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Abstract. Given a complete hypersurface isometrically immersed in an am-

bient manifold, in this paper we provide a lower bound for the norm of the
mean curvature vector field of the immersion assuming that:

1) The ambient manifold admits a Killing submersion with unit-length

Killing vector field.
2) The projection of the image of the immersion is bounded in the base

manifold.

3) The hypersurface is stochastically complete, or the immersion is proper.

1. Introduction

Lower bounds for the norm of the mean curvature of an isometric immersion
of bounded image in the Euclidean space have been largely studied in order to
understand the Calabi problem. It is well known that there is no gap on the norm
of the mean curvature of a bounded immersion. More precisely, it is known that
a complete isometric immersion in the Euclidean space with bounded image can
be a minimal immersion. For instance, in his celebrated paper [14], Nadirashvili
constructed a complete minimal surface inside a round ball in R3. Later on the
construction of minimal immersions inside of bounded domains of the Euclidean
space was carried out by Mart́ın, Morales, Tokuomaru, Alarcón, Ferrer and Meeks
among others (see [12, 13, 20, 2, 7]). More recently, Alarcón and Forstnerič have
proved in [1] that every bordered Riemann surface carries a conformal complete
minimal immersion into R3 with bounded image.

Despite of this freedom in the norm of the mean curvature we want stress here
that all these previous examples are geodesically complete but stochastically in-
complete and are non-properly immersed in the Euclidean space. A Riemmanian
manifold is said stochastically complete if et41 = 1 for all t ≥ 0 where 4 = div∇
is the Laplacian and {Pt = et4}t≥0 is the heat semi-group of the Laplacian (see
section 3.4 for a more detailed description of stochastic completeness).

Historically, the first attempt to construct a minimal immersion with bounded
image dealt with the construction of an example with bounded projection. In
1980, (before the example of Nadirashvili), Jorge and Xavier in [9] exhibit a non-
flat complete minimal surface lying between two parallel planes. This example is
stochastically complete (see [5]) but is non-properly immersed.
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The relevant point here is that stochastic completeness or the properness of the
isometric immersion implies lower bounds for the supremum of the norm of the mean
curvature of bounded immersions. In fact, in [3], Aĺıas, Bessa and Dajczer proved
that given a complete isometric immersion α : Σn−1 → Rn with Σ stochastically
complete and with bounded projection of the image of α in a 2-plane, namely,

there exist a geodesic ball BR2

R of radius R and a projection π : Rn → R2 such

that π(ϕ(Σ)) ⊂ BR2

R , the supremum of the norm of the mean curvature ~H of the
immersion is bounded by

sup
M
‖ ~H‖ ≥ h(R)

where h(R) is the norm of the mean curvature of the generalized cylinder π−1(∂BR2

R )
in Rn. More generally, in [3], it is proved that

Theorem 1.1 (See [3]). Let ϕ : Σm → Nn−l × Rl be an isometric immersion
of a complete Riemannian manifold Σ of dimension m > l + 1. Let BNR (p) be
the geodesic ball of Nn−l centered at p with radius R. Given q ∈ Σ, assume that
the radial sectional curvature Krad

N along the radial geodesics issuing from p =
πN (ϕ(q)) ∈ Nn−1 is bounded as Krad

N ≤ κ in BNR (p). Suppose that

ϕ(Σ) ⊂ BNR (p)× Rl

for R < min{injN (p), π/2
√
κ}, where we replace π/2

√
κ by +∞ if κ ≤ 0. Then, if

Σ is stochastically complete or ϕ : Σ→ Nn−l × Rl is proper, the supremum of the
norm of the mean curvature vector field is bounded by

sup
Σ
‖ ~H‖ ≥ m− l

m
Cκ(R)

where

Cκ(R) =


√
κ cot(

√
κR) if κ > 0, R < π

2
√
κ

1/R if κ = 0√
−κ coth(

√
−κR) if κ < 0.

In this paper we are interested in a similar case but when we have an isometric
immersion ϕ : Σn →Mn+1 and the ambient manifold M admits a Killing submer-
sion π : Mn+1 → Bn (see sections 2 and 3). Our goal is to obtain lower bounds
for the supremum of the norm of the mean curvature of the immersion ϕ when the
projection of the image ϕ(Σ) is bounded, i.e., there exists a geodesic ball BB

R in B
such that ϕ(Σ) ⊂ π−1(BB

R). In our main results, we prove that if we assume that
Σ is stochastically complete, or the immersion is proper, then the supremum of the
norm of the mean curvature is bounded from below by a function that depends
on R, on an upper bound for the sectional curvatures of BB

R, and on the bundle
curvature of the Killing submersion π : Mn+1 → B.

Outline of the paper. In §2 are stated the main results of this paper; theorem
2.3 and theorem 2.7. In §3 are developed every necessary lemma, proposition, and
theorems in order to prove in §4 theorem 2.3 and in §5 theorem 2.7.

2. Main Results

Let (M, gM ) be (n + 1)-dimensional Riemannian manifold. It is said that M
admits a Killing submersion with a unit-length Killing vector field if there exists a
Riemannian submersion π : (M, gM )→ (B, gB) into a n-dimensional base manifold
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B, such that the fibers of the submersion are integral curves of an unit-length
Killing vector field ξ ∈ X(M). The tangent space TpM at any point p ∈ M can
be decomposed TpM = V(p)⊕H(p) in its vertical V(p) = ker(dπp) and horizontal
part H(p) = (ker(dπp))

⊥ respectively.
The Killing vector field ξ induces a smooth (1, 1)-tensor field ∇ξ, see section 3,

given by

∇ξ(p) : H(p)→ H(p), v 7→ ∇vξ,
where ∇ denotes the Levi-Civita connection in M . With the Hilbert-Schmidt norm
‖∇ξ(p)‖ of the linear map ∇ξ(p) we can define the Killing twist function as follows

Definition 2.1. Let π : M → B be a Killing submersion with unit-length Killing
vector field ξ ∈ X(M). The Killing twist function is the function

τ : M → R, p 7→ τ(p) :=
1√
2
‖∇ξ(p)‖

where ‖∇ξ(p)‖ is the Hilbert-Schmidt norm of the linear map ∇ξ(p) : H(p) →
H(p), v 7→ ∇vξ.

We see that τ measures the non-integrability of the horizontal distribution.
Moreover, for any point p ∈ M and any v ∈ H(p), the sectional curvature of
the plane v∧ξ spanned by v and ξ is non-negative and bounded from above by (see
section 3)

sec(v ∧ ξ) ≤ τ2(p).

The above inequality is an equality if dim(B) = 2 and in such a case τ is also
known1 as the bundle curvature of the submersion and τ2 coincides with the sec-
tional curvature of the vertical planes.

Given a subset S ⊂M in a manifold M admitting a Killing submersion π : M →
B, we define the Killing shadow of S as follows

Definition 2.2. Let π : M → B be a Killing submersion, let S be a subset S ⊂M
of M . The Killing shadow of S is the subset of B given by π(S).

In this paper we are interested in hypersurfaces ϕ : Σ → M isometrically im-
mersed in M , and such that the Killing shadow of ϕ(Σ) is bounded in B. Namely,
there exists a geodesic ball BB

R(o) in B such that ϕ(Σ) ⊂ π−1(BB
R(o)). In this case

the restriction τ ◦ ϕ to the hypersurface of the Killing twist function is absolutely
bounded and we denote by

τΣ := sup
Σ
τ ◦ ϕ.

In the statement of theorem 2.3, we compare the norm of the mean curvature
of Σ with the norm of the mean curvature of the inclusion map of the cylinder

∂B
Mn(κ)
R × R in Mn(κ) × R, where Mn(κ) is the n-dimensional simply-connected

space form of sectional curvature κ, i.e.,

Mn(κ) :=

 Sn(κ) if κ > 0
Rn if κ = 0
Hn(κ) if κ < 0.

