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Abstract

Explicit numerical integration algorithms up to order four based on the Mag-
nus expansion for nonlinear non-autonomous ordinary differential equations are
presented and tested on problems possessing qualitative (very often, geometric)
features that is convenient to preserve under numerical discretization. The range
of applications covers augmented dynamical systems, highly oscillatory problems
and nonlinear non-autonomous partial differential equations of evolution previously
discretized in space.
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1 Introduction

Differential equations of the form

Y ′ = A(t, Y )Y, Y (0) = Y0, (1)

where both Y and A are n×n matrices, are relevant in applications, especially
when they are formulated in a particular matrix Lie group G and A belongs to
the corresponding Lie algebra g. In that case, it can be shown that the solution
Y (t) belongs to the given Lie group for any time t ≥ 0 (if the equation satisfies
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the usual regularity requirements). Relevant examples include the special or-
thogonal group G = SO(n) in rigid body mechanics and the symplectic group
Sp(n) in Hamiltonian dynamics (in which case n is an even number) [1]. The
fact that the evolution of Y is formulated in a Lie algebra is the mathematical
counterpart of certain symmetries the physical system presents. Examples in
point are the symplectic character of the Hamiltonian flow and the unitarity
of the evolution operator in quantum mechanics.

The linear case, i.e., when Eq. (1) reads

Y ′ = A(t)Y, Y (0) = Y0, (2)

is also very relevant in applications, especially in problems related with the
time-dependent Schrödinger equations, such as the average Hamiltonian the-
ory and quantum computing. In these fields, the Magnus expansion plays a
significant role, both as a theoretical tool and as a numerical integrator. In
essence, the solution of Eq. (2) is expressed as the exponential of a certain
infinite series

Y (t) = eΩ(t) Y0, Ω(t) = Ω1(t) + Ω2(t) + Ω3(t) + · · · (3)

each term containing iterated integrals of nested commutators of A evaluated
at different times. Thus, for the first terms one has

Ω1(t) =
∫ t

0
A(t1)dt1,

Ω2(t) = −1

2

∫ t

0

[∫ t1

0
A(t2)dt2, A(t1)

]
dt1, (4)

where [A,B] ≡ AB −BA denotes the usual commutator.

In the particular case where A(t) is periodic in Eq. (2), i.e., when there ex-
ists some T > 0 such that A(t + T ) = A(t), the so-called Floquet–Magnus
expansion has been proposed in [2] and subsequently applied in [3] in the con-
text of solid state nuclear magnetic resonance problems, also comparing this
approach with previous treatments based on average Hamiltonian theory and
static perturbation theory.

There are numerous problems where Eqs. (1) and (2) have to be solved numer-
ically, but in such a way that the qualitative properties of the exact solution
are also shared by the approximations thus constructed. In particular, if Eq.
(2) describes a quantum system, it is required that any approximation to
Y (t) be unitary. Otherwise, the probability conservation property might be
compromised. Numerical integrators providing approximate solutions to Eqs.
(1) and (2) belonging to the same Lie group G are called Lie-group methods,
and they have received a great attention in the literature during the last two
decades (see, e.g., [1,4,5] and references therein).
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Another area where using numerical integration methods preserving the Lie
group structure is of paramount importance is in the context of the augmented
dynamical systems technique. This was first proposed by Liu in [6] to integrate
numerically any system of k differential equations x′ = f(t, x), x ∈ Rk, and
later applied to a variety of settings, ranging from stiff differential equations
to boundary value problems and systems with constraints [7–11].

