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Abstract

Wind turbine pitch misalignments provoke aerodynamic asymmetries which cause severe damage to the turbine. Hence,
it is of interest to develop fault tolerant strategies to cope with pitch misalignments. Fault tolerant strategies require the
information regarding the diagnosis and the estimation of the faults. However, most existing works focus only on open-loop10

misalignment diagnosis and do not provide robust fault estimates. In this work, we present a novel strategy to both estimate
and diagnose pitch misalignments. The proposed strategy is developed at a wind farm level and it exploits altogether the
information provided by the temporal and spatial relations of the turbines in the farm. Fault estimation is first addressed with
a closed-loop switched observer. This observer is robust against disturbances and it adapts to the varying conditions along
the wind turbine operation range. Fault diagnosis is then achieved via statistical-based decision mechanisms with adaptive15

thresholds. Both the observer and the decision mechanisms are designed to guarantee the desired performance. Introducing
some restrictions over the number of simultaneous faulty turbines in the farm, the proposed approach is ameliorated via a
bank of the aforementioned observers and decision mechanisms. Finally, the strategies are tested using a well-known wind
farm benchmark.
Keywords: Wind turbine pitch system, fault estimation, fault diagnosis, observer, optimisation.20

1 Introduction

Wind energy has grown in importance over the last two decades as it has proven to be a promising and powerful
source of renewable energy [1]. However, the maintainability and reliability of wind turbines (WTs) is still a chal-
lenging and critical issue due to the high costs associated to maintenance operations [2]. The issues related to the
pitch system are of particular interest to the wind industry due to their long downtimes and high failure rates [2,3].25

These issues include actuator, sensor and imbalance faults [4–6]. A common pitch imbalance fault is aerodynamic
asymmetry, which may be caused by the misalignment of one or more blades. This misalignment can be originated
by several factors, including high wind shear and manufacturing, installation or control errors [6, 7]. In general,
aerodynamic asymmetries represent a significant problem for WTs, as also witnessed by the fact that certification
guidelines require relatively small pitch misalignments [8]. When a pitch misalignment is present, the loadings30

experienced by the blades are not balanced which results in vibrations that negatively affect other components of
the turbine. Moreover, the power quality is degraded and the power generation efficiency is reduced [7].

It is widely recognised that pitch actuator and sensor faults can be dealt with at the WT level. A well-established
benchmark for actuator and sensor fault diagnosis (FD) in WTs was presented in [9]. Several solutions have been
proposed showing the effectiveness of FD for predictive maintenance, e.g. [10–14]. However, imbalance faults are35

more challenging. As stated by [6], most exiting methods for imbalance fault diagnosis require additional sensors
such as vibrational sensors [15,16]. This extra equipment is inevitably subject to failures and it is generally difficult
to access. Thus, current-based imbalance diagnosis methods have gained more attention [6, 7]. However, as
recognised by [6], there are intrinsic challenges in using current signals for imbalance diagnosis: the characteristic
frequencies of imbalance faults depend on the shaft rotating frequency and the useful information in current signals40

for FD is characterized by a low signal-to-noise ratio.
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Another approach is to diagnose imbalance faults at a wind farm (WF) level, where each WT is considered in
comparison to other WTs in the WF. In [5], a WF data-mining approach was developed for monitoring blade
imbalance faults. Motivated by this work, a new benchmark has been presented in [17] for FD in WTs at a WF
level. Fewer solutions to this problem can be found in the bibliography [18–22]. The FD strategies of these works45

are based on two kinds of residuals, which are signals representing inconsistencies. On the one hand, temporal
residuals represent the inconsistencies between the pitch model output and the pitch measurement of a single
WT; on the other hand, spatial residuals are used to represent the inconsistencies between the pitch measurements
of different WTs. Borcehrsen et al. [18] utilize open-loop temporal residuals in dynamical cumulative sums.
Alternatively, Duviella et al. [20] present a FD approach based on spatial residuals and Blesa et al. [19] compute50

both spatial and open-loop temporal residuals via nonlinear parameter varying parity equations. For its part, Simani
et al. [21, 22] present fuzzy and neural network techniques to achieve FD.

The pitch model of a WT is affected by various non-negligible disturbances: wind speed (WS) estimation errors,
turbulences and measurement noises [17]. Hence, the open-loop temporal residuals in [18, 19] and the spatial
residuals in [19, 20] may be significantly disturbed. It is thus of interest to develop closed-loop strategies with55

a better performance w.r.t. disturbances. Besides this issue, the residual-based techniques in [18–21] focus on
obtaining the information about the appearance and the location of a fault (fault diagnosis or FD). However, the
information about the size and shape of a fault (fault estimation or FE) is also of paramount importance for both
real-time decisions and active fault tolerant control (AFTC) [23, 24]. Rather than on separate spatial and temporal
residuals, an optimal FE strategy should be based on a systematic approach that automatically merges all the60

information acquired from both temporal and spatial inconsistencies.

In this work, we thus propose a spatially and temporally integrated closed-loop strategy for the estimation and
diagnosis of pitch misalignments. First, a multi-input multi-output (MIMO) model-based augmented observer is
used for FE [25,26]. Provided that the disturbances affecting the pitch system depend on the WT operation condi-
tions, a constant augmented observer may lead to too conservative results. Hence, we develop instead a switched65

augmented observer for FE [27] and we design it via an optimization problem that fixes the trade-off between
the cumulative squared error experienced by the estimates due to faults and the root mean square of the estimates
due to noises and uncertainties. Providing this systematic performance-based optimal approach for tuning the
FE observer is an advantage when compared to other design algorithms, where some user expertise is necessary.
For instance, numerical extensive simulations and trial and error procedures are necessary to tune the algorithms70

in [22]. Second, we feed the fault estimates provided by the proposed observer into statistical-based decision
mechanisms to achieve FD [28]. Constant thresholding does not properly adapt to the time-varying properties of
the estimates provided by the switched observer. Therefore, we propose to compute adaptive thresholds using the
False Alarm Rate (FAR) criterion. When compared to the constant thresholds in [18, 22], the proposed adaptive
thresholds enhance a tighter adjustment to the fault estimates leading to better fault diagnosability.75

The rest of this paper is organized as follows. Section 2 gives the problem formulation. Section 3 presents the pitch
misalignment model on which the proposed FE and FD strategy is based. Section 4 presents and characterizes an
open-loop estimation strategy of the inputs of the system and Section 5 develops and designs a closed-loop FE
estimation strategy for pitch misalignments. Then, Section 6 utilizes the resulting fault estimates to build and
design a FD strategy. In Section 7 we extend the proposed FE and FD strategy for cases with some restrictions80

regarding the number of simultaneous faulty WTs in the WF. Simulation results are reported in Section 9 to show
the effectiveness of the proposed approach, followed by some concluding remarks in Section 10.

Notation: Let A and B be some matrix and a be some vector. A[i, j] denotes the element in the i-th row and
j-th column of A and a[i] denotes the i-th element in a. A � 0 means that A is negative semidefinite and similar
applies to �. The trace of matrix A is represented as tr(A). Let xk be a vector of stochastic signals at a sample85

k. We write ‖xk‖∞ , maxi |xk[i]| for the max norm of vector xk. We write ‖x‖∞ , maxk maxi |xk[i]| for the
l∞ norm of signal x, ‖x‖22 , limK→∞

∑K
k=1 x

T
k xk for its l2 norm and ‖x‖2RMS = 1

K ‖x‖22 for its RMS norm.
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Figure 1. Layout of the WF benchmark (©: WT, �: Wind mast,→: Wind direction). Black: 0◦ layout, Gray: 45◦ layout.

Expected value, probability and absolute value are denoted by E{·}, P{·} and | · |. In is the identity matrix of size
n× n, 1n×m is a matrix of ones of size n×m and 0 is the zero matrix of appropriate dimensions.

