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Abstract. In this paper we study nonlinear diameter preserving mappings defined between func-

tion spaces and obtain generalizations of, basically, all known results concerning diameter pre-

servers. In particular, we give a complete description for algebras of continuously differentiable

functions, (little) Lipschitz algebras and dense function spaces.

1. Introduction

There has been always considerable interest in characterizing maps between spaces of functions

that preserve a certain property or family of functions. There is a vast history in such problems when

the map is assumed to be linear, the so-called linear preserver problems. Here we can include linear

maps which are norm preserving (Banach-Stone type theorems), disjointness preserving, diameter

preserving, spectrum preserving, etc. (see, e.g., [5], [11], [22], [18], [15]).

More recently, however, there has been an increasing interest in not considering linearity a priori.

Thus, in [17], K. Jarosz proved that a not necessarily linear isometry between spaces of continuous

functions is a composition operator in modulus. Subsequent papers have dealt with finding nonlinear

conditions for isometries to be composition or weighted composition operators (see, e.g., [26]). Other

authors, however, have focused primarily on nonlinear maps which preserve some property or subset

of the spectrum of the functions, known as spectral preserver problems (see, e.g., [23], [25], [13]).

Following this trend of interest in nonlinear mappings, in this paper we focus on (not necessarily

linear) diameter preserving maps defined between function algebras, that is, maps which preserve the

diameter of the range of the functions. Besides the sup-norm, the diameter of the range is another

possibility to measure the functions and even has been proved to be more appropriate with regard

to isometries in certain contexts than the sup-norm (see [22, p. 57]). In its linear version, these

maps, which are indeed linear isometries with respect to the diameter (semi)norm, were introduced

by Győry and Molnár ([12]) and have been studied intensively by many authors since then (see e.g.,
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[7], [24], [6], [9], [2], [1], [3], and [4]). More recently, in [14], the authors studied linear diameter

preserving maps between function spaces and extended the previous results. They also gave an

example showing that their assumptions cannot be removed. Basically these papers show that, in a

wide range of contexts, linear diameter preserving mappings can be written as the sum of a weighted

composition operator and a linear functional.

Without assuming linearity, we provide a representation for diameter preserving mappings defined

between two function algebras, A1 and A2, as the sum of an element of A2, a weighted composition

operator and a functional on A1. Similar questions have been addressed in [16] for dense function

spaces with different techniques. Here we study nonlinear diameter preserving mappings between

function spaces and obtain generalizations of, basically, all known results concerning linear and

nonlinear diameter preserving mappings. In particular, a complete description of such maps is given

if we consider algebras of continuously differentiable functions, (little) Lipschitz algebras and dense

function spaces.

2. Preliminaries

For a compact Hausdorff space X, the algebra of all continuous scalar-valued functions on X is

denoted by C(X). For any f ∈ C(X), diam(f) is the diameter of the range of f . A linear subspace

(resp. subalgebra) A of C(X) is called a function space (resp. function algebra) if A contains the

constant functions and separates the points of X.

Let A be a linear subspace of C(X). A nonempty subset E of X is called a boundary for A if each

function in A attains its maximum modulus within E. The Choquet boundary for A, Ch(A), consists

of all x ∈ X such that the evaluation functional δx at x is an extreme point of the closed unit ball

of the dual space of (A, ‖.‖∞) and is a boundary for A. Clearly, Ch(A) = Ch(A), where A is the

closure of A in C(X) endowed with the supremum norm ‖.‖∞. For any two points x, x′ ∈ Ch(A),

we shall write δx,x′ := δx − δx′ .

LetX be a compact Hausdorff space, and let C denote the space of all the constant functions. For a

function space A on a compact Hausdorff space X, by Ad we mean the quotient space A/C endowed

with the diameter norm, ‖π(f)‖d :=diam(f) for all f ∈ A, where π is the natural quotient map

π : A→ A/C, and (A∗d, ‖ · ‖∗d) is its dual space. Moreover, we denote the closed unit ball of the dual

space A∗d by BA∗d and the set of its extreme points by ext(BA∗d). Since Ad is isomorphic to a quotient

of A, then A∗d is isomorphic to a subspace of A∗ = (A, ‖.‖∞)∗. In fact, A∗d = {µ ∈ A∗ : µ(X) = 0}.

Given two function spaces A and B, a map (not assumed to be linear) T : A → B is called

diameter preserving if diam(f − g) =diam(Tf − Tg) for all f, g ∈ A.

