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Abstract 

Subcooling methods for transcritical CO2 plants are being studied in order to improve their behaviour. 

Among them, the Integrated Mechanical Subcooling system is one of the most promising owing that 

performs with high efficiency and it is a total-CO2 system. 

This work presents the experimental determination of the optimum working conditions of a transcritical 

CO2 plant working with an integrated mechanical subcooling system. The plant was tested at different 

pressure and subcooling conditions in order to optimize the COP of the plant and determine the optimal 

conditions for three ambient temperatures 25.0ºC, 30.4ºC and 35.1ºC and evaporation levels between -

15.6ºC and -4.1ºC. 

Optimum operating conditions were determined and two correlations are proposed to determine the 

optimal pressure and subcooling as function the gas-cooler outlet temperature and the evaporation level.  

 

Highlights 

 CO2 refrigeration plant with integrated mechanical subcooling is studied experimentally. 

 Optimum operating conditions are determined experimentally.  

 Heat rejection temperatures (25.0, 30.4 and 35.1ºC) are tested.  

 Evaluated at three evaporating levels between -15.6ºC and -4.1ºC.  

 Optimum gas-cooler pressure and subcooling degree correlations are stated. 
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Nomenclature 

COP coefficient of performance 

Cp specific heat capacity, kJ·kg-1· K-1 

h specific enthalpy, kJ·kg-1 

m mass flow kg·s-1  

p absolute pressure, bar 

Pc power consumption, kW 

Q cooling capacity, kW 

SUB degree of subcooling produced in the subcooler, K  

t temperature, ºC 

V volumetric flow, m3·s-1 

Greek symbols 

𝜀 uncertainty  

𝜌 density, kg·m-3  

 

Subscripts 

add addition 

dis compressor discharge 

exp expansion 

expe experimental  

g glycol  

gc gas-cooler 

ims corresponding to the IMS cycle 

in inlet 

inter interpolated 

main corresponding to the main cycle  

0 evaporating level 

o outlet 

sub corresponding to the subcooler 

suc compressor suction 

w water 

1. Introduction 

Carbon dioxide refrigeration systems have been the centre of effort of many of the scientific research in 

the recent years. The purpose of these studies was to improve the classical CO2 systems to make them 

systems more competent, especially in hot climates. All these efforts have been fostered by the F-Gas 

Regulation (European Commission, 2014) that limits the use of refrigerants of high GWP in many of 

today's refrigeration applications. It is necessary to look for refrigerants with low GWP and for certain 

applications CO2 is the only candidate with low GWP that ensures safety and it is non-flammable nor toxic 

(A1 ASHRAE classification). 

Although these systems were flatly used in the northernmost countries of Europe due to their good 

performance in those climates, in southern Europe and other regions of the planet, where the average 

annual temperature is much higher, these systems suffer a significant decline in their performance. 
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The use of CO2 systems with parallel compression was proposed as a way of enhancing the energetic 

behaviour of these systems. Sarkar and Agrawal (2010) performed the optimization of different 

architectures with parallel compression and quantified the COP improvements, reaching as maximum 

47.3% in optimum COP employing parallel compression economization. Chesi et al. (2014) carried on an 

experimental study on the parallel compression cycle with flash tank but they do not reach the theoretical 

values of cooling capacity and COP due to several phenomena that they found in real application.  

Another alternative studied in order to upgrade CO2 systems is the use of ejectors. The latest proposals try 

to find solutions with variable ejectors such as the multi-ejector (Gullo et al., 2019) or the adjustable 

ejector (Lawrence and Elbel, 2019).  

In addition to the alternatives already mentioned, the use of CO2 in warm climates has been considered in 

cascade systems or combined with the dedicated mechanical subcooling. Nebot-Andrés et al. (2017) 

studied both alternatives for a warm climate like that of Spain. They concluded that the dedicated 

mechanical subcooling would offer highest energy efficiencies in overall-year operation for evaporating 

levels over -15ºC.  

Subcooling methods define a clear line of research that is acquiring a lot of weight at this time (Yu et al., 

2019). Llopis et al. (2018) compiled in a general way the effects of subcooling on CO2 cycles and reviewed 

all the methods existing up to the moment to generate this subcooling and sum up the works done so far. 

Initially, with the most basic subcooling methods such as the internal heat exchanger (Llopis et al., 2015b), 

and subsequently with more complex systems such as dedicated mechanical subcooling (DMS). The 

dedicated mechanical subcooling has been studied in the last years, offering important improvements for 

CO2 cycles both in terms of COP and cooling capacity. The first studies, of a theoretical nature, were 

carried out by Llopis et al. (2015a) who studied a transcritical plant with dedicated mechanical subcooling 

working with R290 for different evaporation levels and heat rejection temperature. In the obtained results, 

an optimal working pressure was identified but the optimum subcooling degree was not considered. 

Despite this, the results showed increases in the overall COP that reached increments in reference to the 

base system without subcooling of 18.4% for t0=-30ºC, 17.9% for -5ºC and 12.3% for 5ºC. 

The studies that followed this, presented data with optimized pressure and subcooling degree, so that 

maximum COP conditions were obtained. Dai et al. (2017) studied a R152a DMS single-stage system at 

optimum conditions, obtaining the most significant improvements for higher ambient temperatures and low 

evaporation levels, achieving an increment of 25.3% in COP for to=0ºC and 30ºC of ambient temperature. 

