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ABSTRACT The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric
EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum
errors since phase-shift errors are more probable than qudit-flip errors. Moreover, they use pre-shared
entanglement between encoder and decoder to simplify the theory of quantum error correction and increase
the communication capacity. Thus, asymmetric EAQECCs can be constructed from any pair of classical
linear codes over an arbitrary field. Their parameters are described and a Gilbert-Varshamov bound is
presented. Explicit parameters of asymmetric EAQECCs from BCH codes are computed and examples
exceeding the introduced Gilbert-Varshamov bound are shown.

INDEX TERMS Asymmetric entanglement-assisted quantum error-correcting codes, asymmetric
entanglement-assisted Gilbert-Varshamov bound, BCH codes.

I. INTRODUCTION
In the last decades the interest in quantum computation
has grown exponentially, mainly because it transforms some
intractable problems into tractable ones as showed the poly-
nomial time algorithms given by Shor for discrete logarithms
and prime factorization [41].

The usage of subatomic particles to hold memory and the
application of quantum mechanics determine the behavior
of quantum computers. These computers (the current imple-
mentations) are less reliable than the classical ones and pro-
duce more errors. Another inconvenient with this computers
is decoherence and, even when one cannot clone quantum
information [12], [45], both challenges can be addressed with
quantum error correction [42], [43].

The first steps in the construction of quantum error-
correcting codes corresponded to the binary case [8], [9], [22]
(see also [2], [3], [25]). Afterwards and especially because
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of their interest in fault-tolerant computation the non-binary
case was also studied [28] (some more references are [5], [6],
[24], [29], [36]). Most of the quantum error-correcting codes
are stabilizer codes where the error group is determined by
eigenspaces with eigenvalue 1.

Sufficient (respectively, necessary) conditions for exis-
tence of (sometimes pure) quantum codes are given by the
Gilbert-Varshamov bounds [13], [17], [28], [37] (respec-
tively, quantum singleton or Hamming bounds [4], [24], [28],
[39]).

Unitary operators, usually denoted X and Z , are used to
provide quantum (error-correcting) codes and the minimum
distance d of such codes indicates that one can correct up
to b(d − 1)/2c phase-shift and qudit-flip errors. In [27],
the authors noticed that phase-shift errors happened more
likely than qudit-flip errors, thus it was desirable to construct
quantum codes where two minimum distances dx and dz,
for detecting qudit-flip and phase-shift errors, respectively,
were considered and provide results for addressing their
behavior. As a consequence, in the last years asymmetric
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quantum error-correcting codes have been studied giving rise
to codes suitable when dephasing occurs more often than
relaxation [14]–[16], [31], [32], [40]. Most of the asym-
metric quantum codes come from the CSS construction
of quantum stabilizer codes and, for them, there is also a
Gilbert-Varshamov bound [35]. In addition, the existence of
an asymmetric quantum error-correcting code coming from
the CSS construction can also be applied to linear ramp
secret sharing and communication over wiretap channels of
type II [19].

To provide an asymmetric (or symmetric) quantum code
requires some type of self-orthogonality of the classical con-
stituent code (or an inclusion of a constituent code into the
dual of other constituent one) and, then, many good classical
codes cannot be considered for that purpose. For overcoming
this restriction and boosting the rate of transmission, it was
proposed in [7] (for the symmetric case) to share entangle-
ment between encoder and decoder. Some constructions of
this type for binary codes (and also for codes over finite fields
Fp, p prime) can be found in the literature [26], [34], [44]. The
case when the codes are supported in an arbitrary finite field
has been described in [21].

It seems clear that it remains to consider entanglement-
assisted quantum error-correcting codes (EAQECCs) for the
asymmetric case. To the best of our knowledge this task had
not been performed yet. Section II of this paper is devoted
to explain how to construct and which are the parameters
of an asymmetric EAQECC obtained from any two linear
classical codes. Theorem 3 and Theorem 4 (for nested con-
stituent codes) are the main results in this section. Section III
gives a Gilbert-Varshamov bound for asymmetric EAQECCs;
we state and prove this bound for both the finite and the
asymptotic case. In Section IV we present the explicit com-
putation of the parameters of asymmetric EAQECCs coming
from BCH codes, see Theorem 9 and Corollary 10. Finally,
our Section VI provides examples of asymmetric EAQECCs
which exceed the Gilbert-Varshamov bound before stated.
Notice that asymmetric EAQECCs give rise to (symmet-
ric) EAQECCs and in this section we show also examples
of EAQECCs obtained with our procedure exceeding the
Gilbert-Varshamov bound for EAQECCs.

