃Cq,`,P∞) is never a Castle curve.

(2) If ` > q the pointed curve (χ̃Cq,`,P∞) is a Castle curve if and only if
gcd(`,q+1) = 1.

Proof. The curve is Castle if and only if s = e+1 where s is the smallest nonzero element
of the Weierstraß semigroup. Also note that e = (q−1)gcd(`,q+1).

(1) If ` < q then s = `, so the curve is Castle if and only if e = `−1 which is impossible.

(2) If ` > q then s = q, so the curve is Castle if and only if e = q− 1, which happens if
and only if gcd(`,q+1) = 1. �

Proposition 2 of [36] cannot be applied to (χ̃Cq,`,P∞) if the curve is not Castle, however
our result applies in all cases.

6.2. Curves Cqs,`. Let s and n be positive integers such that n is a multiple of s and n/ns
` is

a multiple of p, where ns
` denotes the cardinality of the cyclotomic coset of ` with respect

to qs, that is, the cardinality of the set {`q jsmod (qn−1) | j = 0, . . . ,n−1}.

The key fact in this case is that Trqn/qs(x`) = n
ns
`
(x`+ x`·q

s
+ · · ·+ x`·q

(ns
`−1)s

), and this is
always 0 because n

ns
`
≡ 0 (mod p). Therefore any element of Fqn has trace equal to zero.

So following same arguments as in previous subsections we have the following result.

Proposition 6.5. Let C =Cqs,` and F = Fqn . If n
ns
`

is divisible by p then

(1) C is smooth over F and C has only one place at infinity. The set A in the statement of
Theorem 3.1 is equal to the set of all x-coordinates of the Fqn-rational points of C.

(2) Moreover, A = Fqn and fA (z) = zqn− z, and the number of Fqn-rational points of C
is N(Cqs,`,qn) = qn+s.

Hence, applying Corollary 3.3 we have that the code over Fqn given by C(D,mP∞) (with
D as in Corollary 3.2) is self-orthogonal if

2(m+1)≤ (q−1)(`−1).
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We note that these codes are of Type I, that is, the derivative of fA (z) is constant.

7. APPLICATION TO QUANTUM CODES

In this section we will use the results of the previous sections to construct new quantum
error-correcting codes. We point out that the number of rational points on our curves is al-
ways greater than the field size. We will show that our curves beat the Gilbert-Varshamov
bound.

Recall that the Hermitian inner product of any two vectors x = (x1,x2, . . . ,xN) and y =

(y1,y2, . . . ,yN) in the vector space FN
q2 is defined as x ·h y = ∑xiy

q
i and the Euclidean inner

product of x and y in FN
q as x ·y = ∑xiyi. Given a linear code C in FN

q2 (respectively, FN
q ),

the Hermitian (respectively, Euclidean) dual space is denoted by C⊥h (respectively, C⊥).

In [10] the following key theorem is stated and in [29] is generalized over any field.

Theorem 7.1. The following two statements hold.

(1) Let C be a linear [N,k,d] error-correcting code over Fq such that C ⊆C⊥. Then,
there exists an [[N,N−2k,≥ d⊥]]q stabilizer quantum code, where d⊥ denotes the
minimum distance of C⊥. If the minimum weight of C⊥ \C is equal to d⊥, then
the stabilizer code is pure and has minimum distance d⊥.

(2) Let C be a linear [N,k,d] error-correcting code over Fq2 such that C ⊆ C⊥h .
Then, there exists an [[N,N − 2k,≥ d⊥h]]q stabilizer quantum code, where d⊥h

denotes the minimum distance of C⊥h . If the minimum weight of C⊥h \C is equal
to d⊥h , then the stabilizer code is pure and has minimum distance d⊥h .

Recall that the stabilizer quantum code associated to C , as in the previous theorem, is
pure if the minimum distance of C⊥ (or C⊥h) coincides with the minimum Hamming
weight of C⊥ \C (or C⊥h \C ).

Corollary 7.2. The following statements hold:

(1) Let C be a linear [N,k,d] error-correcting code over Fq such that C ⊆ C⊥. If
d > k+1 then there exists an [[N,N−2k,≥ d⊥]]q stabilizer quantum code which
is pure.

