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Abstract

Video games are applications that present design patterns that resemble multi-agent systems.
Game objects or actors are like autonomous agents that interact with each other to describe
complex systems. The purpose of this work is to develop a game engine to build games as
multi-agent systems. The actors or game engine agents have a set of properties and behaviour
rules with the end to interact with the environment of the game. The behaviour definition is
established through a formal semantic based on predicate logic. The proposed engine tries to
fulfil the basic requirements of the multi-agent systems, by adjusting the characteristics of the
system, without affecting its potential. Finally, a set of games are introduced to validate the

operation and possibilities of the engine.

1. Introduction

Game engines are tools to facilitate video game development. They were conceived to generalise
and reuse properties, methods and procedures common to the majority of games [1]. Through
them, designers can generate different game mechanics using the same components and scripts.
Currently, the vast majority of commercial game engines are designed with equivalent
organisational paradigms and similar software specification patterns [2], increasing their
capabilities and performance. Nevertheless, different works show the need to establish a

standard specification of the game engine architectures [3, 4].

When analysing the games produced by these engines, it is perceived that the design structures
resemble the modelling patterns of multi-agent systems (MAS) [5]. The study of these game
engines and their characteristics suggest that there is a close relationship between the concepts
of game and MAS. This is appreciated in the game elements of the agents' definition [6], their
relations [7] and its communication protocols and cooperation mechanisms [8]. In fact, there are
several related topics, paradigms or applications where the MAS are used for the control of

automatic processes and dynamic systems [9], or mechanisms of cooperation and consensus [10].

With all this, a game engine can be formally defined from the knowledge of a MAS. The initial
hypothesis is that a game can be defined and specified as a system of agents interacting with
each other. In this regard, the proposed game engine must be able to generate functional games

that satisfy the properties of MAS. For this purpose, this work proposes a game engine for the



creation of games defined as MAS. The engine’s formalisation follows the mathematical notation
stated by M. Wooldridge [11] in order to define the structure of the game engine and to fulfil with

the requirements of the proposed system.

The manuscript is organised as follows. Section 2 presents the current state of the art on game
engines and their relation with MAS. In section 3, the formal definition of a MAS is introduced.
Later in section 4, the proposed game engine is defined by following the formal specification
shown in the previous section, along with the behaviour definition system for the game engine
agents. In section 5, the concepts stated in the previous section and its implications are
discussed. In section 6, a series of use cases are presented to demonstrate the potential of the
tool. Finally, in section 7, several conclusions and the possible improvements of the proposed

game engine are presented.

2. Game Engines and Multi-agent Systems

The term game engine appeared in the mid-1990s in reference to the architecture of
independent software components that defined video games such as Doom from IdSoftware [1].
This architecture gained value as game developers began to create generic modules that
facilitate the creation of new games, and thus reduce development times. In a game engine, the
modules are the subsystems responsible for executing specific tasks, such as the drawing, the
user interactions or the game physics. However, some of these modules are not easy to
standardise, either because they involve complex systems that can be considered as complete
engines by themselves, or because of their embedded relationships with the mechanics of each
game [12, 13]. The module responsible for managing the game mechanics is the logic module and
the decision-making system. Its function is implicitly related to the character's internal
processes associated with their autonomous potential actions [14]. The range of available actions
is dependent on game mechanics and must be established by the game designer. A game object
can have simple rules to determine what to do next, such as the case in which a Non-Playable

Character (NPC) follows the player character as long as it is within a range of action.