II. ASYMMETRIC EAQECCS
Let q = pr a positive power of a prime number p and set
Fq the finite field of order q. A q-ary stabilizer quantum
code is the linear space of (Cq)n given by the intersection
of the eigenspaces with eigenvalue 1 corresponding to some
subgroup S of the error group Gn generated by the matrices
corresponding to a basis of Hom

(
(Cq)⊗n, (Cq)⊗n

)
, that is

Gn is determined by the product X (a)Z (b) of tensor products
X (a) = X (a1) ⊗ X (a2) ⊗ · · · ⊗ X (an) and Z (b) = Z (b1) ⊗
Z (b2) ⊗ · · · ⊗ Z (bn) of unitary operators X and Z over
Cq, where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), and
ai, bi ∈ Fq, 1 ≤ i ≤ n. It is known [28, Lemma 11] that an
error in Gn is detectable by the stabilizer code if and only if

it belongs to the group generated by the subgroup S and the
center of Gn or the error is not in the centralizer of S in Gn.

The above facts can be regarded in terms of additive codes
in F2n

q . In order to do this, we introduce the trace-symplectic
form for two vectors (a|b) ,

(
a′|b′

)
∈ F2n

q as follows:

(a|b) ·ts
(
a′|b′

)
= trq|p

(
a · b′ − a′ · b

)
∈ Fp,

where trq|p is the trace map and · the inner product in Fnq.
Then (in the linear case) an [[n, k, d]]q stabilizer quantum
code exists if and only if there is a linear code C ⊆ F2n

q of
dimension n−k such thatC ⊆ C⊥ts , whereC⊥ts stands for the
dual code with respect to the ·ts product. Here the minimum
distance d is determined by the minimum symplectic weight
swt(C⊥ts \C). It is convenient to recall that for (a|b) as above,

swt (a|b) = #
{
j ∈ {1, 2, . . . , n}|(aj, bj) 6= (0, 0)

}
,

# meaning cardinality.
A particular case in the above construction follows

from the so-called CSS (Calderbank-Shor-Steane) proced-
ure [9], [43]. Here we need two linear codes C1 and C2 in
Fnq such that C2 ⊆ C⊥1 , ⊥ means Euclidean duality, and then
the code C = C1 × C2 ⊆ F2n

q provides a stabilizer quantum
code whose parameters depend on those of C1 and C2. Some
classical references are [5], [6], [8]–[10].

The fact that dephasing usually happens much more often
that relaxation [27] motivated the study and searching of
asymmetric quantum error-correcting codes [14]–[16], [30]–
[33]. For this purpose, the most used procedure is the CSS
construction because it easily allows us to get parameters
dz and dx such that our previous stabilizer code detects
phase-shift (respectively, qudit-flip) errors up to weight
dz − 1 (respectively, dx − 1). The specific result (see [40,
Lemma 3.1]) states that
Theorem 1: Let C2 ⊂ C⊥1 ⊆ Fnq be linear codes. The

CSS construction gives rise to an asymmetric quantum code
with parameters [[n, dimC⊥1 − dimC2, dz/dx]]q, where dz
(respectively, dx) is the minimum Hamming weight of the set
C⊥1 \ (C2 ∩ C⊥1 ) (respectively, C⊥2 \ (C1 ∩ C⊥2 )).
The previously mentioned stabilizer and asymmetric quan-

tum codes require self-orthogonality conditions with respect
to trace-symplectic duality and not every classical linear
code can be used for providing those quantum codes. The
self-orthogonality condition can be bypassed if encoder and
decoder share some quantity of entanglement [7] giving
rise to the so called entanglement-assisted quantum error-
correcting codes (EAQECCs). In the binary case the con-
struction of these codes is described in [26] (third paragraph
of Section II). This construction also holds for codes over
finite fields of the type Fp, p being a prime number (see [44,
Remark 1] and [34] for a proof). There it is proved that one
can obtain an EAQECC from a classical code C ⊆ F2n

p such
that C 6⊆ C⊥ts and the set of detectable quantum errors is
given by (

C ∩ C⊥ts
)
∪

(
F2n
p \ C

⊥ts
)
.
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On F2n
q , q = pr , one can also define a symplectic product:

