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Abstract Digital Earth was born with the aim of replicating the real world within
the digital world. Many efforts have been made to observe and sense the Earth, both
from space (remote sensing) and by using in situ sensors. Focusing on the latter,
advances in Digital Earth have established vital bridges to exploit these sensors and
their networks by taking location as a key element. The current era of connectivity
envisions that everything is connected to everything. The concept of the Internet of
Things (IoT) emerged as a holistic proposal to enable an ecosystem of varied, hetero-
geneous networked objects and devices to speak to and interact with each other. To
make the IoT ecosystem a reality, it is necessary to understand the electronic com-
ponents, communication protocols, real-time analysis techniques, and the location
of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly
form interrelated infrastructures for addressing today’s pressing issues and complex
challenges. In this chapter, we explore the synergies and frictions in establishing
an efficient and permanent collaboration between the two infrastructures, in order
to adequately address multidisciplinary and increasingly complex real-world prob-
lems. Although there are still some pending issues, the identified synergies generate
optimism for a true collaboration between the Internet of Things and the Digital
Earth.
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11.1 Introduction

According to Jayavardhana (Gubbi et al. 2013), the term Internet of Things (IoT) was
first coined by Kevin Ashton in 1999 in the context of supply chain management.
Empowered by the latest advances in Information and Communication Technology
(ICT), the IoT is revolutionizing the world, opening new possibilities and offering
solutions that were unthinkable even only a few years ago. The concept of the IoT
is highly multidisciplinary because it brings together a wide variety of technologies,
protocols, applications, scenarios, and disciplines (Atzori et al. 2010; Gubbi et al.
2013). The International Telecommunication Union (ITU) Standardisation Sector
defines it as ‘a global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) Things based on existing and
evolving interoperable information and communication technologies’ (International
Telecommunication Union 2018). As an infrastructure, the IoT can be seen as a
broader system involving data, resources, standards and communication protocols
as well as theoretical studies.

The pace of IoT development seems quite fast, with continuous proposals of new
approaches, applications, and use case scenarios, increasing the presence of IoT
in multiple and varied applications, and aspects of daily life. To date, smart devices
constitute the IoT’smost visible form, applied in awide range of scenarios and sectors
such as cities, industry, commerce, agriculture, home, and mobility. Although we are
far from the 200 trillion smart devices as predicted by 2020 (Intel, n.d.), significant
progress has been made in this direction. Estimates suggest that there will be 26
smart devices per person in 2020, 40.2% of which will be located in the business
environment (termed Industry 4.0).

According to the Forbes analyst Daniel Newman (Newman 2017), the IoT is one
of the most rapidly evolving trends today, especially in three development lines:
the analytics arena, the development of edge computing, and the deployment of
5G networks. As 5G technology is progressively implemented and deployed (Shafi
et al. 2017), the current analysis platforms will need adaptation in order to analyze
effectively the large amount of data flows acquired, produced by IoT devices with
increasingly more powerful built-in sensors and emerging real-time analysis func-
tions, empowered even more by the rapid emergence and (parallel) development of
edge computing (Shi et al. 2016).

Edge computing is a recent paradigmmotivated by bandwidth limitations between
the producer (smart objects) and consumer parts (cloud server), aswell as the need for
improved performance in computing and consumer smart objects. The main feature
of edge computing is that data can be processed locally in smart devices rather than
being sent to the cloud for further processing.

Like the IoT, Digital Earth (DE) also entails an infrastructure. Al Gore, at his
famous speech in 1998 (Gore 1998), introduced the concept of a DE with the vision
of extending the real Earth with a digital/virtual replica or counterpart. Over the last
two decades, many geographic phenomena and observations have been converted
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to digital data to be used, analyzed, and visualized using digital tools such as vir-
tual globes (Butler 2006). In this chapter, we use the term DE to refer to a network
infrastructure that allows for the discovery, access, analysis, and processing of spa-
tially referenced data. For more details on DE, we refer the reader to Schade et al.
(2013). In particular, Schade et al. describe the origins and evolving concepts of terms
such as DE, Geographic Information Infrastructures and Spatial Data Infrastructures,
together with their theoretical and technical features.

This chapter takes a technological perspective focusing on the description of the
current relationships between DE and the IoT, identifying ongoing efforts, potential
synergies and bridges, as well as existing limitations and barriers that prevent both
infrastructures from collaborating and communicating in practical terms. Instead
of operating in parallel, scientists and researchers need the IoT and DE to work
jointly by establishing an efficient and permanent collaboration to adequately address
the multi-disciplinary nature and growing complexity of the pressing problems that
characterize modern science.

The rest of the chapter is divided into five sections. In Sect. 11.2, we provide an
overview of themost frequent definitions of the IoT, describe our working definitions
throughout this chapter, and briefly review relatedwork in the interplay of the IoT and
theDE. InSect. 11.3,we analyze the existing interplay betweenboth infrastructures in
the context of themain, high-level functions ofDE.Then, an overviewof relevant case
studies across several smart scenarios inwhich the symbiosis of the IoT andDE could
lead to beneficial results is provided in Sect. 11.4. Afterwards, Sect. 11.5 analyses the
frictions and possible synergies today and in the future. Finally, concluding remarks
and emerging trends for the immediate future are provided in Sect. 11.6.

11.2 Definitions and status quo of the IoT

This section defines the current state of the IoT with respect to the concept of the
DE. The first subsection examines the different definitions of a ‘Thing’, adopted by
standardization organizations, followed by our working definition for this chapter.
The last subsection describes related works in which interaction between IoT and
DE is the main goal.

11.2.1 One Concept, Many Definitions

The concept of a ‘Thing’ may seem generic. A ‘Thing’ can be characterized as
a network object or entity that can connect to the Internet directly or through a
network gateway. This exemplifies a network-centric perspective of the IoT in which
a variety of interrelated ‘Things’ are able to communicate with each other to deliver
new applications and services (Atzori et al. 2010). In contrast to the network-centric
vision focusing on the communication technologies being used, the IoT can be seen
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from a purely Thing-centric perspective in which the services associated with Things
are pivotal. These services are expected to manage large amounts of data captured
by smart objects or ‘Things’ as a result of interacting with the environment.

Regardless of the vision, the definition of the term ‘Thing’ is extensive and
includes a wide variety of physical elements. Examples of these elements include: (i)
personal objects such as smartphones, smart watches or bands; (ii) ordinary objects
and appliances in our daily lives such as refrigerators, lights, cars, and windows; (iii)
other identifiable objects equipped with Radio-frequency identification (RFID) tags,
Near-field communication (NFC), or Quick Response (QR) codes; and (iv) objects
equipped with small microcontrollers.

Because of the heterogeneity of the technology and hardware, there is no sin-
gle, unified definition of the term ‘Thing’. Different international standardization
bodies and organizations have suggested a definition, resulting in multiple interpre-
tations of the concepts of Things and the IoT, which sometimes differ only slightly.
Consequently, each stakeholder group may have a particular view of what the IoT
and Things are, as demonstrated below by the definitions of some internationally
renowned organizations.

The World Wide Web Consortium (W3C), an international organization whose
aim is the collaborative development of Web standards, defines a ‘Thing’ as ‘the
abstraction of a physical or virtual entity that needs to be represented in IoT appli-
cations. This entity can be a device, a logical component of a device, a local hardware
component, or even a logical entity such as a location (e.g., room or building)’ (Kaji-
moto et al. 2017).

The Institute of Electrical and Electronics Engineers (IEEE), a global profes-
sional engineering organization whose mission is to foster technological innovations
and excellence for the benefit of humanity, defines a ‘Thing’ as a device with pro-
grammable capabilities. In contrast to the W3C’s definition, the IEEE’s definition
takes a more practical engineering view of Things, driven by two defining features:
(i) Things have the ability to communicate technologically, and (ii) Things have the
ability to connect to or integrate in an already connected environment. This net-
working capability can be based on microcontrollers such as Arduino, Raspberry Pi,
BeagleBone and PCDuino, among others.

TheEuropeanResearchCluster on the Internet of Things (IERC) describes Things
as ‘physical and virtual things with identities, physical attributes, and virtual person-
alities and smart user interfaces, and are seamlessly integrated into the information
network.’ (IERC 2014). Similarly, considering that Things belong to a network, the
ITU introduces the term infrastructure and defines the IoT as “a global infrastructure
for the information society, enabling advanced services by interconnecting (physical
and virtual) things based on existing and evolving interoperable information and
communication technologies” (ITU-T 2012). In addition, the ITU recognizes three
interdependent dimensions that characterize Things (Fig. 11.1). This indicates the
versatility of the IoT in application domains that differ in terms of the requirements
and user needs.