Let A be a function space on a compact Hausdorff space X. By an argument similar to the proof

of [10, Theorem 1], we can deduce that ext(BA∗d) is a nonempty subset of {αδx,x′ : x, x′ ∈ Ch(A), x 6=
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x′, α ∈ T}, where T is the unit sphere of C. Then the set

dch(A) := {{x1, x2} : δx1,x2
∈ ext(BA∗d)},

introduced without any study in [3], is a nonempty set. Furthermore, {x1, x2} ∈ dch(A) if and only

if (x1, x2) belongs to the Choquet boundary of the linear subspace

A−A := {h ∈ C(X ×X) : h(x, y) = h1(x)− h1(y), h1 ∈ A}

of C(X ×X) ([14, Proposition 2.2]). Moreover, we can define

X̃ := {x ∈ Ch(A) : δx,x′ ∈ ext(BA∗d) for somex′ ∈ Ch(A)}.

Let us note that X̃ = {x ∈ Ch(A) : {x, x′} ∈ dch(A) for somex′ ∈ Ch(A)}.

Finally, let us remark that for a function space A on a compact Hausdorff space X, the set

{δx : x ∈ X} is not necessarily linearly independent in (A, ‖ · ‖∞)∗, but it is true for function

algebras. To see this, assume that x1, ..., xn are distinct points in X and α1, ..., αn ∈ C such that∑n
i=1 αiδxi = 0 on A. Then by applying this equation to a function fi ∈ A, i ∈ {1, ..., n}, with

fi(xi) = 1 and fi(xj) = 0 for all j ∈ {1, ..., n} \ {i}, we get easily every αi = 0. Let us note that,

the set {δx : x ∈ X} is linearly independent in (A, ‖ · ‖∞)∗ if and only if for any distinct points

x1, ..., xn ∈ X there exist functions f1, ..., fn ∈ A as above. We also refer to [14] for more details

and to [20] for any concept related to function algebras.

3. Diameter preserving mappings

The following is our main result, which can be considered the non-linear version of [14, Theorem

3.1].

Theorem 3.1. Let Ai, i = 1, 2, be function spaces on compact spaces Xi such that the set {δx :

x ∈ Xi} is linearly independent in (Ai, ‖.‖∞)∗ and dch(A1) = {{x, x′} : x, x′ ∈ X̃1, x 6= x′}. A (not

necessarily linear) surjection T : A1 → A2 is a diameter preserving map if and only if there exist a

homeomorphism ψ : X̃2 → X̃1, a scalar λ ∈ T and a functional L : A1 → C such that either

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2), or

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2).

Proof. Assume that the surjection T : A1 → A2 has the mentioned representation with ψ, λ, L as

in the statement above. For i = 1, 2, we recall that

Ai −Ai = {h ∈ C(Xi ×Xi) : h(x, y) = h1(x)− h1(y), h1 ∈ Ai}.
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Let f, g ∈ A1. Since Ch(Ai − Ai) is a boundary for Ai − Ai, then there exist {x, x′} ∈ dch(A1)

and {y, y′} ∈ dch(A2) such that diam(f − g) = |(f − g)(x) − (f − g)(x′)| and diam(Tf − Tg) =

|(Tf − Tg)(y)− (Tf − Tg)(y′)|. Hence from the representation of T we conclude that

diam(f − g) = |(f − g)(x)− (f − g)(x′)|

= |(Tf − Tg)(ψ−1(x))− (Tf − Tg)(ψ−1(x′))|

≤ diam(Tf − Tg) = |(Tf − Tg)(y)− (Tf − Tg)(y′)|

= |(f − g)(ψ(y))− (f − g)(ψ(y′))| ≤ diam(f − g),

which shows that diam(f − g) =diam(Tf − Tg).

We next prove the converse through several steps. Let us first introduce the following map Td : A1d → A2d

Td(π(f)) = π(Tf),

which is a surjective isometry under the diameter norm, i.e., ‖Td(π(f))−Td(π(g))‖d = ‖π(f)−π(g)‖d
for all f, g ∈ A1, since diam(f − g)=diam(Tf − Tg) for all f, g ∈ A1. Based on Td, we can define

the map T̃d := Td − Td(π(0)).

Step 1. T̃d : A1d → A2d is a surjective real-linear isometry with respect to the diameter norm.

By the Mazur-Ulam theorem ([21]), we can deduce that T̃d = Td − Td(π(0)) is a surjective real-

linear isometry with respect to the diameter norm.

In the sequel we assume that the spaces A1 and A2 consist of complex-valued functions. The

argument for real-valued case is similar and even simpler.

Step 2. There exists a surjective real-linear isometry T∗ : A∗2d → A∗1d such that

Re(T∗Λ)(π(f)) = ReΛ(T̃d(π(f))) (f ∈ A1,Λ ∈ A∗2d).

If T̃d is a complex-linear, we let T∗ be the adjoint operator T̃ ∗d of T̃d, from A∗2d onto A∗1d, which is

a complex-linear isometry such that (T̃ ∗dΛ)(π(f)) = Λ(T̃d(π(f))) for all f ∈ A1 and Λ ∈ A∗2d. Now

suppose that T̃d is just real-linear. According to [19, Lemma 3.1], there exists a real-linear isometry

T∗ from A∗2d onto A∗1d satisfying the mentioned property.