(a|b) ·s
(
a′|b′

)
=
(
a · b′ − a′ · b

)
∈ Fq.

Using a suitable basis of Fq over Fp, an isomorphism of
Fp-linear spaces φ : F2r

p → F2
q can be given, providing an

isomorphism of Fp-linear spaces

φE :
(
Frp
)n
×

(
Frp
)n
→ F2n

q .

With the help of φE , in [21], the results of EAQECCs over Fp
can be extended to Fq and the product ·s instead of ·ts. Indeed,
the following result holds:
Theorem 2: Let C ⊆ F2n

q be a linear code over Fq of
dimension (n − k). Denote by H = (HX |HZ ) a generator
matrix for C. Let C ′ ⊆ F2(n+c)

q be a linear code overFq whose
projection to the coordinates 1, 2, . . . , n, n+ c+ 1, n+ c+
2, . . . , 2n+c equals C and such that C ′ ⊆ (C ′)⊥s , c being the
minimum required number of maximally entangled quantum
states in Cq

⊗ Cq. Then,

2c = rank
(
HXHT

Z − HZH
T
X

)
= dimFq C − dimFq

(
C ∩ C⊥s

)
.

The encoding quantum circuit is constructed from C ′, and
it encodes k+c logical qudits inCq

⊗· · · (k+c times) · · ·⊗Cq

into n physical qudits using c maximally entangled pairs. The
minimum distance is

d = ds
(
C⊥s \ (C ∩ C⊥s )

)
= min

{
swt (a|b) | (a|b) ∈ C⊥s \ (C ∩ C⊥s )

}
.

As a consequence, C provides an [[n, k + c, d; c]]q
EAQECC over the field Fq.

In this paper we are interested in the asymmetric case
and we desire to construct asymmetric EAQECCs from two
linear codes C1 and C2 over an arbitrary finite field Fq.
Assume that H1 (respectively, H2) is a generator matrix of
C1 (respectively, C2).
The above described construction of stabilizer codes over

Fp following the CSS procedure determines asymmetric
EAQECCs coming from any two linear codes C1,C2 ⊆ Fnp.
Here the code C over F2n

p is C = C1 × C2 and C⊥s =
C⊥2 × C

⊥

1 , where ⊥ denotes the Euclidean dual. Notice that
in this case ·ts = ·s. The set of detectable errors is(
(C1 ∩ C⊥2 )× (C2 ∩ C⊥1 )

)
∪

(
F2n
p \ C

⊥

2 × C
⊥

1

)
=

(
(C1 ∩ C⊥2 ) ∪ (Fnp \ C

⊥

2 )
)

×

(
(C2 ∩ C⊥1 ) ∪ (Fnp \ C

⊥

1 )
)
.

Defining

dz=wt
(
C⊥1 \ (C2 ∩ C⊥1 )

)
and dx=wt

(
C⊥2 \ (C1 ∩ C⊥2 )

)
,

(1)

where wt means minimum Hamming weight, it is clear we
are able to construct an asymmetric EAQECC which can

detect up to dx−1 qudit-flip errors and up to dz−1 phase-shift
errors.
These results can be extended to any finite field Fq

using again the above described isomorphism φE and [21,
Proposition 1] which relates ·st and ·s. The general result
being:
Theorem 3: Consider linear codes Ci ⊆ Fnq of dimension

ki and generator matrix Hi, i = 1, 2. Set dx and dz as in (1).
Then C1×C2 ⊆ F2n

q gives rise to an asymmetric EAQECC
which encodes n− k1 − k2 + c logical qudits into n physical
qudits which can correct up to b(dx − 1)/2c qudit-flip errors
and up to b(dz − 1)/2c phase-shift errors. The minimum
required of maximally entangled pairs is

c = rank(H1HT
2 ) = dimC1 − dim(C1 ∩ C⊥2 ).