The Internet Engineering Task Force (IETF), an open international community
of network designers, researchers, and operators concerned with the evolution of the
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Fig. 11.1 Dimensions of the IoT (inspired in ITU-T 2012)

IoT, takes a broad perspective of Things in the context of the IoT, contemplating that
“‘things’ are very varied such as computers, sensors, people, actuators, refrigerators,
TVs, vehicles, mobile phones, clothes, food, medicines, books, etc. These things are
classified into three scopes: people, machines (for example, sensor, actuator, etc.)
and information (for example, clothes, food, medicine, books, etc.). These ‘things’
should be identified at least by one unique way of identification for the capability
of addressing and communicating with each other and verifying their identities. In
here, if the ‘thing’ is identified, we call it the ‘object’” (Minerva et al. 2015).

Finally, the Organisation for the Advancement of Structured Information Stan-
dards (OASIS), a nonprofit consortium that drives the development, convergence and
adoption of open standards for the global information society, describes the IoT as a
‘system where the Internet is connected to the physical world via ubiquitous sensors’
(Cosgrove-Sacks 2014). OASIS focuses on the ubiquity of sensors, as they exist in
‘every mobile, every auto, every door, every room, every part, on every parts list,
every sensor in every device in every bed, chair or bracelet in every home, office,
building or hospital room in every city and village on Earth’.

In Fig. 11.2 we categorize the aforementioned IoT definitions based on physical,
virtual and location considerations. The definitions reveal that these institutions and
organizations consider the IoT from a physical point of view. In addition to the
physical view, three organizations (ITU, IERC and W3C) add a virtual connotation
to the definition of a ‘Thing’. Only the W3C definition acknowledges explicitly
location as a defining element of the IoT.
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Fig. 11.2 Classification of
IoT definitions

11.2.2 Our Definition

After analyzing the different definitions of internationally renowned institutions and
standardization organizations, we propose our interpretation of the term ‘Thing’ that
will be used throughout the rest of the chapter. This definition aims to (i) relate the
IoT to DE, and (ii) be as broad as possible.

From our perspective, three main features characterize a ‘Thing’: (i) networked
communication; (ii) programmability (data processing and storage); and (iii) sensing
and/or actuating capabilities. From a DE perspective, the third feature plays a more
prominent role. The sensing and/or actuating capabilities permit an IoTdevice or node
to interact with its environment. This environment is closely related to the location
feature, since all Things will intrinsically have this feature as a property, which
increases in importance when the ‘Thing’ has a mobile component. Contrary to most
of the definitions above, we consider a Thing’s location as a crucial characteristic
because it impacts how a ‘Thing’ can communicate and how it can interact with its
environment. However, we argue that the physical point of view can be understood to
include location implicitly, as a physical sensor is located somewhere in the physical
world.

11.2.3 Early Works on the Interplay Between DE and the IoT

As noted above, this chapter explores potential bridges between the IoT and DE for
the development of applications and services that take advantage of the benefits of
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both infrastructures to effectively address complex research issues. In this context,
we briefly summarize studies related to this objective.

In 1999,Gross predicted that electronic deviceswould populate the Earth and have
the ability to capture different types of information, forming an ‘electronic skin’
(Gross 1999). These devices would be able to communicate through the Internet,
and include meteorological or pollution sensors, cameras, blood pressure sensors or
microphones, among others. The imagined ‘electronic skin’ could be in contact with
what was happening in different scenarios and places on Earth, in the atmosphere,
cities, houses, or even in ourselves.

Gross’ vision is gradually becoming a reality. There is great variability in the form,
size and purpose of sensors in wireless networks. Such Wireless Sensor Networks
(WSN) enable distributed communication and data sharing between sensor network
nodes. From this perspective, WSN form a subset of the IoT and, as such, the IoT
can be seen as the logical next step of WSN in a progression that is still evolving
in terms of the sophistication, variability in functionality, flexibility and integration
with other infrastructures and network protocols (e.g., the Internet Protocol).

The IoT gained popularity between 2008 and 2013 (Fig. 11.3), and all organiza-
tions concerned with WSN began to focus on the IoT. The matured technology of
WSN was applied to IoT developments, and DE organizations were not an excep-
tion. The field of sensors and sensor networks has been the object of study from
multiple and varied angles, including the geospatial community, especially the Open
Geospatial Consortium (OGC). The OGC started to transfer improvements made in
the definition and application of standards and specifications in the field of WSN to
the IoT.

The most significant OGC contribution concerning sensors and WSN has been
the Sensor Web Enablement (SWE) standards suite (see Sect. 11.2.4 below). SWE
enables the discovery and access of sensors and associated observational data through
standard protocols and application programming interfaces (API) (Botts et al. 2008).
The SWE standards have been applied directly to many application domains in DE.

Fig. 11.3 Search volume on wireless sensor networks (red) and the Internet of Things (blue).
Source Google Trends



394 C. Granell et al.

The shared goal was to observe a particular phenomenon, for example, to predict
emergency warnings or fire alarms or alerts when an event is triggered (Wang and
Yuan 2010). For example, SWE has been widely applied to different Earth Obser-
vation (EO) application domains, with disaster management being one of the most
important and well-developed. One of the early applications was the use of sensor
web techniques to monitor natural and man-made hazards such as fires (Trilles et al.
2014; Jirka et al. 2009; Brakenridge et al. 2003), floods (Brakenridge et al. 2003),
and volcanic eruptions (Song et al. 2008).

In parallel with the concept of WSN, Ashton (2009) noted that the term IoT was
first used in his work entitled “I made at Procter & Gamble” in 1999. Back then, the
IoT was associated with the use of RFID technology. However, the term WSN was
not yet the focus of much interest, as shown in Fig. 11.3.

Some studies explored the connection between the IoT and DE concepts. Li and
his colleagues studied the impact of the IoT on DE and analyzed the transition to
Smart Earth (Li et al. 2014). The concept was introduced in 2009 during a panel
discussion with the U.S. president and U.S. business leaders. In that panel, IBM’s
CEO Sam Palmisano requested that countries should invest in a new generation of
smart infrastructure, with crucial use of sensors, suggesting the concept of ‘Smart
Earth’ as a name. Subsequent governments showed interest in adopting this type of
technology, and are making huge investments in researching and developing smart
devices (e.g., the ‘Array of Things’ in Chicago, https://arrayofthings.github.io).

The primary objective of a ‘Smart Earth’ is to make full use of ICT and the IoT,
and apply them in different fields (Bakker and Ritts 2018). In a ‘Smart Earth’, IoT
devices are placed in all possible locations of our daily life, as long as our privacy
can be respected. Through the combination of the IoT, DE, and cloud computing,
globally deployed physical objects and sensors can be accessible online. The idea of
a ‘Smart Earth’ is ambitious and includes remote sensing, GIS and network technol-
ogy in combination with DE platforms (see Chap. 2 in this book featuring “Digital
Earth Platforms”). The goal is to enable sustainable social development, which is a
visionary step that is still utopian today, towards the establishment of a global infor-
mation infrastructure to support UN Sustainable Development Goals (see Chap. 13
“Digital Earth for Sustainable Development Goals in this book,”).

The work by Van der Zee and Scholten (2014) highlighted the importance of loca-
tion in the concept of the IoT. The authors noted that space and time can play a role as
‘glue’, to enable an efficient connection between smart devices; therefore, geospatial
sciences should have an active presence in the development of IoT architecture. In
their study, Van der Zee and Scholten described a set of technologies related to the
geospatial domain and big data analysis that could be combined with the IoT. The
authors concluded that these technologies were already available for application in
the field of the IoT and recommended their immediate use. However, the authors
also identified the lack of IT professionals with knowledge in geospatial sciences as
the main obstacle in massive uptake of the IoT for geo-related applications. They
proposed to address this limitation through a gradual incorporation of core geospatial
skills and competences into IT curricula.

https://arrayofthings.github.io


11 Internet of Things 395

Our aim in this chapter is to move beyond the initial steps and thoughts presented
in Van der Zee and Scholten (2014), where the status quo of the IoT and DE was
described five years ago. We focus on the ‘current status quo’ by outlining emerging
technology trends that can be crucial for establishing real connections between DE
and the IoT, and investigate developments during the last five years in particular.
Even though development has been gradual and incremental, and not rapid and
revolutionary (i.e. from a GIScience perspective), new requirements and technology
trends have appeared and the IoT has become a topic that is undoubtedly gaining
increasing traction.