These autonomous behaviours are directly dependent on the communications between the
entities of the game, either sending information about the game properties or about the game
objects properties. It is at this point where the relationship between games and MAS becomes
evident. There are several cases in the literature where different perspectives address the
relationship between game concept and MAS. Thus, some present the relationship between
MASs and the game mechanics design, emphasising the industry's tendency to relate natural
language and the game mechanics definition during the creation of games [15], while others
propose a framework for the creation of agents for serious games [16]. Further works present a
MAS to model architecture for Massive Multiplayer Online Game (MMOG) games [17, 18], where

the real-time interactivity of multiple game agents prevails. Other authors show a system that



tries to integrate virtual worlds with a multi-agent platform through an interface [8]. Also, the
MASs have been used to expose a virtual environment where agents communicate autonomously
with the player as a 3D chat [19, 20, 21], and subsequently it was extended for the implementation
of a virtual fair [22, 23, 24]. In addition, they have been employed to raise a distribution where it
is possible to build multi-player systems based on intelligent agents [25], to propose a MAS to
manage multi-user mechanics in a tournament game [26], and to present a system based on
agents that control the parameters of the game according to the objectives to be achieved [27].
Finally, in terms of the relationship between MAS and game engines, a MAS based on the Unity
game engine has been developed [28], generating a three-dimensional search behaviour
simulation of multiple agents in the context of a passenger airport [29], and also a system where

agents learn autonomously to play multiple games without human intervention [30].

Nevertheless, the approaches described above add MAS features to specific games or specific
genres, but no one of them introduces a functional approach of MAS as the core of the game
development. In this sense, the MAS would fulfil one of the original purposes of the game

engines: the flexibility in the procedures and the modules aggregation.

3. Multi-agent Systems Features

Following the agent definition proposed by M. Wooldridge [11], an agent is a computer system
that is situated in an environment, and it can perform autonomous actions in this environment in
order to meet its design objectives. More specifically, in the general definition of MAS, it is

necessary to take into account specific features when carrying out its formalisation:

e The environment to which the agents belong can be in any of the discrete states of a
finite set of states E = [e,, e,, €, ...].

e The agents have a set of possible actions available with the ability to transform their
environment Ac = [o,, o, 0y, ...].

e The run r of an agent on its environment is the interlayered sequence of actions and
environment states 1: e, - e, »“ e, > ... e, — “e,.

e The set of all possible runs is R, where R* represents the subset of R that ends with an
action, and R” represents the subset of R that ends with a state of the environment. The
members of R are represented as R = [ry, 1y, ...].

e The state transformation function t introduces the effect of the actions of an agent on an

environment t: R* — @(E) [31].
Thus, the following definitions can be established:

Definition 1. An Env environment is defined as a triplet Env = <E, e,, 7>, where E is a set of states,

e, € E is an initial state and t is the state transformation function.



Definition 2. An Ag agent is defined as a function Ag: R* — Ac and establishes a correspondence

between runs and actions. It is assumed that these runs end in an environment state [32].

In this way, an agent makes the decision on what action to take based on the history of the
system it has witnessed to date. The set of all agents Ag in a system is represented as AG and the

set of runs of an agent Ag over the environment Env is represented as R(Ag, Env).

Definition 3. A purely reactive agent is defined as a function Ag: E — Ac [33], which indicates that

they make the decision based only on the present state of the environment.

Definition 4. An agent with perception is considered as such when it is composed of perception
functions and actions, as Ag = <see, action>. Where see: E — Per maps environment states to

percepts and action: Per” — Ac maps sequences of percepts to actions.

Definition 5. Agents with an internal state are those that have an internal data structure I used to
store information, where I = [i,, i, i,, ...] is the set of all internal states of an agent. In this case,
the action function is defined as a correspondence action: I — Ac. Additionally, there is a next
function that generates new internal states from perceptions next: I x Per — I. The action to be
performed by the agent will, therefore, be action(next(i, see(e))). After completing the action, the
agent re-enters the perception cycle of the environment, it updates its status through next, and

it selects the action to be taken with action.

Agents are goal-oriented, as they perform actions to satisfy some goal. The way these goals are

represented is by using task predicates V.

Definition 6. Let ¥(r) indicates that the run r € R satisfies the predicate ¥ as R,(Ag, Env) ={r|r €
R(Ag, Env) and ¥(r) }. Then, an agent Ag succeeds in the task <Env, ¥> if Ry(Ag, Env) = R(Ag, Env).
In other words, Ag succeeds in <Env, V> if every run of Ag in Env satisfies ¥. Thereby, an agent

just runs its right tasks.