Essentially, the idea consists in integrating not only the state variables x, but
also the norm ‖x‖. To proceed, the (k + 1)-dimensional vector y = (x, ‖x‖)T
is introduced, so that it obeys the differential equation

y′ =
d

dt

 x

‖x‖

 =

 Ok×k
f(t,x)
‖x‖

fT (t,x)
‖x‖ 0


 x

‖x‖

 ≡ A(t, y)y. (5)

It is assumed that f satisfies a Lipschitz condition and ‖x‖ > 0, so that the
system is well defined. Otherwise, a convenient reparameterization renders
the problem into this form. Although the dimension has increased by one,
the augmented dynamical system (5) has an inherent symmetry, namely A ∈
so(k, 1), the Lie algebra of the Lorentz group SO(k, 1) formed by all matrices
X with unit determinant such that XJXT = J , with

J =

 Ik Ok×1

O1×k −1

 , (6)

whereas A verifies AJ + JAT = 0. Notice that yTJy = x · x − ‖x‖2 = 0,
and thus this cone condition has to be exactly preserved by any numerical
integrator applied to Eq. (5) to guarantee consistency. In this way, it is argued
in [6] that the so-called group preserving schemes (GPS) conserve the group
structure (and thus the cone condition). In consequence, they have the same
asymptotic behavior as the original continuous system and do not induce
spurious solutions or ghost fixed points. The simplest method in this setting
is a first-order Lie-Euler discretization, either based on the matrix exponential

yn+1 = exp(hA(tn, yn))yn (7)

or the Cayley transformation and/or Padé approximants [1,6].

As mentioned before, in many situations one has to use numerical techniques
to construct approximate solutions of Eqs. (1) and (2) on a given time interval
in such a way that the approximations thus obtained still possess as many
qualitative properties of the exact solution as possible. Lie-group methods
lead to approximations Yk ≈ Y (tk) on a grid t0 = 0 < t1 < · · · < tn still
belonging to the Lie group G. By contrast, general-purpose integrators such
as explicit Runge–Kutta or extrapolation methods, when applied to Eqs. (1)
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and (2), typically furnish accurate solutions that do not stay in G, and thus
they do not reproduce the correct qualitative behavior of the system, especially
for long time integrations.

There are several possible strategies to integrate numerically equation (1) in
such a way that the numerical approximation still belongs to G. For example,
in the Runge–Kutta–Munthe-Kaas (RKMK) class of methods the problem is
lifted from G to the underlying Lie algebra g with the inverse exponential map,
then the associated differential equation in g is solved with a Runge–Kutta
method and finally this solution is mapped back to G [1,12,13].

In the linear case, numerical methods based on the Magnus expansion have
shown to be more efficient than other standard integrators whereas preserving
the Lie group structure of the problem [14,15]. Given the excellent behavior
shown by these schemes, it is hardly surprising that several attempts to gen-
eralize them to the nonlinear problem (1) have been conducted in the past.
Thus, in [16], schemes of order p can be derived by applying the idea of collo-
cation to the differential equation defined in g. It turns out, however, that the
methods obtained are implicit, although by relaxing the collocation conditions
it is still possible to get explicit methods of order up to three.

In contrast, the approach followed in [17] leads in a natural manner to explicit
integrators based on the Magnus expansion which are expressed in terms of
arbitrary quadrature rules. This feature allows for a great flexibility of the pro-
cedure, in the sense that many different classes of problems modelled by Eq.
(1) can be addressed essentially within the same framework just by introducing
different discretizations to the integrals appearing in the formalism. Thus, one
could choose a Newton-Cotes quadrature rule when A is only known at equis-
paced points [18], a Gaussian rule to rise the order with the minimum number
of evaluations [18], a Filon-type quadrature for highly oscillatory problems
[19], etc.

Whereas the Magnus expansion for the nonlinear system (1) was explicitly
derived in [17] and some particular numerical integrators were presented, it is
our belief that a more exhaustive analysis of the technique and in particular
a sound assessment of the schemes is still necessary. Thus, in this paper we
show how to adapt the technique to different types of systems, ranging from
(non-)autonomous ordinary differential equations evolving in Lie groups to
highly oscillatory problems to non-autonomous partial differential equations
of evolution type discretized in space. In this respect, we also show how this
adaptivity can be further extended by introducing variable step size tech-
niques, thus increasing significantly the efficiency of the proposed algorithms.
More specifically, (i) we show that the nonlinear Magnus expansion applied
in combination with the augmented dynamical systems technique produces
higher order GPS, (ii) we introduce two variants of the procedure to deal
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with highly oscillatory problems and (iii) we show that the technique is also
able to produce accurate results when applied to reaction-diffusion equations
previously discretized in space.