As a consequence, we obtain an

[[n, n− k1 − k2 + c, dz/dx; c]]q

asymmetric EAQECC.
We end this section with a result that assumes that our

constituent linear codes are nested. We will see that the
asymmetric EAQECC comes from puncturing a code in F2n

q .
Theorem 4: Let C1 and C2 be Fq-linear codes such that

C2 ⊆ C1 ⊆ Fnq. Set ki = dimCi, i ∈ {1, 2} and d⊥1 (respec-
tively, d2) the minimum distance of the code C⊥1 (respectively,
C2). Suppose that c is a positive integer such that it satisfies
1 ≤ c ≤ min{d⊥1 , d2} − 1. Then, there exists an asymmetric
EAQECC with parameters

[[n− c, k1 − k2 + c, dz/dx; c]]q,

where dz (respectively, dx) is the minimum Hamming weight
of the elements in the set C⊥2 \ C

⊥

1 (respectively, C1 \ C2).
Proof: Consider the code C = C2 × C⊥1 , then C ⊆

C⊥s = C1 × C⊥2 and 2c ≤ wt(C \ 0) − 1, and the result
follows from [21, Theorem 7] and (1).

Notice that the above asymmetric EAQECC comes from
the punctured code defined as

P(C) =
{
(pr(a), pr(b) | (a,b) ∈ C

}
,

pr being the projection to the first n − c coordinates. In fact,
according to the proof of [21, Theorem 9]

dimP(C)− dim
(
P(C) ∩ P(C)⊥s

)
= 2c,

which by Theorem 2 shows that c is the number of maximally
entangled pairs. �

III. A GILBERT-VARSHAMOV BOUND FOR
ASYMMETRIC EAQECCS
We devote this section to provide a finite and an asymp-
totic Gilbert-Varshamov-type (GV) bound for asymmetric
EAQECCs. We start with the finite case.

VOLUME 8, 2020 18573
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A. THE FINITE GV BOUND
Let us start with our result.
Theorem 5: Consider positive integer numbers n, k1, k2,

dz, dx and c such that k1 ≤ n, k2 ≤ n and

k1 + k2 − n ≤ c ≤ min{k1, k2},

which satisfy the following inequality

qn−k1 − qk2−c

qn − 1

dz−1∑
i=1

(
n
i

)
(q− 1)i

+
qn−k2 − qk1−c

qn − 1

dx−1∑
i=1

(
n
i

)
(q− 1)i < 1,

then there exists an [[n, n−k1−k2+c, dz/dx; c]]q asymmetric
EAQECC.

Proof: For simplicity sake, in this proof C ′2 will be used
instead of C⊥2 . Consider integer numbers n, k1, k2 and c as in
the statement. Define

A(n, k1, k2, c) =
{
(C1,C ′2) | C1,C ′2 ⊂ Fnq,

dimC1 = k1, dimC ′2 = n− k2, and

c = dimC1 − dim(C1 ∩ C ′2)
}
.

For v ∈ Fnq, define also

Bz(v) =
{
(C1,C ′2) ∈ A(n, k1, k2, c) | v ∈ C

⊥

1 \ (C
′⊥

2 ∩ C
⊥

1 )
}

and

Bx(v) =
{
(C1,C ′2) ∈ A(n, k1, k2, c) | v ∈ C

′

2 \ (C1 ∩ C ′2)
}
.