They also studied the performance advantages of using zeotropic mixtures in the auxiliary cycle (Dai et al., 

2018) concluding that the maximum COP is directly related to the glide of the mixture due to the small 

heat transfer irreversibility that is generated. They obtained increments of 4.9% in COP by using a 

R32/R1234ze(Z) (55/45) mixture in the DMS cycle instead of pure R32.  

In parallel, this system was also studied from an experimental point of view. First, Llopis et al. (2016) 

presented the experimentation of a CO2 plant with and without subcooling (working with R1234yf). These 

tests were only optimized in terms of discharge pressure because the subcooling degree was not adapted 

in order to enhance the COP. However, the results presented increments in COP at the evaporation level 

of 0ºC of 10.9% at 24.0ºC, 22.1% at 30.2ºC and 26.1% at 40.0ºC. In addition, the measured increments in 

capacity were of 23.1% at 24.0 °C, 34.0% at 30.2ºC and 39.4% at 40.0ºC. Authors also corroborated the 

reduction of the optimal working pressure, being it reduced up to 8 bar in relation to the system working 

without DMS. In addition, other experimental tests have been carried out, both for single stage (Sánchez 

et al., 2016) and booster systems (Beshr et al., 2016; Bush et al., 2017).  

The dedicated subcooling cycles have been quite studied in recent years, they being very interesting for 

the integration with air conditioning systems but they still are a not only-CO2 system. However, for space 

heating applications, a combined system using only CO2 has been studied (Cao et al., 2019). Cao et al. 
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presented a transcritical CO2 heat pump combined with a subcooling system working with CO2, obtaining 

increments of 15.3% in COP comparing to the standard transcritical CO2 heat pump systems.   

The integrated mechanical subcooling cycle (IMS), presented on this paper, only uses CO2 as refrigerant 

for refrigeration applications. The purpose of this system is to subcool the CO2 at the exit of the gas cooler 

thanks to a part of the current that is extracted from the main cycle and expanded, passing through the 

subcooler and recompressed until the gas-cooler entrance. The extraction of the CO2 can be done from 

the exit of the gas-cooler, the exit of the subcooler and the liquid tank. The interest of this cycle is that it is 

simpler than the dedicated; it has fewer components, and only works with CO2. As well as the dedicated 

does, this subcooling cycle produces large increments in cooling capacity and COP with respect to the 

base cycle (Catalán-Gil et al., 2019).  

The IMS system was firstly proposed by the patent of Shapiro (2009). Cecchinato et al. (2009) evaluated 

the system from a theoretical point of view and obtained an increment of 17.3% in energy efficiency in 

relation to a basic single-stage CO2 cycle for an evaporating level of −10°C of and a gas-cooler outlet 

temperature of 30°C. This cycle has certain similarities with the one presented by Sarkar and Agrawal 

(2010) called parallel cycle with economizer. However, Sarkar and Agrawal’s cycle only includes two 

control elements (two expansion valves) and does not allow to optimize all the degrees of freedom, which 

is needed for centralized refrigeration systems.  

Later, Catalán-Gil et al. (2019) analyzed the thermodynamic models of the integrated mechanical 

subcooling and the dedicated for CO2 booster systems for supermarket applications, achieving annual 

energy consumption reductions from 2.9% to 3.4% for warm zones and from 1.3% to 2.4% for hot regions. 

Nebot-Andrés et al. (2019a) studies from a theoretical approach the IMS system optimizing gas-cooler 

pressure and the subcooling degree, reaching increments of 15.9% for −10 °C of evaporation temperature 

and 35ºC of environment temperature in comparison to the CO2 cycle with internal heat exchanger studied 

by Chen and Gu (2005). Subcooled boosters have also been studied for space heating by Song et al. who 

evaluated the optimal discharge pressure for these cycles (Song et al., 2018) and the optimal medium 

temperature (Song and Cao, 2018).   

The integrated mechanical subcooling represents an important interest for the enhancement of CO2 

cycles, having a strong potential of improvement. However, this cycle has never been tested 

experimentally and its optimum conditions have not been determined or studied, to the knowledge of 

authors.  

Accordingly, this work has been developed in order to determine experimentally the optimum conditions, in 

terms of subcooling degree and gas-cooler pressure, of an integrated mechanical subcooling system of a 

CO2 refrigeration plant, working in transcritical conditions. The main objective is to identify the existence of 

these optimal conditions, determine which are the needed values to obtain the best results in terms of 

COP and to define an expression that generalizes the optimum pressure and optimum subcooling degree 

for this type of systems. The results presented on this paper correspond to the evaluation of a single –

stage plant at different evaporation levels, maintaining the temperature of the secondary fluid at the 

entrance of the evaporator (-1.3ºC, 3.8ºC and 10.0ºC) and three heat rejection temperatures (25.0ºC, 

30.4ºC and 35.1ºC), determining for each test the optimum value of pressure and subcooling degree.  

The optimum conditions have been determined and stated on a general correlation depending on the 

evaporation temperature and the temperature at the exit of the gas-cooler. The evolution of the main 

energy parameters is analyzed as well as the behavior of the optimum conditions of pressure and 

subcooling degree.  
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2. Refrigeration cycle and description of the experimental plant 

This section presents the experimental installation used to evaluate the optimal conditions of the CO2 

transcritical cycle with the integrated mechanical subcooling system. The most important details of the 

main components of the cycle are provided and the measurement system used in the plant is described. 