4. The Game Engine

To define the structure of the proposed game engine, this work focuses on the definition of the
elements that make up the system and the behaviour specification model generated for these
elements. In this sense, formal correspondences are established between the games and MAS, to
demonstrate that the engine allows specifying games defined as a MAS. The presented game

engine makes possible the creation of 2D video games.

4.1. The Game

The engine allows defining the environment of the game where the action is performed. The run

of the game R(AG, Env), represents the run of all agents AG on an environment Env. This



environment Env is responsible for storing the game states E through the properties of it. The

initial state e, determines the set of initial properties. The properties defining the game state are:

e Camera. It includes the camera position, rotation and zoom on the environment where
the action takes place.

e Audio. A set of parameters to define and modulate the game's sounds such as pan,
volume, start time and loop.

e Physics. They define, for instance, the intensity of the gravity force on the game, its
influence on the actors and their physical properties. The game engine, therefore, is able

to build games with realistic physics.

The agents AG of the system are described below, and they are called actors. These actors can
transform the environment states according to their tasks and through the transformation

operator t.

4.2. The Actor

The actors are responsible for running the actions Ac on the environment Env. In the proposed
engine, the actors are purely reactive agents [33], since they make the decision-making process
with consideration of the present. Also, the actors are agents with perception [11, 32], since in
every moment they are watching the game state to evaluate it and to act accordingly. The actors
have internal state I = [i, 1, 15, ...], which is initially defined with a set of properties. The basic

properties of the actors are classified into the following categories:

e Geometry. It includes properties related to the position, rotation and scale of the actors.

e Render. In this case, it includes the actor image and its related properties: opacity, flip,
scroll, tile and tinting colour.

e Text. The actors can write text on the screen, according to a font, size, colour and style
parameters. They can also write the value of any property from the game or from any
actor.

e Audio. The specific sound the actor plays and the set up of its properties: start time,
volume, pan and loop.

e Physics. The physical features for the actors such as speed, angular velocity and material
properties: density, friction and restitution.

e New. Also, the actors can incorporate new knowledge as new properties that expand

their internal state.

In the game engine, the perception of the environment is defined by the evaluation of the actor’s
physical behaviour and by the signals derived from the interaction with the user. Based on the
actor’s state and the perception of the environment, it is produced an evaluation of the actor's

knowledge, generating a change in the game state or in the actors' state that allows selecting the



actions o associated with its tasks. Logical predicates ¥ define the specification of the tasks
performed by the actors. The actors run their tasks in the system if 3r € R(Ag, Env) such that the

predicate ¥() is satisfied. Figure 1 shows the interaction cycle between the actors and the game.
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Figure 1.- The actors and their interaction cycle with the game.

4.3. Behaviour Specification

The behaviour specification system is responsible for telling the actors what tasks to perform,
based on the game state and the internal state of the actors, following a predefined semantic.
This semantic is defined by a syntax of logical and non-logical symbols. Logical symbols include
logical connectives and variables while non-logical symbols include predicates and functions

[34]. The domain for this interpretation is the set of all the actors and the game.

The predicates ¥ defined in first-order logic specify the actor’s behaviour rules. In this way, the

tasks that an actor might perform are organised into predicate formulas
{Po AP AP, AL
where each formula can contain the following predicate structures:

e Condition structure: It is modelled by a predicate sequence model based on the
structure of the IF-THEN-ELSE rules [35].