Our main theorem is the following

1In the case of dim(B) = 2 usually is used a signed τ . In such convention our τ is just |τ |.
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Theorem 2.3. Let Σ be a complete and non-compact Riemannian manifold. Let ϕ :
Σ → M be an isometric immersion. Suppose that M admits a Killing submersion
π : M → B with unit-length Killing vector field, suppose moreover that ϕ(Σ) ⊂
π−1(BB

R(o)) for some geodesic ball BB
R(o) of radius R centered at o ∈ B. Assume

that the sectional curvatures are bounded sec ≤ κ in BB
R(o) and that

R < min

{
inj(o),

π

2
√
κ

}
where inj(o) is the injectivity radius of o and we replace π/2

√
κ by +∞ if κ ≤

0. Then, if Σ is stochastically complete, the supremum of the norm of the mean
curvature vector field of Σ satisfies

sup
Σ
‖ ~H‖ ≥ hnκ(R)− τΣ

n

where hnκ(R) is the norm of the mean curvature of the generalized cylinder ∂B
Mn(κ)
R ×

R in Mn(κ)× R.

Because limt→0 h
n
κ(t) = +∞, as an immediate corollary of the main theorem we

can state

Corollary 2.4. Let π : M → B be a Killing submersion with a Killing vector field
of unit-length, suppose that B has bounded geometry, i.e.,

(1) The injectivity radius inj(B) of B is positive, rinj := inj(B) > 0.
(2) The sectional curvatures of B are bounded from above by a positive constant,

sec(B) ≤ κ < 0.

Suppose moreover that,
τM := sup

M
τ <∞

Then there exists a constant Rc(rinj, κ, τM ) ∈ R+∪{+∞} depending only on rinj, κ,
and τM such that if a complete Riemannian manifold admits an isometric minimal
immersion ϕ : Σ→ π−1(BB

Rc(rinj,κ,τM )(x)) for some x ∈ B, then Σ is stochastically

incomplete.

Remark 2.5. From the main theorem we can give an estimate for Rc(rinj, κ, τM ) as

min

{
rinj , sup

0<t< π
2
√
κ

{
t : hnκ(t) >

τM
n

}}
.

We must remark here that we do not claim that this estimate is sharp.

Example 2.6 (Application of the theorem 2.3 to the E(κ, τ) spaces). A simply-
connected homogeneous 3-dimensional space with 4-dimensional isometry group
is always a Riemmanian fibration over to a simply-connected 2-dimensional real
space form M2(κ) and the fibers are integral curves of a unit Killing field, see
[6, 19]. Namely, every simply-connected homogeneous 3-dimensional space with
4-dimensional isometry group admits a Killing submersion with unit-length Killing
vector field. In fact, these spaces can be classified, up to isometries, by their values
κ and τ and can be denoted as E(κ, τ) spaces.

When the bundle curvature vanishes τ = 0 and κ 6= 0 we obtain the Riemannian
products S2(κ)×R for κ > 0, and H2(κ)×R for κ < 0. In the case of τ 6= 0 we have
Berger spheres for κ > 0, the Heisenberg group Nil3 for κ = 0 and the universal

cover ˜PSL2(R) of PSL2(R) for κ < 0.
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If we have a complete and stochastically complete surface Σ immersed in E(κ, τ)

inside of π−1(B
M2(κ)
R ), with R < π/2

√
κ when κ > 0, then by the main theorem

the norm of the mean curvature vector field satisfies

sup
Σ
‖ ~H‖ ≥ h2

κ(R)− τ

2
=

1

2
(Cκ(R)− τ) .

In the particular case when κ < 0,

sup
Σ
‖ ~H‖ ≥ h2

κ(R)− τ

2
>

1

2

(√
−κ− τ

)
.

And therefore if −κ ≥ τ2 ≥ 0, any minimal surface immersed in π−1(B
M2
κ

R ) for any
R > 0 is stochastically incomplete.

In the case when the Killing submersion admits a smooth section such that the
Killing exponential map is a diffeomorphism, the lower bound for the supremum
of the norm of the mean curvature vector field can be improved replacing the
hypothesis on the stochastic completeness of Σ in theorem 2.3 by the properness of
the immersion as it is stated in the following theorem

Theorem 2.7. Let Σ be a complete and non-compact Riemannian manifold. Let
ϕ : Σ → M be a proper isometric immersion. Suppose that M admits a Killing
submersion π : M → B with unit-length Killing vector field, suppose moreover that
ϕ(Σ) ⊂ π−1(BB

R(o)) for some geodesic ball BB
R(o) of radius R centered at o ∈ B.

Assume that the sectional curvatures are bounded sec ≤ κ in BB
R(o) and that

R < min

{
inj(o),

π

2
√
κ

}
where inj(o) is the injectivity radius of o and we replace π/2

√
κ by +∞ if κ < 0.

Suppose moreover, that π admits a smooth section s : BB
R(o)→ M and the Killing

exponential map

exp : s(BB
R(o))× R→ π−1((BB

R(o))), (p, z)→ exp(p, z) := expp(zξ)

is a diffeomorphism. Then, the supremum of the norm of the mean curvature vector
field of Σ satisfies

sup
Σ
‖ ~H‖ ≥ hnκ(R)

where hnκ(R) is the norm of the mean curvature of the generalized cylinder ∂B
Mn(κ)
R ×

R in Mn(κ)× R.

Remark 2.8. Observe that the upper bound R < π
2
√
κ

in the statement of the above

theorem is needed. In fact, we can see that vertical cylinders become minimal for
R = π

2
√
κ

in Sn(κ)× R.

In the case of E(κ, τ) spaces with κ ≤ 0 we can use the model for E(κ, τ) as (see
[11]) the space

E(κ, τ) =
{

(x, y, z) ∈ R3 : 1 +
κ

4
(x2 + y2) > 0

}
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endowed with the Riemannian metric such that the following three vector fields

E1 =
[
1 +

κ

4
(x2 + y2)

] ∂

∂x
− τy ∂

∂z
,

E2 =
[
1 +

κ

4
(x2 + y2)

] ∂

∂y
+ τx

∂

∂z
,

E3 =
∂

∂z

constitutes an orthonormal basis in each tangent space. Observe that π(x, y, z)→
(x, y) is a Riemannian submersion from E(κ, τ) to M2(κ) whose fibers are the
integral curves of the unit-length Killing vector field E3. Moreover, s(x, y) →
(x, y, 0) constitutes a smooth global section from M2(κ) to E(κ, τ). The Killing
exponential map satisfies

exp((x, y, 0), t) = exp(x,y,0)(tE3) = (x, y, t).

In this spaces the hypothesis of theorem 2.7 are therefore fulfilled and hence we can
state

Corollary 2.9. Let ϕ : Σ → E(κ, τ) be a proper isometric immersion from a
complete and non-compact surface Σ to E(κ, τ) with κ ≤ 0. Suppose that π(ϕ(Σ))

is contained in some ball B
M2(κ)
R (o) of radius R in M2(κ), then the supremum of

the norm of the mean curvature vector field of Σ satisfies

sup
Σ
‖ ~H‖ ≥ h2

κ(R)

where h2
κ(R) is the norm of the mean curvature of the generalized cylinder ∂B

M2(κ)
R ×

R in M2(κ)× R.