2.1. Experimental plant 

The experimental plant tested in this work is shown in Figure 1 and its scheme in Figure 2. The plant is a 

CO2 single-stage transcritical refrigeration system with an integrated mechanical subcooling system 

extracting gas at the exit of the subcooler. The main single-stage refrigeration cycle uses a semihermetic 

compressor with a displacement of 3.48 m3·h−1at 1450 rpm and a nominal power of 4 kW. The expansion 

is carried out by a double-stage system, composed of an electronic expansion valve (back-pressure) 

controlling the gas-cooler pressure, a liquid receiver between stages and an electronic expansion valve, 

working as thermo-static, to control the evaporating process. Evaporator and gas-cooler are brazed plate 

counter current heat exchangers with exchange surface area of 4.794 m2 and 1.224 m2, respectively. The 

subcooler is situated directly downstream of the gas-cooler. It is a brazed plate heat exchanger with an 

exchange surface area of 0.850 m2. It works as evaporator of the mechanical subcooling system and 

subcools the CO2 at the exit of the gas-cooler. The mechanical subcooling cycle is driven by a variable 

speed semihermetic compressor with displacement of 1.12 m3·h−1 at 1450 rpm. The expansion valve of the 

IMS cycle is electronic, working as thermostatic.  

Heat dissipation in gas-cooler is done with a water loop, simulating the heat rejection level. The evaporator 

is supplied with another loop, working with a propylene glycol–water mixture (60% by volume) that enables 

a constant entering temperature in the evaporator. Both the mass flow and the inlet temperature are 

controlled in these loops.  

 

Figure 1. Experimental plant 
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2.2. Measurement system  

The thermodynamic properties of the working fluids are obtained thanks to the measurement system 

presented in Figure 2. All fluid temperatures are measured by 18 T-type thermocouples. The 

thermocouples placed at the evaporator and at the exit of gas-cooler and subcooler are immersion 

thermocouples. 11 pressure gauges are installed along all the circuit. CO2 mass flow rates are measured 

by two Coriolis mass flow meters, as well as dissipation water flow of the gas-cooler, which is measured 

using another one. The flow of the other secondary fluids is measured by a magnetic volumetric flow 

meter. Compressors’ power consumptions are measured by two digital wattmeters. The accuracies of the 

measurement devices are presented in Table 1. 

Table 1. Accuracies and calibration range of the measurement devices. 

Measured variable Measurement device  Range Calibrated accuracy 

Temperature (ºC) T-type thermocouple -40.0 to 145.0 ±0.5K 

CO2 pressure (bar) Pressure gauge  0.0 to 160.0 ±0.6% of span 

CO2 pressure (bar) Pressure gauge  0.0 to 100.0 ±0.6% of span 

CO2 pressure (bar) Pressure gauge  0.0 to 60.0 ±0.6% of span 

CO2 main mass flow rate (kg·s-1) Coriolis mass flow meter 0.00 to 1.38 ±0.1% of reading 

CO2 IMS mass flow rate (kg·s-1) Coriolis mass flow meter 0.00 to 0.083 ±0.1% of reading 

Water mass flow rate (kg·s-1) Coriolis mass flow meter 0.00 to 13.88 ±0.1% of reading 

Glycol volume flow rate (m3·h-1)  Magnetic flow meter 0.0 to 4.0 ±0.25% of reading 

Power consumption (kW) Digital wattemeter  0.0 to 6.0  ±0.5% of reading 

 

 

Figure 2. Schema of the experimental plant and the measurement system and Ph diagram of the cycle.  

3. Experimental tests  

This section contains the description of the strategy for conducting the experimental tests in order to 

determine the optimum conditions of the cycle for different heat rejection levels and different evaporation 

temperatures.  

3.1. Test procedure 

To evaluate the refrigeration plant using integrated mechanical subcooling, the system has been tested at 

different working conditions always operating in the transcritical region. The evaluated conditions were:   
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 Heat rejection level: three different temperatures: 25.0, 30.4 and 35.1°C, with maximum deviation 

of ±0.20°C. These levels were performed fixing the temperature of the secondary fluid (water) at 

the entrance of the gas-cooler and maintaining the water flow rate to 1.167 m3·h-1. 

 

 Three different evaporation levels maintaining the inlet temperature of the secondary fluid in the 

evaporator and the flow rate. The secondary fluid is a mixture propylene glycol-water (60% by 

volume) and the evaluated temperatures were -1.3±0.07°C, 3.8±0.12°C and 10.1±0.23°C. The 

flow rate was fixed to 0.7 m3·h-1. 

 

 Gas-cooler pressure was regulated with an electronic BP fixed during each test thanks to a PDI 

controller. Each test was performed at different pressures in order to identify the optimum one 

and reach the optimum COP conditions.   

 

 Compressors: The main compressor always operated at nominal speed of 1450 rpm. The speed 

of the IMS compressor was varied is order to obtain the optimum subcooling degree. 

 

 Electronic expansion valves: The electronic expansion valves were set to obtain a superheating 

degree in the evaporator of 10K and of 5K on the subcooler.  