2 Problem Statement90

Consider the WF benchmark [17] consisting of N = 9 WTs of 4.8 MW. The benchmark studies two different
wind directions: 0◦ and 45◦. The WTs can be thus named according to the wind direction as shown in Fig. 1. We
consider that the wind is perpendicular to the rows of WTs (numbered as i = 1, . . . , ni) and parallel to the columns
of WTs (numbered as j = 1, . . . , nj). There is a wind mast at row i = 0. We denote the distance between two
consecutive rows i and i+ 1 as li. For the 0◦ layout, we have l0 = 1150 m and li = 1138.44 m for all i 6= 0.95

The WS acting on the blades of each WT (i, j) is composed by the mean WS acting on the WTs in the i-th row,
denoted as νi, and a zero-mean turbulence component of known variance (σ2

t = 0.2 m2/s2), denoted as ν̃i,jt , i.e.,

νi,j = νi + ν̃i,jt (1)

Hence, we deduce that all the WTs (i, j) in a row i (j = 1, . . . , nj) operate under similar wind conditions. Neither
the effective WS nor the mean WS are measured; only the measurement of the mean WS at the wind mast is
available: ν̂0 = ν0 + ν̃0, with ν0 being the WS at the wind mast, ν̂0 being its measurement and ν̃0 being the100

corresponding sensor noise.

The collective pitch system of each WT (i, j) can be modelled as a first order closed-loop system between the
collective pitch angle (henceforth, the collective pitch), named after βi,j , and the collective pitch reference, named
after βi,jr , [29]:

β̇i,j = τβ

(
βi,jr − βi,j

)
(2)

where τβ is a known transfer function coefficient (τβ = 1.6 rad/s). The collective pitch reference βi,jr is a nonlinear105

function g(·) of the actual power reference, denoted as Pr, and the effective WS acting on the blades of the turbine
(i, j), denoted as νi,j :

βi,jr = g (νi,j , Pr) (3)

see Fig.2 (values borrowed from the look up tables in [17]). In this work, we assume that the actual power
reference, Pr, is known because it can be deduced from the variables provided by the WF controller (see Remark
1). For its part, the effective WS, νi,j , is not known and it must be estimated from the WS measurement at the110

wind mast, ν̂0, using certain propagation method (see Section 4).
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Figure 2. Nonlinear function g (νi,j , P r).

Variable Description Location Units
βi,j Collective pitch (Collective pitch angle) WT (i, j) [◦]
βi,jr Collective pitch reference WT (i, j) [◦]
yi,j Collective pitch measurement WT (i, j) [◦]
wi,j Collective pitch measurement noise WT (i, j) [◦]
f i,j Offset caused by pitch misalignment WT (i, j) [◦]
Pr WT actual power reference WT (i, j), i = 1, . . . , ni, j = 1, . . . , nj [MW]
Pt WT static power reference WT (i, j), i = 1, . . . , ni, j = 1, . . . , nj [MW]
Pf WF static power reference WF [MW]
νi,j Effective wind speed WT (i, j) [m/s]
νi Mean wind speed in the i-th row WT (i, j), i = 1, . . . , ni [m/s]
ν̃i,jt Wind turbulence component WT (i, j) [m/s]

Table 1. Variables involved in the collective pitch system model of the WT (i, j).

Remark 1. The network operator determines the WF power demand that ensures a reliable connection of the WF
to the electrical grid1. Then, the WF controller computes the WF static power reference, denoted as Pf , as a
function of the WF power demand and the actual WF power generation2. The WT static power reference, denoted
as Pt, is obtained from dispatching Pf among the WTs in the WF. In this work, we consider that Pt = Pf/N .115

Finally, Pr is deduced from the WT dynamic behaviour to changes in Pt. In the WF benchmark [17], it satisfies
Ṗr = τp

(
Pt − Pr

)
with τp = 1.2 rad/s, i.e., Pr is a smoothed version of Pt.

The misalignment of one or more blades of the WT (i, j) can be modelled as an additive fault, denoted as f i,j ,
affecting the collective pitch measurement, denoted as yi,j . The measurement yi,j is also affected by a zero-mean
Gaussian sensor noise of known variance (σ2

w = 0.3◦
2
), denoted as wi,j . In all, we have that120

yi,j = βi,j + f i,j + wi,j (4)

Table 1 summarizes the variables involved in the model of the collective pitch βi,j (depicted in Fig.3). The aim
of this work is to develop an optimal, spatially and temporally integrated, model-based, closed-loop FE and FD
strategy for the pitch misalignment of the WTs in the WF. As recalled in Fig.3, the collective pitch measurements
yi,j (i = 1, . . . , ni, j = 1, . . . , nj), the dynamic power reference Pr and the WS measurement at the wind mast
v̂0, are available for FE and FD.125

1The WF power demand is determined in different modes such as delta, absolute and frequency regulation modes [30].
2See [31, 32] for examples of WF static power reference computation algorithms.
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ṽ0

Figure 3. Structure of the WF benchmark. The signals which are available for FE and FD are depicted in blue.

3 Pitch Misalignment Modeling

It is well known that most continuous-time control systems are implemented digitally [33]. Thus, in this work, we
work on the discrete-time framework and we first develop the discrete state-space model of the pitch system (2)-(4):

βi,jk+1 = αβi,jk + (1− α) g (νi,jk , P rk ) (5a)

yi,jk = βi,jk + f i,jk + wi,jk (5b)

The discrete transfer function coefficient α is derived from τβ in (2) with an appropriate sampling time, which we130

fix to Ts = 0.1 s.

The FE and FD strategies developed in this work rely on augmented observers, which are widely utilized in the
FE and FD literature (see [26, 34] for detailed explanations on the advantages of these observers for FE and FD).
Augmented observers are based on augmented models including both the system dynamics and the fault dynamics.
In practice, the faut dynamics is not a priori known. Hence, the following assumption on the fault dynamics is135

introduced.

Assumption 1. The variation δi,j of the fault f i,j (i.e., δi,j(k) = f i,j(k + 1)− f i,j(k)) is energy bounded.

The faults verifying Assumption 1 can be modeled through

ξi,jk+1 =aF ξ
i,j
k + bF δ

i,j
k (6a)

f i,jk =cF ξ
i,j
k (6b)

with ξi,j being the fault state and aF = bF = cF = 1.

Remark 2. Assumption 1 is fairly general because it considers faults whose variations are slow with respect to the140

dynamics of the system. It covers thus the most typical faults in engineering systems such as abrupt and incipient
faults [33,35]. In any case, the strategies developed in this work can be easily extended to systems whose faults do
not verify Assumption 1. If more complex fault signals affected the system, model (6) should be modify accordingly.
See, for instance, the models developed in [34, 36] for faults in the form of a polynomial or a sinusoid of the time.

The model (5) is augmented to include the fault dynamics (6) as145

zi,jk+1 =

[
α 0

0 1

]
zi,jk + (1− α) g (νi,jk , P rk ) +

[
0

1

]
δi,jk (7a)

yi,jk =
[
1 1

]
zi,jk + wi,jk (7b)
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where zi,j =
[
βi,j ξi,j

]T
∈ R2 is the extended state vector the collective pitch βi,j and the fault state ξi,j .

As we desire to obtain a spatially and temporally integrated FE and FD approach, we merge the temporal model (7)
of all the WTs operating under similar wind conditions (i.e., all the WTs in the same row i). The discrete extended
state-space model of the pitch systems of the i-th row of WTs can be written as detailed in (8) with zi ∈ R2nj

being the extended state vector that stacks the collective pitch angles βi,j and the fault states ξi,j of the WTs in the150

i-th row from j = 1 to j = nj . Similar applies to ui ∈ Rnj , yi ∈ Rnj , wi ∈ Rnj , f i ∈ Rnj and δi ∈ Rnj , which
are the input, output, noise, fault and fault generator vectors.

The model (8) merges the temporal and spatial information regarding the pitch system of the WTs in the i-th row,
which operate under similar wind conditions3. For ease of readability, let us omit hereafter the dependence of the
system vectors on the number of row i (e.g. zk stands for zik):155

zk+1 = Azk +B uk +D δk, (9a)

yk = C zk + wk (9b)

fk = Rzk (9c)

Any individual fault f [j] = f i,j is extracted from the fault vector f as f [j] = F j f where F j is the selection
matrix defined as F j =

[
0j−1 1 0nj−j

]
.

In the following, we utilize the model (9) to provide a FE and FD strategy of the pitch misalignments occurring in
the i-th row of WTs in the WF4. We propose the following methodology:

1. To obtain open-loop estimates of the inputs (i.e., the pitch references).160

2. To obtain and design a closed-loop model-based augmented FE observer that utilizes the previous open-loop
estimates of the inputs.