11.2.4 IoT Standards Initiatives from DE

As noted above, the IoT ecosystem has been very diverse for several years (Atzori
et al. 2010), and its diversity has been increasing. It is comprised of heterogeneous
devices, protocols and architectural approaches. A plethora of international initia-
tives are put in place to unify and streamline aspects associated with the design and
implementation of IoT infrastructures. The current standardization initiatives address
aspects related to discoverability, data transmission, device processing and tasking.

The growing number of interconnected devices, combined with the increasing
importanceof the use of the IoT in almost any aspect of human life, tend to increase the
need and importance of mature, well-established and -implemented standards. The
diversity of different standardization initiatives provides designers and developers
with a broad range of opportunities that do not necessarily complement each other.
There are multiple ways of reaching the same destination, i.e., there is no single
solution to be adopted. Here, we provide a short overview of selected IoT standards
that play an important role within the context of DE. The SWE suite of standards is
described in more detail in Chap. 8 of this book.

From the geospatial perspective, the OGC coordinates different standardization
initiatives. This consortium is comprised of more than 525-member organizations
from governmental, commercial, non-governmental, academic and research institu-
tions. The primary objective of the OGC is to develop open standards that include
a geospatial component. These standards are developed through a consensus-based
process and are openly available to streamline the exchange of geospatial data. OGC
standards are used in a wide variety of domains, including geosciences and the envi-
ronment, defense and intelligence, emergency and disaster management, and public
services, among others.

Over a decade ago, well before the IoT became mainstream, the OGC developed
the SWE suite of standards for spatio-temporal observation data (Botts et al. 2008).
SWE outlines a set of specifications related to sensors and proposes data models and
Web service interfaces that can act as a bridge between sensors and users, allowing
the sensors and theirmeasurements to be accessible and controllable through theWeb
(Sheth 2018). The SWE suite, although initially designed for sensors, can easily be
applied to any type of spatio-temporal data flow (including heterogeneous types of
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smart devices with an observation capability). It offers a set of specifications in an
open standard schema using extensible markup language (XML) and web services.
It enables (i) finding sensors and sensor data; (ii) describing sensor systems and data;
(iii) recovering real-time and historical sensor observations; (iv) adding simulations
and recovering simulation results; (v) reporting results and alerts; and (vi) full web
control.

SWE (depicted in Fig. 11.4) is organized through several interdependent stan-
dards that include the Sensor Model Language (SensorML) (Botts and Robin 2007),
Observations and Measurements (O&M) (Cox 2003), Sensor Observation Service
(SOS), Transducer Markup Language (TransducerML, deprecated) (Havens 2007),
Sensor Planning Service (SPS) (Simonis 2007), Sensor Alert Service (SAS) (Simo-
nis 2006) and Sensor Event Service (SES) (Echterhoff and Everding 2008). In this
work, only the first three specifications are shown in detail (i.e. SensorML, O&M,
SOS), as they are the most widely used in the IoT context today.

SensorML provides the ability to define a sensor in a structured manner. The
standard specifies how to find, process and record sensor observations so that a data
model and XML schema can be established to control sensors through the Web.
SensorML defines a standard schema describing any type of sensor, stationary or
dynamic, in situ or remote, active or passive. The PUCK protocol (O’Reilly 2010) is
an addition to the SensorML standard that provides a low-level protocol to retrieve
sensor drivers, and metadata documents, encoded according to SensorML.

The O&M standard, initially developed by the OGC, is also adopted as an Inter-
national Organization for Standardization (ISO) standard (ISO 2011). It provides a
model for representing and exchanging sensor observations. The standard is encoded

Fig. 11.4 The sensor web enablement suite of standards. Source Bröring et al. (2011)
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using an XML/JSON data model, which describes the relationship between different
aspects of the data capture process. The O&M schema defines both observations and
phenomena. In addition, it can be extended to better support metadata.

Finally, the SOS provides an interoperable means for serving observations via
a Web interface and is the primary service model of the SWE suite. The current
version of the standard introduces a modular structure. The base module provides
threemandatory operations. Thefirst, “GetCapabilities”, offers a spatial and temporal
description of the observations that have been stored, as well as a list of the sensors
and their available features. The “DescribeSensor” operation is used to return a sensor
description using SensorML. The “GetObservation” operation provides access to the
actual spatio-temporal data encoded in accordance with the O&M standard.

All the standards described above were conceptualized and adopted several years
ago within a completely different technological landscape. The rapid growth of the
IoT and the emergence of new technologies (e.g. remote sensing, 4G/5G communi-
cation, machine-to-machine and machine-to-human interactions) brought new chal-
lenges such as (i) the need for lightweight data encoding, (ii) the need for higher
bandwidth for data exchange, and (iii) the issue of constrained devices with little or
no computational capabilities, such as RFID tags and QR codes (Kotsev et al. 2018).
These challenges acted as a driver for the OGC and led to adoption of new standards
that better fit the IoT.

The SensorThings API (Liang et al. 2016), designed to follow the paradigm of the
Web of Things (WoT) (Guinard et al. 2010), offers access to data through standard
web protocols and is based on the O&M conceptual data model. The main features
of the standard are (i) a RESTful interface, (ii) the use of lightweight and efficient
JSON encoding, (iii) adoption of the OASIS OData URL pattern (OData) and query
options, and (iv) support for the ISO message queuing telemetry transport (MQTT)
messaging protocol to offer real-time connections.

The SensorThings API data model (shown in Fig. 11.5) is divided into two parts
(profiles), namely, the ‘Sensing’ profile and the ‘Tasking’ profile. The former enables
IoT devices and applications to CREATE, READ, UPDATE, and DELETE (through
the standard web operations HTTP POST, GET, PATCH, and DELETE) IoT data and
metadata by invoking a SensorThings API service. In addition, the tasking profile
provides a standardized approach for controlling IoT devices through the “ACT”
capability, which is revisited in the next section. Each ‘Thing’ has a Location (or
some Historical Locations) in space and time. A collection of Observations grouped
by the same Observed Property and Sensor is called a Datastream. An Observation
is an event performed by a Sensor that produces a value of an Observed Property of
the Feature of Interest.

From a spatial analysis perspective (De Smith et al. 2018), many raster- and
vector-based operators and techniques have been developed over the last decades and
have been shown to be successful in many varied applications. Substantial progress
has been made to bring geospatial workflows—i.e., a combination of the above
spatial operations to accomplish a sophisticated analytical process—to the cloud and
distributed computing environments (e.g., Granell et al. 2010; Granell 2014; Yue
et al. 2016), expanding the field of the Geoprocessing Web (Zhao et al. 2012) to the
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Fig. 11.5 TheSensorThingsAPI datamodel. Each thinghas a location (or somehistorical locations)
in space and time. A collection of observations grouped by the same observed property and sensor
is called a datastream. An observation is an event performed by a sensor that produces a value
of an observed property of the feature of interest. Source OGC SensorThings API (http://docs.
opengeospatial.org/is/15-078r6/15-078r6.html)

Digital Earth (Hofer et al. 2018). The OGC Web Processing Service (WPS) (OGC
2005), a service interface for exposing and executing processes of any granularity on
theWeb, enables sharing and integration of spatial data processing capabilities on the
Web, including polygon area calculation, routing services, or entire environmental
models (e.g., Díaz et al. 2008; Granell et al. 2010). The geoprocessing capabilities
in DE are extensively covered in other chapters, e.g., Chap. 5, and our interest lies
solely in the relationship between the WPS and the IoT (see Sect. 11.3.2).

11.3 Interplay Between the IoT and DE

One of the aims of this chapter is the identification of potential bridges between the
IoT and DE. This overview is partly speculative since we tried to identify potential
paths for collaboration between both infrastructures, which may or may not lead to
successful linkages in the future. To support our claims in Sect. 11.4, we identify the
current situation, i.e., the state of the art of the IoT’s andDE’s technological substrate.
In this section, we highlight new technological developments and emerging trends

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
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that are or may become crucial in the coming years that were not present or not
sufficiently developed at the time of Van der Zee and Scholten (2014).