 

All the tests were carried out in steady state conditions for periods longer than 10 minutes, taking data 

each 5 seconds, obtaining the test point as the average value of the whole test. The measured data were 

used to calculate the thermodynamic properties of the points using Refprop v.9.1. (Lemmon et al., 2013). 

3.2. Test range 

Table 2 sumps up all the tests carried out, including the number of tests performed in each of the 

evaluated conditions. The range of values evaluated for the subcooling degree, the gas-cooler pressure 

and the main energy parameters for each test are also detailed on it.  

Table 2. Experimental tests and range of tested conditions. 

tw,in (ºC) tg,in (ºC) number of tests SUB (K) pgc (bar) COP (-) Q0 (kW) 

25.0 

-1.3 8 19.4-23.4 74.0-75.0 1.77-1.83 7.4-7.7 

3.8 8 16.1-21.4 74.5-76.0 2.02-2.12 8.7-8.9 

10.1 21 8.8-19.7 74.0-78.1 2.49-2.96 11.3-12.1 

30.4 

-1.3 17 10.7-24.3 78.9-89.3 1.48-1.60 6.4-7.2 

3.8 23 11.8-23.6 80.0-91.9 1.47-1.82 7.8-8.4 

10.1 19 8.6-16.2 80.2-82.2 1.92-2.10 9.1-9.6 

35.1 

-1.3 23 18.5-25.6 86.9-89.3 1.29-1.38 6.3-6.5 

3.8 18 3.8-18.5 84.0-90.9 1.40-1.58 6.1-7.6 

10.1 18 3.6-12.7 85.1-90.9 1.66-1.84 7.6-8.8 

 

4. Optimization of the plant  

In transcritical refrigeration cycles with subcooling there is an optimum working condition where the COP is 

maximum (Llopis et al., 2018). This point corresponds to the optimal gas-cooler pressure and the optimal 

subcooling degree, defined as eq. (1). The subcooling degree is the difference between the temperature at 

the exit of the gas-cooler and the temperature at the exit of the subcooler. The tests were carried out in 

order to demonstrate the existence of this optimum, identify it, and then to evaluate the behaviour of the 

plant at optimum conditions.   
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𝑆𝑈𝐵 = 𝑡𝑔𝑐,𝑜 − 𝑡𝑠𝑢𝑏,𝑜 (1) 

4.1. Experimental COP identification  

The cooling capacity of the plant is calculated as the product of the mass flow rate through the evaporator 

(𝑚̇𝑐𝑜2) and the enthalpy difference in evaporator, as shown in Eq. (2). The enthalpy at the evaporator inlet 

(ℎ0,𝑜) is considered to be the same as the enthalpy at the inlet of the back-pressure valve. The COP of 

the system is the ratio between the cooling capacity and the sum of the power consumption of two 

compressors, as established in Eq. (3).  

To obtain the maximum COP, tests have been carried out modifying pressure and subcooling values 

following a method similar to a Simplex algorithm. When three initial points were available, these 

parameters were increased or decreased following the trend of the previous points, in order to get closer 

and closer to the point of maximum COP. The process ended when the increments achieved between the 

new value and the previous one were less than 1%.  

𝑄̇0 = 𝑚̇𝑐𝑜2 · (ℎ0,𝑜 − ℎ𝑒𝑥𝑝) (2) 

𝐶𝑂𝑃 =
𝑄̇0

𝑃𝐶,𝑚𝑎𝑖𝑛 + 𝑃𝐶,𝑖𝑚𝑠
 (3) 

  

Figure 3 shows the measured COP for the tested condition of tw,in = 35.1ºC and tg,in = 10.0ºC, for different 

pressure levels and several subcooling degrees, representing the value of the COP as a function of Pgc 

and SUB. This colour map shows the evolution of the COP, where the existence of a maximum COP is 

clearly observed. Reducing or increasing pressure or subcooling degree will always reduce the obtained 

value of COP.  As it can be seen, the influence of the pressure on the variation of the COP is higher than 

the influence of the subcooling degree. Increasing or reducing the pressure 1.5% has a higher impact on 

the COP than modifying the subcooling degree in the same percentage. 

 

Figure 3. Experimental COP for tw,in = 35.1ºC and tg,in = 10.0ºC. 
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4.2. Experimental analysis of the cooling capacity 

Regarding cooling capacity, calculated with Eq. (2), the subcooling degree increases the capacity of the 

plant, it being higher when higher the subcooling degree is, as it can be seen in Figure 4. Due to that, the 

optimum condition does not correspond to the point with higher cooling capacity, but the difference is not 

remarkable. The positive aspect of this effect is that the capacity of the system can be adjusted by 

modifying the subcooling degree in order to fit the needs of the application with decrements in COP of 

1.5% when increasing or decreasing 2K of subcooling.  

 

Figure 4. Experimental cooling capacity for tw,in = 35.1ºC and tg,in = 10.0ºC. 

4.3. Optimum COP evaluation 

Even it is not possible to determine with exactitude the exact value of the optimum COP, the experimental 

tests have allow to identify the region where the maximum COP is. To obtain the exact optimum COP, an 

interpolation of all the experimental data has been carried out. For that, all the measured values have 

been taken into account and referred to the subcooling degree and the gas-cooler pressure.  