Step 3. Let {y, y′} ∈ dch(A2). Then either T∗(iδy,y′) = iT∗(δy,y′) or T∗(iδy,y′) = −iT∗(δy,y′).
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Since T∗ : A∗2d → A∗1d is a real-linear bijective isometry, we infer that T∗(ext(BA∗2d)) = ext(BA∗1d).

Then there exist α, α′ ∈ T and {x, x′}, {x1, x′1} ∈ dch(A1) such that T∗(δy,y′) = αδx,x′ and

T∗(iδy,y′) = α′δx1,x′1
. Let us assume, with no loss of generality, that the order of appearance of

the common points of Ch(A1) in αδx,x′ and α′δx1,x′1
(if there exist) is the same. It is apparent that(

1√
2

+ i√
2

)
δy,y′ ∈ ext(BA∗2d) and so T∗

((
1√
2

+ i√
2

)
δy,y′

)
∈ ext(BA∗1d). Hence T∗

((
1√
2

+ i√
2

)
δy,y′

)
=

α′′δx2,x′2
for some α′′ ∈ T and {x2, x′2} ∈ dch(A1). On the other hand, from the real-linearity of T∗,

T∗

((
1√
2

+
i√
2

)
δy,y′

)
=

1√
2
T∗(δy,y′) +

1√
2
T∗(iδy,y′).

Hence α′′δx2,x′2
= 1√

2
αδx,x′ + 1√

2
α′δx1,x′1

. Now since the set {δx : x ∈ X1} is linearly independent

in (A1, ‖.‖∞)∗, it is not difficult to conclude that {x, x′} = {x1, x′1} = {x2, x′2}. Moreover we have

either α′′ − 1√
2
α− 1√

2
α′ = 0 or α′′ + 1√

2
α + 1√

2
α′ = 0. Setting α = a+ ib and α′ = a′ + ib′, where

a, a′, b, b′ ∈ R, we have (
a√
2

+
a′√

2

)2

+

(
b√
2

+
b′√
2

)2

= 1,

which yields aa′+bb′ = 0. Thus, Re(α′ᾱ) = 0 and so α′ᾱ = i or α′ᾱ = −i, since αα′ ∈ T. Therefore,

we have either T∗(iδy,y′) = iT∗(δy,y′), or T∗(iδy,y′) = −iT∗(δy,y′).

Step 4. Φ : dch(A1)→ dch(A2) defined by Φ{x1, x2} := supp(T−1∗ (δx1,x2)) is a bijective map.

We first note that Φ is well-defined since T−1∗ (ext(BA∗1d)) = ext(BA∗2d). If {x1, x2} and {x3, x4} are

distinct elements of dch(A1) such that Φ{x1, x2} = Φ{x3, x4}, then there exist {y1, y2} ∈ dch(A2),

β1, β2 ∈ T such that T−1∗ (δx1,x2
) = β1δy1,y2 and T−1∗ (δx3,x4

) = β2δy1,y2 . Thus, δx1,x2
= T∗(β1δy1,y2)

and δx3,x4 = T∗(β2δy1,y2). Now applying Step 3, and from the real-linearity of T∗, it follows that

either δx1,x2
= β1T∗(δy1,y2) or δx1,x2

= β̄1T∗(δy1,y2), and also either δx3,x4
= β2T∗(δy1,y2) or δx3,x4

=

β̄2T∗(δy1,y2). Then, αδx1,x2
+ α′δx3,x4

= 0 for some α, α′ ∈ T, which contradicts the fact that the

set {δx : x ∈ X1} is linearly independent in (A1, ‖.‖∞)∗. Therefore, Φ is injective. The surjectivity

of Φ is easily obtained since T∗(ext(BA∗2d)) = ext(BA∗1d).

Step 5. There exists an injective map ϕ : X̃1 → Ch(A2) and a scalar β ∈ T such that for each

x, x′ ∈ X̃1, T−1∗ (δx,x′) = βδϕ(x),ϕ(x′).

If card(X̃1) = 2, then there is only one point in dch(A1) and the claim is proved easily. So let us

suppose that card(X̃1) > 2. In this case we divide the proof into three parts as follows:

(i) Let x ∈ X̃1. We shall next show that for each pair of different points x1, x2 ∈ Ch(A1) distinct

from x and such that {x1, x}, {x, x2} ∈ dch(A1), which exists because dch(A1) = {{x, x′} : x, x′ ∈

X̃1, x 6= x′}, we have card(Φ{x1, x} ∩ Φ{x2, x}) = 1.
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It is apparent, due to the injectivity of Φ, that card(Φ{x1, x} ∩ Φ{x2, x}) 6= 2. Therefore, let

us suppose that card(Φ{x1, x} ∩ Φ{x2, x}) = 0. By the assumption, T−1∗ (δx1,x2
) = T−1∗ (δx1,x) +

T−1∗ (δx,x2
) ∈ T−1∗ (ext(BA∗1d)) = ext(BA∗2d). Then, since ext(BA∗2d) is included in the set {αδy,y′ :

y, y′ ∈ Ch(A2), y 6= y′, α ∈ T}, it follows that there exists a nonzero linear combination in {δy : y ∈

X2}, a contradiction. This argument yields that card(Φ{x1, x} ∩ Φ{x2, x}) = 1.