3. To obtain and design statistical-based FD decision mechanisms with adaptive thresholds that process the previ-
ous closed-loop fault estimates.
3All the pitch systems of the WF are modelled through (8) with i = 1, . . . , ni.
4All the pitch misalignments can be estimated and diagnosed with the proposed approach applied for i = 1, . . . , ni
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4 Wind Speed and Pitch Reference Estimation165

The first step to estimate the pitch misalignment faults is to provide an open-loop estimation strategy of the pitch
references which depend on the unknown effective WSs. In this section, we first propose a propagation strategy
to estimate the effective WSs and we bound the errors associated to the estimates. Then, we use the estimated
effective WSs to estimate the pitch references and we bound the resulting pitch reference open-loop estimation
errors. See the open-loop estimation box in Fig.5.170

4.1 Wind Speed Estimation

We can propagate the WS measurement ν̂0 to certain row i in order to estimate the mean WS acting on the WTs
in this row through different propagation models available in the literature (see [37] and the references therein).
Based on the wind and wake model of the WF benchmark in [17], we propose to compute the estimated mean WS,
named after ν̂i, using the following wind propagation model:175

ν̂i(t) =
1

Ki
ν̂i−1(t− tip(t)) (10)

where Ki is a wake factor and satisfies Ki = 1 for i = 1 and Ki = 0.9 for i = 2, . . . , ni − 1. The term tip(t)

represents the propagation time between two consecutive rows and we propose to compute it as

tip(t) =
li

ν̂0(t)/(Ki)i−1
(11)

Then, the mean WS fulfils
νi = ν̂i + ν̃ip (12)

where ν̃ip is the propagation error. This error derives from both the use of the noisy measurement ν̂0 and the
propagation model mismatch. Fig.A.1 in Appendix A shows the WS estimation results for the 0◦ layout.180

Remark 3. In order to avoid sudden large propagation errors, the estimated mean WS is filtered using a low pass
filter with the transfer function Hp(s) = 1

s+1 . Fig.A.2 in Appendix A shows that filtering the prorogated mean WS
leads to smoother errors in the same order of magnitude as the errors of the non-filtered estimated WS.

According to (1) and (12), we deduce that the effective WS νi,j satisfies

νi,j = ν̂i + ν̃i,j (13)

where ν̃i,j is the total WS estimation error verifying185

ν̃i,j = ν̃ip + ν̃i,jt (14)

Note that the propagation error ν̃ip is common for all the WTs in the i-th row while the turbulence ν̃i,jt is different
for each WT (i, j). The following assumption on these errors is made.

Assumption 2. The errors in (14) can be considered to be bounded as follows.

• The propagation error ν̃ip of the WTs in the i-th can be considered to be bounded as |ν̃ip| ≤ λip, where λip is
different for each row of WTs i (the propagation error increases with the distance between to the wind mast).190

• The turbulence ν̃i,jt of the WT (i, j) can be considered to be bounded as |ν̃i,jt | ≤ λt. We compute λt as λt = 3σt.

In Appendix A we compute and validate these bounds through numerical simulations. Let us remark that this
procedure is usually employed in observer-based applications [38, 39].
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Remark 4. The FE and FD strategies developed in this paper are independent of the wind propagation scheme.
If other propagation strategies were used, the bounds λip (i = 1, . . . , ni) would vary accordingly. Similar applies195

to the turbulence component that, if considered to be differently distributed, it would be bounded with a different
value λt.

4.2 Pitch Reference Estimation

The estimate ν̂i of the effective WS νi,j given by (10) is used to estimate the pitch reference (2) of the WTs in the
i-th row as200

β̂i,jr = g (ν̂i, P r) (15)

From (14), we deduce that the pitch reference estimation error can be disaggregated as

g (νi,j , P r)− g (ν̂i, P r) = g (νi,j , P r)− g (νi, P r)︸ ︷︷ ︸
ũi,j

+ g (νi, P r)− g (ν̂i, P r)︸ ︷︷ ︸
ũi

(16)

where ũi derives from the propagation error ν̃ip (i.e., ν̃ip = νi − ν̂i) and ũi,j derives from the turbulence ν̃i,jt (i.e.,
ν̃i,jt = νi,j − νi). Thus, the error ũi is common for all the WTs in the i-th row while ũi,j is different for each
WT. It s clear from (16) that these errors depend on the WT operation conditions (i.e., they are different for the
different values of ν̂i and P r). For certain value of the estimated WS and of the dynamic power reference and for205

certain row i, one can compute the bounds of these errors with the values λip and λt (which are the bounds of the
WS estimation errors in Assumption 2) as5

|ũi| ≤ max

{
|g (ν̂i + λip, P

r)− g (ν̂i, P r)|,
|g (ν̂i − λip, P r)− g (ν̂i, P r)|

}
(17a)

|ũi,j | ≤ max


|g (ν̂i + λip + λt, P

r)− g (ν̂i + λip, P
r)|,

|g (ν̂i + λip − λt, P r)− g (ν̂i + λip, P
r)|,

|g (ν̂i − λip + λt, P
r)− g (ν̂i − λip, P r)|,

|g (ν̂i − λip − λt, P r)− g (ν̂i − λip, P r)|

 (17b)

Designing an augmented observer that only considers the biggest possible value of these bounds and omits their
differences among the WT operation range would be too conservative. On the other hand, designing an augmented
observer considering all the values of these errors among the WT operation range would be too computationally210

costly. For this reason, we consider an intermediate solution and we propose to design an augmented observer
considering the biggest value of these errors on different subsets of the WT operation range. This option leads to
a switched augmented observer that prevents the fault estimates to be affected by the errors in each subset. Hence,
we bound the errors ũi and ũi,j as follows.

The variables ν̂i and P r, which define the WT operation conditions, can be considered to be bounded by the sets215

ν̂i ∈ Ων , Ων := {ν
¯
< ν̂i < ν̄} (18a)

P r ∈ Ωp, Ωp := {P
¯
< P r < P̄} (18b)

where ν
¯
, ν̄, P

¯
and P̄ are the minimum and maximum possible values of these parameters (which we fix to ν

¯
= 0

m/s, ν̄ = 25 m/s, P
¯

= 0 MW and P̄ = 4.8 MW). The parameter vector θ =
[
ν̂i P r

]T
lies then in Θ = Ων ×Ωp.

Let us partition the parameter set Θ into Nθ subsets {Θ(q)}q∈{1,...,Nθ} by dividing Ων into Nν intervals (i.e.,

{Ω(qν)
ν }qν∈{1,...,Nν}) and Ωp into Np intervals (i.e., {Ω(qp)

p }qp∈{1,...,Np}). Thus, we have Nθ = Nν ·Np (see Fig.4).

5Note that we express these bounds in terms of ν̂i because the variables νi,j and νi are not available.
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For each row i, ũi and ũi,j are bounded as220

|ũi| ≤ λi1,q if θ ∈ Θ(q) (19a)

|ũi,j | ≤ λi2,q if θ ∈ Θ(q) (19b)

where

λi1,q = max
θ∈Θ(q)

{
|g (ν̂i, P r)− g (ν̂i + λip, P

r)|
|g (ν̂i, P r)− g (ν̂i − λip, P r)|

}
(20)

Similar applies to λi2,q, whose value is deduced from (17b) along the values θ such that θ ∈ Θ(q). In Appendix A,
we detail the computation of these bounds.

5 Pitch Misalignment Estimation

In this section, we develop a FE strategy based on a switched augmented observer. The augmented observer is225

based on the augmented model (9) and utilizes the open-loop estimates of the pitch references obtained in Section 4.
We propose a multiobjective optimal design strategy of the augmented observer that allows an optimal adjustment
to the different levels of uncertainties encountered along the WT operation range.