The data has been interpolated using the method of thin-plate spline (Bookstein, 1992), obtaining a 3D 

representation of the behaviour of the COP depending on the working pressure and the subcooling 

degree. Then, the interpolated function has been used to determine the exact position of the optimum 

COP values. The optimum COP values for the entire evaluation range are presented in Table 3, as well as 

the difference between this value and the maximum COP registered experimentally.  

Figure 5 shows the interpolation at tw,in=25.0ºC and tg,in=1.3ºC. The blue points represent the measured 

experimental points and the red point represents the optimum point, obtained by the interpolation. The 

difference between the experimental and the interpolated point, calculated with Eq. (4), is 0.34% in 
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average and a maximum difference of 1.46% at one of the tested conditions, which means that the 

maximum point obtained experimentally is practically the same as the obtained by the interpolation.  

 

Figure 5. 3D and contour thin-plate spline interpolation of the COP at tw,in=25.0ºC and tg,in=-1.3ºC 

 

∆𝐶𝑂𝑃 (%) =
𝐶𝑂𝑃𝑖𝑛𝑡𝑒𝑟 − 𝐶𝑂𝑃𝑒𝑥𝑝𝑒

𝐶𝑂𝑃𝑒𝑥𝑝𝑒
· 100 (4) 

 

Table 3. Experimental data vs interpolated results.  

 
  

Experimental 
data 

Thin-plate  
spline 

Tw,in 
(ºC) 

Tgly,in 
(ºC) 

COP 
(-) 

COP 
(-) 

∆COP 

(%) 

25.2 -1.4 1.866 1.868 0.11 

30.5 -1.3 1.626 1.626 0.02 

35.0 -1.3 1.404 1.409 0.36 

25.0 3.7 2.131 2.131 0.01 

30.4 3.8 1.818 1.822 0.20 

35.2 3.9 1.564 1.578 0.92 

24.8 9.9 2.482 2.482 0.01 

30.2 9.9 2.101 2.132 1.46 

35.1 10.3 1.811 1.811 0.00 

 

5. Experimental results at optimum conditions 

The results presented in this section correspond to the tests where the COP is maximum for each 

evaluated condition. The presented results are the measured data and not the interpolated due to the 

minimal difference between them, as discussed in the previous section. Figure 6 represents the working 

cycle of the refrigeration system, with the most important points of measure. The red points correspond to 

the test conditions with the inlet glycol temperature of 10.0ºC, the green ones to the 3.8ºC and the blue 

ones to the -1.3ºC. The drawn cycles correspond to the water inlet temperature of 30.4ºC. For water 

temperatures of 25.0ºC and 35.1ºC, only the points of the exit of the gas-cooler and subcooler exit are 

represented.   

As it can be seen, at the water temperature level of 30.4ºC, the three gas-cooler exit points, corresponding 

to the three evaporation levels, are practically coincident, having them all very similar approach of  

temperature at gas-cooler. However, the subcooler exit points are not the same. Thus, here it is possible 

to observe the different optimum subcooling degree needed for each evaporation level since the subcooler 
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outlet point is farther from the gas-cooler outlet when lower the evaporation temperature is. The same 

phenomenon is repeated at the water inlet temperature levels of 25.0ºC and 35.1ºC. In the diagram, it can 

also be observed that for a water inlet temperature condition, there is no large difference in terms of high 

pressure for the different evaporation levels, so the optimum gas-cooler pressure is slightly dependent on 

the evaporation temperature.   

 

Figure 6. P-h diagram of the cycle at optimum working conditions for all the tests.  

Table 4 sums up the main results. It contains the optimum COP of each tested condition, the main 

temperatures, the cooling capacity and power consumption of the compressors as well as the uncertainty 

and the energy balances for data validation. COP, cooling capacity and working conditions are discussed 

in the following subsections. 

The main energy parameters studied in this work are cooling capacity and COP, defined by Eq.(2) and 

Eq.(3), respectively. The uncertainty of these main parameters has been calculated using Moffat’s method 

(Moffat, 1985) and the measurement devices’ accuracies. The average measured uncertainty is ±0.85% in 

𝑄0̇ and ±0.95% in COP. The uncertainty ε(COP) and ε(Q0) of all the results presented in this work is 

compiled in Table 4. To ensure correct measurement of the parameters in the cycle, the energy balances 

in evaporator, gas-cooler and subcooler have been calculated taking into account the capacity transmitted 

on the CO2 side and on the secondary fluid.  

Eq. (5) is the heat transfer at the side of the glycol. Eq. (6) quantifies the discrepancy between the heat 

transfer of the glycol and the cooling capacity on the evaporator.  

𝑄̇𝑔 = 𝑉̇𝑔 · 𝜌𝑔 · 𝐶𝑝𝑔 · (𝑡𝑔,𝑖𝑛 − 𝑡𝑔,𝑜) (5) 

∆𝑄̇𝑒𝑣𝑎𝑝 =
𝑄̇0 −  𝑄̇𝑔

𝑄̇0

· 100 (6) 

Eq. (7) corresponds to the heat transfer of the CO2 in the gas-cooler and Eq. (8) in the water side. The 

difference between the heat transfers of each of the fluids is calculated as Eq. (9). 