We denote the unique point in the intersection Φ{x1, x} ∩ Φ{x2, x} by ϕ(x). Next, it is shown

that ϕ(x) does not depend on the choice of the points x1, x2.

(ii) We prove that ϕ(x) ∈ Φ{x, x′} for each x′ ∈ Ch(A1) such that {x, x′} ∈ dch(A1).

Contrary to what we claim, assume that there exists x3 ∈ Ch(A1) \ {x, x1, x2} such that ϕ(x)

does not belong to Φ{x, x3}. Reasoning as in the above paragraph and since the set {δy : y ∈ X2} is

linearly independent in (A2, ‖.‖∞)∗, we can conclude that there exist distinct points y1, y2 ∈ Ch(A2)\

{ϕ(x)} with Φ{x1, x} = {ϕ(x), y1}, Φ{x2, x} = {ϕ(x), y2} and Φ{x3, x} = {y1, y2}. Furthermore,

T−1∗ (δx1 − δx2) = T−1∗ (δx1,x) + T−1∗ (δx,x2) = βδy1,y2 ,

for some β ∈ T. Then Φ{x1, x2} = {y1, y2}, which contradicts the injectivity of Φ.

From the above argument we can define ϕ : X̃1 → Ch(A2) as the map assigning to each x ∈ X̃1

the unique point ϕ(x). Furthermore, taking into account the injectivity of T−1∗ , it is easily seen that

ϕ is an injective map.

(iii) There is a unique scalar β ∈ T such that for each x, x′ ∈ X̃1, T−1∗ (δx,x′) = βδϕ(x),ϕ(x′).

Assume that x, x′, x′′ are distinct points in X̃1. From the equation T−1∗ (ext(BA∗1d)) = ext(BA∗2d)

and the above discussion, there exist scalars β, β′, β′′ ∈ T such that T−1∗ (δx,x′) = βδϕ(x),ϕ(x′),

T−1∗ (δx,x′′) = β′δϕ(x),ϕ(x′′), and T−1∗ (δx′′,x′) = β′′δϕ(x′′),ϕ(x′). Then since T−1∗ (δx′′,x′) = T−1∗ (δx,x′)−

T−1∗ (δx,x′′), we have

β′′δϕ(x′′),ϕ(x′) = βδϕ(x),ϕ(x′) − β′δϕ(x),ϕ(x′′).

Taking into account that the set {δy : y ∈ X2} is linearly independent, we may choose f ∈ A2 such

that f(ϕ(x)) = 1 and f(ϕ(x′)) = f(ϕ(x′′)) = 0. Next, from evaluating the latter equation at the

function f , it follows that β = β′ = β′′. Now, we can get (iii) immediately.

It is not difficult to see that ϕ(X̃1) = X̃2. Now let ψ := ϕ−1 : X̃2 → X̃1, which is a bijective map

such that T∗(βδy,y′) = δψ(y),ψ(y′) for all y, y′ ∈ X̃2.

Step 6. Let y ∈ X̃2. Then either T∗(iδy,y′) = iT∗(δy,y′) for all y′ ∈ X̃2, or T∗(iδy,y′) =

−iT∗(δy,y′) for all y′ ∈ X̃2.

Take y′ ∈ X̃2 such that T∗(iδy,y′) = iT∗(δy,y′). Clearly, we may assume that y′ 6= y. We

claim that for a given y′′ ∈ X̃2, T∗(iδy,y′′) = iT∗(δy,y′′). Suppose, contrary to what we claim, that
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T∗(iδy,y′′) 6= iT∗(δy,y′′). Hence T∗(iδy,y′′) = −iT∗(δy,y′′), by Step 3, and thus

T∗(iδy′′,y′) = T∗(iδy,y′ − iδy,y′′) = iT∗(δy,y′) + iT∗(δy,y′′) = iT∗(δy,y′ + δy,y′′).

On the other hand, again from Step 3, T∗(iδy′′,y′) = ±iT∗(δy′′,y′) and from the injectivity of T∗, we

conclude that either

δy′′,y′ = δy,y′ + δy,y′′ , or

−δy′′,y′ = δy,y′ + δy,y′′ .

Hence, δy′′ = δy, or δy′ = δy, which is impossible since A2 separates the points of X2. The second

case can be treated similarly.