Remark 2.10. The E(κ, τ) spaces includes for τ = 0, E(κ < 0, τ = 0) = H2(κ)× R
and E(κ = 0, τ = 0) = R2 × R = R3. In these cases the above corollary is a
direct application of [3]. For the case of τ 6= 0 we have the Heisenberg group
Nil3 = E(κ = 0, τ 6= 0) for κ = 0 and in the case of negative curvature κ < 0
we can assume up to scaling that we are in universal cover of PSL2(R) , namely

P̃SL2(R) = E(κ = −1, τ 6= 0). By using the above corollary, any properly immersed

non-compact surface ϕ : Σ → Nil3 with bounded projection π(ϕ(Σ)) ⊂ BR2

R (o) ⊂
R2, has bounded from below the supremum of the norm of the mean curvature
vector field by

(1) sup
Σ
‖ ~H‖ ≥ 1

2R
·

In the case of negative curvature if we have a complete and non-compact surface

Σ properly immersed in P̃SL2(R) with bounded projection π(ϕ(Σ)) ⊂ B
H2(−1)
R ⊂

H2(−1), then the the supremum of the norm of the mean curvature vector field of
the surface is bounded from below by

(2) sup
Σ
‖ ~H‖ ≥ 1

2
cotanh(R).

Observe that inequalities (1) and (2) are optimal because the right side coincides

with the norm of the mean curvature of the cylinders π−1(∂BR2

R ) ⊂ Nil3 and

π−1(∂B
H2(−1)
R ) ⊂ P̃SL2(R) respectively.
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3. Preliminaries

3.1. Killing Submersions. Let M and B two manifolds. A submersion π : M →
B is a mapping of M onto B such that its derivative dπp : TpM → Tπ(p)B has
maximal rank (it is onto) for any p ∈ M . Then, the distribution p → V(p) =
ker(dπp) called the vertical distribution is an involutive distribution and hence
π−1(x) is a submanifold of M of dimension dim(M)− dim(B) for any x ∈ B. The
submanifolds π−1(x) are called the fibers. A vector field X ∈ X(M) is called vertical
if it belongs to V, namely, if X(p) ∈ V(p) for any p ∈M .

If (M, g) is moreover a Riemannian manifold, an other distribution called the
horizontal distribution can be constructed as p→ H(p) := (ker(dπp))

⊥. Likewise, a
vector field X ∈ X(M) is called horizontal if it belongs to H. Then, for any p ∈M
we can decompose the tangent space TpM as

TpM = H(p)⊕ V(p).

A Riemannian submersion π : (M, gM ) → (B, gB) is a submersion such that dπ
preserves the lengths of horizontal vectors. Namely dπp is a local isometry from
H(p) to Tπ(p)B.

A Riemannian submersion π : M → B is a Killing submersion if the fibers
π−1(x) for any x ∈ B are integral curves of a Killing vector field ξ ∈ X(M). Along
this paper it is assumed that the Killing vector field ξ is a unit-length vector field
(‖ξ‖ = 1). See [10] for the general discussion of a Killing submersion with a Killing
vector field of non-constant norm.

Recall that a vector field ξ ∈ X(M) is a Killing vector field of (M, g) (see [16])
if its Lie derivative of the metric tensor vanishes identically, Lξ(g) = 0. If ξ is a
Killing vector field, the metric tensor does not change under the flow of ξ and ξ
generates local isometries.

The following proposition will be used along this paper in order to characterize
a Killing vector field

Proposition 3.1 (See [16]). Let (M, g) be a Riemannian manifold. Then, the
following conditions are equivalents for a vector field ξ ∈ X(M)

(1) ξ is Killing; that is, Lξg = 0.
(2) ∇ξ is skew-adjoint relative to g; that is, 〈∇V ξ,W 〉 = −〈∇W ξ,X〉 for all

V,W ∈ X(M).

If π : M → B is a Killing submersion, for any p ∈M , by using the vertical vector
field ξ, the following linear map ∇ξ : TpM → TpM, v 7→ ∇ξ(v) = ∇vξ can be
defined. Since ξ is a unit-length Killing vector field, by proposition 3.1

(3) 〈∇vξ, w〉 = −〈∇wξ, v〉

for any v, w ∈ TpM . This implies that π−1(x) is geodesic in M because π−1(x) is
the integral curve of ξ, and by using that ‖ξ‖ = 1 and equality (3), we conclude

(4) 〈∇ξξ, v〉 = −〈∇vξ, ξ〉 = −1

2
v〈ξ, ξ〉 = 0,

for any v ∈ TpM . Therefore, ∇ξξ = 0, and as we have stated π−1(x) is a geodesic
in M . Moreover, from equation (4) we deduce that ∇vξ is perpendicular to ξ, and
hence horizontal. The restriction of ∇ξ to H(p) induces therefore a linear map
∇ξ(p) : H(p)→ H(p).
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In the following proposition it is summarized the properties of the (1, 1)-tensor
field ∇ξ and of the Killing twist function τ defined in definition 2.1 that are relevant
for the present paper

Proposition 3.2. Let π : M → B be a Killing submersion with unit-length Killing
vector field and let τ : M → R be its Killing twist function. Then

(1) Given a point p ∈ M and an horizontal vector v ∈ TpM , the sectional
curvature sec(v ∧ ξ(p)) of the plane spanned by ξ(p) and v is bounded by

sec(v ∧ ξ(p)) ≤ τ2(p)

with equality if dim(B) = 2.
(2) Given a point p ∈M and for any horizontal vector v ∈ TpM

‖∇vξ‖2 ≤ τ2‖v‖2.

(3) The function τ : M → R is a basic function, i.e., it is fiber-independent,
namely, if π(x) = π(y) then τ(x) = τ(y).

Proof. Given a point p ∈ M and an horizontal vector v ∈ H(p) with unit-length,
‖v‖ = 1, in order to obtain the sectional curvature sec(v∧ξ) let us consider a vector
field X ∈ X(B) defined in a neighborhood U 3 π(p), such that X(π(p)) = dπ(v)
and with vanishing covariant derivative ∇B

X
X = 0 in B, i.e., a geodesic vector field.

Then the lift X ∈ X(M) of X defined in π−1(U) 3 p satisfies

(5)


dπ(X) = dπ(XH) = X

dπ((∇XX)H) = ∇B
X
X = 0

∇XX = (∇XX)H + 〈∇XX, ξ〉ξ = −〈X,∇Xξ〉 = 0.

Where here and in what follows the superscript H denotes the horizontal part of a
vector. Then,

sec(v ∧ ξ) =sec(X ∧ ξ) = 〈R(X, ξ)X, ξ〉 = 〈∇ξ∇XX −∇X∇ξX +∇[X,ξ]X, ξ〉
=〈−∇X∇ξX +∇[X,ξ]X, ξ〉 = 〈−∇X ([ξ,X] +∇Xξ) +∇[X,ξ]X, ξ〉
=〈∇X ([X, ξ]−∇Xξ) +∇[X,ξ]X, ξ〉.

In order to simplify the expression let us define the following vector fields Y :=
∇Xξ and Z := [X, ξ]. Observe that both X,Y are horizontal vector fields. Since
Y = ∇ξ(X) and

〈Z, ξ〉 = 〈∇Xξ −∇ξX, ξ〉 = 〈∇Xξ, ξ〉 − 〈∇ξX, ξ〉 =
1

2
X〈ξ, ξ〉 = 0.

Therefore,

sec(v ∧ ξ) =〈∇X (Z − Y ) +∇ZX, ξ〉 = 〈∇XZ +∇ZX, ξ〉 − 〈∇XY, ξ〉
=‖Y ‖2 = ‖∇Xξ‖2 = ‖∇vξ‖2

where we have used that 〈∇XZ, ξ〉 = −〈Z,∇Xξ〉 = 〈X,∇Zξ〉 = −〈∇ZX, ξ〉 and
〈∇XY, ξ〉 = −〈Y,∇Xξ〉 = −‖Y ‖2.