𝑄̇𝑔𝑐 = (𝑚̇𝑐𝑜2 +  𝑚̇𝑖𝑚𝑠)  · (ℎ𝑔𝑐,𝑖𝑛 − ℎ𝑔𝑐,𝑜) (7) 



12 
 

𝑄̇𝑤 =  𝑉̇𝑤 · 𝜌𝑤 · 𝐶𝑝,𝑤 · (𝑡𝑤,𝑖𝑛 − 𝑡𝑤,𝑜) (8) 

∆𝑄̇𝑔𝑐 =
𝑄̇𝑔𝑐 −  𝑄̇𝑤

𝑄̇𝑔𝑐

· 100 (9) 

The capacity of the subcooler is calculated as Eq. (10) for the side corresponding to the CO2 subcooled 

and Eq. (11) corresponds to the cooling capacity of the subcooler for the evaporation fluid. The heat 

transfer difference between both sides of the subcooler is calculated as Eq. (12).  

𝑄̇𝑠𝑢𝑏 = (𝑚̇𝑐𝑜2 + 𝑚̇𝑖𝑚𝑠)  · (ℎ𝑔𝑐,𝑜 − ℎ𝑠𝑢𝑏,𝑜) (10) 

𝑄̇0,𝑠𝑢𝑏 =  𝑚̇𝑖𝑚𝑠  · (ℎ𝑠𝑢𝑏,𝑜 − ℎ0,𝑜,𝑖𝑚𝑠) (11) 

∆𝑄̇𝑠𝑢𝑏 =
 𝑄̇0,𝑖𝑚𝑠 −  𝑄̇𝑠𝑢𝑏

𝑄̇0,𝑖𝑚𝑠

· 100 (12) 

 

These balance differences are presented in Table 4. As it can be seen, the differences are quite small: 

3.4% at evaporator in average, 3.8% at gas-cooler and 5.2% at subcooler. In tests number E3, E4 and E6 

the discrepancies are greater than 5%. This is because the gas-cooler outlet is near the pseudocritical 

region where due to the variation of the isobaric heat capacity, small changes in temperature result in high 

measurement uncertainties (Torrella et al., 2011).  

5.1. Maximum COP  

Figure 7 shows the evolution of the maximum measured COP for all the evaluated conditions. It can be 

seen a clear trend in its evolution, marked by the glycol and the water inlet temperatures. For all the glycol 

levels, it can be perceived that the COP is lower when lower the glycol inlet temperature is, so when lower 

the evaporation level is. It can be also observed that, as the water inlet temperature increases 

(corresponding to the heat rejection level) the COP decreases, so lower COPs are obtained when higher 

is the heat rejection temperature.  

  

Figure 7. Evolution of the maximum COP for optimal conditions depending on the water inlet temperature. 
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The measured values go from 1.40 to 1.87 for tg,in = -1.3ºC, from 1.56 to 2.13 for tg,in = 3.8ºC and from 1.81 

to 2.48 for tg,in = 10.0ºC.  

5.2. Cooling capacity 

The cooling capacity that the plant is capable of providing under the conditions of maximum COP is 

represented in Figure 8. A linear trend can be observed depending on the heat rejection temperature, 

reducing the cooling capacity of the plant as the water inlet temperature increases. Likewise, it is clearly 

observed how the capacity is greater when higher the evaporation level is. 

 

Figure 8. Evolution of the cooling capacity for optimal conditions depending on the water inlet temperature. 

The measured values go from 6.5kW to 7.7kW for tg,in = -1.3ºC, from 7.3kW to 8.9kW for tg,in = 3.8ºC and 

from 8.6kW to 10.3kW for tg,in = 10.0ºC.  

Cooling capacity can also be described as shown in Eq. (13), where the first term corresponds to the 

cooling capacity if there was not subcooling and the second to the contribution generated by the 

subcooling cycle. So the cooling capacity of the system can be defined as the sum of two terms, as shown 

by Eq. (14), the capacity of the system without subcooling (𝑄̇𝑏𝑎𝑠𝑒) and the capacity added by the 

subcooler, Eq. (15).  

𝑄̇0 = 𝑚̇𝑐𝑜2 · (ℎ0,𝑜 − ℎ𝑔𝑐,𝑜) + 𝑚̇𝑐𝑜2 ·  ∆ℎ𝑠𝑢𝑏 (13) 

𝑄̇0 = 𝑄̇𝑏𝑎𝑠𝑒 + 𝑚̇𝑐𝑜2 ·  ∆ℎ𝑠𝑢𝑏 
(14) 

𝑄̇𝑠𝑢𝑏,𝑎𝑑𝑑 = 𝑚̇𝑐𝑜2 ·  ∆ℎ𝑠𝑢𝑏 (15) 

The proportion of the cooling capacity corresponding to the contribution of the subcooler represents in all 

cases less than a third of the total cooling capacity and goes from 2.0kW to 2.4kW. This contribution is 

greater the higher the water temperature and the lower the evaporation level are (when further the heat 

source and hot sink are). The effect of the subcooling cycle is higher at high rejection temperatures and 

low evaporation levels because these are the conditions where the behaviour of the plant needs to be 

more improved due to the reduction of the COP, as it was presented by Nebot-Andrés et al. (2019b). The 
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contributions represent between 25.6% and 21.5% at 25.0ºC, between 31.5% and 24.1% at 30.4ºC and 

between 33.2 and 24.9 at 35ºC. 

Figure 9 shows the total cooling capacity of the plant divided into the cooling capacity corresponding to the 

cycle without subcooling and the subcooling contribution.  