Step 7. There exist λ ∈ T and a functional L on A1 such that either we have

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2), or

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2).

Given y, y′ ∈ X̃2, from Step 5, we have T∗(βδy,y′) = δψ(y),ψ(y′). Setting β = a + ib (a, b ∈ R),

from the real-linearity of T∗ we get

δψ(y),ψ(y′) = T∗(βδy,y′) = aT∗(δy,y′) + bT∗(iδy,y′).

Hence, according to the previous step, one of the following two cases holds: βT∗(δy,y′) = δψ(y),ψ(y′) (y, y′ ∈ X̃2), or,

βT∗(δy,y′) = δψ(y),ψ(y′) (y, y′ ∈ X̃2).

Assume that we are in the first case. If f ∈ A1, y, y′ ∈ X̃2, then from Step 2 we deduce that

Re(Tf(y)− Tf(y′)− T0(y) + T0(y′)) = Re(δy,y′ T̃d(π(f))) = Re(T∗δy,y′(π(f)))

= Re(βδψ(y),ψ(y′)(π(f)))

= Re(β(f(ψ(y))− f(ψ(y′)))),

moreover,

Im(Tf(y)− Tf(y′)− T0(y) + T0(y′)) = −Re(i(Tf(y)− Tf(y′)− T0(y) + T0(y′)))

= −Re(iδy,y′ T̃d(π(f))) = −Re(iT∗δy,y′(π(f)))

= −Re(iβδψ(y),ψ(y′)(π(f))) = −Re(iβ(f(ψ(y))− f(ψ(y′))))

= Im(β(f(ψ(y))− f(ψ(y′)))),
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and consequently,

Tf(y)− Tf(y′)− T0(y) + T0(y′) = β(f(ψ(y))− f(ψ(y′))).

Similarly, in the second case, if f ∈ A1, y, y′ ∈ X̃2, then we get

Re(Tf(y)− Tf(y′)− T0(y) + T0(y′)) = Re(δy,y′ T̃d(π(f))) = Re(T∗δy,y′(π(f)))

= Re(βδψ(y),ψ(y′)(π(f)))

= Re(β(f(ψ(y))− f(ψ(y′)))).

Furthermore, from Steps 2 and 6, we infer that

Im(Tf(y)− Tf(y′)− T0(y) + T0(y′)) = −Re(i(Tf(y)− Tf(y′)− T0(y) + T0(y′)))

= −Re(iδy,y′ T̃d(π(f))) = −Re(T∗(iδy,y′)(π(f)))

= −Re(−iT∗δy,y′(π(f)))

= −Re(−iβδψ(y),ψ(y′)(π(f))) = −Re(−iβ(f(ψ(y))− f(ψ(y′))))

= −Im(β(f(ψ(y))− f(ψ(y′)))),

and so

Tf(y)− Tf(y′)− T0(y) + T0(y′) = β(f(ψ(y))− f(ψ(y′))).

Setting λ := β̄ we get λ ∈ T and one of the following cases holds:

Tf(y)− Tf(y′)− T0(y) + T0(y′) = λ(f(ψ(y))− f(ψ(y′))) (f ∈ A1, y, y
′ ∈ X̃2), or

Tf(y)− Tf(y′)− T0(y) + T0(y′) = λ(f(ψ(y))− f(ψ(y′))) (f ∈ A1, y, y
′ ∈ X̃2).

Next, define a functional L : A1 → C as follows

L(f) = Tf(y′)− T0(y′)− λf(ψ(y′))? (f ∈ A1),

where y′ is an arbitrary element in X̃2 and f(ψ(y′))? = f(ψ(y′)) in the first case, and f(ψ(y′))? =

f(ψ(y′)) in the second case. From the recent relations, it is easily seen that L is well-defined. Finally,

we derive that either

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2), or

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2).

Step 8. ψ is a homeomorphism.

Let y0 ∈ X̃2 and (yi)i be a net in X̃2 convergent to y0. Since X1 is compact, passing to a subnet

we can assume, without loss of generality, that there exists x0 ∈ X1 such that (ψ(yi))i → x0. It is

enough to show that x0 = ψ(y0). Contrary to what we claim, let us suppose that x0 6= ψ(y0). Then
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there is a neighborhood U of ψ(y0) such that x0 ∈ X1 \ U . Take u ∈ C(X1) with 0 ≤ u ≤ 1 on X1,

u(ψ(y0)) = 1 and u = 0 on X1 \ U . Since ψ(y0) ∈ Ch(A1), from [14, Lemma 2.3] it follows that

sup{Reh(ψ(y0)) : h ∈ A1, Reh ≤ u} = 1. Hence, it is not difficult to see that sup{Reh(ψ(y0)) : h ∈