Along the lines of the topics described in Sect. 11.2.3, the traditional focus of
DE embraces the following high-level functions (Lü et al. 2019): (i) discovery and
acquisition of spatial information, (ii) understanding of spatial objects and their
relationships (e.g., GIS analysis, spatial statistics), and (iii) determination of the
spatio-temporal behavior and simulation rules (e.g., simulations, predictions). These
functions help categorize and restrict the discussion in terms of the current techno-
logical substrate. However, we should interpret and contextualize these high-level
functions of DE from the viewpoint of the IoT.

First, the acquisition of spatial information is a crucial function in the IoT because
Things and smart devices observe and sense their environment to collect observa-
tional measurements. Through the lens of the IoT, the discoverability of Things
and the communication of gathered spatial data become extremely relevant for data
acquisition. Of the two main capabilities of Things (see Sect. 11.2.2), the ability to
observe and sense, is a fundamental mechanism to provide input observational data
for DE.

Second, spatial statistics and spatial analysis arewell-established geospatialmeth-
ods for exploring spatial patterns, relationships and distributions (De Smith et al.
2018; Worboys and Duckham 2004). Analytical methods are fundamental build-
ing blocks in DE, although recent trends in real-time analysis and edge computing
promise to move much of the analytical power to devices (i.e., edge and fog com-
puting) so that gathered data can be immediately processed directly on the smart
devices. This trend suggests that analytical improvements in the IoT will also play
an important role in DE.

Third, predictive modeling and simulations are required to explore both physi-
cal and social dynamic geographic phenomena to better understand the evolution,
changes and dynamics of the phenomena from a spatio-temporal perspective, to gain
new insights and scientific knowledge to support informed decision-making pro-
cesses. Understanding spatiotemporal behaviors makes sense from the DE point of
view, to aid in the assembly of a detailed yet broad perspective of the complex, mul-
tidimensional relationships that occur in the real world. We recognize that prediction
and simulation activities are typically associated with DE and that advances in the
IoT might contribute to this area, but we see this hypothetical scenario occurring
in the mid- to long-term, well beyond the time frame of the speculative exercise in
Sect. 11.4. Since research on the IoT and DE with respect to predictive modeling
and simulations is still in its infancy, we do not cover it in this chapter.

As a result of the previous functions, new scientific knowledge is generated that
is necessary for taking informed and insightful actions, often ‘acting’ over the envi-
ronment. In terms of acting, the second main capability of Things, new knowledge
can trigger actions at least at two different levels in the context of the IoT: first,
self-calibration of a sensor and/or Thing, similar to adjusting the lens in a human eye
to sharpen the image, e.g., changing the sampling frequency; and second, providing
a reflex similar to a reaction to pain without thinking, e.g., by opening a valve or
level in the case of imminent flooding. However, this view would mean a priori that
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Fig. 11.6 IoT and DE
workflow according to the
higher cognitive functions in
DE

the acting in IoT and Things do not contribute sufficiently to the higher (cognitive)
functions of DE such as spatial analysis, predictive modeling and simulation, but the
results of higher cognitive functions in DEmay impact the acting behavior of Things
and the IoT. In addition, we add a fourth function related to the ability of Things to
act and take informed actions, depending on the insights and knowledge produced
in the analysis, simulations, and predictions in DE.

Figure 11.6 reflects the existing and potential roles of each infrastructure in rela-
tion to the four functions: (i) discoverability, acquisition, and communication of
spatial information, (ii) understanding of spatial objects and their relationships, (iii)
determining spatio-temporal behavior and simulation rules, and (iv) acting and tak-
ing informed actions. We argue that the IoT infrastructure is important in (i) and
(iv) whereas DE is more relevant in (ii) and (iii). For (i), the IoT can enhance DE
by acquiring data streams from new sources, at a fine scale and high frequency. For
(ii), it is plausible that both infrastructures progressively collaborate in a symbiotic
manner per use case. From a broader perspective, it can reasonably be argued that DE
includes IoT and encompasses the IoT life cycle in a broader ecosystem. Although
GIS methods and analysis have traditionally taken a predominant role in DE, the role
of the IoT will most likely increase in the future given the close relation between the
IoT and the nascent edge-fog-cloud computational paradigms that enable IoT-based
analytical processes to be conducted at different scales. This is a partial view, as
we focus on the relationship between DE and the IoT. For example, remote-sensing
satellite imagery, LIDAR and UAV were intentionally omitted even though they are
key spatial data sources (i.e., the first function) for DE. We acknowledge the fuzzi-
ness of the boundary between both infrastructures and pay special attention to the
interplay between DE and the IoT in Fig. 11.6, demonstrating how collaboration
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and integration is starting to happen while frictions and barriers are becoming more
visible.

In the following sections, we identify for all but the third function the current
technological substrate.

11.3.1 Discoverability, Acquisition and Communication
of Spatial Information

Discoverability of Things. An important objective in IoT research is the discovery
of devices and their services and/or the data they produce. The absence of standard-
ized discovery methods for the WoT (Zhou et al. 2016) led to the development of
online global sensor directories and collections such as Xively (https://xively.com),
SenseWeb (Grosky et al. 2007), SemSOS (Pschorr et al. 2010) and the SWE discov-
ery framework (Jirka et al. 2009). A key feature of these online directories/registries
is that they provide open Web APIs supporting the development of third-party appli-
cations. The main drawback is that they are centralized, with a single point of failure.
Decentralized approaches have also been proposed, such as IrisNet (Gibbons et al.
2003), which uses a hierarchical architecture for a worldwide sensor Web. G-Sense
(Perez et al. 2010) is a peer-to-peer (P2P) system for global sensing and monitor-
ing. These approaches, although more robust and scalable, do not effectively solve
the problem of sensor discovery as they still require sensor registration to dedicated
gateways and servers, which need to maintain a hierarchical or P2P structure among
them.

Approaches towards real-time discovery of physical entities include Snoogle
(Wang et al. 2008) and Dyser (Elahi et al. 2009). Snoogle is an information retrieval
system forWSNs, but it cannot scale for theWorldWideWeb.Dyser requires an addi-
tional Internet infrastructure such as sensor gateways to work. Moreover, utilization
of the domain name system (DNS) as a scalable, pervasive, global metadata reposi-
tory for embedded devices and its extension for supporting location-based discovery
of Web-enabled physical entities were proposed (Kamilaris et al. 2014; Kamilaris
and Pitsillides 2012). However, this technique requires changes in the existing Inter-
net infrastructure. It is possible to exploit web crawling for discovery of linked data
endpoints, and through them the discovery of WoT devices and services was exam-
ined in WOTS2E (Kamilaris et al. 2016) as well as in SPITFIRE (Pfisterer et al.
2011).

While the approaches described above are mainly targeted at ‘professional’ users,
there is demand for a simple and easy means for the general public to access IoT
data. Experts can use a plethora of different service interfaces and tools to discover
and utilize data from IoT devices, as implemented by the SmartEmissions platform
(Grothe et al. 2016). Nonexpert users typically only search for IoT devices and
their data through mainstream search engines such as Google and Bing. Ensuring
the discoverability of devices and the data they produce is being investigated for

https://xively.com
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geospatial data in general (see Portele et al. 2016 for further details). A similar
approach might be adopted for the IoT, considering its higher complexity due to the
high temporal (and spatial) resolution of the data produced by Things.

Spatial acquisition with Things. Some examples of geospatial standards to
encode sensor metadata and observations were introduced in Sect. 11.2.4, and the
SensorML standard is one of the most important. SensorML describes sensor meta-
data in a comprehensive way, providing a useful mechanism to discover sensors and
associated observations. This standard specifies information about a sensor such as
its sensor operator, tasking services, location, phenomena, and history of the sensor.
Thus, it can be used by discovery services to fill their search indexes.

Following the SWE framework, there are two different search types (Jirka et al.
2009): sensor instance discovery and sensor service discovery. The first type finds
individual sensors (devices) or sensor networks, and the second type refers to services
that interact with the sensor (through sensing or tasking). Jirka et al. (2009) define
three different criteria to identify both annotated search types:

• The Thematic criterion covers the kind of phenomena that a sensor observes, such
as temperature, humidity, or rainfall.

• The Spatial criterion refers to the location where the sensor is deployed.
• The Temporal criterion is the time period during which the observations are gen-
erated.

This classification was defined from a conventional sensor point of view. The
inclusion of current IoT devices with the ability to act leaves the previous criteria
incomplete, as some IoT devices act as well as observe. Therefore, the definition of
the thematic criterion requires extension to include an IoT device’s capability to act,
for example, to turn on/off a light or activate/deactivate an air conditioner.