(f=@)r(-If—0)



where, If is a conditional literal predicate and both ¢ and 6 are sequences of new

predicates to be evaluated if the condition is met or if it is not met, respectively.

e Action structure: It is composed of an atomic element that includes a single literal

predicate Do.
Conditional Predicate If

The conditional predicate represents the evaluation element of a condition in the
decision-making process. In this game engine, the evaluation of the condition is based on a

function that assesses the relationship between system entities.
If( function( parameters ) )

The parameters can contain variables as arithmetic expressions, which can include game or actor

properties, mathematical functions and constant numerical values.
This function can be of the following types:

e Compare: This function compares numerical and boolean values. The relationships are
established by a set of comparison operators whose elements can be greater, greater or

equal, equal, less or equal and less.
compare( x, y, label ) x, y € R, label € [greater, greaterEqual, equal, lessEqual, less]

e Timer: This function handles the system's timing. It determines if a specific time x has

expired so that the evaluation of the function is true.
timer(x ), x € R.

e DPointer: This function controls the pointer-events on screen, where x represents the

coordinates for those events on the game space.
pointer(x ), x € R.

e Keyboard: This function oversees the system’s keyboard events, where x is the code for a

specific key and label represents the event mode.
keyboard( x, label ), x € R, label € [press, release].

e Collide: This function watches the collision detection between game actors, where Ag is

the actor to report a collision.

collide( Ag ), Ag € AG.



Action Predicate Do

An action is defined as a specific behaviour to be performed by an actor. In the game engine, the
actions are the non-logical function elements that represent the actions a € Ac of the system.
The actions can contain variables as arithmetic expressions in the same way as for the

conditions.

This set of actions is based on the Create, Read, Update and Delete (CRUD) functions of
information persistence on databases [36] applied to the actors. From these actions, the system
can generate more complex actions that increase the abstraction level of the behaviour
specification. With all this, the set of actions Ac available in the system consists of the following

actions o:

e Create: It creates a new actor in the game as a copy of an existing actor Ag in the

environment.
create( Ag ), Ag € AG.

e Read: It allows reading the information of a property that may belong to an actor Ag € AG

or to the environment Env of the game.
read( property )

e Update: It modifies the value of a property that can belong to an actor Ag or the
environment Env of the game. The new value is determined from the evaluation of an

arithmetic expression.
update( property, expression )
e Delete: It removes an actor Ag from the game environment.
delete( Ag ), Ag € AG

5. Discussion

The proposed engine allows creating a wide variety of video games but also has some features
that are interesting to analyse. In the first place, it has been tried to design a system that formally
creates video games, based on the MAS analysis. Thereby, the engine has the essential features to
create a large variety of games without other attributes from the conventional 2D game engines

which, in experimentation have been proved as not necessary.

Next, it is necessary to emphasise that the games are made with a single type of actor and that
there are no hierarchical relations between them. All the elements that define a game: the

markers, the player, the NPC and so on, have the same structure of properties and behaviour



rules. Also, the use of a scene graph is not necessary, which simplifies the engine internal

architecture and the design of the game.

The properties defined for the game environment and the actors allow only data types such as
text strings, numbers and booleans. There are no complex data structures such as vectors or
matrices, which are not necessary for the creation of most arcade games. For instance, a
CandyCrush-like game seems to require a matrix for its setup, but it can be created from a MAS
perspective by using multiple agents arranged in rows and columns, including their suited

properties and behaviour rules.

Besides that, if the behaviour specification language for the actors is analysed in detail, it can be
verified that it is possible to define game behaviour using a set of predicate formulas of just five
conditions and four actions, as it has been stated in the previous section. This is one of the main
features of the proposed engine since it allows the creation of games without using complex
scripting languages as in other game engines. Also, an analysis of this predicate language brings
forward that logical operators are not used and it is only necessary to use the IF-THEN-ELSE
structure in a nested way to define behaviour. Not even loops are required, since the game cycle
itself performs a sequential evaluation of each of the actor’s behaviour rules per cycle and it can,

therefore, be avoided.

In the following section, it is presented a detailed description of some video games developed

with the engine.
6. Use Cases

In order to test if the proposed game engine is capable of generating fully functional games that
comply with the properties of a MAS, the game logic for three games has been constructed using
the formulation presented in the previous sections. Specifically, the first of these games is the
Wolf-Sheep Predation, which is based on a classic MAS problem; the other two are classic arcade
games: Frogger and Pac-Man. In these games, the origin of the coordinate system is in the centre

of the screen and it has positive and negative values.