For nonzero v1 and v2 ∈ Fnq, we claim that

#Bz(v1) = #Bz(v2),

where we recall that # means cardinality.
Let us see a proof. Denote by GL(n, q) the set of invertible

matrices on Fnq and for a fixed (D1,D′2) ∈ A(n, k1, k2, c), a
fixed M1 ∈ GL(n, q) with M1v1 = v2 and M ′1 ∈ GL(n, q)
with M ′1span(v1)

⊥
= span(v2)⊥, where M ′1span(v1)

⊥ stands
for the linear space given by the productsM ′1w such that w ∈
span(v1)⊥. Then we have

#Bz(v1)

= #
{
(C1,C ′2) ∈ A(n, k1, k2, c)|

v1 ∈ C⊥1 \ (C
′⊥

2 ∩ C
⊥

1 )
}

= #
{
(C1,C ′2) ∈ A(n, k1, k2, c)|span(v1)

⊥
⊇ C1

and span(v1)⊥ 6⊇ C ′2
}

= #
{
(MD1,MD′2) | span(v1)

⊥
⊇ MD1

and span(v1)⊥ 6⊇ MD′2,M ∈ GL(n, q)
}

= #
{
(M ′1MD1,M ′1MD

′

2)|M
′

1span(v1)
⊥
⊇M ′1MD1

and M ′1span(v1)
⊥
6⊇ M ′1MD

′

2,M ∈ GL(n, q)
}

= #
{
(M ′1MD1,M ′1MD

′

2)|span(v2)
⊥
⊇ M ′1MD1

and span(v2)⊥ 6⊇ M ′1MD
′

2,M
′

1M ∈ GL(n, q)
}

= #Bz(v2).

We also claim that #Bx(v1) = #Bx(v2). Indeed,

#Bx(v1)

= #
{
(C1,C ′2) ∈ A(n, k1, k2, c)|v1 ∈ C

′

2 \ (C
′

2 ∩ C1)
}

= #
{
(MD1,MD′2) | v1 ∈ MD

′

2 \ (MD
′

2 ∩MD1),

M ∈ GL(n, q)
}

= #
{
(M1MD1,M1MD′2)|

M1v1 ∈ M1MD′2 \ (M1MD′2 ∩M1MD1),

M1M ∈ GL(n, q)
}

= #
{
(MD1,MD′2) | M1v1 ∈ MD′2 \ (MD

′

2 ∩MD1),

M ∈ GL(n, q)
}

= #Bx(v2).

Next we will count the quantity of triples (v, C1, C ′2) such
that v ∈ C⊥1 \ (C

′⊥

2 ∩ C
⊥

1 ) in two different ways. From [21,
Proposition 4] and the fact that the rank of a matrix and its
transpose coincide, we deduce that

c=dimC1−dim
(
C1 ∩ C⊥2

)
= dimC2 − dim

(
C2 ∩ C⊥1

)
.

Then, we observe that

dimC ′⊥2 ∩ C
⊥

1 = dimC2 ∩ C⊥1
= dimC2−(dimC2 − dimC2 ∩ C⊥1 )=k2−c.

For each pair (C1,C ′2) ∈ A(n, k1, k2, c) there are

qn−k1 − qk2−c

vectors v such that v ∈ C⊥1 \ (C
′⊥

2 ∩ C
⊥

1 ). Thus the total
number of such triples is

(qn−k1 − qk2−c)#A(n, k1, k2, c).

On the other hand, we can count the total number of
triples as ∑

06=w∈Fnq

#Bz(w) = (qn − 1)#Bz(v)

for any fixed nonzero v. This implies

#Bz(v)
#A(n, k1, k2, c)

=
qn−k1 − qk2−c

qn − 1
.

A similar argument shows

#Bx(v)
#A(n, k1, k2, c)

=
qn−k2 − qk1−c

qn − 1
.

If we remove a pair (C1,C ′2) from A(n, k1, k2, c) either
when vz ∈ C⊥1 \ (C

′⊥

2 ∩C
⊥

1 ) or when vx ∈ C ′2 \ (C
′

2 ∩C1) for
1 ≤ wt(vz) ≤ dz − 1 and for 1 ≤ wt(vx) ≤ dx − 1, then we
remove in total∑

1≤wt(vz)≤dz−1

#Bz(vz)+
∑

1≤wt(vx )≤dx−1

#Bx(vx) (2)

pairs from A(n, k1, k2, c).
As a consequence, there exists at least one

[[n, n− k1 − k2 + c, dz/dx; c]]q

asymmetric EAQECC whenever the number (2) is less than
#A(n, k1, k2, c) which proves the statement. �
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B. THE ASYMPTOTIC GV BOUND
From Theorem 5 and [37], it can be deduced the following
asymptotic GV bound.
Theorem 6: Consider positive real numbers K1,K2, δz, δx

and λ such that

K1 + K2 − 1 ≤ λ ≤ min{K1,K2}.