A1, Reh ≤ u} = 1. Then there exists h ∈ A1 with Reh ≤ u and Reh(ψ(y0)) > 3
4 . We can consider

i0 such that, for all i ≥ i0, |Th(yi)− T0(yi) + T0(y0)− Th(y0)| < 1
4 . On the other hand, since

lim
i→∞

|Th(yi)− T0(yi)− Th(y0) + T0(y0)| = lim
i→∞

|h(ψ(yi))− h(ψ(y0))|

= |h(x0)− h(ψ(y0))|

≥ Reh(ψ(y0))− Reh(x0) ≥ 3

4
,

then, for a sufficiently large index i, |Th(yi)−T0(yi)−Th(y0)+T0(y0)| ≥ 1
4 and this contradicts the

continuity of the function Th− T0. This argument implies that x0 = ψ(y0) and so ψ is continuous.

Similarly, we prove that ϕ (ψ−1) is continuous. Suppose, on the contrary, that (xi)i is a net in

X̃1 convergent to x0 ∈ X̃1 such that (ϕ(xi))i converges to y0 in X2 and y0 6= ϕ(x0). Let V be a

neighborhood of ϕ(x0) with y0 ∈ X2 \ V . As above, since ϕ(x0) ∈ Ch(A2), we can choose k ∈ A2

with Rek(ϕ(x0)) > 3
4 and Rek ≤ 0 on X2 \ V . Then taking h′ ∈ A1 such that Th′ = k + T0, from

lim
i
|h′(xi)− h′(x0)| = lim

i
|k(y0)− k(ϕ(x0))| = |k(ϕ(xi))− k(ϕ(x0))|

≥ Rek(ϕ(y0))− Rek(y0) ≥ 3

4
,

we get a contradiction with the continuity of h′. Therefore, ψ is a homeomorphism. �

Remark 3.2. (1) It is worth mentioning that in the above result, according to [14, Remark 3.2 (2)],

the assumptions that the evaluation functionals are linearly independent and dch(A1) = {{x, x′} :

x, x′ ∈ X̃1, x 6= x′} cannot be removed.

(2) Note that the existence of the homeomorphism ψ : X̃2 → X̃1 implies that A2 also satisfies

the condition that dch(A2) = {{x, x′} : x, x′ ∈ X̃2, x 6= x′}. In other words, ext(BA∗2d) = {αδx,x′ :

x, x′ ∈ X̃2, x 6= x′, α ∈ T}.

(3) It is worth pointing out that if T is assumed to be complex-linear (resp. real-linear) in

Theorem 3.1, then L is complex-linear (resp. real-linear) too and we have either

Tf(y) = λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2), or

Tf(y) = λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X̃2).

We also note that in the complex-linear case, just the first situation happens. So, Theorem 3.1 is a

generalization of most of the known results in the category of linear diameter preservers.
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(4) We would like to remark that our Theorem 3.1 includes all results in [16] with different

techniques. Indeed, the main result of [16], which is a particular case of Theorem 3.1, is as follows.

Let A1 be a dense function space in C(X1) and A2 be a function space such that the evaluation

functionals are linearly independent. If T : A1 → A2 is a diameter preserving, then there exist a

subset X0 of X2, a continuous bijection ψ : X0 → X1, a scalar λ ∈ T and a functional L : A1 → C

such that either

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X0), or

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ X0).

It should be noted, according to Theorem 3.1, that the set X0 is explicitly declared as the non-empty

set X̃2, and the bijection ψ is not only continuous but it is also a homeomorphism. Meantime,

according to our result, the assumption of the regularity of A1 is redundant in [16, Corollary 3.3]

even in the lack of the complex-linearity of T .

Next we provide some interesting consequences of the main theorem. Let us first recall that a

function algebra A on X is a Banach function algebra on X if it is a Banach algebra with respect to

a certain norm. For a Banach function algebra A and f ∈ A, we denote the maximal ideal space of

A and the Gelfand transform of f by MA and f̂ , respectively. The following result is a generalization

of [8, Theorem 3.1].

Corollary 3.3. (1) Let Ai, i = 1, 2, be complex function algebras on compact spaces Xi such that

dch(Ai) = {{x1, x2} : x1, x2 ∈ Ch(Ai), x1 6= x2}. If T : A1 → A2 is a (not necessarily linear)

diameter preserving surjection, then there are a homeomorphism ψ : Ch(A2) → Ch(A1), a scalar

λ ∈ T and a functional L : A1 → C such that either Tf(y) = T0(y)+λf(ψ(y))+L(f) for all f ∈ A1

and y ∈ Ch(A2), or Tf(y) = T0(y) + λf(ψ(y)) + L(f) for all f ∈ A1 and y ∈ Ch(A2).