5.1 Estimator Architecture

The pitch references g (νi,j , P r) are not available. Then, we build a model-based observer for the system (9) based230

on the open-loop estimates (15). Provided that the bounds of the errors associated to these estimated variables
depend on θ, we propose to use parameter-dependent gain matrices in the observer. Then, we have

ẑk+1 = A ẑk +B

[
1nj×1

0

]
g (ν̂ik, P

r
k )︸ ︷︷ ︸

ûk

+L(θk) (yk − C ẑk) (21a)

f̂k = R ẑk +K(θk) (yk − C ẑk) (21b)

where L(θk) and K(θk) are the parameter-dependent design gain matrices of appropriate dimensions. Given the
bounds in (19), we define L(θk) and K(θk) as

L(θk) = Lq if θk ∈ Θ(q) (22a)

K(θk) = Kq if θk ∈ Θ(q) (22b)

9



and the design gain matrices become the finite set of gain matrices Lq and Kq with q = 1, . . . , Nθ (i.e., L(θk) ∈235

{L1, . . . , Lq, . . . , LNθ} and K(θk) ∈ {K1, . . . ,Kq, . . . ,KNθ}). In the following, we present a multiobjective
approach to offline design these matrices. To this aim, define the extended state estimation error as z̃k = zk − ẑk
and the fault estimation error as f̃k = fk − f̂k. It follows that

z̃k+1 =(A− L(θk)C) z̃k +B (uk − ûk) +D δk − L(θk)wk (23a)

f̃k =(R−K(θk)C) z̃k −K(θk)wk (23b)

The difference uk − ûk refers to the pitch reference estimation errors. As detailed in Section 4.2, this error can be
disaggregated as240

uk − ûk =


g (νi,1k , P rk )− g (ν̂ik, P

r
k )

...
g (ν

i,nj
k , P rk )− g (ν̂ik, P

r
k )

0

 =

[
1nj×1

0

]
︸ ︷︷ ︸

E0

ũik︸︷︷︸
pk

+

[
Inj
0

]
︸ ︷︷ ︸
F0

 ũ
i,1
k
...

ũ
i,nj
k


︸ ︷︷ ︸

tk

(24)

where pk is the pitch reference estimation error due to the error on the WS propagation scheme and it is common
to all the WTs in the i-th row. Vector tk contains the pitch reference estimation error due to the WS estimation
error caused by the turbulence of each WT. Provided the bounds (19), we deduce that the vectors pk and tk are
bounded as

‖pk‖∞ ≤ λi1,q if θk ∈ Θ(q) (25a)

‖tk‖∞ ≤ λi2,q if θk ∈ Θ(q) (25b)

Remark 5. Since pk is common to all the WTs in the i-th row, the effect of the wind propagation error on FE is245

diminished when all these WTs are considered simultaneously by the same observer. This fact shows the advantage
of building the temporally and spatially integrated fault estimator (21) based on the model (9), which merges all
the information of the WTs in the i-th row.

5.2 Estimator Design

From (23)-(24), it yields250

z̃k+1 =(A− L(θk)C) z̃k + E pk + F tk +D δk − L(θk)wk (26a)

f̃k =(R−K(θk)C) z̃k −K(θk)wk (26b)

with E = BE0 and F = B F0. The fault estimation error depends on the following exogenous signals:

(a) the fault generator δ satisfying Assumption 1,
(b) the noises w satisfying w ∼ N (0,W ) with W = σ2

w Inj ,
(c) the unknown inputs p and t satisfying the bounds (25).

The error caused by δ describes the fault tracking ability of the observer and the errors caused by w, p and t255

describe the robustness of the observer against noises and uncertainties. Hence, we propose to characterize the
fault tracking ability of the observer by the cumulative squared error (CSE) experienced by each estimate f̂ [j] (i.e.,

10



‖f̃ [j]‖22 =
∑∞

k=1 f̃ [j]2) when it faces a unitary impulse δ[m] (which generates a unitary step fault f [m]):

γjm = max
θ∈Θ

‖f̃ [j]‖22
‖δ[m]‖22

,

δk[m] = {1, 0, 0, . . .},
δ[n] = 0, ∀n 6= m,

w = 0, p = 0, t = 0

(27a)

Similarly, we characterize the robustness of the observer by the root-mean-square (RMS) error experienced by

estimate f̂ [j] (i.e., ‖f̃ [j]‖RMS = limK→∞
√

1
K

∑K
k=1 f̃ [j]2 ) due to the noises (b) and the UIs (c):260

γjw = max
θ∈Θ

‖f̃ [j]‖2RMS
σ2
w

, δ = 0, p = 0, t = 0 (27b)

γjp = max
θ∈Θ

‖f̃ [j]‖2RMS
‖p‖2∞

, δ = 0, w = 0, t = 0 (27c)

γjt = max
θ∈Θ

‖f̃ [j]‖2RMS
‖t‖2∞

, δ = 0, w = 0, p = 0 (27d)

There exists a trade-off between ameliorating the fault tracking ability of the observer and its robustness [40, 41].
From the practical viewpoint, it is of considerable interest to achieve certain tracking ability and to minimize
the effect of the noises and uncertainties on the estimations [42]. Thus, we propose to design the observer gain
matrices through the following optimization problem

minimize
{Lq ,Kq}q∈{1,...,nθ}

nj∑
j=1

(
γjw σ

2
w + γjp ‖p‖2∞ + γjt ‖t‖2∞

)
subject to γjm ≤ γ̄jm , ∀j,m

stability of (26) , θ ∈ Θ

(28)

Remark 6. Note that γjm with m 6= j denotes the CSE experienced by the fault estimate in the j-th fault channel265

due to a unitary step fault in another channel m while γjj denotes the CSE experienced due to a unitary step fault

in the own channel j. Hence, the CSE requirements γ̄jm (m = 1, . . . , j − 1, j + 1, . . . , nj) are generally chosen to
be smaller than the corresponding CSE requirement6 γ̄jj .

The system (26) operates in a finite set of multiple modes because

L(θk) ∈ {Lq}q∈{1,...,nθ} (29a)

K(θk) ∈ {Kq}q∈{1,...,nθ} (29b)

A general theory of such systems is developed in the switched systems community [43–45]. The results for270

switched systems under arbitrary switchings are rather conservative and much tighter results can be developed if
further assumptions hold [46]. Take as an example a Markovian jump linear system where the switching process
can be described by a Markov chain [47]. In this work, we consider that the parameter θ is slow-varying compared
to the dynamics of (26). Thus, the membership of θ to a subset Θ(q) infrequently switches to another subset Θ(p 6=q).
In this fashion, we translate the optimization problem (28) into another design problem ensuring global stability in275

6In order to approximately fix the χ% settling times of the observer, we can approximate the fault observer responses to the response of
a first-order system. Hence, if we fix γ̄jj = 1

1−(1+log(1−χ/100)/T̄ j)2
, the χ% settling time of the j-th fault estimate due to a step fault f [j]

is approximated to T̄ j .
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the set Θ and certain local steady-state performance in each subset Θ(q):

minimize
{Lq ,Kq}q∈{1,...,nθ}

Nθ∑
q=1

nj∑
j=1

(
γjw,q σ

2
w + γjp,q (λi1,q)

2 + γjt,q (λi2,q)
2
)

subject to γjm,q ≤ γ̄jm , ∀j,m, q
stability of (26) , θ ∈ Θ

(30)

where γjm,q, γ
j
w,q, γ

j
p,q, γ

j
t,q denote the maximums in (27) when θ ∈ Θ(q), e.g.,

γjm,q = max
θ∈Θ(q)

‖f̃ [j]‖22
‖δ[m]‖22

,

δk[m] = {1, 0, 0, . . .},
δ[n] = 0, ∀n 6= m,

w = 0, p = 0, t = 0

(31)

Unlike γjm, γjw, γjp, γjt , which depend on {Lq,Kq}q∈{1,...,nθ}, γ
j
m,q, γ

j
w,q, γ

j
p,q, γ

j
t,q only depend on Lq and Kq.

Note that in (30), we have taken into account that ‖p‖∞ ≤ λi1,q if θ ∈ Θ(q) because ‖pk‖∞ satisfies (25). Similar
applies to ‖t‖∞. In all, an observer designed through the optimization problem (30) is globally stable inside the set280

Θ regardless of the parameter dynamics and it guarantees certain local performance trade-off in each subset Θ(q)

provided infrequent changes of subset membership. Similar approaches are utilized in practical works as [48–50].

Remark 7. As introduced in Section 4.2, the density Nθ of the grid {Θ(q)} is to be determined from a trade-off
between having a few gridding intervals that ensure reduced computational burden and infrequent changes of
subset membership but introduce conservatism, or a lot of gridding intervals causing heavy computational time285

and more frequent changes of subset membership but reducing performance conservatism. In this work, we choose
Nν = Np = 7 (see Appendix A). This gridding is a posteriori validated through the numerical simulations in
Section 9.

