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Abstract

In this Corrigendum we correct a missed case in the statement of
Theorem 2.4 and a subsequent mistake in the proof of the main result in
“A coprime action version of a solubility criterion of Deskins”, Monatsh.
Math- 188. 461-466 (2019).
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The main result of [1] is a coprime action version of a theorem of B. Hup-
pert: If a finite group G has a maximal subgroup that is nilpotent with Sylow
2-subgroup of nilpotency class at most 2, then G is soluble (Satz IV.7.4 of [4]).
This theorem is the completion of previous results by Huppert [5], J.G. Thomp-
son [8], W.E. Deskins [2] and Z. Janko [6]. Professor M.D. Pérez Ramos noticed
and informed us that there are some mistakes and inaccuracies in the last part
of the proof of the main theorem of [1]. Thus the goal of this note is to correct
them.

First, the proof of the main theorem uses two classification theorems due to
Kondrat’ev [7] and to Gilman and Gorenstein [3], respectively. However, there
is one simple group missed in the statement of Theorem 2.4 in [1], which joins
both classifications. The correct statement is the following.
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Theorem 2.4 Let G be a finite non-abelian simple group and P a Sylow 2-
subgroup of G. If NG(P ) = P and P has class at most 2, then G ∼= PSL(2, q),
where q ≡ 7, 9 (mod 16) or G ∼= A7.

Proof. This is a consequence of combining the main result of [7] and Theorems
7.1 and 7.4 of [3].

As a consequence of this correction, several modifications in the proof of
Step 4 of the main theorem of [1] are necessary. Furthermore, in lines 28-29,
page 465 it is claimed that the subgroup K is normalised by an element of order
3 lying in S. This is not true. For the reader’s convenience we rewrite the whole
proof of Step 4.

Proof of Step 4 Let N be a minimal A-invariant normal subgroup of G. We
can assume that N is not soluble; otherwise by Step 1, N is not contained in M ,
and by maximality we obtain NM = G. As a consequence, G would be soluble
and the proof is finished. Therefore, we can write N = S1×. . .×Sn where Si are
isomorphic non-abelian simple groups (possibly n = 1). Put S = S1. Notice that
A permutes the S′

is, but not necessarily this action is transitive. Let B = NA(S)
and let T be a transversal of B in A. On the other hand, since M is maximal in
G, we have NG(M ∩N) = M , so in particular NN (M ∩N) = M ∩N . Further,
as M ∩N is a Sylow 2-subgroup of N , we have M ∩N = M ∩S× . . .×M ∩Sn,
so we conclude that M ∩S is self-normalising in S. Also, it has nilpotency class
exactly 2 by Lemma 2.1 and Step 3. Then by applying Theorem 2.4, we obtain
S ∼= PSL(2, q) with q ≡ 7, 9 (mod 16) or S ∼= A7. We distinguish separately
these cases.

Assume first that q ≡ 9 (mod 16), with q > 9. Then we can certainly choose
an odd prime r | (q − 1)/2 and R to be a B-invariant Sylow r-subgroup of S.
By Lemma 2.5(3), we know that |NS(R)| = q − 1, so NS(R) has odd index in
S and contains properly a Sylow 2-subgroup of S. Analogously, if q ≡ 7 (mod
16), with q > 7, there exists an odd prime r | (q + 1)/2 and we take R to be
a B-invariant Sylow r-subgroup of S. Again by Lemma 2.5(2), we know that
|NS(R)| = (q+1), so NS(R) has odd index in S and hence, it contains properly
a Sylow 2-subgroup of S. In both cases, we put R1 =

∏
t∈T Rt, which is an

A-invariant Sylow r-subgroup of
∏

t∈T St
1. We can argue similarly to construct

an A-invariant Sylow r-subgroup for each orbit of the action of A on the S′
is.

Hence, we can construct R0 = R1 × . . . × Rt, where t denotes the number of
orbits of A on the S′

is, and this is certainly an A-invariant Sylow 2-subgroup of
N . We conclude that |N : NN (R0)| = |S : NS(R)|n is odd too. Now, by the
Frattini argument, G = NNG(R0) and thus, |G : NG(R0)| = |N : NN (R0)|.
We conclude that NG(R0) properly contains an A-invariant Sylow 2-subgroup
of G, contradicting the maximality of M .

Finally, suppose that S ∼= PSL(2, 9),PSL(2, 7) or A7. In all cases, the Sylow
2-subgroups of S are dihedral groups of order 8. Now, M ∩N is an A-invariant
Sylow 2-subgroup of N , which is the direct product of n copies of a dihedral
group, say D, of S. As M has nilpotence class two, then [M,M ∩N ] ≤ M ′ ≤
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Z(M), and since M ∩N �M it follows that [M,M ∩N ] ≤ Z(M)∩ (M ∩N) ≤
Z(M ∩N). This implies that every subgroup of M ∩N containing Z(M ∩N)
must be normal in M . We will use this property later. Now let K be one
of the two subgroups of D isomorphic to the 4-Klein group, which obviously
satisfies Z(D) ≤ K and set KA = 〈Ka | a ∈ A〉. By the coprime action
hypothesis we have that |A| is odd, and then the fact that D has exactly two
subgroups isomorphic to the 4-Klein group implies that for every a ∈ A, either
Ka = K, or Ka lies in some other distinct copy of S. Furthermore, KA is a
direct product of certain copies of K, each of which lies in a different copy of
S. Now, if the action of A on the S′

is is transitive, we will just consider the
subgroup KA, but if the action is not transitive, then we proceed as follows.
For each of the orbits of the action of A on the Si, we choose j with Sj in the
orbit, and choose a 4-Klein subgroup Kj ≤ Dj , where Dj is the corresponding
isomorphic copy of D appearing in M ∩ N . Then we define the subgroup KA

j

similarly as KA. Set K0 to be the direct product of these subgroups, one for
each orbit of the action of A on the Si. We can write K0 = K1 × . . . × Kn,
where each Ki is a 4-Klein group lying in Si. By construction, K0 is trivially
A-invariant and, moreover, K0 � M , because Z(M ∩ N) ≤ K0 ≤ M ∩ N . By
the above proved property, we get M ≤ NG(K0), which is also A-invariant.
Now NG(K0) = MNN (K0) and NN (K0) =

∏n
i=1 NSi

(Ki). In fact, one can
easily check that when S ∼= PSL(2, 9) or PSL(2, 7) then NS(K) ∼= S4, and when
S ∼= A7, then NS(K) ∼= (A4×C3)nC2. In all cases we get a contradiction with
the maximality of M .

Remark. It is possible to give a simpler argument for the case S ∼= A7

by using that A7 possesses a unique conjugacy class of {2, 3}-Hall subgroups.
In this case, by Glauberman’s Lemma, there exists an A-invariant {2, 3}-Hall
subgroup of N , say H. Then the Frattini argument gives G = NNG(H), so
|G : NG(H)| is a {2, 3}′-number. This implies that the A-invariant subgroup
NG(H) properly contains an A-invariant Sylow 2-subgroup of G, contradicting
the maximality of such Sylow 2-subgroup (Step 2).
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