2 A review of numerical integrators based on the Magnus expan-
sion

2.1 Schemes of orders 2, 3 and 4

The numerical methods we consider in this paper were first proposed in [17]
and are based on a generalization of the Magnus expansion for the solution of
Eq. (1). In particular, it is shown that Y (t) = exp(Ω(t))Y0, where successive
approximations of the matrix function Ω(t) are obtained by iteration,

Ω[m](t) =
∫ t

0

∞∑
k=0

Bk

k!
adkΩ[m−1](s)A(s, eΩ[m−1](s) Y0)ds, m ≥ 1, (8)

taking Ω[0](t) ≡ 0. In particular, it is shown that, if terms up to k = m − 2
are only kept in Eq. (8), then

Ω[m](t) = Ω(t) +O(tm+1). (9)

Equivalently, the Taylor expansions of Y [m](t) = eΩ[m](t) Y0 and of the exact
solution Y (t) around t = 0 are identical up to terms of order tm, m ≥ 1.
Thus, an approximation of order four is achieved by computing up to m = 4,
etc. As a matter of fact, only appropriate estimates of the integrals are indeed
necessary to get consistent approximations up to the order considered, as we
will show in the sequel.

If instead of the matrix equation (1), one considers the differential equation

y′ = A(t, y)y, y(0) = y0, y, y0 ∈ Rd (10)

the same procedure is obviously valid, except that now the solution is obtained
as y[m](t) = eΩ[m](t) y0.

To construct a numerical integrator of order p on a time interval [t0, tf ] for
equation (10) one takes some grid 0 = t0 < t1 < · · · < tN = tf with associated
time increments hn = tn+1 − tn for 0 ≤ n ≤ N − 1, and then determines the
recurrence

y0 = y(t0), yn+1 = exp
(
Ω[p](tn + hn, tn)

)
yn ≈ y(tn+1), (11)
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where the dependence of Ω[p](t) also on the initial time has been made explicit.
In doing so, it is sufficient to approximate in a consistent way all the integrals
appearing in Ω[1],Ω[2], . . . up to the order considered and finally to compute
the action of exp(Ω[k]) on vectors (if one is considering equation (10)) or ma-
trices (for equation (1)). Special techniques (Chebyshev polynomials, Krylov
methods, etc.) exist for the second case requiring typically less computational
effort than the evaluation of the matrix exponential itself ([20,21] and refer-
ences therein).

Thus, in particular, we consider the following schemes order 2, 3 and 4.

Order two. According with the previous comments, only the first two
iterations in Eq. (8) are required:

Ω[1](tn+1, tn) =
∫ tn+hn

tn
A(s, yn)ds,

Ω[2](tn+1, tn) =
∫ tn+hn

tn
A(s, eΩ[1](s,tn) yn)ds.

(12)

If (as it is often the case), Ω[1] can be evaluated exactly, and the trapezoidal
rule is applied to Ω[2], one has

u = Ω[1](tn+1, tn)

v =
hn
2

(A(tn, yn) + A(tn+1, e
u yn))

yn+1 = ev yn

(13)

If this is not possible, we can always take the approximation u = hnA(tn, yn)
in Eq. (13). This scheme will be referred to in the sequel as M2.