In addition to the three shared criteria, Jirka et al. (2009) defined two criteria
that focused exclusively on the sensor instance discovery type of search: sensor
properties and sensor identification. The sensor properties are based on a specific
state of the sensor, for example to find all online sensors. The sensor identification
refers to the unique id used to identify unambiguously a sensor. Regarding the sensor
service discovery type of search, two additional criteria were defined: functionality
and usage restrictions. The first refers to the functionalities of the associate service
such as available operations for data access, alerting or tasking, among others. The
second criterion on usage restrictions is related to the permissions and restrictions to
access the service functionalities.

Two different aspects are vital for the successful discovery of a sensor: metadata
and semantics. As for all spatial data, metadata is essential to describe and discover
a sensor or a network of sensors. SensorML was created for this purpose and can
define a sensor in a well-knownmanner to add flexibility and allow for the use of any
type of sensor. The Sensor Instance Registry (SIR) defines operations for handling
sensor metadata and allows for sensor discovery. The above criteria, both common
and specific for each type of search, are closely related to the metadata aspect for the
discovery of sensor instances and services.
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Semantics is the other pillar in a powerful and effective discovery service. Seman-
tic rules can aid in locating sensors related to the same phenomena or discovery of
all sensors that are related to the same thematic aspect. This semantic view can be
extrapolated to link sensors with places to retrieve sensors or observations associated
with place names. The Sensor Observable Registry (SOR) offers a primary interface
to explore this kind of relationship between phenomena and sensors.

Unfortunately, the support of semantics is a weakness in the SWE standards. To
solve this issue, an initiative fromWorld Wide Web Consortium (W3C) was created
to integrate and align sensors with semantic web technologies and Linked Data. This
contribution was led by the W3C Semantic Sensor Network Incubator Group (SSN-
XG) that proposed an ontology called Semantic Sensor Network (SSN) to address
the semantic gap in sensor-related OGC standards (Compton et al. 2012). The main
fields of this ontology are sensors (e.g., location, type), properties (e.g., precision,
resolution, and unit), and measurements (values).

Despite the great advances that SSN brought, it does not currently support all
the possibilities that the IoT offers since SSN was designed before the mainstream
adoption of the IoT. New ontologies have been launched to cover this gap. One
example is how the Internet of Things Ontology (IoT-O). IoT-O adds some missing
concepts relevant to the IoT such as Thing, Actuator, and Actuation (Seydoux et al.
2016). Similarity, the Sensor, Observation, Sample, and Actuator (SOSA) ontology
is a follow-up to SSN. It is the result of a joint effort of theW3C and OGC that builds
on the lessons learned from SSN to provide a better representation of the IoT and
alignment with OGC-related specifications (Janowicz et al. 2018).

Communication with Things. The advances in IoT connectivity solutions such
asBluetooth, ZigBee,Wi-Fi and 3-5G (Palatella et al. 2016) combinedwith decreases
in the price and energy consumption of IoT components have led to a huge deploy-
ment of smart devices using IP-connectivity worldwide, increasing the frequency of
communication to the point that they are perceived as always connected. As outlined
above, these devices can offer two different capabilities, observing (sensing) and act-
ing. A decade ago, sensor networkswere only able to capture and send data, similar to
a simple data logger. In recent years, the ability to establish two-way communication
between Things and the cloud has added the feature that Things can (re)act. Con-
sequently, new protocols that enable machine-to-machine (M2 M) communication
have been developed, with the goal of providing efficient and transparent two-way
communication channels between smart devices. Examples of such TCP/IP-based
protocols are the advanced message queuing protocol (AMQP), MQTT, and the
simple/streaming text oriented messaging protocol (STOMP). These communica-
tion protocols are adapted to the requirements of IoT devices that are constrained
concerning their performance and energy efficiency.
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11.3.2 Spatial Understanding of Objects and Their
Relationships

Spatial analysis of Things. There are many more smart devices (Things) around
today than five years ago. Smart devices now produce massive volumes of data, i.e.,
flows of data with strong temporal and spatial features. Therefore, spatial analytical
methods such as proximity, area, volume, and trajectory are of vital importance in
analyzing processes of Things. However, the variety of data sources related to the
IoT has posed new analytical challenges, especially in the design and provision of a
new class of analytical tools capable of handling real-time temporally and spatially
referenced data from a plethora of heterogeneous smart devices (Trilles et al. 2017).
Despite the existence of tools capable of analyzing temporal data in real time, the
same does not appear to be true for the spatial component. Space (location and
orientation for all Things, size and shape for larger Things such as cars) plays an
indispensable role in the IoT, as Things-generated data have spatial properties and
are spatially related to each other. Promising initiatives and platforms have recently
emerged with the aim of performing spatio-temporal analysis in real-time, such
as Microsoft Streaminsight, the Oracle Spatial Database with the Oracle Complex
Event Processing engine, and the GeoEvent processor module as an extension of the
ArcGIS Server environment (ArcGIS Server, n.d.).

Despite these notable efforts, spatial support for the real-time analysis of IoT data
is still in its infancy. As Van der Zee and Scholten (2014) noted, any IoT architecture
should consider the geospatial component. Location provides a kind of ‘glue’ that
efficiently connects smart devices. The authors proposed storing the location of each
‘Thing’ and other geographic-related features such as orientation, size, and shape.
However, the ability to handle and analyze the location of Things in near real time is
still limited with existing analytical platforms, despite its opportunities (McCullough
et al. 2011; Rodríguez-Pupo et al. 2017).

Furthermore, spatio-temporally located Things have the potential to significantly
improve advanced geospatial analysis, as Kamilaris and Ostermann (2018) describe
in their review on the potential role of geospatial analysis in the IoT field. In short,
Kamilaris and Ostermann suggest network analysis and monitoring, surface interpo-
lation, and data mining and clustering as spatial analysis techniques andmethods that
would especially benefit from an increasing number of mobile or stationary sensor
Things. However, as the authors noted, these advanced analytical applications have
been scarcely exploited to date.

Geospatial standards for Things. Despite some remarkable exceptions such
as prototype systems to analyze data from air quality sensor networks (Trilles et al.
2015b), real-time, geospatial analysis approaches and tools have not been sufficiently
developed to offer standardized procedures through uniform interfaces that can be
widely consumed and integrated in DE applications. DE has traditionally considered
sensors as a fundamental pillar to collect information to support and realize strategies
or policies at a higher level. As described in Sect. 11.2, the SWE suite was the
initial step in offering a standardized specification that would fulfil the requirements
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demanded by the IoT from the DE perspective. For example, the SOS specification
requires handling large XML documents, which is problematic in a typical scenario
in the IoT where memory capacity and connectivity are limiting factors.

Although the core of the SWE suite has served to cover the required functionality
of the IoT, the complexity of the data models in some of the specifications (Tamayo
et al. 2011; Trilles et al. 2014) and the appearance of new requirements such as the
ability to work in real time and to act have reduced the applicability and integration
of the SWE suite in the scope of the IoT. In an effort to bridge the gaps between SOS
and the IoT, new extensions or approaches attempt to make the SOS interfaces more
suitable for IoT devices. These approaches include SOSLite (Pradilla et al. 2015),
TinySOS (Jazayeri et al. 2012) and SOS over CoAP (Pradilla et al. 2016).

Another crucial feature for the analysis functionality of the IoT and Things is the
ability to specify and perform real-time and asynchronous notifications and com-
munications. In this regard, the GeoMQTT protocol based on the MQTT protocol
allows for adding spatial notification and data streaming between publish/subscribe
instances (Herle and Blankenbach 2018). Following the original approach of the
MQTTchannels, the authors proposed the concept ofGeoPipes to distribute instances
and enable the sharing of geospatial data streams in a standardized manner.

Laska et al. (2018) proposed a real-time stream processing pipeline that allows
for spatiotemporal data stream integration from IoT devices. A data integration layer
allows for geospatial subscriptions using theGeoMQTT. Tools such asApacheKafka
and Storm are used to transfer and apply map matching algorithms to IoT data with
spatiotemporal components. For example, these algorithms were used to analyze
traffic congestion for a recent route optimization using IoT Things with Global Nav-
igation Satellite System (GNSS) receivers in buses.