(2) If A1 and A2 are Banach function algebras in (1), then ψ can be extended to a homeomorphism

ψ̃ from MA2 onto MA1 such that we have either T̂ f = T̂0 + λf̂ ◦ ψ̃ + L(f) for all f ∈ A1 on MA2 ,

or T̂ f = T̂0 + λf̂ ◦ ψ̃ + L(f) for all f ∈ A1 on MA2 .

Proof. (1) Clearly, X̃i = Ch(Ai) (i = 1, 2), and the result is a straightforward consequence of

Theorem 3.1.

(2) By (1), there are a homeomorphism from Ch(A2) onto Ch(A1), a scalar λ ∈ T, and a functional

L : A1 → C such that one of the following two cases will happen:

Case(i). T f(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ Ch(A2)),

Case(ii). T f(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ A1, y ∈ Ch(A2)).
10



Since Ch(A2) is a boundary for A2, then for each f ∈ A1 there is a unique element gf ∈ A2 such

that on Ch(A2) we have gf = f ◦ ψ and gf = f ◦ ψ, respectively, in Case (i) and Case (ii). Hence

by this argument, we can define a map S : A1 → A2 by Sf = gf , and it is easily seen that S is a

real-algebra isomorphism. Moreover, from the representation of T and the fact that the Choquet

boundary is indeed a boundary, it follows that Tf = T0 + λSf + L(f) for all f ∈ A1. Now ψ can

be extended to a function ψ̃ : MA2
−→ MA1

in this way that for every y ∈ MA2
, ψ̃(y) is a member

in MA1
defined by

Case(i). ψ̃(y)(f) = Ŝf(y) (f ∈ A1),

Case(ii). ψ̃(y)(f) = Ŝf(y) (f ∈ A1).

It it is easily proved that ψ̃ is a homeomorphism and for each f ∈ A1 and y ∈MA2
we have either

T̂ f(y) = y(Tf) = y(T0 + λSf + L(f)) = y(T0) + λy(Sf) + L(f) = T̂0(y) + λf̂(ψ̃(y)) + L(f),

or

T̂ f(y) = y(Tf) = y(T0 + λSf + L(f)) = y(T0) + λy(Sf) + L(f) = T̂0(y) + λf̂(ψ̃(y)) + L(f).

�

For n ∈ N∪{∞}, let C(n)(I) denote the function algebra of all n-times continuously differentiable

functions on the interval I = [0, 1]. It is interesting to note that the function algebra C∞(I) is not a

Banach function algebra. In what follows we describe nonlinear diameter preserving maps between

these function algebras.

Corollary 3.4. Let m,n ∈ N ∪ {∞} and let T : C(n)(I) −→ C(m)(I) be a (not necessarily linear)

diameter preserving surjection. Then m = n and there exist a C(n)-diffeomorphism ψ : I −→ I, a

scalar λ ∈ T and a functional L : C(n)(I)→ C such that either

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ C(n)(I), y ∈ I), or

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ C(n)(I), y ∈ I).

Proof. Since C(n)(I) is uniformly dense in C(I), then dch(C(n)(I)) = {{x, x′} : x, x′ ∈ I, x 6= x′} by

[8, Proposition 3.3]. Then, according to Theorem 3.1 (or Corollary 3.3), there exist a homeomorphism

ψ : I −→ I, a scalar λ ∈ T and a functional L : C(n)(I)→ C such that either

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ C(n)(I), y ∈ I), or

Tf(y) = T0(y) + λf(ψ(y)) + L(f) (f ∈ C(n)(I), y ∈ I).
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We now show that ψ ∈ C(m)(I). Let f0 ∈ C(n)(I) be defined by f0(x) = x for all x ∈ I. Then we

have

Tf0(y) = T0(y) + λψ(y) + L(f0) (y ∈ I).

Consequently, ψ = λ(Tf0−T0−L(f0)), which obviously belongs to C(m)(I). Analogously, it can be

shown that ϕ(= ψ−1) ∈ C(n)(I). To see this, choose f1 ∈ C(n)(I) such that Tf1−T0 is the identity

function on I. Hence, from the representation of T , it follows that

ϕ(x) = λf1(x) + L(f1) (x ∈ I), or

ϕ(x) = λf1(x) + L(f1) (x ∈ I),

which yields that ϕ ∈ C(n)(I).

We next prove that m = n. Assume that f ∈ C(n)(I). Thus, g = f ◦ ψ−1 ∈ C(n)(I), and so

Tg(y) = T0(y) + λf(y) + L(g) (y ∈ I), or

Tg(y) = T0(y) + λf(y) + L(g) (y ∈ I).

Consequently, f = λ(Tg − T0 − L(g)), or f = λ(Tg − T0− L(g)), which shows that f ∈ C(m)(I).