Order three. Several schemes are possible depending on the particular
quadrature rule used to approximate the integrals in Ω[1], Ω[2] and Ω[3]. We
have taken the 2-points Gauss–Legendre quadrature and the Simpson rule
[18]. Since methods based on the later provide better results for the examples
considered, we collect it here (M3 scheme):

Q1 = Ω[1](tn+1, tn)

Q2 = hnA(tn +
1

2
hn, e

1
2
Q1 yn)−Q1

u3 =
1

2
Q1 +

1

4
Q2

u4 = Q1 +Q2

Q3 = −u4 + hnA(tn +
1

2
hn, e

u3 yn)

(14)
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Q4 = −u4 −Q2 + hnA(tn + hn, e
u4 yn)

u5 = u4 +
2

3
Q3 +

1

6
Q4 −

1

6
[Q1, Q2]

yn+1 = eu5 yn

Order four. The same quadratures can be used to achieve order four by
considering now up to Ω[4] in Eq. (8). If the Simpson rule is applied one
ends up with exactly the same sequence as in Eq. (14) with the additional
computations

u6 = u3 +
1

3
Q3 −

1

24
Q4 −

1

48
[Q1, Q2]

Q5 = −u4 + hnA(tn +
1

2
hn, e

u6 yn)

Q6 = −u4 −Q2 + hnA(tn + hn, e
u5 yn)

v = u4 +
2

3
Q5 +

1

6
Q6 −

1

6

[
Q1, Q2 −Q3 +Q5 +

1

2
Q6

]
yn+1 = ev yn

(15)

This feature opens a new possibility, namely the straightforward implementa-
tion of a variable step size strategy. Notice that, in the 4th-order scheme, one
determines two numerical solutions at tn+1 of orders three and four, respec-
tively:

ŷn+1 = eu5 yn and yn+1 = ev yn. (16)

Then the quantity

Er = ‖yn+1 − ŷn+1‖ (17)

is used to estimate the local error. If Er computed at tn+1 is below some
prescribed tolerance tol, then the step from tn to tn+1 is accepted and then
we proceed to compute the approximation to the solution at tn+2. If Er > tol

instead, then the approximation at tn+1 is rejected and a smaller step is chosen
to compute a new approximation at tn+1. In either case, it turns out that the
new step size can be taken as [22]

hnew = s hc

(
tol

Er

)1/4

, (18)

where hc denotes the current value of the step size and s is a “safety factor”
(typically, a number close to 1, i.e., 0.8 or 0.9) chosen to decrease the probabil-
ity of a rejection at the next step. With this error estimate and the resulting
new step size, one typically advances with the higher-order result yn+1 [23].
Moreover, in our case the estimate Er is obtained for free, since ŷn+1 has to
be computed anyway as an intermediate stage in the calculation of yn+1. The
resulting scheme is called M4.
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In practice, we scale the i-th component of yn+1−ŷn+1 by a factor di = |(yn+1)i|
to work with relative errors and additional parameters are introduced in order
not to increase nor to decrease the step size too fast [23]. As for the initial
step size, a possible choice is just h0 = tol/2.

It is worth remarking that, although Magnus integrators have been originally
devised for explicitly time dependent problems, it is worth noticing that the
previous algorithms also provide numerical approximations in the autonomous
setting, i.e., for nonlinear equations of the form

y′ = A(y)y, y(0) = y0. (19)

This is in contrast with the linear case, since in that case the Magnus expansion
just reproduces the exact solution.

2.2 Numerical examples

To illustrate the main features of the previous schemes, we consider next two
simple examples.

Example 1. The motion of a free rigid body is described by the standard
Euler equations [24]:

y′ =


Π′1

Π′2

Π′3

 =


0 Π3

I3
−Π2

I2

−Π3

I3
0 Π1

I1

Π2

I2
−Π1

I1
0




Π1

Π2

Π3

 = A(y)y, (20)

where I1, I2, I3 > 0 are the three principal moments of inertia of the body, and
Π = (Π1, Π2, Π3) is the angular momentum in the moving frame. As is well
known, this system possesses two quadratic invariants, namely