(2) Let C be a linear [N,k,d] error-correcting code over Fq2 such that C ⊆ C⊥h . If
d > k+1 then there exists an [[N,N−2k,≥ d⊥h]]q stabilizer quantum code which
is pure.

Proof. The result follows from Theorem 7.1 and the fact d⊥ ≤ k+1 (resp., d⊥h ≤ k+1)
by the Singleton bound.

�
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7.1. Euclidean Inner Product. Now we are going to consider codes within the frame-
work of Theorem 3.1, that is, codes C(D,G) associated to curves with equation of the
type F(y) = H(x) such that D = P1 + · · ·+ PN and G = mP∞, with 2g− 2 < m < N
and P1, . . . ,PN ,P∞ being rational points of the curve. The parameters of C(D,G) are
[N,m−g+1,≥ N−m] (see [27]).

Moreover the dual code C(D,G)⊥ = C(D,(2g− 2+ deg(D)− deg(M))P∞ +M−G) has
parameters

(7.1) [N,N−m+g−1,≥ m−2g+2]

Assuming self-orthogonality, Theorem 7.1 provides a quantum code with parameters

(7.2) [[N,N−2(m−g+1),≥ m−2g+2]].

Notice that, by Corollary 7.2, this code is pure if

(7.3) N > 2m−g+2.

We notice here that all the forthcoming examples satisfy the above condition (7.3) and,
therefore, they are pure.

With the same philosophy of the classical Gilbert-Varshamov bound, a sufficient condition
for the existence of pure stabilizer codes with parameters [[N,k,d]]q is given by Feng and
Ma in [14]. Assuming N > k ≥ 2, d ≥ 2 and N ≡ k (mod 2), this condition reads

(7.4)
d−1

∑
i=1

(q2−1)i−1
(

N
i

)
<

qN−k+2−1
q2−1

.

In case N odd and k = 1, the condition is

qN +1 >
d−1

∑
i=1

(
N
i

)
[q(q2−1)i−1 +(−1)i+1(q+1)i−1]

and there exists a similar formula for the case N even and k = 0.

We will use this bound as a measure of goodness of our codes. We will only consider
codes exceeding this bound, i.e., cases in which the parameters q,N,k and d satisfy

(7.5)
d−1

∑
i=1

(q2−1)i−1
(

N
i

)
≥ qN−k+2−1

q2−1
.

We will say that an [[N,k,d]]q quantum code is GV if it fulfills this inequality.

7.1.1. Curves An,q,`. Let ` and n be positive integers (not both equal to 1) such that
gcd(p, `) = 1 and let An,q,` be the curve defined in Section 4. From Corollary 4.2 and
(7.2) it is deduced the following result:
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Theorem 7.3. Let C(D,mP∞) be the code coming from the curve χ̃An,q,` over Fqn as in
Section 4. Assume that

2(m+1)≤ (qn−1−1)(`−1)+qn−1(µ ·gcd(`(q−1),qn−1)+1),

where µ := 1 if p divides gcd(`(q−1),qn−1)+1 and µ := 0 otherwise. Then there exists
a quantum code with parameters

[[N,N−2m+2g−2,≥ m−2g+2]]qn ,

where N = N(An,q,`,qn) = qn−1 · (e+1), g = (qn−1− 1)(`− 1)/2 and e := gcd(`(q−
1),qn−1).

Notice that, under the hypotheses of the above theorem, 2g− 2 < m < N only if µ = 1,
and these cases satisfy the hypotheses of [36, Lemma 2] (they correspond to Type I of
Remark 3.9).

First we give an example where µ = 0.

Example 7.4. Consider the curve A2,9,8, with equation y9 +2x8z+ yz8 = 0. For m = 9 <

2g−2= 54, the quantum code obtained from Theorem 7.3 has parameters [[153,147,3]]34 .
The dimension of C(D,G) and the distance of its dual have been computed using MAGMA.

Next we give an example where µ = 1.

Example 7.5. Consider the curve A2,9,10, with equation y9z+ 2x10 + yz9 = 0. For j =
0, . . . ,381−194 we have quantum codes with parameters

[[729,413−2 j,123+ j]]34,

which correspond to 194 ≤ m ≤ 381. By (7.3) these codes are pure. Moreover they are
GV.