Set hq(y) := −y logq y− (1− y) logq(1− y) the q-ary entropy
function. If the inequalities

hq(δz)+ δz logq(q− 1) < K1 and

hq(δx)+ δx logq(q− 1) < K2

hold, then, for sufficiently large n, there exists an asymmetric
EAQECC with parameters[[

n, bn− nK1 − nK2 + nλc, bnδzc/bnδxc; bnλc
]]
q.

IV. ASYMMETRIC EAQECCS FROM BCH CODES
The aim of this section is the construction of asymmetric
EAQECCs with good parameters by using the results in
Section II. To carry it out, we consider specific BCH codes.
Instead of the classical way, our BCH codes are regarded as
subfield-subcodes of evaluation codes defined by evaluating
univariate polynomials [11]. We consider this construction
because it can be extended to evaluation by polynomials in
several variables [18], [20] which we hope will give better
codes in the future.

Let ` be a positive integer such that r divides ` and consider
a positive integer N such that N − 1 divides p` − 1. In this
section, we use classes of univariate polynomials in the quo-
tient ring Fp` [X ]/I , where I is the ideal of Fp` [X ] generated
by XN−1 − 1. If Z = {P1,P2, . . . ,Pn}, where n = N − 1,
is the zero set of I in Fp` , we define the evaluation map

ev : Fp` [X ]/I → Fnp` ev(f ) = (f (P1), f (P2), . . . , f (Pn)) .

Assume that1 is a subset ofH := {0, 1, . . . ,N − 2}, then
we write E1 the code in Fn

p`
generated by the vectors{

ev
(
X i
)
| i ∈ 1

}
.

Within the congruence ring ZN−1, we consider minimal
cyclotomic cosets with respect to q = pr ; minimal means that
it contains exactly the elements of the form aqt , t ≥ 0 inZN−1
for some fixed element a ∈ ZN−1 under the identification
ZN−1 = H. Pick a representative a (the least one) of each
minimal cyclotomic coset which we denote Ia. Then {Ia}∈A
is the set of minimal cyclotomic cosets with respect to q, A
being the set of representatives above mentioned. In addition
set ia := #(Ia). For convenience, we will write

A = {a0 = 0 < a1 < a2 < · · · } = {aj}
z
j=0.

We will use the following two results which can be found
in [18], [20].

Proposition 7: Set1 = ∪tj=t ′Iaj , t
′ < t . Then the subfield-

subcode of E1 over Fq,
E1|Fq := E1 ∩ (Fq)n,

has dimension
∑t

j=t ′ iaj .
Proposition 8: The minimum distance of the (Euclidean)

dual of the subfield-subcode E1|Fq , where 1 = ∪
t
j=0Iaj is

larger than or equal to at+1 + 1 (BCH bound).
Next we state the main result in this section.
Theorem 9: With the above notation consider two different

indices s, t ∈ {0, 1, . . . , z} and assume that s < t . Then we
can construct an asymmetric EAQECC with parameters[[

n, n−
t∑
j=0

iaj , (at+1 + 1/as+1 + 1);
s∑
j=0

iaj

]]
q
.

Proof: Consider the linear codes Ci = E1i |Fq , i = 1, 2,
where 11 =

⋃t
j=0 Iaj and 12 =

⋃s
j=0 Ia′j , a

′
j being the

representative of the minimal cyclotomic coset containing
N − 1− aj. Taking into account that #Ia′j = #Iaj , by Propo-

sition 7 it holds that k1 := dimC1 =
∑t

j=0 iaj and k2 :=
dimC2 =

∑s
j=0 iaj .

Now C⊥2 = E1′ |Fq , where1
′
= H\

⋃s
j=0 Iaj [18]. Hence,

the minimum required of maximally entangled pairs is

c = dimC1 − dim(C1 ∩ C⊥2 )

=

t∑
j=0

iaj −
t∑

j=s+1

iaj =
s∑
j=0

iaj .