Regarding the stability requirement in (30), it should be noted that even when all the subsystems of a switched
system are stable, such a system may fail to preserve stability. It is well-known in switched systems theory that a290

necessary and sufficient condition to ensure the stability of (26) is the existence of Nθ positive-definite matrices
P1, . . . , PNθ satisfying ([43])

(A− Lq C)T Pp (A− Lq C)− Pq � 0, ∀(q, p) ∈ {1, . . . Nθ} × {1, . . . Nθ} (32)

Regarding the performance requirements in (30), let us apply the Z transform to (26) when θ ∈ Θ(q); it yields

f̃ [j](z) =

nj∑
m=1

(
Gjm,q(z) δ[m](z)

)
+Gjw,q(z)w(z) +Gjp,q(z) p(z) +Gjt,q(z) t(z) (33)

with Gjm,q(z) = −M j
q (z)D (Fm)T , Gjw,q(z) = M j

q (z)Lq + Kq, G
j
p,q(z) = M j

q (z)E, Gjt,q(z) = M j
q (z)F,

and M j
q (z) = F j (R−Kq C)(z I −A+ Lq C)−1. It is well-known that γjm,q, γ

j
w,q, γ

j
p,q, γ

j
t,q fulfil [51]295

γjm,q = ‖Gjm,q(z)‖22, (34a)

γjw,q = ‖Gjw,q(z)‖22, (34b)

γjp,q ≤ ‖Gjp,q(z)‖2∞, (34c)

γjt,q ≤ ‖Gjt,q(z)‖2∞ (34d)

where ‖G(z)‖2 and ‖G(z)‖∞ denote, respectively, the H2 norm and the H∞ norm of a system G(z). In all, (30)
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can be rewritten as

minimize
{Lq ,Kq ,Pq ,Qq}q∈{1,...,nθ}

Nθ∑
q=1

nj∑
j=1

(
‖Gjw,q(z)‖22 σ2

w + ‖Gjp,q(z)‖2∞ (λi1,q)
2 + ‖Gjt,q(z)‖2∞ (λi2,q)

2
)

subject to ‖Gjm,q(z)‖22 ≤ γ̄jm , ∀j,m, q
matrix inequalities in (32)

(35)

This optimization problem ensures global stability in the set Θ and certain local steady-state performance in each
subset Θ(q). The problem (35) is nonlinear and it can be solved using different heuristic optimization methods such
as genetic algorithms. In Appendix B, we briefly show how to introduce some slack variables into the problem (35)300

and translate it into a convex optimization problem based on linear matrix inequalities (LMIs) [52, 53].

Remark 8. From (35), it is straightforward to deduce that the proposed optimization design problem is easily
adaptable to different levels of measurement noise (represented by the sensor noise variance σ2

w) and of pitch
reference uncertainties (represented by the estimation error bounds λi1,q and λi1,q for q = 1, . . . , nθ).

6 Pitch Misalignment Diagnosis305

In this section, we develop FD decision mechanisms that compare the closed-loop fault estimates provided by the
observer (21) to thresholds. We propose to compute statistical-based adaptive thresholds through the False Alarm
Rate criterion that allow achieving a high diagnosability performance.

6.1 Diagnoser Architecture

Regarding FD, we set the following set of decisions (j = 1, . . . , nj):310 {
if |f̂k[j]| ≥ Jk[j] Fault f [j]

otherwise No fault f [j]
(36)

where J [j] is an adaptive (time-varying) threshold to be computed online. In the following, we show a statistical-
based procedure to online compute the adaptive thresholds J [j] of the decision mechanism.

6.2 Diagnoser Design

To characterize the behaviour of the fault diagnoser (36), we propose to use the parameters defined as follows.

• The false alarm rate (FAR) of the fault j, which we denote as φj , is the probability of rising alarms of the j-th315

fault when no fault exists (i.e., f = 0).
• The minimum diagnosable fault j (MDF), which we denote as υj , is the smallest value of a constant fault f [j]

which ensures that the alarm of fault j raises at some sample kj provided the non-existence of other faults and
disturbances (i.e., f [m 6= j] = 0, w = 0, p = 0, t = 0).
• The diagnosis time (DT) of fault j, which we denote as τ j , is the time elapsed between the sample ka of320

appearance of a fault f [j] and the sample kj in which the alarm is raised provided the non-existence of other
faults and disturbances (i.e., f [m 6= j] = 0, w = 0, p = 0, t = 0).

The diagnosers (36) consist of both the thresholds J [j] and the estimates f̂ [j] provided by (21). The values of
the thresholds J [j] fix the trade-off between the certainness and uncertainness of the diagnosis decision. Then,
for certain estimator (21), as the thresholds J [j] increase, so does the certainness of the decisions and the FARs325
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Figure 5. FE and FD strategy for each row of WTs i (�: Online computation, �: Offline computation).

decrease while the MDFs and DTs increase. Since the observer gain matrices are already designed through the
optimization problem (35), we can only arbitrarily fix the thresholds J [j]. Hence, it is only possible to guarantee a
performance requirement over one of the aforementioned diagnosis performance parameters. We propose to online
compute the adaptive thresholds for guaranteeing certain FARs of the diagnoser.

The requirement over the FARs concerns the case in which δ = 0 and f = 0 (i.e., f̂ = −f̃ ). In this case, the330

estimation error sources are the noises (b) and the UIs (c). In the following, we characterize the probability that, in
the absence of faults, f̂ [j] exceeds ceratin value due to each of these error sources. First, the signal f̂ [j] due to the
noises w is zero-mean and Gaussian because the noises w are zero-mean and Gaussian. Its time-varying variance
is equal to the marginal variance of the fault estimation error f̃ [j], which is given by the j-th diagonal element of
Σf
k = E{f̂kf̂Tk } (i.e., Σf

k [j, j]) and it can be computed as335

Σk+1 = (A− L(θk)C) Σk (A− L(θk)C)T + L(θk)W L(θk)
T (37a)

Σf
k = (R−K(θk)C) Σk (R−K(θk)C)T +K(θk)W K(θk)

T (37b)

with L(θk) andK(θk) being selected through (22)7. Taking account of the properties of the probability distribution
function of a zero-mean Gaussian variable, if δ = 0, p = 0 and t = 0, we have that

P
{
|f̂k[j]| > Φ−1

Z (1− φj/2)

√
Σf
k [j, j]

}
≤ φj (38)

with Φ−1
Z (·) being the inverse cumulative distribution function of a standard normal variable.

Second, the statistical properties of the signal f̂ [j] due to the UIs p and t are unknown. Thus, we propose to
approximate its probability distribution function to a zero-mean uniform distribution. If θ ∈ Θ(q), δ = 0, w = 0340

and t = 0, the inequality
‖f̃ [j]‖RMS ≤ ‖Gjp,q(z)‖∞ λi1,q (39)

7These Riccati equations have been obtained with δ(z) = 0, p(z) = 0, t(z) = 0 and using an internal realization of the transfer
function between w and f̃ .
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holds for infrequent changes of subset membership8. Thus, taking account of the properties of the probability
distribution function of a zero-mean uninform variable9 , we have that

P
{
|f̂k[j]| >

√
3 ‖Gjp,q(z)‖∞ λi1,q

}
≈ 0 (40)

Similar applies to the error caused by t.

In all, given these probabilities, we online compute the adaptive thresholds J [j] for approximately bounding the345

FARs (i.e., φj / φ̄j for j = 1, . . . , nj) as

Jk[j] = Φ−1
Z (1− φ̄j/2)

√
Σf
k [j, j] + p̄(θk) + t̄(θk), ∀j (41)

with

p̄(θk) = p̄q if θk ∈ Θ(q) (42a)

t̄(θk) = t̄q if θk ∈ Θ(q) (42b)

and where p̄q and t̄q are computed offline as

p̄q =
√

3 ‖Gjp,q(z)‖∞ λi1,q (43a)

t̄q =
√

3 ‖Gjt,q(z)‖∞ λi2,q (43b)

with the designed gains Lq and Kq for q = 1, . . . , Nθ. In all, the proposed FE and FD strategy is depicted in Fig.5.

Remark 9. In order to avoid false alarms when the membership of θ to a subset Θ(q) changes to a subset Θ(p 6=q)
350

such that (p̄q + t̄q) > (p̄p + t̄p) we use the refined adaptive threshold J∗k [j] defined as

J∗k [j] =

{
αj J

∗
k−1[j] + (1− αj) Jk[j] if Jk[j] < J∗k−1[j]

Jk[j] otherwise
(44)

with αj defining a sufficiently slow filter which can be validated through numerical simulations (e.g., αj = 0.90).