In order to obtain item (1) and (2) of the proposition we only need to relate
‖∇ξ(v)‖2 with ‖ξ‖2. When we focus on p ∈M and consider an orthonormal basis
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{Ei}ni=1 of H(p), for any v ∈ H(p), v =
∑
i v
iEi,

(6)

‖∇ξ(v)‖2 =‖∇vξ‖2 =

n∑
i=1

〈∇vξ, Ei〉2 =

n∑
i=1

n∑
j=1

(vj)2〈∇Ejξ, Ei〉2

=

n∑
i=1

n∑
j=1

(vj)2

( 〈∇Ejξ, Ei〉2 + 〈∇Eiξ, Ej〉2

2

)

=

n∑
i=1

n∑
j=1

(vj)2 〈∇Ejξ, Ei〉
2

2
+

n∑
i=1

n∑
j=1

(vj)2 〈∇Eiξ, Ej〉2

2

=

n∑
i=1

n∑
j=1

(vj)2 〈∇Ejξ, Ei〉
2

2
+

n∑
j=1

n∑
i=1

(vi)2 〈∇Ejξ, Ei〉
2

2

=
n∑
i=1

n∑
j=1

(vj)2 + (vi)2

2
〈∇Ejξ, Ei〉2

=

n−1∑
i=1

n∑
j>i

(
(vj)2 + (vi)2

)
〈∇Ejξ, Ei〉2

where we have used that 〈∇Eiξ, Ej〉2 is symmetric in i, j and 〈∇Eiξ, Ei〉2 = 0
because ξ is a Killing vector field . We now, need to relate ‖∇vξ‖ with the Hilbert-
Schmidt norm ‖∇ξ‖. Recall that for the linear map ∇ξ : H(p)→ H(p) the Hilbert-
Schmidt norm is given by

(7) ‖∇ξ‖2 =

n∑
i=1

‖∇ξ(Ei)‖2 =

n∑
i=1

n∑
j=1

〈∇Eiξ, Ej〉2 = 2

n−1∑
i=1

n∑
j>i

〈∇Eiξ, Ej〉2.

In the particular case when n = 2, by using inequalities (6) and (7),

‖∇vξ‖2 =
(
(v1)2 + (v2)2

)
〈∇E1ξ, E2〉2 =

‖∇ξ‖2

2
‖v‖2 = τ2‖v‖2

when n > 2, taking into account that for any i and j,
(
(vi)2 + (vj)2

)
≤ ‖v‖2,

‖∇vξ‖2 ≤‖v‖2
n−1∑
i=1

n∑
j>1

〈∇Ejξ, Ei〉2 = τ2‖v‖2

and item (2) of the proposition follows. By using sec(v∧ξ) = ‖∇vξ‖2 with ‖v‖2 = 1
item (1) of the proposition follows as well.

Finally, we are going to prove that the Killing twist function τ is an basic func-
tion. Given any point p ∈ M with π(p) = y let us consider the integral curve
γξ : R→M of ξ tangent to the fiber π−1(y) with γξ(0) = p (and γ̇ξ(0) = ξ(p)). It
is sufficient to prove that

d

dt

(
τ2 ◦ γξ(t)

)∣∣∣∣
t=0

= 0.

To obtain that let us consider a sufficient small tubular neighborhood of γ((−ε, ε))
and the following orthonormal basis {ξ(γ(t)), E1, · · · , En} at γ(t), (n = dim(B) and
{Ei} are horizontal vectors). Then

(8)
d

dt

(
τ2 ◦ γξ(t)

)
=ξ(τ2) = ξ

(
n∑
ij

〈∇Eiξ, Ej〉
2

)
= 2

n∑
ij

〈∇Eiξ, Ej〉 · ξ (〈∇Eiξ, Ej〉) .
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But for any i, j

(9)
ξ (〈∇Eiξ, Ej〉) =〈∇ξ∇Eiξ, Ej〉+ 〈∇Eiξ,∇ξEj〉 = 〈∇∇Eiξξ, Ej〉+ 〈∇Eiξ,∇Ej ξ〉

=− 〈∇Ej ξ,∇Eiξ〉+ 〈∇Eiξ,∇Ej ξ〉 = 0.

�

3.2. Hessian and Laplacian in immersions and submersions. We are inter-
ested in the following setting

Σ M Bϕ π

with ϕ an isometric immersion and π a Killing submersion. Since in this paper we
will assume that Σ is stochastically complete, Σ satisfies a weak maximum principle
for the Laplacian of bounded functions f : Σ → R, see theorem 3.7. Our strategy
will be to make use of an specific function f : B → R and to study the Laplacian
of the function f ◦ π ◦ϕ : Σ→ R. In this section, we develop in proposition 3.4 the
required relation between 4(f ◦π ◦ϕ), the mean curvature of the immersion ϕ and
the Killing twist function τ of the submersion π.

Let ϕ : Σ → M be an isometric immersion. For any point ϕ(p) ∈ M we can
decompose the tangent space as Tϕ(p)M = dϕ(TpΣ) ⊕ (dϕ(TpΣ))⊥. Let us denote

by ∇M and ∇Σ the Levi-Civita connection on M and Σ. For any p ∈ Σ, x, y ∈ TpΣ
and Y ∈ X(Σ) an extension of y to X(Σ), the second fundamental form IIp(x, y) is
given by

IIp(x, y) = ∇Mdϕ(x)Z − dϕ(∇Σ
xY )

being Z any extension of dϕ(Y ) to X(M). Since,

(∇Mdϕ(x)Z)T = dϕ(∇Σ
xY )

the second fundamental form IIp(x, y) ∈ (dϕ(TpΣ)⊥) and recall moreover that the
mean curvature of the immersion ϕ : Σ→M in p is defined by

~H :=
1

dim(Σ)

dim(Σ)∑
i=1

IIp(Ei, Ei)

for any orthonormal basis {Ei} of TpΣ.
When we have an hypersurface immersed into an ambient manifold which admits

a Killing submersion with unit-length Killing vector field we can define the twisted
mean curvature vector field of the immersion as follows

Definition 3.3. Let Σ be hypersurface immersed ϕ : Σ → M in an ambient
manifold M which admits a Killing submersion π : M → B with unit-length Killing

vector field ξ ∈ X(M). The twisted mean curvature of the immersion ~Hτ is given
by

(10) ~Hτ := ~H +
2

n
〈ν, ξ〉∇ξ(νH)

where ν is a unit-length normal vector field to Σ.

Observe that since Σ is an hypersurface of M (i.e., dim(Σ) = n) there ex-
ists (at least locally) a unit-length vector field ν normal to Σ and such that

(dϕ(TpΣ))⊥ = span{ν}. Observe moreover that ~Hτ remains unaltered under the
shift of orientation ν 7→ −ν.
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This twisted mean curvature vector field is strongly related with the Laplacian
of basic functions. Let f : M → R be a smooth function, the gradient of f and the
gradient of the restricted function f ◦ ϕ : Σ→ R satisfy the following relation

〈∇f ◦ ϕ, v〉Σ = d(f ◦ ϕ)(v) = df(dϕ(v)) = 〈∇f, dϕ(v)〉M .
The Hessian of the restriction f ◦ ϕ is given then by

(11)

HessΣf ◦ ϕ(x, y) =〈∇Σ
x∇f ◦ ϕ, y〉Σ = x〈∇f ◦ ϕ, y〉Σ − 〈∇f ◦ ϕ,∇Σ

xY 〉Σ
=x〈∇f ◦ ϕ, y〉Σ − 〈∇f, dϕ(∇Σ

xY )〉M
=dϕ(x)〈∇f, dϕ(y)〉M − 〈∇f,∇Mdϕ(x)dϕ(Y )− IIp(x, y)〉M
=HessMf(dϕ(x), dϕ(y)) + 〈∇f, IIp(x, y)〉M .

Given an orthonormal basis {Ei}ni=1 of TpΣ, {dϕ(Ei)}ni=1∪{νϕ(p)} is an orthonormal
basis of Tϕ(p)M and hence

4Σf ◦ ϕ(p) =

n∑
i=1

HessΣf ◦ ϕ(Ei, Ei) =

n∑
i=1

HessMf(dϕ(Ei), dϕ(Ei)) + n〈∇f, ~H〉M

=4Mf(ϕ(p))−HessMf(νϕ(p), νϕ(p)) + n〈∇f, ~H〉M .
But now we are interested in the particular case when f : M → R is the lift of

a basic function f : B→ R, namely f = f ◦ π.