Another study (Rieke et al. 2018) took an additional step to bridge the DE and
IoT realms by arguing for the need to establish event-driven architectures as a nat-
ural evolution of the predominantly static Spatial Data Infrastructures (SDI). The
authors identify a series of interdependent issues that need to be addressed in the
coming years to take full advantage of the uptake of eventing in GIScience (and
DE). The issues relate to the (i) inconsistencies between classic data access methods
that are based on a request-response pattern, and event-driven approaches where a
publish-subscribe pattern prevails, (ii) heterogeneous approaches for defining event
patterns, (iii) multiple standards and limited support in software tools, (iv) the inte-
gration of devices in an SDI and the data they produce, and (v) the lack of semantic
interoperability of geospatial events.
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11.3.3 Taking Informed Actions and Acting Over
the Environment (ACT)

As shown in the defined IoT lifecycle (Fig. 11.6), to act means to take or perform
actions (over the environment) depending on the results obtained in previous func-
tions. Bélissent (2010) noted that this feature can make the management of public
services in a city, education, health, safety, mobility or disaster management more
aware, interactive and efficient.

IoT devices have been traditionally suitable for use as input sources for Decision
Support Systems (DSSs) in amultitude of application domains and use case scenarios
such as disaster management, cities, mobility, and safety. In this chapter, we focus on
Spatial Decision Support Systems (SDSSs), which are defined as interactive systems
designed to support decision making related with spatial planning problems. SDSSs
have evolved to more complex architectures and communication models, from sys-
tems deployed on the cloud operating with data from the WSN (or IoT data sources)
to a shift in the computing paradigm in which the actual computation is implemented
at three different levels: edge, fog, and cloud (Fig. 11.7). In this new setting, both the
computation and decisions are made closer to the producers of the data (Things).

The ‘Edge’ is the layer that covers the smart devices and their users, providing
local computing capacity within Things. The ‘Fog’ layer is hierarchical, aggregating
a variable number of edge layers. In addition to computing, the fog layer has other
functionalities such as networking, storage, control, and data processing, possibly
using data produced by the edge layer and data from other sources. As a result, data
contextualization is more important in the fog layer to make sense of different data
sources than the typical single data stream in an edge layer. The ‘Cloud’ layer on
top performs the final analysis to extract information and create knowledge to be

Fig. 11.7 Three-layer IoT architecture
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transferred for decision support actions. This implies an increased level of contextu-
alization and complexity in the analysis process than in the previous (lower) layers,
at the cost of losing capacity for real-time analysis.

Given the edge-fog-cloud layered architecture, the introduction of geospatial con-
cepts and spatial analysis in the fog layer could allow for decision-making processes
without a human in the loop based entirely on the semantics of the spatial-temporal
dimensions in the incoming data. In recent years, many efforts have been made to
move the analysis from the cloud to the fog layer, with the aim of reducing latency
in the analysis once the data are received in the fog layer (Barik et al. 2016).

Although data usually flow from the edge to the cloud layer (sensing capability),
devices with the ability to act (tasking) also require information to perform their
operations. The tasking capability allows for other devices or users to actuate devices
via the Internet so that these ‘controlling’ devices or users can easily control them
to execute tasks remotely. Autonomous Things would be previously programmed
to act without establishing a connection. While the sensing capability allows for
users to continuously monitor the status of devices and the environmental properties
they capture, the tasking capability can help users make adjustments accordingly by
controlling devices remotely.

In general, combining the sensing and tasking capabilities of IoT devices enables
users to create various automatic and efficient tasks and applications. These kinds
of applications are called “physical mashup” applications (Guinard et al. 2010). A
simple, domestic example is the activation of an air conditioning system depending
on the position and behavior of the user, through an application that uses a GNSS
sensor. In this example, the air conditioning device provides an interface to turn on/off
(tasking) the system to establish a comfortable temperature. To facilitate this kind of
mashup of sensing and tasking capabilities, a uniform (interoperable) interface for
users or applications to enable access and communication is a critical requirement.

The tasking feature was initially conceived in the SPS specification of the SWE
suite. SPS offers a standardized interface for tasking sensors and sensor systems and
defines interfaces to expose sensor observations and metadata. For example, a sensor
network can be set up to measure air pollution in 5-min intervals or a satellite can be
tasked to remotely sense a specific region on the surface of the globe (De Longueville
et al. 2010). This standard offers operations such as GetFeasibility, which can be used
in advance to verifywhether the execution of a task is feasible for a certain sensor, and
the DescribeResultAccess operation to determine the access points to collected data.
The SPS interface also offers functionality for managing submitted tasks, including
convenient operations for retrieving the status of a task, updating tasks or cancelling
them.

A next step is the tasking profile of the SensorThing API, which is a follow-up,
improved profile of the SPS (Simonis 2007). The SensorThing API (see Sect. 11.2)
defines two different profiles, Sensing and Tasking. The Tasking profile is based on
the SPS standard and enables interoperable submission of tasks to control sensors
and actuators. The main difference between SPS and the SensorThings API is that
the former offers task operations over sensors and the latter also includes tasks
on actuators. Although the first version of the SensorThing API did not include the
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Fig. 11.8 The SensorThings API tasking entities. Source OGC SensorThings API (http://docs.
opengeospatial.org/is/15-078r6/15-078r6.html)

Tasking profile, a new candidate standard illustrates the potential of the SPS standard,
duly adopted and aligned with the requirements of the SensorThings specification
(Liang and Khalafbeigi 2018). This new specification called Tasking Core defines
three new entities, TaskCapability, Task, and Actuator (Fig. 11.8).

The TaskingCapability entity describes all supported tasks for each Thing and
how they can be used. This entity is defined by four properties: name, description,
taskingParameters, and properties. The second entity,Task, is a list of performed tasks
that are defined by a set of tasking parameters (commands executed) and creation
time. The last entity is the Actuator and defines a type of transducer that converts
a signal to a real-world action or phenomenon. This entity is comprises a name,
description, encoding type of metadata and metadata.

11.4 Case Studies on Smart Scenarios

In this section, we show how the IoT andDEwork hand-in-hand in real-world scenar-
ios based on the latest technology initiatives to relate the IoT and DE described in the
previous section. Kamilaris and Ostermann (2018) provide an extensive overview of
work at the nexus of geospatial analysis and the Internet of Things; here, we provide
a selection of case studies in various domain applications, with a special focus on
the relationship between DE and the IoT.

In the context of applications for environmental monitoring and resource man-
agement in cities, recent examples of IoT applications include an Arduino-based
sensor platform in Seoul to measure variations in the physical-chemical parameters
in water streams (Jo and Baloch 2017). The sensor platform is powered by solar
energy and transmitted sensor readings every second via Bluetooth for three years.
Although the case study in Jo and Baloch (2017) relies on a single sensor station and

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
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the clustering analysis of the raw data focuses uniquely on the temporal dimension,
the paper shows the potential of Arduino-based sensing modules for environmental
sensing applications in smart city applications. To improve solid waste management,
Tao and Xiang (2010) developed an information platform to support recycling. The
main technologies were RFID and GPS to track and check waste flows between
collection, transport, and processing facilities. Lee et al. (2015) examined the role
of the IoT in an industrial service provision scenario (fleet management) and Fazio
and Puliafito (2015) use the example of road conditions to showcase a cloud-based
architecture for sensor and data discovery. They distinguish two scenarios of data- or
device-driven search, and develop the system architecture based on the OGC SWE
suite and the extensible messaging and presence protocol (XMPP).

Reducing the required energy consumption remains an important objective for
IoT devices. Ayele et al. (2018) proposed a dual radio approach for wildlife moni-
toring systems. They combine Bluetooth low energy for intraherd monitoring with
LoRa for low-power wide-area networks to communicate between herd clusters and
a monitoring server. The proposed architecture promises significant advantages in
reducing power consumption while maintaining low latency.

Improving trafficmanagement is another promising IoT application area. In 2006,
Lee et al. proposed the use of cars as a mobile vehicular sensor network and for data
exchange in “smart mobs”. More recently envisioned solutions include parking man-
agement and smart traffic lights as part of a cognitive road management system that
handles different types of traffic efficiently (Miz andHahanov2014). Jing et al. (2018)
examined the combination of GNSS localization and RFID tagging for infrastructure
asset management with promising results. Additionally, the city of Aarhus in Den-
mark deployed traffic sensors across major roads in the city, and the information was
used by the CityPulse project to provide context-aware recommendations to users
for route planning (Puiu et al. 2016).