Finally, an additional set of different arcade games have been created with the engine to

demonstrate its potential.
6.1.  Wolf-Sheep Predation

In this first game, the mechanics consist of a set of actors representing Wolves and Sheeps trying
to survive in the game environment. These actors move arbitrarily through the stage, and every
movement implies an expenditure of energy. Also, there is another actor representing the Grass,
spread evenly on the stage. When a collision occurs between a Sheep actor and a Grass actor, the

latter is destroyed, and the energy of the Sheep actor increases. Similarly, when a Wolf actor
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collides with a Sheep actor, it is also destroyed and the Wolf actor's energy increases. The
reproduction of both actors occurs from time to time, depending on the game settings, as long as

they have a sufficient level of energy.

Additionally, in the implementation of this game, there are three auxiliary actors in charge of
generating the initial distribution of the three main agents. These auxiliary actors spawn new
Sheep, Wolf and Grass actors initialised with an energy value and an initial arbitrary movement.
Due to these three actors are not involved in the central dynamics of the game, they are not

explained in the following game's algorithms.

Sheep: At first, the Sheep actors energy value is set at 300, and also their pl rule gives them an

initial arbitrary movement.

initialization (pl) = {If( compare( init, TRUE, equal ) ) — Do( update( velocity, random(
-100, 100 ) ) ) A Do( update( init, FALSE ) ) }
Besides that, when they collide with the limits of the screen, they change their direction, as it is

indicated by their p2 and p3 rules. When colliding with a Wolf actor, the specific Sheep actor must

be destroyed according to its p4 rule.

wallXCollision (p2) = {If( collide( wallX ) ) — Do( update( velocity.x, -1 * velocity.x ) ) }
wallYCollision (p3) = {If( collide( wallY ) ) — Do( update( velocity.y, -1 * velocity.y ) ) }
wolfCollision (p4) = {If( collide( wolf ) — Do( delete( sheep ) ) }

In respect of the Sheep actor reproduction, the p5 rule controls the spawn of the actor and the
energy loss. It is dependant on a random expression parametrized to trigger it on the 2% of the
cases. If it happens, the Sheep actor would lose 50 energy units. In order to recover energy, it has

to “eat” Grass actors to gain 50 energy units.

reproduce (p5) = {If( compare( random( 0, 100 ), 2, less ) ) — If( compare( energy, 50,
greaterEqual ) ) — Do( create( sheep ) ) A Do( update( energy, energy - 50
)}

grassCollision (p6) = {If( collide( grass ) ) — Do( update( energy, energy +50)) }

This feeding process is essential, since each displacement implies an energy expenditure,
specifically of an energy unit, as it can be seen in its p7 rule. By extension, if the energy reaches

zero, the Sheep actor dies according to its p8 rule.

walk (p7) = {Do(update( energy, energy - 1))}

10



death (p8) = {If( compare( energy, 0, lessEqual ) ) — Do( delete( sheep )) }

Wolf: Similarly to the Sheep actors, the Wolf actors have an initial energy value equal to 300 and

their initial movement is determined by their pl rule.
initialization (pl) = {If( compare( init, TRUE, equal ) ) — Do( update( velocity, random(
-100, 100 ) ) ) A Do( update( init, FALSE ) ) }

The rest of its rules are identical to the Sheep actor ones, but exchanging the Grass actors as feed

for Sheep actors as it is indicated by their p4 rule.

wallXCollision (p2) = {If( collide( wallX ) ) — Do( update( velocity.x, -1 * velocity.x ) ) }

wallYCollision (p3) = {If( collide( wallY ) ) — Do( update( velocity.y, -1 * velocity.y ) ) }

sheepCollision (p4) = {If( collide( sheep ) )— Do( update( energy, energy +50)) }

reproduce (p5) = {If( compare( random( 0, 100 ), 2, less ) ) — If( compare( energy, 50,
greaterEqual ) ) — Do( create( wolf ) ) A Do( update( energy, energy - 50 )
)}

walk (p6) = {Do(update( energy, energy -1))}

death (p7) = {If( compare( energy, 0, lessEqual ) ) — Do( delete( wolf ) ) }

Grass: In this case, the purpose of this actor is to feed the Sheep actors. Thus, through its pl rule,
the Grass actors detect when a Sheep actor collides with them, and in that case, they proceed to

destroy themselves.