Remark 10. The propagation error p is a high-frequency signal and we can model its dynamics as p(z) =
z−1
z−αf η(z) where η is a random variable verifying ‖η‖∞ = ‖p‖∞ and αf / 1 (we choose αf = 0.99). Thus,

we replace ‖Gjp,q(z)‖∞ by ‖Gjp,q(z) z−1
z−αf ‖∞ in (43a) . Similar applies to t; hence, we replace ‖Gjt,q(z)‖∞ by355

‖Gjt,q(z) z−1
z−αf ‖∞ in (43b). With this, we give more weight to high-frequency components w.r.t. low-frequency

components that would lead to a conservative computation of the thresholds of the decision mechanisms.

7 Improvement of Performance with Fault Simultaneity Restrictions

The dependence of the thresholds on the variances of the noises and on the peak bounds of the UIs (see (41))
may compromise the performance of the diagnoser. Even if the effect of the noises and UIs is attenuated (see the360

optimization problem (35)), large values of the variances of the noises and, especially, of the bounds of the UIs
may lead to large values of the MDFs and DTs. In such a case, it would not be possible to diagnose through (36)
the occurrence of small faults to which the system may be prone. Thus, we propose to improve the performance
of the diagnoser at the cost of a constraint regarding the simultaneity of faults.

To do so, we build a bank of nj observers b (b = 1, . . . , nj). Each observer b aims to estimate the auxiliary fault365

8From the definition of γjp,q , it yields ‖f̃ [j]‖RMS ≤ γjp,q ‖p‖∞; from (34), γjp,q ≤ ‖Gjp,q(z)‖∞; and from (25), ‖p‖∞ ≤ λi1,q .
9If x is a zero-mean uninform variable, then |x| <

√
3 ‖x‖RMS.
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vector
f̄ bk =

[
f i,1k . . . f i,b−1

k f i,b+1
k . . . f

i,nj
k

]T
The discrete state-space model of the pitch systems of the i-th row of WTs including the dynamics of f̄ b can be
written as

z̄bk+1 = Ā z̄bk + B̄ uk + D̄ δ̄bk (45a)

yk = C̄ z̄bk + wk + Ḡb f i,bk (45b)

f̄ bk = R̄ z̄bk (45c)

with

z̄bk =
[
βi,1k . . . β

i,nj
k ξi,1k . . . ξi,b−1

k ξi,b+1
k . . . ξ

i,nj
k

]T
δ̄bk =

[
δi,1k . . . δi,b−1

k δi,b+1
k . . . δ

i,nj
k

]T

Ā =

[
α Inj 0

0 Inj−1

]
, B̄ = (1 − α) I2nj−1, D̄ =

[
0

Inj−1

]
, C̄ =

[
Inj Inj−1

]
, Ḡb =

 0(b−1)×1

1

0(nj−b)×1

 and370

R̄ =
[
0 Inj−1

]
. Then, each model-based observer b can be built as

ˆ̄zbk+1 = Ā ˆ̄zbk +B ûk + L̄bk (yk − C̄ ˆ̄zbk) (46a)
ˆ̄f bk = R̄ ˆ̄zbk + K̄b

k (yk − C̄ ˆ̄zbk) (46b)

where L̄bk = L̄b(θk) and K̄b
k = K̄b(θk) are the gain matrices of the observer (46) defined as

L̄b(θk) = L̄bq if θk ∈ Θ(q) (47a)

K̄b(θk) = K̄b
q if θk ∈ Θ(q) (47b)

Define ˜̄zb = z̄b − ˆ̄zb and ˜̄f b = f̄ b − ˆ̄f b. It follows that

˜̄zbk+1 =(Ā− L̄bk C̄) ˜̄zbk + Ē pk + F̄ tk + D̄ δ̄bk − L̄bk (wk + Ḡb f i,bk ) (48a)
˜̄f bk =(R̄− L̄bk C̄) ˜̄zbk − K̄b

k (wk + Ḡb f i,bk ) (48b)

with Ē and F̄ being built in analogy to E and F . The exogenous signals affecting the observer b are not only375

the fault generator δ̄b, the noises w and the unknown inputs p and t but also the fault f i,b. We propose to omit
the dependence of the error on the fault f i,b and to design the gain matrices of each observer (46) following the
approach presented in Section 5.2 (the matrices Ā, C̄, D̄, Ē, F̄ , L̄b and K̄b in the place of the matrices A, C, D,
E, F , L and K). Note that, in this case, the restriction regarding the CSE requirement of the b-th fault will not
appear in the optimization problem (30). This extra design freedom is then used to achieve a greater minimization380

of the effect of the noises and the UIs on the fault estimates.

In the absence of the fault f i,b, we can thus set the following decisions (j = 1, . . . , nj − 1) for the b-th observer:{
if | ˆ̄f bk[j]| ≥ J̄bk[j] Fault f̄ b[j]

otherwise No fault f̄ b[j]
(49)

where Jb[j] is designed following the strategies in Section 6.2. Note that the thresholds J̄b[j] in (49) are smaller
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Figure 7. Bank of observers and decision mechanisms for FE and FD in each row of WTs i.

than the thresholds J [j] in (36): when omitting the presence of the fault f i,b, we achieve a greater attenuation from
noises and UIs.385

If the fault f i,b is present in the system, the decision mechanisms (49) which are based on the b-th observer are no
longer reliable. Thus, an observer b and the corresponding decision mechanisms are reliable if the absence of the
fault f i,b is diagnosed by the decision mechanisms of at least one reliable observer c (c 6= b). In turn, the reliability
of c implies that the decision mechanisms of the b-th observer diagnose the absence of the fault f i,c, see Fig.6. In
all, the proposed bank of observer and decision mechanisms enables FE and FD whenever 2 of the faults in a row390

i are not present in the system (i.e., there are no more than nj − 2 simultaneous faults in a row). The estimation
and diagnosis of the faults is made with any of the reliable observers and decision mechanisms of the bank. The
strategy is summarized in Fig.7.
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Figure 8. Summary of the proposed methodology.

8 Benefits and Limitations of the Proposed Approach

In the following, we compare the proposed methodology (summarized in Fig.8) to the solutions in relevant existing395

literature.

• The proposed approach utilizes a reduced number of measurements: the power reference, the collective pitch
and the WS at the wind mast. This reduces the information needs w.r.t. other techniques such as the one in [22]
(requiring also the generator speed measurement). It does not either require the information about the presumed
fault size as it is required in [18].400

• The residual-based techniques in [18–20] are focused on FD tasks. Contrariwise, the proposed approach is
focused on both FE (Section 5) and FD (Section 6), being more suitable for AFTC strategies.
• The FD strategies in [18–20] are based on separate spatial and temporal residuals. In contrast, the proposed

approach is based on a systematic multi-input multi-output (MIMO) observer that automatically merges the in-
formation acquired from both temporal and spatial inconsistencies. It thus optimally utilizes all the information405

acquired from the WF measurements.
• The proposed closed-loop approach is more actively robust against disturbances (i.e., uncertainties and noises)

than the open-loop methods in [18–20].
• The switched system approach is a non-conservative procedure to handle the different levels of uncertainties

along the WT operation range, leading to a less restrictive compromise between fault sensitivity and robustness.410

• The proposed observer design in Section 5 guarantees certain local fault sensitivity with optimal disturbance
rejection. This performance is not guaranteed in [18–20], where more ad-hoc and user knowledge-based tuning
procedures are utilized to set this trade-off.
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Fault ID 0◦ layout 45◦ layout Time occurrence
F1 (i = 1, j = 1) (i = 1, j = 3) [1300,1400] s
F2 (i = 2, j = 2) (i = 3, j = 3) [3300,3400] s

Table 2. Fault scenario description.