Proposition 3.4. Let Σ be an hypersurface immersed in M by ϕ : Σ → M , let
M admit a Killing submersion π : M → B with unit-length Killing vector field
ξ ∈ X(M). Let f : B → R be a smooth function on the base manifold. Denote by
f = f ◦ π the lift of f . Then,

(12) 4Σf ◦ ϕ(p) = 4Bf(π ◦ ϕ(p))−HessBf(dπ(ν), dπ(ν)) + n〈∇f, ~Hτ 〉

where ~Hτ is the twisted mean curvature given by equation (10).

Proof. If f : M → R is the lift of a basic function f : B→ R,

HessMf(X,Y ) = 〈X,∇Y∇f〉M = Y 〈X,∇f〉M − 〈∇YX,∇f〉M .
Observe that since

〈∇f,X〉M = df(X) = d(f ◦ π)(X) = df(dπ(X)) = 〈∇f, dπ(X)〉B
then ∇f is an horizontal vector field in X(M), π-related with ∇f ∈ X(B). Let us
decompose ν = νH + νV in its horizontal and vertical part, then

HessMf(ν, ν) =HessMf(νH , νH) + 2HessMf(νH , νV ) + HessMf(νV , νV )

=HessMf(νH , νH) + 2〈ν, ξ〉HessMf(νH , ξ) + 〈ν, ξ〉2HessMf(ξ, ξ)

=HessMf(νH , νH)− 2〈ν, ξ〉〈∇νH ξ,∇f〉 − 〈ν, ξ〉2〈∇ξξ,∇f〉
=HessMf(νH , νH)− 2〈ν, ξ〉〈∇ξ(νH),∇f〉
=νH(〈νH ,∇f〉)− 〈∇νHνH ,∇f〉 − 2〈ν, ξ〉〈∇ξ(νH),∇f〉
=dπ(ν)(〈dπ(ν),∇f〉B)− 〈∇B

dπ(ν)dπ(ν),∇f〉B − 2〈ν, ξ〉〈∇ξ(νH),∇f〉

=HessBf(dπ(ν), dπ(ν))− 2〈ν, ξ〉〈∇ξ(νH),∇f〉

where we have used that dπ(∇νHνH) = ∇B
dπ(ν)dπ(ν) see [15]. Therefore,

4Σf ◦ ϕ(p) =4Mf(ϕ(p))−HessBf(dπ(ν), dπ(ν)) + 2〈ν, ξ〉〈∇ξ(νH),∇f〉+ n〈∇f, ~H〉M .
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Moreover given the orthonormal basis {Ei}ni=1 ∪ {ξ} (with Ei horizontals),

4Mf(ϕ(p)) =

n∑
i=1

HessMf(Ei, Ei) + HessMf(ξ, ξ)

=

n∑
i=1

HessMf(Ei, Ei) =

n∑
i=1

HessBf(dπ(Ei), dπ(Ei)) = 4Bf(π(ϕ(p)).

Hence, finally

4Σf ◦ ϕ(p) =4Bf(π ◦ ϕ(p))−HessBf(dπ(ν), dπ(ν)) + 2〈ν, ξ〉〈∇ξ(νH),∇f〉+ n〈∇f, ~H〉

=4Bf(π ◦ ϕ(p))−HessBf(dπ(ν), dπ(ν)) + n〈∇f, ~Hτ 〉.
�

3.3. Radial functions on the base manifold. Suppose that f : B → R is a
radial function with respect to the point o ∈ B, in the sense that f(x) = f(y) if
ro(x) = distB(o, x) = ro(y), then there exists a function F : R→ R such that

f(x) = F ◦ ro(x)

for any x ∈ B. Now, in the following proposition we will obtain bounds on the
Hessian and Laplacian of f

Proposition 3.5. Let B a Riemannian manifold, let o ∈ B, and denote by ro :
B → R the distance function in B to o, i.e., ro(p) = distB(o, p). Assume moreover
that the sectional curvatures of B are bounded from above and below for any plane
of the tangent space,

k1 ≤ sec(B) ≤ k2.

Then, for any function F : R→ R with F ′ ≥ 0,

(13)

−HessBfx(X,X) ≥− F ′′(t)〈∇ro, X〉2 − F ′(t)
sn′k1(t)

snk1(t)

(
‖X‖2 − 〈X,∇ro〉2

)
4Bf ≥F ′′(t) + (n− 1)F ′(t)

sn′k2(t)

snk2(t)

where here f = F ◦ ro , t = r0(x) and

snK(t) :=


sin(
√
Kt)√
K

if K > 0

t if K = 0
sinh(

√
−Kt)√
−K if K < 0.

Proof. By using the definition of the Hessian and the chain rule,

HessBfx(X,X) =〈∇X∇f,X〉 = 〈∇XF ′∇r0, X〉 = F ′′(t)〈∇r0, X〉2 + F ′(t)〈∇X∇r0, X〉

=F ′′(t)〈∇r0, X〉2 + F ′(t)HessBro(X,X).

Therefore,
4Bf(x) = F ′′(t) + F ′(t)4Bro(x).

But if the sectional curvatures of the base manifold are bounded as k1 ≤ sec ≤ k2, see
Theorem 27 of [17],

sn′k2(ro(x))

snk2(ro(x))

(
‖X‖2 − 〈X,∇ro〉2

)
≤ HessBro(X,X)

and

HessBro(X,X) ≤
sn′k1(ro(x))

snk1(ro(x))

(
‖X‖2 − 〈X,∇ro〉2

)
.
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Then,

sn′k2(ro(x))

snk2(ro(x))
(n− 1) ≤ 4Br0 ≤

sn′k1(ro(x))

snk1(ro(x))
(n− 1).

Hence, finally if F ′ > 0,

(14)

−HessBfx(X,X) ≥− F ′′(t)〈∇ro, X〉2 − F ′(t)
sn′k1(t)

snk1(t)

(
‖X‖2 − 〈X,∇ro〉2

)
4Bf ≥F ′′(t) + (n− 1)F ′(t)

sn′k2(t)

snk2(t)
·

�

If we have a Killing submersion π : M → B we can lift the radial function f to

f̃ = f ◦ π and using equation (12) of proposition 3.4 we obtain for F ′ > 0,

(15)

4Σf(z) ≥F ′′(t)
(
1− 〈∇ro, dπ(ν)〉2

)
+ (n− 1)F ′(t)

sn′k2(t)

snk2(t)

− F ′(t)
sn′k1(t)

snk1(t)

(
‖dπ(ν)‖2 − 〈dπ(ν),∇ro〉2

)
+ nF ′(t)〈∇ro, ~Hτ 〉

where f = f̃ ◦ ϕ and t = r0(π ◦ ϕ(z)). This above inequality can be rewritten in
the following corollary,

Corollary 3.6. Let Σ be an hypersurface immersed in M by ϕ : Σ → M , let
M admit a Killing submersion π : M → B with unit-length Killing vector field.
Suppose that the sectional curvatures of B are bounded from above and below by

k1 ≤ sec(B) ≤ k2.

Let F : R → R be a smooth and non-decreasing function, let ro : B → R be the
distance function in B to o ∈ B, i.e., ro(p) = distB(o, p), denote by f = F ◦ ro ◦ π.
Then,

(16)

4Σf(z) ≥F ′′(t) + (n− 1)F ′(t)
sn′k2(t)

snk2(t)
− F ′(t)

sn′k1(t)

snk1(t)
‖dπ(ν)‖2

+

(
F ′(t)

sn′k1(t)

snk1(t)
− F ′′(t)

)
〈∇ro, dπ(ν)〉2 + nF ′(t)〈∇ro, ~Hτ 〉

where t = ro(π(ϕ(z))) and ~Hτ is given by definition (10).