sheepCollision (pl) = {If( collide( sheep )) — Do( delete( grass) )}

With the Wolf-Sheep Predation case, it has become clear that the proposed system is able to
generate autonomous entities capable of generating complex behaviours from simple rules. It is
important to highlight that the dynamics of the three principal actors of this game present
similar behaviours, where the same event is treated separately by each involved agent, according
to the role assigned to it in the predator-prey relationship. A screenshot of the game’s run can be

seen in Figure 2.

1



-
&

H OO
<< -

s
E T e o T sl ] el o] B ] b U s Y

—~
B
P

BRI el b o T B ey o}

ST MOPSH
B

N

P sl el s Ep T i

. 2
. 2
. 2

P

B

<DL AL LS LS )]
PP 20 Esd ] 2 ] Eodl sl sl 2

PEDITER] =] =120 5] =]

< mmma

EESRE S

e
|
i

) <)
] L ] B ] B L D R b 1 B

HESIED EDEDTER ED ] Ew1Z0]
L LA L L L L Lo O

S

8

<01 <D [l L S L [l L -
<) - oA [ LD L L L L0 ]
Ep Ed B T B o] o] 2o = S s B bl Enb ] )
ER Ear b T o] Eal] ol sy s s o p ] B o)

m]m]mlm}:mmg

Figure 2 .- A capture of the Wolf-Sheep Predation game.
6.2.  Frogger

The Frogger game consists of a Frog actor trying to cross a road with a series of Car actors
passing by and a river with Trunk actors that must be used to reach the other side. The Car
actors and the Trunk actors are initialised with a constant speed that makes them move from
right to left. Also, there is an actor representing the Water area and two other auxiliary actors
working as Car and Trunk generators. As it is shown in Figure 3, there are five lanes through
which Car and Trunks actors circulate. Each one of these lines has an auxiliary actor that spawns
Car or Trunk actors based on a timer function, which is controlled by a random expression to

make its appearance in the game less predictable.

Frog: The Frog can move in any direction that the user determines with its pl, p2, p3 and p4 rules.

leftKey (pl) = {If( keyboard( left, press) ) — Do( update( position.x, position.x - 10 )
) A Do( update( angle, 270 ) ) }

rightKey (p2) = {If( keyboard( right, press) ) — Do( update( position.x, position.x + 10
) ) A Do( update( angle, 90 ) ) }

upKey (p3) = {If( keyboard( up, press) ) — Do( update( position.y, position.y +10))
A Do( update( angle, 180) ) }

downKey (p4) = {If( keyboard( down, press) ) — Do( update( position.y, position.y -

10) ) A Do( update( angle, 0) ) }

If it collides with a Car actor, it is removed from the game as it is set up in its p5 rule.

destroyByCar (p5) = {If( collide( car) ) — Do( delete( frog)) }

12



In the same way, with its p6 rule, if it collides with the Water actor and is not in contact with a

Trunk actor, it is also deleted from the stage.

destroyByDrowning (p6) = {If( collide( water ) ) — -If( collide( trunk ) ) — Do( delete( frog ) ) }

When it lands on a Trunk actor, as it is indicated by its p7 rule, it inherits the movement from

right to left from the Trunk actor.

trunkCollision (p7) = {If( collide( trunk ) ) — Do( update( velocity.x, -100)) }

Car: Cars always move from right to left. If they reach the left edge of the screen, they are

eliminated from the game as indicated by their pl rule.

destroy (pl) = {If( compare( position.x, -screen.width / 2 - width, lessEqual ) ) — Do( delete( car

)}

Trunk: As in the previous actor, it moves from right to left until it is entirely out of the screen as

it can be seen at its pl rule.

destroy (pl) = {If( compare( position.x, -screen.width / 2 - width, lessEqual ) ) — Do( delete(
trunk ) )}

With the Frogger game, a classic arcade game has been generated where all entities have
completely autonomous behaviour and whose orchestration generates an elaborate game. Simple
actor dynamics determine the mechanics of this game based on simple movements and
interactions between the Frog actor and the other actors present in the game. In Figure 3, a

capture of the Frogger game during its run on the game engine is shown.