Noise pollution is a frequent problem in dense urban areas, and because urban
morphologymakes noise distributionmodeling difficult, it has attracted participatory
sensing approaches. Wireless acoustic sensor networks are another option. Segura
Garcia et al. (2016) presented a case study in the small city of Algemesi (Spain),
where a network of 78 inexpensive sensor nodes based on Raspberry PIs collected
sufficient data for a subsequent highly accurate spatial interpolation.

Okasenen et al. (2015) harnessed movement data from mobile sports tracking
applications in urban areas to produce heat maps of cyclists commuting through the
city of Helsinki. Mobile phones could be considered IoT sensor devices in partic-
ipatory sensing-based models for mining spatial information of urban emergency
events, as demonstrated by Xu et al. (2016). In addition, van Setten et al. (2004)
supported the COMPASS tourist mobile application with context-aware recommen-
dations and route planning. Mobile phones were also used for crowdsourcing-based
disaster relief during theHaitian earthquake (Zook et al. 2010), where people used the
camera and GPS of their phones to send information from the field to the authorities
to map the landscape of the disaster and assess the overall damage.
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University campuses present an interesting environment for smart city approaches
because the visitors are usually more tech-savvy than the average population, the net-
work coverage is good, and the geographic boundaries allow for a comparatively crisp
delineation of the study area. Cecchinel et al. (2014) presented a system architecture
for a smart campus case where the four requirements of sensor heterogeneity, recon-
figuration capability, scalability, and data as a service were handled via a middleware
in the AmazonWeb Services (AWS) cloud, with Arduino Uno and Raspberry Pi sen-
sors for bridging. Another case study at a university campus examined the impact of
nearby weather and pollution sensors on the everyday decision-making of the stu-
dents (Kamilaris and Pitsillides 2014). Trilles et al. (2015a) presented a sensorized
platform proposal that adheres to the principles of the IoT and the WoT. They use
the SensorThings API to avoid interoperability issues. An environmental WSN in a
Smart Campus scenario was developed as a proof of concept.

However, smart approaches with IoT technology are not limited to smart city
applications. Sawant et al. (2014) presented a low-cost automated weather station
system for agriculture that uses Raspberry Pi systems at its core and SWE to trans-
mit data. The sensor readings were also broadcast on a dedicated Twitter account.
The system has been extended with additional components such as a web-based
client (Sawant et al. 2017). The environmental impact of agriculture was studied
by Kamilaris et al. (2018) in the region of Catalonia, Spain. In their study, sensors
measuring nitrates and data from the mobile phones of farmers in the region were
used. Fang et al. (2014) presented a holistic approach to environmental monitoring
and management through an integrated information system that collects data on the
regional climate for the city of Xinjiang from various sources including IoT sensors,
and related it with ecological response variables such as the primary production and
leaf area index. For environmental monitoring, the AirSensEUR project established
an affordable open software/hardware multisensor platform, which can monitor air
pollution at low concentration levels to create maps of pollution levels in different
areas (Kotsev et al. 2016).

A crucial component of any DE system and application is monitoring shifting
surface conditions such as erosion on sandy beaches. Pozzebon et al. (2018) presented
an Arduino-based system to measure the height of sandy beaches and dunes in real-
time. The sensor network uses the ZigBee standard to transmit data, with a GPRS
transmitter for sending sensor readings to a MySQL database. Another example
is the monitoring of landslides in mountainous areas. Benoit et al. (2015) tested a
successful cheap wireless sensor network using XBee for communication and GPS
for localization. A thematically related case study is the use of small and inexpensive
sensors for monitoring and early-warning systems for floods caused bymelting snow
in the Quergou River basin (China), as reported by Fang et al. (2015). In addition,
changing climate conditions make reliable and efficient management of storm water
surges in urban areas important. Rettig et al. (2016) designed and tested a geospatial
sensor network for this task, built using common, off-the-shelf components.

With respect to the provision and reception of cultural heritage and cultural ser-
vices, Chianese et al. (2017) proposed and tested a system that combines business
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intelligence, Big Data, and IoT data collection to analyze visitor interests and behav-
iors in a museum. Although IoT devices were only part of the approach, measuring
visitor proximity to artworks, their integrated use with other technologies and plat-
forms showcases the strength of a multisensory DE approach.

11.5 Frictions and Synergies Between the IoT and DE

Based on the current technological substrate that provides the initial steps to estab-
lish connections between the IoT and DE according to the three cognitive functions
(Sect. 11.3), and the presentation of selected case studies (Sect. 11.4), in this section,
we (i) carry out a speculative exercise to discuss the main existing limitations and
frictions that prevent the IoT and DE from working closer together and (ii) suggest
future ways to establish effective communication channels between the two infras-
tructures.

Before going into detail, it is necessary to establish a fundamental assumption that
influences any discussion related to the frictions and synergies between the IoT and
DE: the diverging speeds of development of DE and the IoT. New technology and dis-
ruptive breakthroughs generally challenge the status quo in any sector, and adopting
such improvements can enablemore rapid developments and new applications. How-
ever, the rapid growth of the IoT field has produced a vast variety of IoT devices and
protocols and, consequently, the landscape of IoT-related standards, protocols and
specifications is fragmented. For example, a large portion of ‘Things’ were not origi-
nally designed to connect to the Internet; they were later adapted to establish Internet
connections by adding connectivity chips via microcontrollers (e.g., Arduino, Rasp-
berry Pi) or through tags (QR Code or RFID). As a result, many different ways to
connect hardware and software to enable Internet connectivity were developed and
established with no clearly agreed upon consensus and consequently resulted in a
lack of interoperability. This example illustrates the great variety and complexity of
the IoT universe, where the exponential growth of the IoT is due to the rapid decrease
in the size, cost, and energy requirements of sensors, and the ubiquity of network
coverage for wireless Internet connections, leading to many standardization efforts
following diverging paths. In addition, DE has been traditionally characterized by a
slow adaptation of new improvements (López 2011), and thus, the recent technolog-
ical developments have not evolved at the same speed in DE as in the IoT. Noting
this fundamental friction, we identify other potential frictions and synergies, which
may be considered two sides of one coin, and organize the discussion according to
the cognitive functions defined in Sect. 11.3.
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11.5.1 Discoverability, Acquisition and Communication
of Spatial Information

A direct result of the fragmented standardization context noted above is the absence
of well-accepted global protocols for the discovery of Things, which also occurs
to some extent in DE. Search and discovery is crucial for geo-locating nearby, local,
and/or relevant real-world devices and services, a vital step in exploiting sensor data
and services to create more advanced knowledge. Early efforts in this direction are
discussed in Sect. 11.3.1, but we are still far from a complete solution to this difficult
problem, which must be addressed along with the challenges of better description
of devices and services and the semantics of the data involved, especially from a
geospatial point of view.

Therefore, it remains an open issue to build an IoT-DE ecosystem in away thatwill
be compatible with standardized IoT reference models and architectures to enable
the discovery of relevant sensors (or Things) and related services. Although there are
many different scenarios and solutions, several common features can be extracted
to find synergies between both infrastructures: the modularity and interoperability
of IoT components, open models and architectures, flexible service compositions,
integrated security solutions, and semantic data integration. There is an intensified
effort regarding the development of architectural frameworks and solutions such as
the IEEE or ITU-T models, as well as other related works and approaches developed
under the auspices of IETF, W3C, or OASIS. From a DE point of view, associated
services for sensor devices and instances are the cornerstone to enable seamless
communication and interoperability between the IoT and DE. There are different
options such as the SWE and SensorThings API, the latter of which is especially
relevant for the establishment of potential solid bridges between the IoT and DE
concerning common data models for better data acquisition and unified interfaces
for enhanced sensor and service discovery. Some research works have already made
substantial progress. Jara et al. (2014) presented a comprehensive framework and
architecture to enable discovery over a wide range of technologies and protocols,
including legacy systems, and Wang et al. (2015) implemented annotations with an
ontology-based semantic service model, SPARQL queries, and geographic indexing
to enable sensor discovery in an experimental study, which delivered faster and more
accurate responses than other tested approaches.

11.5.2 Spatial Understanding of Objects and Their
Relationships

A friction between DE and the IoT is related to the way geographical features are
modeled. Traditional GIS data models conceptually abstract the real-world objects
into core geometric elements such as points, lines, polygons, and volumes, imple-
mented as raster data models, vector data models, or a combination. These data
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models were designed to perform spatial analyses such as distance computations
and topological operations. Despite these great achievements, GIS (and DE) data
models were not designed to cope with the richness and complexity of the inter-
actions between the physical, natural, and social actors that naturally occur in the
environment in the way that the IoT potentially can. As noted above, smart devices
and Things can ‘sense’ the environment in a way that was unimaginable before, and,
consequently, the streams of rich and finer data acquired by IoT devices do not
fit well with the “coarse-grained” vector/raster data models widely used in DE
applications and systems, as these spatial structures were not intended to handle data
with such a high spatio-temporal resolution.