• The design does not consider the observer performance during the transitions between subsets. However, as
indicated in Remark 7, if an appropriate gridding of the parameter set is obtained, these transitions are infrequent.415

• The proposed observer design strategy entails certain computational cost. However, this design is performed
offline and it does not affect the online computational burden of the FE and FD strategy (see Fig.5). Moreover,
as indicated in Remark 7, if an appropriate gridding of the parameter set is obtained, this offline computational
cost is considerably reduced.
• In contrast to the constant thresholds in [18, 22], the adaptive FD mechanisms presented in Section 6 allow the420

adjustment of the thresholds to the fault estimates along all the WT operation range. The proposed statistical-
based design of the FD thresholds provides tight bounds for the fault estimates obtained via switched observers
and allows a rapid diagnosis of small faults.
• In this work, we also propose an extension of the proposed approach (Section 7) that allows an improvement of

the FD performance for the cases in which not all the WTs become simultaneously faulty.425

9 Simulation Results

The WF benchmark [17] includes a scenario of 4400 s in which different faults occur. In the first period between
0 s and 2300 s, the WF cannot deliver the required power, while it can do so in the second period between 2300 s
and 4400 s. The collective pitch system of the WTs (1, 1) and (2, 2) of the 0◦ layout are affected by misalignment
of the blades causing an offset of 0.3◦ in the pitch angle measurements, see Table 2. In the following, we include430

the FE and FD results that we obtain with the proposed approach. All the observer designs are translated into
multiobjective convex optimizations as detailed in Appendix B, set up in YALMIP [54] and solved using the solver
MOSEK [55]. For simplification, we omit the obtained observer matrix gains {Lq,Kq}{1,...,Nθ} and the obtained
bounds {p̄q, t̄q}{1,...,Nθ}. Let us remark that in the figures of the section, unless explicitly stated otherwise, the
fault estimates are in black and the thresholds of the diagnosis decisions are in red.435

For the 0◦ layout, we build a bank of observers and decision mechanisms for each row of WTs (i = 1, i = 2

and i = 3) as explained in Section 7. Let us perform different observer designs with different values of the
CSE requirements γ̄jj and let us use γ̄jm = γ̄jj/100 for all m 6= j in these designs (See Remark 6). If we
denote as ψ̄j the CSE requirement γ̄jj when taking into account the sampling time Ts (i.e., ψ̄j = γ̄jj Ts), we
use ψ̄j = [1, 5, 10, 20, 30, 50]◦

2
s for j = 1, . . . , nj . The FAR criterion with φ̄j = 1 · 10−5 (i.e., one false alarm440

each 1000s) for j = 1, . . . , nj is used to compute the thresholds of the decision mechanisms. Fig.9 shows the
effect of varying the CSE in the WT (i = 1, j = 1), which is affected by the fault F1. As an example, the details
on the results with ψ̄j = 30◦

2
s are depicted in Fig.10. Fig.11 shows the results for the WT (i = 2, j = 2), which

is affected by the fault F2, and Fig.12 shows the results for the WT (i = 1, j = 2), which operates in fault-free
conditions. The results on the left hand side of the figures include the variables f̂ [j] (black) and J [j] (red) while445

the results on the right hand side compare the normalized variable f̂ [j]/J [j] (black) with a unitary threshold (red).

Regardless of the value of the CSE requirement, all these figures (Fig.9, Fig.11 and Fig.12) show that when the
power harvested from the wind is much lower than the power required by the WF controller, the achieved minimum
diagnosable faults (MDFs) are smaller. In such cases, the estimated WS is low and the pitch reference estimation
errors are small because for low WSs the pitch reference function is barely constant (see Fig. 2). Contrariwise,450

for high WSs the pitch reference function is monotonically increasing and the pitch estimation errors are larger.
Let us now analyze the effect of the CSE requirement on the FE and FD performance. We verify that as the CSE
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Figure 9. FE and FD with different CSE requirements ψ̄j . Turbine (i = 1, j = 1) of the 0◦ layout affected by the fault F1.
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Figure 10. Details on the FE and FD results with a CSE requirement of ψ̄j = 30◦
2

s. Turbine (i = 1, j = 1) of the 0◦ layout affected by
the fault F1. Absolute variables in [◦].

requirement becomes more restrictive (i.e., ψ̄j becomes smaller), the attenuation from the uncertainties and the
noises diminishes and the minimum diagnosable faults (MDFs) are larger. On the other hand, the fault tracking
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Figure 11. FE and FD with different CSE requirements ψ̄j . Turbine (i = 2, j = 2) of the 0◦ layout affected by the fault F2.

behaviour is improved and the detection times (DTs) diminish (as long as the achieved MDFs are smaller than the455

simulated faults).

Provided these deductions, it is reasonable that the fault F1, which occurs at the low WS period, is diagnosed with
all the designed observers. In contrast, the fault F2, which occurs at the high WS period, is only diagnosed when
using the designs with the less restrictive CSE requirements. Fig.13 compares the diagnosis of the fault F1 and of
the fault F2 provided by three designs with a restrictive, an intermediate and a moderate CSE requirement (i.e.,460

ψ̄j = 5◦
2
s, ψ̄j = 20◦

2
s and ψ̄j = 50◦

2
s). For ease of comparison, the figure includes the normalized variables

f̂ [j]/J [j] of these three cases. Thus, bigger differences between the value of the variable f̂ [j]/J [j] and the unitary
threshold imply smaller MDFs. The DT of the fault F1 is smaller if we use an observer designed with a smaller
CSE requirement; in contrast, the difference between the normalized variable f̂ [j]/J [j] and the unitary threshold
becomes smaller. For the fault the fault F2, we prove that FD is not achieved if the restrictive CSE requirement is465

used in the design. The DTs of the other two designs are similar: even if ψ̄j = 20◦
2
s is smaller than ψ̄j = 50◦

2
s,
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Figure 12. FE and FD with different CSE requirements ψ̄j . Turbine (i = 1, j = 2) of the 0◦ layout in fault-free conditions.

the achieved MDF at 3300 s for ψ̄j = 20◦
2
s is very close to 0.30◦ (see Table 3) and FD is compromised. In

contrast, the achieved MDF for ψ̄j = 50◦
2
s at 3300 s is 0.14◦. Table 3 summarizes these results for all the designs.

Let us remark that the maximum values of the MDFs are bigger at the row i = 2 than at the row i = 1 because
the pitch reference estimation errors are higher as the distance to the wind mast increases. At 1300 s and 3300 s470

these differences are coincidentally minimal. The biggest differences appear at the WSs and power references for
which the slope of the pitch reference function is more pronounced. Finally, note that the diagnosis of the fault F1
is achieved with the design of ψ̄j = 1◦

2
s even if the MDF at 1300 s is bigger than the fault size (i.e., 0.33◦ vs.

0.30◦). The effect of the noises and uncertainties enhances this diagnosis; however, the fault estimate oscillates
around the threshold of the diagnosis decision and the results are thus misleading in this case.475

In the following, we use ψ̄j = 30◦
2
s, and φ̄j = 1 ·10−5 (j = 1, . . . , nj) in the designs. Fig.14 and Fig.15 show the

results for all the WTs in the WF when we analyze the 0◦ layout. To enhance the comprehension of the functioning
of the bank of observers and decision mechanisms, let us study each row of WTs in the WF. In the row i = 1,
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CSE [◦
2
s]

MDF at 1300 s [◦] MDF at 3300 s [◦] largest MDF [◦] DT [s]

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 F1 F2
1 0.33 0.33 1.28 1.31 2.07 2.93 10 -
5 0.15 0.15 0.57 0.58 0.88 1.22 7 -
10 0.11 0.11 0.37 0.38 0.55 0.75 8 -
20 0.08 0.08 0.24 0.24 0.34 0.45 9 23
30 0.06 0.06 0.18 0.18 0.25 0.33 10 24
50 0.05 0.05 0.13 0.14 0.18 0.23 14 33

Table 3. Comparison of diagnosis performance with different observers (0◦ layout).

between 1300 s and 1400 s, the observer b = 1 and the corresponding decision mechanisms are corrupted by the
appearance of the fault F1 in the WT (i = 1, j = 1) (i.e., f1,1

k 6= 0 if k ∈ [1300, 1400]). The estimates of the fault480

f1,1 provided by the observers b = 2 and b = 3 indicate it. Thus, FE and FD is achieved with the results of b = 2

and b = 3. Similarly, in the row i = 2, between 3300 s and 3400 s, the results are provided by either b = 1 or b = 3

because b = 2 is corrupted by the fault F2 in the WT (i = 2, j = 2). Fig.16 includes the results of the non-reliable
observer b = 2 and the corresponding decision mechanism. They estimate and diagnose a non-existent fault in the
WT (i = 2, j = 3). Fortunately, the estimates provided by the observers b = 1 and b = 3 are reliable and FD is485

achievable in the WF (Fig.14 and Fig.15).