7.1.2. Curves Bq,xqk+1+x. From Section 5 and Eq. (7.2) we get the following:

Theorem 7.6. Asume that gcd(p,2k) = 1 and n = 2k. Consider the curve Bq,Hk , with
equation yq− y = Hk(x) = xqk+1 + x, and the code C(D,mP∞) coming from χ̃Bq,Hk

(over
Fqn), as defined in Section 5. Assume that

2(m+1)≤ qn.

Then there exists a quantum code with parameters

[[qn +qk,qn +qk−2m+2g−2,≥ m− (q−1)qk +2]]qn.

Now we include some examples of quantum codes coming from the above theorem.
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Example 7.7. Consider q = 3, n = 8, k = 4. For j = 0, . . . ,3279−538 we have quantum
codes with parameters

[[6642,5726−2 j,378+ j]]38 ,

which correspond to 538 ≤ m ≤ 3279. By (7.3) these codes are pure. Moreover they are
GV.

Example 7.8. Consider q = 5, n = 6, k = 3. For j = 0, . . . ,7811−1955 we have quantum
codes with parameters

[[15750,12338−2 j,1457+ j]]56,

which correspond to 1955≤m≤ 7811. By (7.3) these codes are pure. Moreover they are
GV.

7.1.3. Curves Cq,`. From Corollary 6.2 and Eq. (7.2) we obtain the following result con-
cerning codes coming from curves in the family given in Section 6.1.

Theorem 7.9. Consider the code C(D,mP∞) coming from the curve χ̃Cq,` over Fq2 under
the assumptions and hypotheses of Corollary 6.2. If

2(m+1)≤ (q−1)(`−1)+q(e+1)−µ ·qe,

where µ = 0 if p divides e+1 and µ = 1 otherwise, then there exists a quantum code with
parameters

[[N,N−2m+2g−2,≥ m− (q−1)(`−1)+2]]q,

where N = N(Cq,`,q2) = q(e+1) and e = gcd(`(q−1),q2−1).

If µ = 0 then the value for m is less than 2g−2 so we have to compute the dimension and
the minimum distance using MAGMA.

Example 7.10. Consider p = 3, n = 4, q = p2 and ` = 5. We choose m = 9 and so we
consider the code C = C(D,9P∞). Using MAGMA we compute that N = 369 (thus the
curve is maximal) and dim(C ) = 3 and d(C⊥) = 3, so there exists a quantum code with
parameters [[369,363,≥ 3]]34 .

We present now an example where µ = 1; notice that this satisfies the hypothesis of [36,
Lemma 2].

Example 7.11. Consider p = 3, n = 6, q = p3 and `= 7. For j = 0, . . . ,2508−313, there
exist quantum codes with parameters

[[4941,4469−2 j,159+ j]]36

which correspond to 313 ≤ m ≤ 2508. By (7.3) these codes are pure. Moreover they are
GV.
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7.2. Hermitian Inner Product. Let F = Fq2 , q being a power of a prime number. Within
this framework, the results of Section 3 can be applied to obtain quantum codes by using
Hermitian inner product instead of Euclidean inner product.

Notice that x ·h y = 0 if and only if x · yq = 0. For any linear code C we have therefore
that C ⊆ C⊥h if and only if C q ⊆ C⊥. For AG codes we have that C(D,G)q ⊆C(D,qG).
Hence if C(D,qG)⊆C(D,G)⊥ then

C(D,G)q ⊆C(D,qG)⊆C(D,G)⊥

and, therefore, C(D,G) ⊆C(D,G)⊥h . So we can trivially extend previous results (Theo-
rem 3.1 and Corollaries 3.2, 3.3, and 3.6) using the latter observation.

Theorem 7.12. Let F be as before and let C, g, A , f ′A , M, D and G be as in Theorem
3.1. Then:

(a) If (q+1)G≤ (2g−2+deg(D)−deg(M))P∞ +M then C(D,G)⊆C(D,G)⊥h .
(b) If G=mP∞, with m∈N, and (q+1)m≤ 2g−2+deg(D)−deg(M) then C(D,G)⊆

C(D,G)⊥h .
(c) If G = mP∞, with m ∈ N, the curve C has an equation of the type F(y) = G(x),

where F,G are polynomials with coefficients in F, and

(q+1)m≤ 2g−2+deg(D)−deg( f ′A )deg(F) or (q+1)m≤ 2g−2+deg(F),

then C(D,G)⊆C(D,G)⊥h .