3.4. Stochastic Completeness, weak maximum principle and Omori-Yau
maximum principle. Let Σ be a complete and non compact Riemannian man-
ifold. The heat kernel of Σ is a function pt(x, y) on (0,∞) × Σ × Σ which is the
minimal positive fundamental solution to the heat equation

∂v

∂t
= 4v.

In other words, the Cauchy problem
∂v

∂t
= 4v

v|t=0 = v0(x)
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has a solution

v(x, t) =

∫
Σ

pt(x, y)v0(y)dV (y)

provided that v0 is a bounded continuous positive function. The manifold Σ is said
to be stochastically complete, see [8], if∫

Σ

pt(x, y)dV (y) = 1

for any x ∈ Σ and any t > 0. The main property of stochastic completeness which
is used in this paper is that if a Riemannian manifold is stochastic complete a weak
maximum principle is satisfied for bounded functions in C2. More precisely, if Σ is
stochastically complete we can state the following theorem

Theorem 3.7 (See [18]). Let Σ be a connected non-compact Riemannian manifold.
Suppose that Σ is stochastically complete, then for every u ∈ C2(Σ) with supΣ u <
∞ there exists a sequence {xk}, k = 1, 2, . . ., such that, for every k, u(xk) ≥
supΣ u− 1/k and 4u(xk) ≤ 1/k.

On the other hand (see [4]), a Riemannian manifold (M, g) satisfies the Omori-
Yau maximum principle for the Laplacian if for any function u ∈ C2(M) which is
bounded supM u = u∗ <∞, there exists a sequence {xi}i∈N ⊂M such that

u(xi) > u∗ − 1

i
, ‖∇u(xi)‖ <

1

i
, 4u(xi) <

1

i
.

In this paper we will use the following sufficient condition for the Omori-Yau max-
imum principle

Theorem 3.8 (See [4]). Let Σ be a connected non-compact Riemannian manifold.
Suppose that Σ admits a C2 function f : Σ→ R satisfying

(1) f(x)→∞ when x→∞
(2) ‖∇f‖ ≤ G(f) outside a compact subset of Σ.
(3) 4f ≤ G(f) outside a compact subset of Σ.

with G ∈ C1(R+), positive near infinity and such that

1

G
/∈ L1(+∞) and G′(t) ≥ −A(log(t) + 1)

for t large enough and A ≥ 0. Then, the Omori-Yau maximum principle for the
Laplacian holds on Σ.

4. Proof of theorem 2.3

The statement of the theorem 2.3 is as follows

Theorem. Let Σ be a complete and non-compact Riemannian manifold. Let ϕ :
Σ → M be an isometric immersion. Suppose that M admits a Killing submersion
π : M → B with unit-length Killing vector field, suppose moreover that ϕ(Σ) ⊂
π−1(BB

R(p)) for some geodesic ball BB
R(o) of radius R centered at o ∈ B. Assume

that the sectional curvatures are bounded sec ≤ κ in BB
R(o) and that

R < min

{
inj(o),

π

2
√
κ

}
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where inj(o) is the injectivity radius of o and we replace π/2
√
κ by +∞ if κ <

0. Then, if Σ is stochastically complete, the supremum of the norm of the mean
curvature vector field of Σ satisfies

sup
Σ
‖ ~H‖ ≥ hnκ(R)− τΣ

n

where hnκ(R) is the norm of the mean curvature of the generalized cylinder ∂B
Mn(κ)
R ×

R in Mn(κ)× R.

Proof. Since π(ϕ(Σ)) is bounded and contained in the geodesic ball BB
R(o) for some

o ∈ B
R∗ := sup

π(ϕ(Σ))

ro ≤ R <∞, with ro(·) = distB(o, ·).

Moreover, for any 2-plane Πp ⊂ TpB the sectional curvatures sec(Πp) of any p ∈
BB
R(o) will be bounded as

−∞ < β := inf
p∈BB

R(o)
sec(Πp) ≤ sec(Πp) ≤ κ.

In order to simplify the argument of the proof let us choose β < 0, and let us define
the function

Fβ : R→ R, t→ Fβ(t) =

∫ t

0

snβ(s)ds.

Now we are going to compute the Laplacian of f = Fβ ◦ ro ◦ π ◦ ϕ. By using
inequality (16) of corollary 3.6,

(17)
4Σf(z) ≥sn′β(t(z)) + (n− 1)snβ(t(z))

sn′κ(t(z))

snκ(t(z))
− sn′β(t(z))‖dπ(ν)‖2

− n snβ(t(z))‖ ~Hτ (z)‖.

Since β ≤ 0, then sn′β ≥ 0 and hence

(18) 4Σf(z) ≥(n− 1)snβ(t(z))
sn′κ(t(z))

snκ(t(z))
− n snβ(t(z))‖ ~Hτ (z)‖.

Now, we are going to apply theorem 3.7 to f : Σ→ R because since sup
Σ
r0 ◦ π =

R∗, and Fβ is an increasing function, sup
Σ
f =

∫ R∗

0

snβ(s)ds < ∞. Then, there

exists a sequence {xi}, such that

f(xi) ≥ sup
Σ
f − 1

i
, and 4f(xi) ≤

1

i

Therefore t(xi)→ R∗ when i→∞, and by inequality (18),

(19)
1

i
≥(n− 1)snβ(t(xi))

sn′κ(t(xi))

snκ(t(xi))
− n snβ(t(xi))‖ ~Hτ (xi)‖.

Then,

(20) ‖ ~Hτ (xi)‖ ≥
(n− 1)

n

sn′κ(t(xi))

snκ(t(xi))
− 1

n snβ(t(xi))i
·
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But ‖ ~Hτ‖ = ‖ ~H + 2
n 〈ν, ξ〉∇ξ(νH)‖ ≤ ‖ ~H‖ + 2

n‖〈ν, ξ〉‖‖∇ξ(νH)‖. Hence, denoting
θ = arccos(〈ν, ξ〉) and applying proposition 3.2,

(21) ‖ ~Hτ‖ ≤‖ ~H‖+
2

n
| cos(θ)| ‖νH‖ τ = ‖ ~H‖+

τ

n
| sin(2θ)| ≤ ‖ ~H‖+

τΣ
n
·

Therefore,

(22) sup
Σ
‖ ~H‖ ≥ (n− 1)

n

sn′κ(t(xi))

snκ(t(xi))
− 1

n snβ(t(xi))i
− τΣ

n
·

Letting now i tend to infinity,

(23) sup
Σ
‖ ~H‖ ≥ (n− 1)

n

sn′κ(R∗)

snκ(R∗)
− τΣ

n
·

Since R∗ ≤ R < π/2
√
κ,

sn′κ
snκ

is a decreasing function and therefore

(24) sup
Σ
‖ ~H‖ ≥ (n− 1)

n

sn′κ(R)

snκ(R)
− τΣ

n
·

Finally the theorem follows by taking into account that (n−1)
n

sn′κ(R)
snκ(R) is the norm of

the mean curvature of the generalized cylinder ∂B
Mn(κ)
R × R in Mn(κ)× R. �

Remark 4.1. In the proof of theorem 2.3 we have used in inequality (22) that τ ≤ τΣ
and | sin(2θ)| ≤ 1. We could use instead the following factors to improve the result

τ∗ := lim
ρ→R∗

sup
{
τ(x) : x ∈ Σ \ π−1(Bρ(p))

}
α := lim

ρ→R∗
sup

{
| sin(2θ(x))| : x ∈ Σ \ π−1(Bρ(p))

}
and the inequality would be

(25) sup
Σ
‖ ~H‖ ≥ (n− 1)

n

sn′κ(R)

snκ(R)
− τ∗α

n
·

5. Proof of theorem 2.7

In the statement of theorem 2.7 it is assumed that the Killing submersion π :

M → B admits a smooth section s : BB
R(o) → M and is assumed as well that the

Killing exponential map

exp : s(BB
R(o))× R→ π−1((BB

R(o))), (p, z)→ exp(p, z) = expp(zξ)

is a diffeomorphism.