The minimum distance of the dual codes satisfies d(C⊥1 ) ≥
at+1 + 1 (by Proposition 8) and d(C⊥2 ) ≥ as+1 + 1 because
C2 contains s + 1 consecutive cyclotomic cosets and it is
equivalent to a code as in Proposition 8.
Finally, applying Theorem 3, we get an asymmetric

EAQECC with parameters as in the statement. �
From the previous result, we can deduce the following one.
Corollary 10: Keeping the above notation where q = pr ,

assume that (
pr
)b `2r c < n ≤ p` − 1 (3)

and pick and index t such that

2 ≤ at+1 ≤ min

{
n (pr )b

`
2r c

p` − 1
, n

}
. (4)

Let s ∈ {0, 1, . . . , z} such that s < t . Then we can construct
an asymmetric EAQECC with parameters[[

n, n−
`

r

⌈(
at+1 − 1

)(
1−

1
q

)⌉
− 1,

(at+1 + 1/as+1 + 1);
`

r

⌈(
as+1 − 1

)(
1−

1
q

)⌉
+ 1

]]
q
.

Proof: It follows from the proof of [1, Theorem 10]
where it is showed that if Inequalities (3) and (4) hold, then
the number t of non-zero cyclotomic cosets considered is⌈

(at+1 − 1)(1−
1
q
)
⌉

and all of them have cardinality `/r . �
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TABLE 1. Asymmetric EAQECC coming from Theorem 9.

Remark 11: Notice that the parameters of the asymmetric
EAQECC given in Corollary 10 can be written as follows:[[

n, n−
`

r
t − 1, (at+1 + 1/as+1 + 1);

`

r
s+ 1

]]
q
.

V. ENTANGLEMENT AND MINIMUM DISTANCES
Assume thatC is a (standard) asymmetric quantum code over
a field Fq coming from the CSS construction with parame-
ters [[n, k, dz/dx]]q. Considering entanglement and a suitable
extension of constituent codes, it is possible to increase the
value of dz (or dx) keeping the length and information rate.
Therefore, one may increase the asymmetry ratio (the ratio
between dz and dx). Indeed, for both the standard case and the
entanglement-assisted case, one considers two linear codes
C1 and C2 and it holds that dz = wt(C⊥1 \ (C2 ∩ C⊥1 )) and
dx = wt(C⊥2 \ (C1 ∩ C⊥2 )). However, for the standard case it
must be imposed that C2 ⊆ C⊥1 . Thus, given a pair of codes
C1,C2 such that C2 ⊆ C⊥1 , we may consider a new pair
of linear codes, C ′1 and C ′2, by enlarging C1 or C2, in such
a way that either C ′2 ⊆ (C ′1)

⊥ or C ′1 ⊆ C⊥2 do not hold
any more, but this new pair gives an asymmetric EAQECC
with better parameters. Hence, taking into account that c =
dimC ′1 − dim

(
C ′1 ∩ (C

′

2)
⊥
)
= dimC ′2 − dim

(
C ′2 ∩ (C

′

1)
⊥
)
,

the information rate is kept, one of the minimum distances is
the same and the other one increases.

Let us illustrate the above technique with a small example.
Keep the notation as in Section IV and assume that ` = r ,
that is we do not consider subfield-subcodes in this example.
Let Ci be the code E1i , for 1 ≤ i ≤ 2, where 11 = {2} and
12 = {0, n − 1}. Set C ′1 = E1′1 with 1′1 = {1, 2}. Then
C2 ⊆ C⊥1 = E1⊥1

, with 1⊥1 = {0, 1, . . . , n− 3, n− 1}. Now
setting C ′2 = C2, we deduce that the value dx for the standard
case (C1,C2) and the entanglement-assisted case (C ′1,C

′

2) is
the same. However, in the standard case,

dz = wt(C⊥1 \ (C2 ∩ C⊥1 )) = 2,

because the cardinality of 11 is one. But

(C ′1)
⊥
\

(
C ′2 ∩ (C

′

1)
⊥

)
⊆
(
C ′1
)⊥

and then, when one considers entanglement,

dz = wt
(
(C ′1)

⊥
\

(
C ′2 ∩ (C

′

1)
⊥

))
≥ 3

by the BCH bound. As a consequence, to share entanglement
allows us to increase the value dz and therefore the asymmetry
ratio.