Figure 3 .- A capture of the Frogger game.
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6.3. Pac-Man

The Pac-Man actor is in a maze along with four Ghost actors. These actors can move in any
direction as long as they do not collide with the maze walls. If the Pac-Man actor collides with a
Ghost actor, it loses the game. Throughout the alleys of the maze, a set of Food actors are
arranged to provide points to the Pac-Man actor after a collision with them. Also, there is a set of
Coin actors to allow the Pac-Man actor to chase and eliminate the Ghost actors. When the
Pac-Man actor collides with a Coin actor, a short time begins in which it can chase the Ghost

actors and destroy them.

Pac-Man: The Pac-Man actor is initialised with zero points and with a constant speed. The user

controls the direction of its movement through its pl, p2, p3 and p4 rules.

leftKey (pl) = {If( keyboard( left, press ) ) — Do( update( velocity.x, -100 ) ) A Do(
update( velocity.y, 0)) A Do( update( angle, 180) ) }

rightKey (p2) = {If( keyboard( right, press ) ) — Do( update( velocity.x, 100 ) ) A Do(
update( velocity.y, 0)) A Do( update( angle, 0)) }

upKey (p3) = {If( keyboard( up, press) ) — Do( update( velocity.y, 100 ) ) A Do(
update( velocity.x, 0 ) ) A Do( update( angle, 90 )) }

downKey (p4) = {If( keyboard( down, press ) ) — Do( update( velocity.y, =100 ) ) A Do(

update( velocity.x, 0 ) ) A Do( update( angle, 270 ) ) }

If it collides with the maze walls, it stops as indicated by its p5 rule.

wallCollision (p5) = {If( collide( wall ) ) — Do( update( velocity, 0) ) }

Besides that, if it collides with a Food actor, its points property increases as it is marked by its p6
rule. However, if it collides with a Coin actor, as its p7 rule indicates, the chase mode is activated

during the time determined by its p8 rule.

food (p6) = {If( collide( food ) ) — Do( update( points, points +1)) }

coins (p7) = {If( collide( coin ) ) — Do( update( points, points +10 ) ) A Do(
update( chase, TRUE ) ) }

chase (p8) = {If( compare( chase, TRUE, equal ) ) — If( timer(5) ) — Do( update(

chase, FALSE ) ) }
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During that time frame, the Pac-Man actor can eliminate Ghost actors as it is determined at p9
rule. Conversely, if it collides with a Ghost actor and the chase mode is not active, the Pac-Man

actor is destroyed.

enemyCollision (p9) = {If( collide( ghost ) ) — If( compare( chase, TRUE, equal ) ) — Do(
update( points, points + 50 ) ) A =If( compare( chase, TRUE, equal ) )
— Do( delete( pacman ) ) }

Ghost: The Ghost actors behaviour is initialised by a constant speed and by their pl rule, which
controls the direction of the actor after colliding with the maze walls. It is necessary to point out
that the random function is actually just run once, but it is displayed twice to fulfil the positive

and negative ways of the predicate If on the IF-THEN-ELSE rule structure.

wallCollision (pl) = {If( collide( wall ) ) — If( compare( random( -1,1), O, less ) ) — Do( update(
velocity.x, velocity.x * -1) ) A =If( compare( random( -1,1), 0, less ) ) — Do(
update( velocity.x, velocity.x * -1)) }

Also, they have the p2 rule that controls if the Pac-Man actor is in chase mode; in that case, they

must change their display image to a "scared" one.

scared (p2) {If( compare( chase, TRUE, equal ) ) — Do( update( image, scaredlmage ) ) A