Given the section s : BB
R(o)→M we can trivialize π−1(BB

R(o)) ≈ s(BB
R(o))× R

using the following map

T : π−1(BB
R(o))→ s(BB

R(o))× R, q 7→ T (q) = (p(q), z(q))

where p and z are the following two functions

(26)
p : π−1(BB

R(o))→ s(BB
R(o)), p(q) := s(π(q))

z : π−1(BB
R(o))→ R, q = expp(q)(z(q)ξ).

Observe that we can define the z function by an implicit equation because the
hypothesis on the injectivity of Killing exponential map. Observe moreover that

z(q) ≥ distM
(
q, s(BB

R(o))
)
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because the curve t → γ(t) = expp(q)(tξ) is a geodesic joining γ(0) = p(q) ∈
s(BB

R(o)) with q = γ(z(q)).
Let ψ : π−1(BB

R(o))×R→ π−1(BB
R(o)) denote the flow of the unit-length Killing

vector field ξ, i.e.,

d

dt
ψt(x)

∣∣∣∣
t=0

= ξ(x), ∀x ∈ π−1(BB
R(o)).

Since ξ is a geodesic vector field,

ψt(x) = expx(tξ).

The flow ψ generates a foliation {St}t∈R of π−1(BB
R(o)) with leaves

St := ψt(s(B
B
R(o))).

Obviously, S0 = s(BB
R(o)) and

z(x) = t, ∀x ∈ St.
Then the gradient ∇z is perpendicular to St for any t ∈ R.

The first steep in the proof of theorem 2.7 is to prove that given a proper im-
mersion ϕ : Σ → π−1(BB

R(o)) the function z ◦ ϕ fulfills the hypothesis of theorem
3.8 and hence the Omori-Yau maximum principle for the Laplacian holds on Σ .

We will need previously the following property of the gradient vector field ∇z ,

Lemma 5.1. Let π : M → B a Killing submersion with unit-length Killing vector
field ξ. Suppose that the Killing submersion π : M → B(o) admits a smooth section

s : BB
R(o)→M and that the Killing exponential map

exp : s(BB
R(o))× R→ π−1(BB

R(o)), (p, z)→ exp(p, z) = expp(zξ)

is a diffeomorphism. Then, for any t ∈ R,

(27) dψt(∇z) = ∇z,
more precisely, dψt(∇z(x)) = ∇z(ψt(x)) for any x ∈ π−1(BB

R(o)).

Proof. First of all, note that

dψt(ξ) = ξ

because

dψt(ξ(x)) =
d

ds
(ψt(ψs(x)))

∣∣∣∣
s=0

=
d

ds
(ψt+s(x))

∣∣∣∣
s=0

=
d

ds
(ψs(ψt(x)))

∣∣∣∣
s=0

= ξ(ψt(x)).

On the other hand , for any x ∈ St,

dz(ξ(x)) =
d

ds
z(ψs(x))

∣∣∣∣
s=0

=
d

ds
z(ψs(ψt(p(x))))

∣∣∣∣
s=0

=
d

ds
z(ψs+t(x))

∣∣∣∣
s=0

=
d

ds
(s+ t)

∣∣∣∣
s=0

= 1.

Then

〈∇z, ξ〉 = 1.

Given any x ∈ π−1(BB
R(o)), in order to simplify the notation let us denote s := z(x).

Since ξ is a Killing vector field, ψs is as well an isometry from S0 to Ss. Then, given
an orthonormal basis {vi}ni=1 of TyS0, {dψs(vi)}ni=1 constitutes an orthonormal basis of
TxSs. Moreover, since ∇z is perpendicular to Ss then,

〈∇z, dψs(vi)〉 = 0, for i = 1, · · · , n.
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Since 〈∇z, ξ〉 = 1, ξ(x) /∈ span{dψs(v1), . . . , dψs(vn)}, and we can complete the basis
{dψs(vi)}ni=1 to the following orthonormal basis of Txπ

−1(BB
R(o)),{

dψs(v1), . . . , dψs(vn),
un+1

‖un+1‖

}
, with un+1 := ξ −

n∑
i=1

〈ξ, dψs(vi)〉dψs(vi).

Then,

∇z(x) =
〈∇z(x), un+1〉
‖un+1‖2

un+1 =
un+1

‖un+1‖2
=

ξ(x)−
n∑
i=1

〈ξ(x), dψs(vi)〉dψs(vi)

1−
n∑
i=1

〈ξ(x), dψs(vi)〉2
.

The above equation can be rewritten as

∇z(x) =

ξ(x)−
n∑
i=1

〈ξ(x), dψz(x)(vi)〉dψz(x)(vi)

1−
n∑
i=1

〈ξ(x), dψz(x)(vi)〉2
.

Finally, taking into account that ψt is an isometry, that ψt(x) = ψt+z(x)(p(x)), and that
z(ψt(x)) = z(x) + t,

∇z(ψt(x)) =

ξ(ψt(x))−
n∑
i=1

〈ξ(ψt(x)), dψz(x)+t(vi)〉dψz(x)+t(vi)

1−
n∑
i=1

〈ξ(ψt(x)), dψz(x)+t(vi)〉2

=

dψt(ξ(x))−
n∑
i=1

〈dψt(ξ(x)), dψt(dψz(x)(vi))〉dψt(dψz(x)(vi))

1−
n∑
i=1

〈dψt(ξ(x)), dψt(dψz(x)(vi))〉2

=dψt


ξ(x)−

n∑
i=1

〈ξ(x), dψz(x)(vi)〉dψz(x)(vi)

1−
n∑
i=1

〈ξ(x), dψz(x)(vi)〉2

 = dψt(∇z(x))

and the lemma is proven. �

As a consequence of this lemma we can state the following corollary

Corollary 5.2. Let π : M → B be a Killing submersion with unit-length Killing

vector field. Suppose moreover, that π admits a smooth section s : BB
R(o)→M and

the Killing exponential map

exp : s(BB
R(o))× R→ π−1((BB

R(o))), (p, z)→ exp(p, z) := expp(zξ)

is a diffeomorphism. Then there exists two constants A(R) and B(R) such that

‖∇z(q)‖ ≤ A(R), HessMz(v, v)(q) ≤ B(R)

for any q ∈ π−1(BB
R(o)) and any v ∈ Tqπ−1(BB

R(o)) with ‖v‖ = 1.
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Proof. Observe that the norm ‖∇z‖ is a basic function, i.e., ‖∇z(x)‖ = ‖∇z(y)‖
whenever π(x) = π(y) because, since ψ acts by isometries,

‖∇z(x)‖ =‖dψ−z(x)(∇z(x))‖ = ‖∇(z(ψ−z(x)(x)))‖ = ‖∇z(p(x))‖
=‖∇(z(ψ−z(y)(y)))‖ = ‖dψ−z(y)(∇z(y))‖ = ‖∇z(y)‖

Therefore, setting A(R) := max
q∈s(BB

R(o))

‖∇z(q)‖ we obtain

‖∇z(x)‖ = ‖∇z(p(x))‖ ≤ A(R),

for any x ∈ π−1(BB
R(o)). Similarly, setting

B(R) := max
{

HessM (w,w)(q) : q ∈ s(BB
R(o), w ∈ Tqs(BB

R(o)), ‖w‖ = 1
}

we obtain

HessM (v, v)(x) =〈∇v∇z(x), v〉 = 〈∇dψ−z(x)(v)∇dψ−z(x)(z(x)), dψ−z(x)(v)〉
=〈∇dψ−z(x)(v)∇z(ψ−z(x)(x)), dψ−z(x)(v)〉
=HessM (dψ−z(x)(v), dψ−z(x)(v))(p(x)) ≤ B(R).

