Corrigendum to: "A COPRIME ACTION VERSION OF A SOLUBILITY CRITERION OF Deskins"

Antonio Beltrán
Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain
e-mail: abeltran@mat.uji.es
Changguo Shao
School of Mathematical Science, University of Jinan, 250022, Shandong, China,
e-mail: shaoguozi@163.com

Abstract

In this Corrigendum we correct a missed case in the statement of Theorem 2.4 and a subsequent mistake in the proof of the main result in "A coprime action version of a solubility criterion of Deskins", Monatsh. Math- 188. 461-466 (2019)

Keywords: Soluble groups, Maximal subgroups, Coprime action, Group action on groups.

Mathematics Subject Classification (2010): 20D20, 20D15.

The main result of [1] is a coprime action version of a theorem of B. Huppert: If a finite group G has a maximal subgroup that is nilpotent with Sylow 2-subgroup of nilpotency class at most 2, then G is soluble (Satz IV.7.4 of [4]). This theorem is the completion of previous results by Huppert [5], J.G. Thompson [8], W.E. Deskins [2] and Z. Janko [6]. Professor M.D. Pérez Ramos noticed and informed us that there are some mistakes and inaccuracies in the last part of the proof of the main theorem of [1]. Thus the goal of this note is to correct them.

First, the proof of the main theorem uses two classification theorems due to Kondrat'ev [7] and to Gilman and Gorenstein [3], respectively. However, there is one simple group missed in the statement of Theorem 2.4 in [1], which joins both classifications. The correct statement is the following.

Theorem 2.4 Let G be a finite non-abelian simple group and P a Sylow 2subgroup of G. If $\mathbf{N}_{G}(P)=P$ and P has class at most 2, then $G \cong \operatorname{PSL}(2, q)$, where $q \equiv 7,9(\bmod 16)$ or $G \cong A_{7}$.

Proof. This is a consequence of combining the main result of [7] and Theorems 7.1 and 7.4 of [3].

As a consequence of this correction, several modifications in the proof of Step 4 of the main theorem of [1] are necessary. Furthermore, in lines 28-29, page 465 it is claimed that the subgroup K is normalised by an element of order 3 lying in S. This is not true. For the reader's convenience we rewrite the whole proof of Step 4.

Proof of Step 4 Let N be a minimal A-invariant normal subgroup of G. We can assume that N is not soluble; otherwise by Step $1, N$ is not contained in M, and by maximality we obtain $N M=G$. As a consequence, G would be soluble and the proof is finished. Therefore, we can write $N=S_{1} \times \ldots \times S_{n}$ where S_{i} are isomorphic non-abelian simple groups (possibly $n=1$). Put $S=S_{1}$. Notice that A permutes the $S_{i}^{\prime} s$, but not necessarily this action is transitive. Let $B=\mathbf{N}_{A}(S)$ and let T be a transversal of B in A. On the other hand, since M is maximal in G, we have $\mathbf{N}_{G}(M \cap N)=M$, so in particular $\mathbf{N}_{N}(M \cap N)=M \cap N$. Further, as $M \cap N$ is a Sylow 2-subgroup of N, we have $M \cap N=M \cap S \times \ldots \times M \cap S_{n}$, so we conclude that $M \cap S$ is self-normalising in S. Also, it has nilpotency class exactly 2 by Lemma 2.1 and Step 3. Then by applying Theorem 2.4, we obtain $S \cong \operatorname{PSL}(2, q)$ with $q \equiv 7,9(\bmod 16)$ or $S \cong A_{7}$. We distinguish separately these cases.

Assume first that $q \equiv 9(\bmod 16)$, with $q>9$. Then we can certainly choose an odd prime $r \mid(q-1) / 2$ and R to be a B-invariant Sylow r-subgroup of S. By Lemma 2.5(3), we know that $\left|\mathbf{N}_{S}(R)\right|=q-1$, so $\mathbf{N}_{S}(R)$ has odd index in S and contains properly a Sylow 2-subgroup of S. Analogously, if $q \equiv 7(\bmod$ 16), with $q>7$, there exists an odd prime $r \mid(q+1) / 2$ and we take R to be a B-invariant Sylow r-subgroup of S. Again by Lemma 2.5(2), we know that $\left|\mathbf{N}_{S}(R)\right|=(q+1)$, so $\mathbf{N}_{S}(R)$ has odd index in S and hence, it contains properly a Sylow 2-subgroup of S. In both cases, we put $R_{1}=\prod_{t \in T} R^{t}$, which is an A-invariant Sylow r-subgroup of $\prod_{t \in T} S_{1}^{t}$. We can argue similarly to construct an A-invariant Sylow r-subgroup for each orbit of the action of A on the $S_{i}^{\prime} s$. Hence, we can construct $R_{0}=R_{1} \times \ldots \times R_{t}$, where t denotes the number of orbits of A on the $S_{i}^{\prime} s$, and this is certainly an A-invariant Sylow 2-subgroup of N. We conclude that $\left|N: \mathbf{N}_{N}\left(R_{0}\right)\right|=\left|S: \mathbf{N}_{S}(R)\right|^{n}$ is odd too. Now, by the Frattini argument, $G=N \mathbf{N}_{G}\left(R_{0}\right)$ and thus, $\left|G: \mathbf{N}_{G}\left(R_{0}\right)\right|=\left|N: \mathbf{N}_{N}\left(R_{0}\right)\right|$. We conclude that $\mathbf{N}_{G}\left(R_{0}\right)$ properly contains an A-invariant Sylow 2-subgroup of G, contradicting the maximality of M.