Hence, C(n)(I) ⊆ C(m)(I), and then n ≥ m. Similarly, if k ∈ C(m)(I), then g = k◦ψ ∈ C(m)(I), and

so there exists a function h ∈ C(n)(I) such that Th = k ◦ψ+T0. Now from the representation of T ,

it follows that k = λh+L(h), or k = λh+L(h), and thus k ∈ C(n)(I). Whence C(m)(I) ⊆ C(n)(I),

and then m ≥ n. Therefore, m = n. �

Given a compact metric space (X, d), the Lipschitz algebra Lip(X), is the space of all scalar-valued

functions f on X such that L(f) <∞, where L(f) = sup
x 6=x′

|f(x)−f(x′)|
d(x,x′) is the Lipschitz constant of f .

Corollary 3.5. Let X and Y be compact metric spaces and let T : Lip(X) −→ Lip(Y) be a (not

necessarily linear) diameter preserving surjection. Then there exist a bi-Lipschitz homeomorphism

ψ : Y → X, a scalar λ ∈ T and a functional L : Lip(X) → C such that either Tf(y) = T0(y) +

λf(ψ(y)) + L(f) for all f ∈ Lip(X) and y ∈ Y , or Tf(y) = T0(y) + λf(ψ(y)) + L(f) for all y ∈ Y

and f ∈ Lip(X).

Proof. Because of the density of Lipschitz algebras in the space of all continuous functions, from [8,

Proposition 3.3] and Theorem 3.1 (or Corollary 3.3), we deduce that there exist a homeomorphism

ψ : Y → X, a scalar λ ∈ T and a functional L : Lip(X) → C such that either Tf(y) = T0(y) +

λf(ψ(y))+L(f) for all f ∈ Lip(X) and y ∈ Y , or Tf(y) = T0(y)+λf(ψ(y))+L(f) for all f ∈ Lip(X)

and y ∈ Y . Now, by a standard method, we show that ψ is a bi-Lipschitz function. From the given
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representation for T , it follows that for each f ∈ Lip(X), the function f ◦ψ belongs to Lip(Y). Then

we can define the complex-linear map T̃ : (Lip(X), ‖ · ‖L) −→ (Lip(Y), ‖ · ‖L) by

T̃ f = f ◦ ψ (f ∈ Lip(X)),

where the complete norm ‖ · ‖L is the addition of the supremum norm and the Lipschitz constant

of the function. By the Closed Graph theorem, T̃ is a continuous complex-linear map. Hence, there

exists k > 0 such that

‖T̃ f‖L ≤ k‖f‖L (f ∈ Lip(X)).

Let y, y′ ∈ Y . Consider the function fy : X −→ R defined by fy(z) = d(ψ(y), z) for all z ∈ X. It is

easy to see L(fy) ≤ 1 and consequently ‖fy‖L ≤ k′, where k′ = 1+diam(X). Thus, from the above

relations it follows that ‖T̃ fy‖L ≤ kk′, and so

d(ψ(y), ψ(y′)) = |fy(ψ(y′))− fy(ψ(y))| = |T̃ (fy)(y′)− T̃ (fy)(y)| ≤ kk′d(y, y′).

Therefore, the Lipschitz constant L(ψ) ≤ kk′, which says that ψ is a Lipschitz function on Y . A

similar argument shows that ψ−1 is a Lipschitz function on X. �

Let us recall that for a compact metric space (X, d) and α ∈ (0, 1), the little Lipschitz algebra

of order α, lipα(X, d) (or simply, lipα(X)), is the algebra consisting of all scalar-valued Lipschitz

functions f such that lim
d(x,x′)→0

|f(x)−f(x′)|
dα(x,x′) = 0. We remark that a similar result, with the same

proof, is valid for the little Lipschitz algebras of the same order. Of course, this is not a restriction

since, for 0 < α < β < 1, lipα(X, d1) =lipβ(X, d2), where (X, d2) = (X, d
α
β

1 ).

The next corollary shows that our result also holds for a large class of function spaces and,

particularly, includes the results from [16].

Corollary 3.6. Let A and B be dense function spaces in (C(X), ‖.‖∞) and (C(Y ), ‖.‖∞), respec-

tively. If T : A → B is a (not necessarily linear) surjective diameter preserving map, then there

are a homeomorphism ψ : Y → X, a scalar λ ∈ T and a functional L : A → C such that either

Tf(y) = T0(y) + λf(ψ(y)) + L(f) for all f ∈ A and y ∈ Y , or Tf(y) = T0(y) + λf(ψ(y)) + L(f)

for all f ∈ A and y ∈ Y .

Proof. Since A is uniformly dense in C(X) and B is uniformly dense in C(Y ), then Ad is dense in

C(X)d and Bd is dense in C(Y )d. Hence, the induced surjective real-linear isometry T̃d : Ad → Bd

can be extended to a surjective real-linear isometry T̃d : C(X)d → C(Y )d, and then, by the same

proof as in Theorem 3.1, we can conclude the result. �
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