 

Figure 9. Cooling capacity broken down into base capacity and subcooler contribution. 

Figure 10 represents the power consumption of each of the compressors of the plant for the different 

evaluated conditions. The increment in the power consumption due to the introduction of an additional 

compressor can be noticed. However, the power consumption of the IMS compressor is much lower than 

those of the main compressor. In addition, as seen in the previous sections, the cooling capacity is 

increased in higher proportions, thus this effect is positive for the overall COP of the plant. 

 

Figure 10. Power consumption of each of the compressors. 
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5.3. Optimum pressure 

Figure 11 shows the optimum gas-cooler pressure value for each test condition. It can be observed that 

for the three glycol temperatures, the evolution of the pressure follows the same trend and also it 

practically does not depend on the inlet temperature at the evaporator. However, it is clearly correlated 

with the heat rejection level. 

 

Figure 11. Optimum working pressure for the tested conditions.  

There is a small difference for the lower glycol level but this difference is within the limits of the 

measurement uncertainty, therefore we can state that the optimum pressure depends more strongly on 

the heat rejection temperature than on the inlet temperature at the evaporator of the plant. Analyzing the 

influence of the heat rejection level, we can affirm that the higher the temperature is, the greater the 

pressure of the plant must be. 

5.4. Optimum subcooling degree 

Optimal subcooling degree is presented in Figure 12. We can affirm that when lower is the evaporation 

level, greater the degree of subcooling necessary to achieve the optimum COP must be. Analysing each 

of the different evaporation levels, a slight decreasing trend can be seen for the higher inlet glycol 

temperatures (tg,in = 3.8ºC and 10.0ºC) while for -1.3ºC the optimal subcooling degree decreases and then 

increases again. This change in trend in the evolution of the optimal subcooling degree may be because 

the gas-cooler outlet is near the pseudocritical zone, where CO2 present abrupt changes in its 

thermophysical properties.  Also, this effect was observed in the theoretical simulations presented by 

Nebot-Andrés et al. (2017) 
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Figure 12.Evolution of the optimum subcooling degree for the tested conditions. 

5.5. Correlations  

In the previous sections all the results are referred to the inlet water and glycol temperatures because 

these were the parameters set in the test. In order to generalize more the results, in this section the 

optimal operating conditions are referred to the evaporation temperature and the gas-cooler outlet 

temperatures.  

The following correlations allow calculating the optimum subcooling degree and the optimal gas-cooler 

pressure. They have been obtained by adjusting the values obtained experimentally by an adjustment of 

least-squares.  

5.5.1. Optimum pressure  

Equation (16) defines the optimum gas-cooler pressure as a function of the evaporation temperature and 

the gas-cooler outlet temperature.  

𝑝𝑔𝑐  =  126.5 +  0.285 · 𝑡0  − 4.537 · 𝑡𝑔𝑐,𝑜 − 0.01374 · 𝑡0 · 𝑡𝑔𝑐,𝑜 + 0.09409 · 𝑡𝑔𝑐,𝑜 
2  

(16) 27.5º𝐶 ≤ 𝑡𝑔𝑐,𝑜 ≤ 37.5º𝐶 

−15.6º𝐶 ≤ 𝑡0 ≤ −4.1º𝐶 

 

The range of application of this correlation is for temperatures of gas-cooler exit between 27.5ºC and 

37.5ºC and evaporation temperatures between -15.6ºC and -4.1ºC. The average error of this correlation is 

±0.3 bar and the maximum error ±0.6 bar.  

Kauf (1999), Liao et al. (2000) and Sarkar et al. (2004) proposed correlations to determine the optimum 

pressure for single-stage transcritical CO2 cycles. Then, Chen and Gu (2005) proposed a correlation for 

transcritical carbon dioxide cycles with internal heat exchanger that provide similar results to Kauf’s 
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correlation. Also, Song et al. (2018) presented a correlation based on experimental data to obtain the 

optimum pressure for subcooler-based transcritical CO2 systems used as heat pump.  

Figure 13 shows the optimum CO2 gas-cooler pressure based on the different correlations for an 

evaporating level of -5ºC including the previous correlation presented in eq. (16). Kauf’s correlation is not 

included because the range of application is different. It can be observed that the correlation proposed in 

this paper provides lower pressures for temperatures over 32ºC at the exit of gas-cooler, corroborating the 

optimal pressure reduction achieved with the use of subcooling cycles (Dai et al., 2018; Llopis et al., 

2016). 

 

Figure 13. Optimum gas-cooler pressure based on different correlations (to=-5ºC). 

Figure 14 shows the reduction in pressure obtained comparing the correlation of eq. (16) with the 

correlations of Liao, Sarkar and Chen. The optimum pressure of the CO2 system with IMS is gradually 

reduced when higher the gas-cooler outlet temperature is, compared to a pure transcritical CO2 cycle. A 

reduction of 5.9 bar is obtained for tgc,o = 37°C comparing to Liao’s correlation. Comparing to Sarkar’s 

expression, an average reduction of 3.3 bar is accomplished for temperatures between 35 and 37ºC. The 

IMS cycles also reduces the pressure of the system comparing it to cycles with internal heat exchanger, 

up to -3.8 bar for tgc,o = 37°C. 