�

Now, we can state and prove that under the hypothesis of theorem 2.7, the
Omori-Yau principle for the Laplacian holds in Σ:

Proposition 5.3. Let Σ be a complete and non-compact Riemannian manifold.
Let ϕ : Σ→M be a proper isometric immersion. Suppose that M admits a Killing
submersion π : M → B with unit-length Killing vector field, suppose moreover that
ϕ(Σ) ⊂ π−1(BB

R(o)) for some geodesic ball BB
R(o) of radius R centered at o ∈ B.

Assume that the sectional curvatures are bounded sec ≤ κ in BB
R(o) and that

R < min

{
inj(o),

π

2
√
κ

}
where inj(o) is the injectivity radius of o and we replace π/2

√
κ by +∞ if κ < 0.

Suppose moreover, that π admits a smooth section s : BB
R(o)→ M and the Killing

exponential map

exp : s(BB
R(o))× R→ π−1((BB

R(o))), (p, z)→ exp(p, z) := expp(zξ)

is a diffeomorphism. If moreover,

sup
Σ
‖ ~H(p)‖ <∞

Then, the Omori-Yau principle for the Laplacian holds in Σ.

Proof. In order to prove that the Omori-Yau principle for the Laplacian holds in Σ
we are using theorem 3.8 with the function f = z ◦ϕ. Hence, we only need to prove
that the function f = z ◦ϕ when ϕ is proper, and the hypothesis of the proposition
are fulfilled, satisfies

(1) f(x)→∞ when x→∞.
(2) |∇f | ≤ G(f) outside of a compact set.
(3) 4Σf ≤ G(f) outside of a compact set.
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with G(t) =
√
t2 + 1.

Observe that since the immersion is proper, and Σ is a complete and non-compact
manifold, if distΣ(x, x0) → ∞ then distM (ϕ(x), ϕ(x0)) → ∞. But for any p ∈
s(BB

R(o))

distM (ϕ(x), ϕ(x0)) ≤ distM (ϕ(x), p) + distM (p, ϕ(x0))

Therefore, since BB
R(o) is compact there exists p∗ ∈ s(BB

R(o)) such that the distance

is minimized at p∗, i.e., distM (ϕ(x), p∗) = distM (ϕ(x), s(BB
R(o))) and an other

p∗ ∈ s(BB
R(o)) such that distM (p, ϕ(x0)) ≤ distM (p∗, ϕ(x0)) for any p ∈ s(BB

R).
Hence,

distM (ϕ(x), ϕ(x0)) ≤distM (ϕ(x), s(BB
R)) + distM (p∗, ϕ(x0))

≤z ◦ ϕ(x) + distM (p∗, ϕ(x0))

≤f(x) + distM (p∗, ϕ(x0))

then, f(x)→∞ when x→∞ as it was stated. On the other hand,

〈∇f, v〉 = 〈∇z, dϕ(v)〉

then, for any q ∈ Σ, by using the previous corollary 5.2,

‖∇f(q)‖2 ≤〈∇f(q),∇f(q)〉 = 〈∇z(ϕ(q)), dϕ(∇f(q))〉 = ‖∇T z(ϕ(q))‖2

≤‖∇z(ϕ(q))‖2(ϕ(q)) ≤ A2(R).

Since for any x→∞, G(f)→∞, then ‖∇f‖ ≤ A(R) < G(f) outside of a compact set.
Now we are going to compute 4f . By corollary 5.2 and by equation (11), for any

orthonormal basis {Ei} of TqΣ

(28)

4Σf =

n∑
i=1

HessΣf(Ei, Ei)(q) =

n∑
i=1

HessMz(dϕ(Ei), dϕ(Ei))(ϕ(q))

+

n∑
i=1

〈∇z(ϕ(q)), IIq(Ei, Ei)〉

≤nB(R) + n〈∇z(ϕ(q)), ~H(q)〉 ≤ nB(R) + nA(R)‖ ~H(q)‖2.

Then if supΣ ‖ ~H(p)‖ <∞, since f(x)→∞ when x→∞,

4Σf ≤ G(f)

outside of a compact set, and the proposition follows. �

The statement of theorem 2.7 and its proof is as follows

Theorem. Let Σ be a complete and non-compact Riemannian manifold. Let ϕ :
Σ → M be a proper isometric immersion. Suppose that M admits a Killing sub-
mersion π : M → B with unit-length Killing vector field, suppose moreover that
ϕ(Σ) ⊂ π−1(BB

R(p)) for some geodesic ball BB
R(o) of radius R centered at o ∈ B.

Assume that the sectional curvatures are bounded sec ≤ κ in BB
R(o) and that

R < min

{
inj(o),

π

2
√
κ

}
where inj(o) is the injectivity radius of o and we replace π/2

√
κ by +∞ if κ < 0.

Suppose moreover, that π admits a smooth section s : BB
R(o)→ M and the Killing

exponential map

exp : s(BB
R(o))× R→ π−1((BB

R(o))), (p, z)→ exp(p, z) := expp(zξ)
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is a diffeomorphism. Then, the supremum of the norm of the mean curvature vector
field of Σ satisfies

sup
Σ
‖ ~H‖ ≥ hnκ(R)

where hnκ(R) is the norm of the mean curvature of the generalized cylinder ∂B
Mn(κ)
R ×

R in Mn(κ)× R.

Proof. Likewise to the proof of theorem 2.3, we are using the test function f =
Fβ ◦ ro ◦ π ◦ ϕ with

Fβ : R→ R, t→ Fβ(t) =

∫ t

0

snβ(s)ds.

Let us setting,
R∗ := sup

Σ
ro(ϕ(Σ)) <∞,

then,

sup
Σ
f =

∫ R∗

0

snβ(s)ds <∞.

By using inequality (16) of corollary 3.6

(29) 4Σf(z) ≥sn′β(t)
(
1− ‖dπ(ν)‖2

)
+ (n− 1)snβ(t)

sn′κ(t)

snκ(t)
+ n〈∇f, ~Hτ 〉.

Since sn′β(t) ≥ 0,

(30)

4Σf(z) ≥(n− 1)snβ(t)
sn′κ(t)

snκ(t)
+ n〈∇f, ~Hτ 〉

=(n− 1)snβ(t)
sn′κ(t)

snκ(t)
+ 〈∇f, ~H〉+ 〈∇f, 2

n
〈ν, ξ〉∇ξ(νH)〉

≥(n− 1)snβ(t)
sn′κ(t)

snκ(t)
+ snβ(t)〈∇ro, ~H〉 −

2

n
‖∇f‖

≥(n− 1)snβ(t)
sn′κ(t)

snκ(t)
− snβ(t) sup

Σ
‖ ~H‖ − 2

n
‖∇f‖.

Now we can assume that supΣ ‖ ~H‖ <∞, (otherwise, there is nothing to be proved),
and hence by using proposition 5.3, Σ satisfies the Omori-Yau maximum principle
for the Laplacian, and f is bounded in Σ, there exists a sequence {xi}

f(xi) ≥ sup
Σ
f − 1

i
, ‖∇f(xi)‖ <

1

i
, 4Σf(xi) <

1

i
·

Then,
1

i
≥ (n− 1)snβ(t(xi))

sn′κ(t(xi))

snκ(t(xi))
− snβ(t(xi)) sup

Σ
‖ ~H‖ − 2

ni

letting i tend to ∞, taking into account that t(xi)→ R∗ when i→∞,

sup
Σ
‖ ~H‖ ≥ (n− 1)

sn′κ(R∗)

snκ((R∗)
≥ hκ(R),

and the theorem is proved. �
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