The lack of suitable datamodels to efficientlymanage data at high spatio-temporal
resolution highlights the need for new tools to process data coming from Things
and smart devices in which the modeling of geospatial features has not yet been
fully resolved. Moreover, real-time data is often a defining feature in the IoT, as
IoT devices and Things can produce data at a high frequency (e.g., data streams),
which requires methods for real-time analysis. Therefore, the lack of new algorithms
and implementations for real-time computation and processing streams of spatially
referenced data sets is a clear limitation. Although some tools can run geospatial
queries of stored data, they do not offer ways to analyze data from IoT devices and
sensor nodes in real-time (Nittel 2015).

Unlike the IoT, any changes in the DE arena have been more gradual and less
frenetic. However, some notable changes indicate the way forward to consolidate
potential bridges between DE and the IoT in the midterm and long term. For exam-
ple, in a Digital Earth Nervous System (De Longueville et al. 2010), Things could
perform basic geospatial operations on sub-networks of Things, providing pro-
cessed information for the higher-level elements of a DE. Geometric measurements
and basic geospatial analysis are application areas in which Things have been used
more widely in recent years (Kamilaris and Ostermann 2018). Similarly, an often
overlooked component of IoT applications are the gateway nodes that connect the
sensor devices to the wider network. In addition to a simple routing function, these
gateways can perform other tasks including exploratory analysis (clustering, event-
detection) of incoming data. Rahmani et al. (2018) examined the use of smart gate-
ways in an e-health system thatmonitors several individual physiological parameters,
demonstrating the potential benefits of (spatial) analysis executed directly on smart
gateways in the context of DE-related applications such as precision agriculture,
environmental monitoring, and disaster management.

The status quo of services for spatial analysis and geoprocessing on the Web is
mainly driven by the WPS standard specification (Sect. 11.2.4). However, Herle and
Blankenbach (2018) argued that the currentWPS standard is not well suited to handle
the large amounts of real-time streaming data expected from massive IoT sensor
networks. Building on previous work, they extended the WPS with the GeoPipes
concept using the GeoMQTT protocol for communication, implementing several
smaller proofs-of-concept for application cases such as inverse distance weighting
with a slidingwindow and trajectory datamining. In addition,Armstrong et al. (2018)
presented an IoT + CyberGIS system to detect radiation risk and propose that new
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approaches are needed to integrate the IoT and geospatial analysis and support the
fourth scientific paradigm of data-intensive discovery (Hey et al. 2009).

11.5.3 Taking Informed Actions and Acting Over
the Environment

In the initial stages of DE, it was thought that sensors could only capture what is
happening in the physical environment, i.e., sensors as mere data loggers. The data
collected by these sensors are transferred from bottom to top until reaching the SDI
repositories. In this sense, the IoT ismuchmore complex because, in addition the fea-
ture of acting on the physical environment, the IoT supports communication between
devices in the same layer (edge) and complex strategies to determine solutions to
real, large problems can be developed. Asmentioned above, DE should be adapted to
the possibilities that the IoT devices can offer to enrich the capabilities of the current
SDIs.

The previously noted heterogeneity problem of connecting IoT devices implies
different hardware specifications across the multiple IoT devices. This variety of
hardware means that the abovementioned standards cannot work at a low level. This
is why the standardsmainly defineweb service interfaces, and connectors or adapters
(hub approach) are required to control IoT nodes. Similar to the hub approach, the
Sensor Interface Descriptor (SID) solution is a declarativemodel based on the Sensor
ML standard for describing device capabilities (Broering and Below 2010), sensor
metadata, sensor commands, and device protocols. In terms of the tasking capability,
the SID describes device protocols with the Open Systems Interconnection (OSI)
model using an XML schema and thus understanding and adapting the SID may be
costly for IoT device manufacturers.

An opportunity that DE can offer the IoT is a global vision on the in situ data
that the IoT collects, with the aim of establishing strategies to perform actions in a
coordinated manner among the IoT nodes, taking advantage of the ability to act. To
conclude, the following Table 11.1 summarizes the frictions and synergies between
the IoT and DE.

11.6 Conclusion and Outlook for the Future of the IoT
in Support of DE

The concept of combining sensors organized in networks to monitor the environment
has been around for decades, andDE has contributed to its expansion. The confluence
of new technologies has created a new reality that offers millions of new possibilities,
led by the IoT revolution that promises to create a newly interconnected “smart”world
(or Earth). After the massive deployment of a ubiquitous array of IoT devices and the
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Table 11.1 Detected frictions and synergies between the IoT and DE

Discoverability,
acquisition and
communication of spatial
information

Understanding spatial
objects and their
relationships

Taking informed actions
and acting over the
environment

Frictions – Absence of
well-accepted global
protocols for the
discovery of Things

– IoT devices do not fit
well with coarser
vector/raster data
models

– Lack of tools to
process data from
Things

– DE has traditionally
considered sensors as
collectors, with data
flowing from bottom to
top.

– GIS standards must be
adapted for each
hardware specification

Synergies – Different standardized
IoT models and
architectures such as
SWE and
SensorThings API

– Things can perform
basic geospatial
operations

– Some initiatives have
adapted GIS
processing standards
to support IoT data

– DE provides a global
view to establish IoT
node strategies to act

impact it made, the world cannot give up being ‘online’. Today, the IoT has enabled
millions of relationships between objects and Things, so that objects, people, and
their environment are more tightly intertwined than ever. Despite the great advances
achieved in recent years, like all disruptive innovations, the IoT presents a series of
challenges that should be treated as a priority in the coming years, especially in the
areas of security, interoperability and standards, privacy, and legal issues. DE can
also play a crucial role in handling some of these challenges.

The IoT andDEdichotomypresents various challenges that should be addressed in
the near future to create a more beneficial union for both parties: The first challenge
is to activate mechanisms to streamline the adaptation of new IoT functionalities
from DE. Traditionally, DE is characterized by its comparative inertia to adopt new
approaches that imply improvements in terms of performance or usability. Examples
include the slow adoption of more flexible interfaces such as the RESTful web
interface or data formats that are more suitable for exchange such as JSON in sensor
standards such as the SOS specification (Tamayo et al. 2011). The tradeoffs between
standardization and disruptive innovation in DE should be carefully discussed by all
involved actors to fuel rapid, innovative developments in DE like those in the IoT
field. Although the standardization process is key to establishing permanent links
between the two infrastructures, it should not slow down innovative changes and
technical developments, and standards should be seen as a means to filter out and
embrace changes that prove to be useful, effective and valuable for improvement of
the IoT-DE ecosystem.

When a technological field grows exponentially, it often leads to heterogeneity
and variety in the short term. Within the IoT, this is partly due to the impact that
the continuous development and improvement of hardware technology has on IoT
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devices. Therefore, another challenge to be addressed is the heterogeneity of IoT
devices. Although the OGC specifications have helped in the service connection and
data/service access levels, the IoT still presents a wide variety of different hardware
developments and implementations, most of which are disconnected from the DE
infrastructure, and therefore remain invisible for DE applications. The development
of ad hoc adapters is one way, at least until a standards consensus is reached in the
IoT field, to allow for interaction with the variety of hardware specifications of IoT
devices and Things and foster connections between the two infrastructures. This is
not an optimal solution since the integration of IoT devices is a challenging and
difficult task, but it helps discern the connections and adaptors that may eventually
become candidates for standardization bodies.

Throughout this chapter, we revisited many tools that are capable of analyzing
spatially referenced data collected by IoT devices. However, the quantity and quality
of tools that handle the temporal dimension of data in real time far exceeds those
that deal with the spatial dimension. An additional barrier is the large-scale variance
in the data models between IoT devices and the decision-making systems that are
typically established in DE. Optimal spatial models to handle scale variations can
be useful to analyze the information received from IoT devices and obtain a more
high-level vision that can be interpreted by decision makers and policy makers.
Therefore, investment in the research and development of better tools to spatially
analyze IoT data in real time on the edge, fog and cloud scales is a priority in the
IoT-DE ecosystem roadmap.
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