 

Figure 14. Pressure difference obtained using the IMS optimum pressure correlation.  
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The correlations posed by the previous authors differ significantly from the optimal pressure of the 

transcritical cycle with IMS; therefore, the use of the correlation in the eq. (16)  is recommended for this 

type of cycles. 

5.5.2. Optimum subcooling degree 

Equation (17) shows the correlation between the evaporation temperature and the gas-cooler outlet 

temperature that defines the optimum subcooling degree needed to obtain the maximum COP when 

working at the optimum pressure for a CO2 cycle with integrated mechanical subcooling.  

𝑆𝑈𝐵 = 9.682 − 0.9938 · 𝑡0 − 0.1226 · 𝑡𝑔𝑐,𝑜 

(17) 27.5º𝐶 ≤ 𝑡𝑔𝑐,𝑜 ≤ 37.5º𝐶 

−15.6º𝐶 ≤ 𝑡0 ≤ −4.1º𝐶 

 

The range of application of this correlation is for temperatures of gas-cooler exit between 27.5ºC and 

37.5ºC and for evaporating levels between -15.6ºC and -4.1ºC. The average error of this correlation is 

±0.6K and the maximum error ±1.0K.  

6. Conclusions 

This paper presents for the first time the experimental optimization of a CO2 transcritical refrigeration plant 

with integrated mechanical subcooling. The evaluation covered the heat rejection levels of 25.0ºC, 30.4ºC 

and 35.1ºC and the cold source temperatures of -1.3ºC, 3.8ºC and 10ºC at steady-state conditions. The 

main compressor was run at nominal speed while the velocity of the auxiliary compressor was modified in 

order to obtain the optimum subcooling degree. All the experimental data have been validated by 

comparing the energy balances in all the heat exchangers of the plant.  

The experimental tests have allowed to demonstrate the existence of a maximum COP, obtained at 

optimum conditions of pressure and subcooling degree. All the tests were performed to obtain the optimal 

COP of the plant, that goes from 1.40 to 1.87 at tg,in = -1.3ºC, from 1.56 to 2.13 for tg,in = 3.8ºC and from 

1.81 to 2.48 for tg,in = 10.0ºC and the cooling capacity from 6.5kW to 7.7kW at tg,in = -1.3ºC, from 7.3kW to 

8.9kW for tg,in = 3.8ºC and from 8.6kW to 10.3kW for tg,in = 10.0ºC. On the one hand, the optimum 

pressure is strongly dependent on the gas-cooler outlet temperature, following a linear trend but it 

practically does not vary depending on the level of evaporation. On the other hand, the optimum 

subcooling degree is a function of the gas-cooler outlet temperature and the evaporation temperature, the 

subcooling being always different for each of the working levels, being higher when lower is the 

evaporation level. 

From the experimental data, two general expressions have been stated to determine the optimum 

pressure and subcooling in this type of installation, only as a function of its evaporation level and the gas-

cooler outlet temperature. Optimum pressure correlation differs significantly from the classical equations, 

so it is advisable to use the correlation presented in this paper for CO2 transcritical cycles with integrated 

mechanical subcooling.  
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Table 4. Main experimental results and uncertainty measurements 

 

tg,in t0 tw,in pgc,o tgc,o SUB mCO2 Pcmain Pcims Q0  ε(Q0) ε(Q0) COP ε(COP) ε(COP) 

 

∆Qevap ∆Qgc ∆Qsub 

(ºC) (ºC) (ºC) (bar) (ºC) (ºC) (kg/s) (kW) (kW) (kW) (kW) (%) (-) (-) (%) (%) (%) (%) 

E1 -1.4 -15.6 25.2 74.5 27.5 21.3 0.03 3.36 0.77 7.71 0.05 0.66 1.87 0.015 0.78 

 

-3.3 -2.5 4.4 

E2 3.7 -11.2 25.0 74.7 28.1 17.8 0.04 3.47 0.72 8.91 0.06 0.73 2.13 0.018 0.84 -5.2 -3.0 3.3 

E3 9.9 -5.9 24.8 74.6 29.2 12.5 0.05 3.53 0.61 10.28 0.09 0.87 2.48 0.024 0.97 -4.7 -4.9 6.6 

E4 -1.3 -14.6 30.5 80.9 32.9 19.1 0.03 3.54 0.81 7.06 0.05 0.77 1.63 0.014 0.88 -2.8 -4.3 7.2 

E5 3.8 -10.2 30.4 81.9 33.2 16.7 0.04 3.73 0.75 8.15 0.07 0.82 1.82 0.017 0.92 -1.8 -2.8 1.9 

E6 9.9 -5.3 30.2 81.6 33.6 10.1 0.05 3.80 0.59 9.23 0.10 1.05 2.10 0.024 1.13 -6.4 -6.3 8.8 

E7 -1.3 -14.5 35.0 88.4 36.1 20.6 0.03 3.72 0.90 6.49 0.05 0.76 1.40 0.012 0.86 -3.4 -3.2 5.7 

E8 3.9 -9.8 35.2 89.8 36.9 14.6 0.04 3.95 0.74 7.34 0.07 0.92 1.56 0.016 1.01 -2.7 -2.7 3.4 

E9 10.3 -4.1 35.1 89.4 37.5 8.9 0.05 4.12 0.61 8.55 0.11 1.25 1.81 0.024 1.32 -0.3 -4.1 5.2 

 

 

 

 

 