Notice that the values m satisfying parts (b) and (c) of Theorem 7.12 are not bigger than
2g−2. Hence, in practice, we are forced to compute the minimum distance of associated
quantum codes with MAGMA. Finally we provide two examples applying Theorem 7.12.

Example 7.13. Applying Theorem 7.12 to the code of Example 7.4 we can produce a
quantum code with parameters [[153,147,3]]32 . By (7.3) these codes are pure. Moreover
they are GV.

Example 7.14. Similarly, considering the curve C9,5 from Section 6 (with equation y9 +

2x5z4+2yz8 = 0), with q = 9, n = 4, `= 5, for m = 9 < 2g−2 = 30 we have the quantum
code [[369,363,3]]32 . By (7.3) these codes are pure. Moreover they are GV.

7.3. Comparison with other papers. As we already mentioned in this paper, we obtain
new results for any curve where the divisor M in Theorem 3.1 is not equal to zero. All the
examples in [36] are the special case of our results when M = 0.

Jin and Xing have the following interesting result in [28]: If

deg(G)<
N
2
(1− 1

N
+ logq(1−

1
q
)− logq(2)).

and q is even then there exists an equivalent code to C(D,G) over Fq which is Euclidean
Self-Orthogonal.
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We compare some curves and codes with this result in the case G = mP∞. We now present
some examples of curves that satisfy the hypotheses of Theorem 3.1 and where the divisor
M is nonzero (checked with Magma).

Example 7.15. Here q = 2 and n = 6. The curve is defined by F(y) = H(x) where

F(y) = y16 + y4 + y

H(x) = x17 + x13 + x6 + x4 + x3 + x+1.

The Jin-Xing bound implies that there exists a self-orthogonal code (from some curve) for
m≤ 66.27, and our bound in Theorem 3.1 implies that there exists a self-orthogonal code
(from this curve) for m≤ 135.5.

There is something of additional interest in the previous example; our bound is tight. We
confirmed with Magma that the AG code is self-orthogonal for m ≤ 135 and NOT self-
orthogonal for m = 136. This shows that, in some sense, our bound cannot be improved.

Example 7.16. q = 2, n = 7

F(y) = y8 + y4 + y

H(x) = x29 + x17 + x15 + x13 + x12 + x11 + x9 + x4 + x+1,

See Table 1 for the range of values for m.

Example 7.17. q = 2, n = 8

F(y) = y64 + y16 + y4 + y

H(x) = x67 + x63 + x61 + x58 + x56 + x54 + x53 + x52 + x50 + x49 + x48 + x46 + x45 + x44 +

x39 +x37 +x36 +x35 +x34 +x33 +x31 +x29 +x23 +x20 +x16 +x15 +x14 +x10 +x8 +x4 +

x3 +1,

See Table 1 for the range of values for m.

[28] This paper
Example 3.5 nothing for q odd 17≤ m≤ 129
Example 7.15 m≤ 66 m≤ 135
Example 7.16 m≤ 78 m≤ 101
Example 7.17 m≤ 1902 m≤ 2398
Example 7.7 nothing for q odd m≤ 3279
Example 7.8 nothing for q odd m≤ 7811
Example 7.10 nothing for q odd m≤ 2508

Table 1

Any example with q odd will improve on [28] because the bound in that paper for Eu-
clidean codes is not valid when q is odd. From our infinite families we list three examples
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in the table. They do not appear in [36] because the divisor M is nonzero, as we proved in
the earlier sections.
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[35] Munuera, C., Sepúlveda, A., Torres, F.: Castle curves and codes, Adv. Math. Commun. 3, 399–
408 (2009)

[36] Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes
of Castle Type. Quant. Inf. Process. 15, 4071–4088 (2016)

[37] Pellikaan, R., Shen, B.Z., van Wee, G. J. M.: Which linear codes are Algebraic-Geometric. IEEE
Trans. Inform. Theory 37, 583–602 (1991)

[38] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. In: Proc. 35th ann. symp. found. comp. sc. IEEE Comp. Soc. Press, pp. 124–134 (1994)

[39] Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A
52 R2493 (1995).

[40] Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A
452, 2551–2557 (1996)

[41] Stichtenoth, H.: Algebraic Function Fields and Codes. Springer-Verlag, Berlin-Heidelberg (2009)
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