VI. EXAMPLES OF EAQECCS
Table 1 shows the different values involved in the construction
of asymmetric EAQECCs, over several finite fields, con-
structed as in Theorem 9. The last two columns display the
representatives of the cyclotomic cosets used to define the
codes C1 and C2. Notice that the parameters of our asymmet-
ric EAQECCs follow immediately from Theorem 3 and are
[[n, n−k1, dz/dx; c]]q. All these codes exceed the asymmetric
Gilbert-Varshamov bound proved in Theorem 5. In addition,
for fixed values (q, n, k1, k2, c), we consider the set P of
pairs (d1, d2) of Z-minimum and X-minimum distances of
asymmetric EAQECCs such that (d1, d2) does not exceed the
bound in Theorem 5 but either (d1 + 1, d2) or (d1, d2 + 1)
beat it; we have noticed that frequently the cardinality of P
is one. Let (dz, dx) be the maximum of P with respect to the
lexicographical order where (1, 0) > (0, 1). Table 1 displays
the threshold (dz, dx) as well. Note that many times our codes
exceed both values dz and dx by one or two units.

We would like to add that our construction from BCH
codes (regarded as in Section IV), using Theorem 3, may pro-
duce good symmetric EAQECCs as well. We use the fact that
an asymmetric EAQECC provides a symmetric EAQECC
with the same parameters but its minimum distance, which
is the minimum of the two minimum distances dx and dz.
In all our examples, both minimum distances are equal. Thus,
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TABLE 2. Symmetric EAQECC coming from Theorem 9.

Table 2 displays values of codes coming from our construc-
tion, giving rise to symmetric EAQECCs whose parameters
are [[n, k = n − k1 − k2 + c, d = dz = dx; c]]q. We have
used the Hartmann-Tzeng bound [38] in our computations.
All codes in this table exceed the Gilbert-Varshamov bound
for symmetric EAQECCs [21]. Table 2 also contains, for each
code C , the minimum distance d of a symmetric EAQECC
with the same parameters (q, n, k, c) asC and such that d does
not beat the above mentioned symmetric Gilbert-Varshamov
bound but d+ 1 does. In several cases, our codes exceed the
value d by more than one unit.
We conclude this section by showing another sign of the

goodness of our codes and from the advantages of con-
sidering entanglement. Table 1 provides two asymmetric
EAQECCs with parameters [[24, 19, 4/3; c = 3]]5, and
[[15, 12, 3/2; c = 1]]4, which (using entanglement) have bet-
ter parameters that the optimal (non entanglement-assisted)
asymmetric QECCs [[24, 17, 4/3]]5 and [[15, 11, 3/2]]4
given in [15]. Finally, Table 2 shows two binary sym-
metric EAQECCs with parameters [[15, 4, 8; c = 8]]2
and [[31, 25, 4; c = 6]]2 with better parameters than the
best (non entanglement-assisted) QECCs [[15, 4, 4]]2 and
[[31, 25, 2]]2 given in [23].

VII. CONCLUSION
In this article we show how to construct asymmet-
ric EAQECCs. That is, entanglement-assisted quantum

error-correcting codes designed for the case when phase-shift
errors happen more likely than qudit-flip errors, as it is with
the combined amplitude damping and dephasing channel.
Moreover, they can be constructed from any pair of classical
linear codes since the encoder and decoder may share entan-
glement. Following our framework, a concrete construction
using BCH codes is proposed and we expect further fami-
lies of asymmetric EAQECCs to be proposed. In particular,
we will extend the BCH construction by considering evalua-
tion of polynomials in several variables which will hopefully
give better results and a larger constellation of codes. The
Gilbert-Varshamov-type bound provided in this article will
allow researchers to check the goodness of the parameters of
codes of this type.
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