Finally, suppose that $S \cong \operatorname{PSL}(2,9), \operatorname{PSL}(2,7)$ or A_{7}. In all cases, the Sylow 2-subgroups of S are dihedral groups of order 8 . Now, $M \cap N$ is an A-invariant Sylow 2-subgroup of N, which is the direct product of n copies of a dihedral group, say D, of S. As M has nilpotence class two, then $[M, M \cap N] \leq M^{\prime} \leq$
$\mathbf{Z}(M)$, and since $M \cap N \unlhd M$ it follows that $[M, M \cap N] \leq \mathbf{Z}(M) \cap(M \cap N) \leq$ $\mathbf{Z}(M \cap N)$. This implies that every subgroup of $M \cap N$ containing $\mathbf{Z}(M \cap N)$ must be normal in M. We will use this property later. Now let K be one of the two subgroups of D isomorphic to the 4 -Klein group, which obviously satisfies $\mathbf{Z}(D) \leq K$ and set $K^{A}=\left\langle K^{a} \mid a \in A\right\rangle$. By the coprime action hypothesis we have that $|A|$ is odd, and then the fact that D has exactly two subgroups isomorphic to the 4-Klein group implies that for every $a \in A$, either $K^{a}=K$, or K^{a} lies in some other distinct copy of S. Furthermore, K^{A} is a direct product of certain copies of K, each of which lies in a different copy of S. Now, if the action of A on the $S_{i}^{\prime} s$ is transitive, we will just consider the subgroup K^{A}, but if the action is not transitive, then we proceed as follows. For each of the orbits of the action of A on the S_{i}, we choose j with S_{j} in the orbit, and choose a 4-Klein subgroup $K_{j} \leq D_{j}$, where D_{j} is the corresponding isomorphic copy of D appearing in $M \cap N$. Then we define the subgroup K_{j}^{A} similarly as K^{A}. Set K_{0} to be the direct product of these subgroups, one for each orbit of the action of A on the S_{i}. We can write $K_{0}=K_{1} \times \ldots \times K_{n}$, where each K_{i} is a 4 -Klein group lying in S_{i}. By construction, K_{0} is trivially A-invariant and, moreover, $K_{0} \unlhd M$, because $\mathbf{Z}(M \cap N) \leq K_{0} \leq M \cap N$. By the above proved property, we get $M \leq \mathbf{N}_{G}\left(K_{0}\right)$, which is also A-invariant. Now $\mathbf{N}_{G}\left(K_{0}\right)=M \mathbf{N}_{N}\left(K_{0}\right)$ and $\mathbf{N}_{N}\left(K_{0}\right)=\prod_{i=1}^{n} \mathbf{N}_{S_{i}}\left(K_{i}\right)$. In fact, one can easily check that when $S \cong \operatorname{PSL}(2,9)$ or $\operatorname{PSL}(2,7)$ then $\mathbf{N}_{S}(K) \cong S_{4}$, and when $S \cong A_{7}$, then $\mathbf{N}_{S}(K) \cong\left(A_{4} \times C_{3}\right) \ltimes C_{2}$. In all cases we get a contradiction with the maximality of M.

Remark. It is possible to give a simpler argument for the case $S \cong A_{7}$ by using that A_{7} possesses a unique conjugacy class of $\{2,3\}$-Hall subgroups. In this case, by Glauberman's Lemma, there exists an A-invariant $\{2,3\}$-Hall subgroup of N, say H. Then the Frattini argument gives $G=N \mathbf{N}_{G}(H)$, so $\left|G: \mathbf{N}_{G}(H)\right|$ is a $\{2,3\}^{\prime}$-number. This implies that the A-invariant subgroup $\mathbf{N}_{G}(H)$ properly contains an A-invariant Sylow 2-subgroup of G, contradicting the maximality of such Sylow 2-subgroup (Step 2).

Acknowledgements

We would like to thank M.D. Pérez-Ramos for many helpful conversations on the subject. The first author was partially supported by Ministerio de Ciencia, Innovación y Universidades, Proyecto PGC2018-096872-B-100 and also by Proyecto UJI-B2019-03. The second author was supported by the Nature Science Fund of Shandong Province (No. ZR2019MA044) and the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (No.2018QZJ04).

References

[1] Beltrán, A., Shao, C.G.: A coprime action version of a solubility criterion of Deskins. Monat. Math. 188, 461-466 (2019)
[2] Deskins, W.E.: A condition for the solvability of a finite group. Illinois J. Math. 5, 306-313 (1961)
[3] Gorenstein, D.: The Classification of finite simple groups. Simple groups and local analysis, Bull. Amer. Math. Soc. (New Series), 1(1), 43-199 (1979)
[4] Huppert, B.: Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer, Berlin, (1967)
[5] Huppert, B.: Normalteiler und maximale Untergruppen endlicher Gruppen. (German) Math. Z. 60, 409-434 (1954)
[6] Janko, Z.: Verallgemeinerung eines Satzes von B. Huppert und J.G. Thompson. (German) Arch. Math. (Basel) 12, 280-281 (1961)
[7] Kondrat'ev, A.S.: Normalizers of the Sylow 2-subgroups in finite simple groups. Math. Zametki 78(3), 368-376 (2005); translation in Math. Notes 78(3-4), 338-346 (2005) (Russian)
[8] Thompson, J.: Finite groups with fixed-point-free automorphisms of prime order. Proc. Nat. Acad. Sci. U.S.A. 45, 578-581 (1959)