=If( compare( chase, TRUE, equal ) ) — Do( update( image, normallmage ) ) }

Similarly, in this case, if they collide with the Pac-Man actor, they are removed as it is indicated

by their p3 rule.

destroy (p3) = {If( collide( pacman ) ) — If( compare( chase, TRUE, equal ) ) — Do( delete(
ghost ) ) }

The Pac-Man game has complex features that could be solved with this approach based on MAS.
Both the Pac-Man actor and the Ghost actors have similar behaviours, the difference lies in the
decision-making process for the direction change: the Pac-Man actor relies on the interaction
with the game user while the Ghost actors decide to change direction arbitrarily after colliding
with the maze walls. Simultaneously, the Ghost actors change their behaviour when the Pac-Man
actor is in chase mode. This behaviour is derived from the perception of the Ghosts actors on the

state of the Pac-Man actor. A capture of the game during its run is shown in Figure 4.
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Figure 4 .- A capture of the Pac-Man game.

64. Other Games Developed

Independently from the use cases analyzed in this section, a series of additional games have also
been developed to support the validation of the system’s competences. These games tried to test
multiple video game genres and their respective game mechanics. The games under

consideration are the following:

e Arkanoid. A classic puzzle game where the ball bounces until there are no bricks left.

e Asteroids. A classic space and third-person shooter where the asteroids are subdivided
after being hit.

e Gronof! Adventures. A pointer-based game in which the player must eliminate enemies
to move to the next level.

e Ducks. A first-person shooter game based on the classic ones found in fairgrounds.

e Diamond Crush. A match-three puzzle video game, in which the players have to swap
diamonds on a game board to produce combinations of three or more with the same
colour.

e Fallas the Game. A physics-based game, inspired by the well-known Angry Birds game,
where the player has to burn the target to ashes.

e Abstract Adventure. A classic platform game where the goal is to elude enemies and
traps at the same time as every coin in the scene is gathered.

e Cowboys vs Aliens. Tower defence game where the Cowboys defend their land from the
Aliens.

e Afterglow. A horizontal scroll game, where the goal is to travel for as long as possible

shooting and avoiding collisions with the enemies and their shoots.
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In Figure 5, captures of these nine games during their run are presented in the same order of the
previous list. Additionally, a set of these games presented in this section have been arranged on a
web page [37].

| — | — — | — —— — — -

0

O
# - ‘ - -
Figure 5 .- Captures of the games developed in the game engine.

7. Conclusions and Future Work

This work presents the definition of a game engine able to produce games that meet the
requirements of a MAS. It draws from the formal definition of the MAS to conduct a description
of the game and its essential elements. The game represents the environment and the actors are
the agents of the multi-agent games generated by this game engine. From the environment state,
the actors can perceive information and react to specific states based on their predefined tasks.
The behaviour associated with the tasks is determined by sets of behaviour rules and a

pre-established logic semantics.

The construction of the game is based on a unique type of actor and without hierarchical
relations between them. Each one of them has the same structure of properties and behaviour
rules. All this without a scene graph, which simplifies the engine internal architecture. Moreover,
the specification of the engine has reached a level of abstraction for the actor’s behaviour
definition that makes unnecessary complex data structures such as vectors or matrices during

the creation of most arcade games.

Regarding the actor’s behaviour specification, it has been proved that just five conditions and
four actions are enough to define games using predicate formulas. It avoids the scripting for the
creation of games, making that as one of the main features of the proposed engine. Also, all this is
achieved without logical operators, matrices and loops, since the game cycle performs cyclical

evaluations of the behaviour rules, just by using the IF-THEN-ELSE structure.
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The use cases presented in this article show the potential of the game engine for the generation
of games as MAS. Besides that, it has been observed that the system can generate logic,
mechanics and complex behaviours from a very reduced first-order logic semantics as a

behaviour definition descriptors.

As future work, the possibility of applying this methodology to the development of game engine
architecture is proposed, in order to formalise an underdeveloped research field. Thus, the game
engines design could be reformulated and the parallelisation of their behaviour could be

explored.
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