Let us now design a single observer and a single set of decision mechanisms for each row of WTs of the 0◦ layout.
Fig.17 includes the results for the WTs in the column j = 1 when the bank of observers and decision mechanisms
is not used. The MDFs at the low WS period do not vary significantly. Contrariwise, at the high WS period, the
MDFs increase drastically and this difference becomes bigger as the distance to the wind mast increases. Thus,490

we deduce that estimation and diagnosis are more difficult when it is not possible to build a bank of observers
and decision mechanisms. This is the case where the wind direction is such that there are less than three WTs in
a row (e.g., the WTs in the rows i = 1, 2, 4, 5 of the 45◦ layout for which we do not include the results due to
space constraints). In such cases, the FE and FD results are similar to the results in Fig.17 . A possible solution to
mitigate this effect is to provide the WTs with laser anemometers (LIDAR), which offer a method of remote WS495

measurement and thus, the wind estimation errors decrease [56].

Finally, Fig.18 shows the estimation results when other densities are utilized for gridding the parameter set Θ.
We prove that if the number of intervals Nν and Np is reduced, the offline computational burden decreases at the
cost of some performance conservatism in terms of MDFs. In these cases, fewer changes of subset membership
occur and the assumption of infrequent membership switches, which is used to design the FD thresholds, is more500

realistic. In any case, the chosen number of intervals (i.e., Nν = Np = 7) has proved to satisfy an adequate
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Figure 14. FE and FD with ψ̄j = 30◦
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Figure 15. FE and FD with ψ̄j = 30◦
2

s (0◦ layout). Normalized variables.

trade-off between computational cost and performance conservatism. Moreover, as show in the figures included in
this section, few significant bound changes occur along the simulation of 4400s. Hence, we deduce that there are
infrequent membership switches between intervals with significantly different error bounds.
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10 Conclusion505

In this paper a model-based closed-loop FE and FD strategy is proposed for the pitch misalignments of the WTs
in a WF. The FE algorithm includes a switched observer that is designed offline to guarantee global stability and
local steady-state performance. The FE performance is intuitively fixed in the proposed design. The fault estimates
are then used in statistical-based decision mechanisms for FD. The adaptive thresholds of these mechanisms are
computed online under the FAR criterion. Under certain restrictions regarding the number of simultaneous faulty510

WTs, we improve the performance of the FE and FD strategy using a bank of observers and decision mechanisms.

The simulations performed on the WF benchmark demonstrate that the proposed strategy is suitable to estimate
and diagnose pitch misalignments. The proposed spatially and temporally integrated strategy allows estimating
and diagnosing pitch misalignments in the order of 0.1◦ at low wind speeds and in the order of 1◦ at high wind
speeds. It should be emphasized that the proposed strategy can be extended for FE and FD in other WT subsystems515

at a WF level. Future research will include this extension. For its part, the use of the pitch misalignment estimates
in individual fault tolerant control highlights as immediate future work.
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A Wind Speed and Pitch Reference Estimation Results in the WF Benchmark

The WF benchmark provides the real effective WS signals νi,j for numerical validations of the wind propagation
schemes. The mean WS signals νi are not available.

Fig.A.1 shows the WS estimation results for the WTs (i = 1, j = 1), (i = 2, j = 1) and (i = 3, j = 1) of650

the 0◦ layout. Similar estimation results are obtained for the WTs in the columns j = 2 and j = 3 because the
propagation error is the same for all the WTs in a row (see the errors in the second part of Fig.A.1). For its part,
Fig.A.2 compares the results obtained when filtering and not filtering the prorogated mean WS. One can verify
that the low-pass filter in Remark 3 leads to smoother errors in the same order of magnitude as the errors of the
non-filtered estimated WSs.655

In the first part of Fig.A.3 we show the turbulence of the WTs in the row i = 1, which we compute as ν̃i,jt =

νi,j−1/3
∑3

j=1 ν
i,j . For each sample k of the time series, we depict the pair (ν̂i, ν̃i,jt ). The numerical simulations

validate the bound |ν̃i,jt | ≤ λt with λt = 3σt, which is depicted through a dashed gray line. In the second part of
the figure, we show the total error of the WTs in the row i = 1, which we compute as ν̃i,j = νi,j − ν̂i. For each
sample k of the time series, we depict the pair (ν̂i, ν̃i,j). Provided that the mean WS signals νi are not available, we660

cannot compute the wind propagation error as ν̃ip = νi − ν̂i. Thus, we conservatively bound the wind propagation
error with the 99-th percentile of the total error ν̃i,j , which is depicted through a dashed gray line.

Remark 11. From (10), we deduce that the propagation error is larger for higher WSs. Thus, one could consider
the bound |ν̃ip| ≤ λip(ν̃

i
p), where λip(ν̂

i) would depend not only on the row i but also on the estimated mean WS.
As shown in Fig.A.3 (including the 99-th percentiles of different intervals), we can neglect the dependence of the665

bounds on the estimated mean WS.
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Figure A.1. Wind speed (WS) estimation for the 0◦ layout.
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Once the bounds |ν̃ip| ≤ λip and |ν̃i,jt | ≤ λt have been computed, we determine the bounds of the errors of the pitch
reference estimation. In the following, we include the computation of the bounds of the errors ũi (which depend on
λip). A similar procedure is used to determine the bounds of the errors ũi,j (which depend on λip and λt). Fig.A.4
includes the values of the bounds λi1,q (|ũi| ≤ λi1,q) verifying (20). We include the results obtained when using670

three different numbers of intervals Nν and Np. As the number of griding intervals increases, the points in the set
Θ associated to low pitch estimation errors increase. This enhances better FE and FD performances at the cost of
heavier computational times. Thus, we choose the intermediate solution defined by Nν = Np = 7.

B Convex Formulation of the Observer Design Optimization Problem

The observer design optimization problem (35) can be reformulated as a multiobjective convex optimization prob-675

lem as follows.

minimize
Nθ∑
q=1

nj∑
j=1

(
γjw,q σ

2
w + γjp,q (λi1,q)

2 + γjt,q (λi2,q)
2
)

subject to Ξ1
q,p � 0, ∀(q, p) ∈ {1, . . . Nθ} × {1, . . . Nθ}

Ξ
{2,3,4,5,6,7}
q,j � 0, ∀(q, j) ∈ {1, . . . Nθ} × {1, . . . nj}

(50)
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along the full-rank matrices Qq, Kq, Xq; symmetric matrices Pq,j , Rq,j , Sq,j , Tq,j , Vq,j ; and scalars γwq,j , γ
p
q,j and

γtq,j for q = 1, . . . , Nθ and j = 1, . . . , nj . The LMIs in (50) are defined as10

Ξ1
q,p =

[
Qq +QTq − Pp Ξq

? Pq

]
(51a)

Ξ2
q,j =

Qq +QTq −Rq,j Ξq 0

? Rq,j Ψj
q

? ? I

 Ξ3
q,j =

[
Qq +QTq −Rq,j QqD

? Γjq

]
(51b)

Ξ4
q,j =

Qq +QTq − Sq,j Ξq 0

? Sq,j Ψj
q

? ? I

 Ξ5
q,j =

Qq +QTq − Sq,j Xq 0

? γjw,q I (F jKq)
T

? ? I

 (51c)

Ξ6
q,j =


Qq +QTq − Tq,j Ξq Qq E 0

? Tq,j 0 Ψj
q

? ? γjp,q I 0

? ? ? I

 Ξ7
q,j =


Qq +QTq − Vq,j Ξq Qq F 0

? Vq,j 0 Ψj
q

? ? γjt,q I 0

? ? ? I

 (51d)

with Ξq = Qq A−Xq C, Ψj
q = (F j R− F jKq Cq)

T and680

Γjq =

γ̄
j
1 0 0

0
. . . 0

0 0 γ̄jnj

 (52)

The gains Lq are then defined as Lq = Q−1
q Xq. The proofs associated to this procedure can be found in reference

works [43, 52, 57, 58], where it is shown how to translate a multiobjective optimization problem into a convex
optimization problem based on LMIs by means of introducing of slack variables, here named after {Qq}q∈{1,...,Nθ}.

10The symbol ? in a block matrix denotes the blocks induced by symmetry.
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