C =
1

2
‖Π‖2, (21)

the length of the constant angular momentum in the orthogonal body frame,
and

H =
1

2

(
Π2

1

I1

+
Π2

2

I2

+
Π2

3

I3

)
, (22)

the energy of the system. When the previous schemes based on the Magnus
expansion are applied to Eq. (20), C is exactly preserved by construction (up
to round-off), whereas keeping track of the error in H along the integration
may help to give an assessment on the performance of the different integrators.
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For our experiment we take I1 = 3, I2 = 2, I1 = 3/2, initial conditions
Π(0) = (1, 1, 1) and integrate until tf = 100 with different Magnus methods
and different step sizes and/or tolerances. Then we compute the relative error
in energy at tf and plot this error in terms of the required computational cost.
This can be estimated as the total number of evaluations of the matrix A
plus the number of exponentials multiplied by vectors and the commutators
required by each method, according with the following table:

Method Order A eval Exp-vec Comm

M2 2 2 2 0

M3 3 4 4 1

M4 4 6 6 2

Thus, if CMx denotes the computational cost of a given method based on
Magnus, Mx, then CM3 ∼ 2.1CM2, whereas CM4 ∼ 3.2CM2. We collect in
Figure 1 the results achieved by the previous schemes M2, M3 and M4.
For comparison, we also include the result obtained by the standard explicit
Runge–Kutta method of order 4 (Rk4).

Several comments are in order here. First, M2 exhibits for this example a
third order of consistency and is in fact more efficient than M3. Second, M4
is the most efficient integrator within this family in a wide range of accuracies
although its computational cost per step is the highest of all the methods
considered. Third, all the schemes based on Magnus preserve the invariant
Eq. (21) with 14-15 digits independently of the step size. This in contrast with
other standard integrators, such as explicit Runge–Kutta methods. Although
in this case there is no an explicit time dependence, and thus the schemes
based on Magnus are not particularly appropriate, M4 still shows an efficiency
comparable to Rk4 for high accuracies.

One could think that our estimate of the computational cost of the different
methods is rather crude. It nevertheless captures quite accurately the relative
performance of the schemes: if one considers instead the CPU time required
by each integration, a similar relative configuration of the respective curves is
obtained.

Example 2. The next example is designed to illustrate the use of the Magnus
integrators in conjunction with the augmented dynamical systems technique.
To this end, we take the equation [25]:

x′1 = x2, x1(1) = 0

x′2 = −x1 − x2
2 + ln(t), x2(1) = 1,

(23)
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Fig. 1. Relative error in energy for the free rigid body obtained with different Magnus
integrators and the explicit Runge–Kutta method of order 4 vs. their computational
cost. Lines showing order 3 and 4 are also provided for comparison.

with exact solution

xe(t) ≡ (x1(t), x2(t))T =
(

ln(t),
1

t

)T
. (24)

Here f(t, x) = (x2,−x1 − x2
2 + ln(t))T , and so we apply Magnus methods

to equation (5), where now A is a 3 × 3 matrix. Of course, for solving this
particular problem other methods can be more efficient, but we stress that
our purpose here is to show that the Magnus integrators can be successfully
applied in augmented dynamical systems.

We compute the numerical solution in the interval t ∈ [1, 101] with the first
order scheme (7) and methods M2, M3 and M4, then determine the error as
the Euclidean norm of the difference between xe and the numerical solution
at tf = 101 for several step sizes and finally we plot this error as a function
of the computational cost of each algorithm estimated as in Example 1. Thus
we get Figure 2. It clearly illustrates the advantage of using a higher order
integration scheme in problems where Liu’s approach is applied: they not only
preserve the inherent symmetry of the augmented dynamical system, but they
do so with a much reduced computational cost for a given accuracy. We see
then that, by applying Magnus expansion on augmented systems results in
higher order GPS. These schemes could be applied, e.g., to get higher order
approximations in combination with radial basis functions (RBFs) for PDEs
[26,27].

It is worth noticing that M2, M3 and M4 have essentially the same com-
putational cost as the first-order scheme (7), but greater accuracy is always
achieved. So we recommend replacing Eq. (7) by M2, M3 or M4 whenever
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Fig. 2. Euclidean norm on the error in the solution for Example 2 obtained with
Magnus integrators M2, M3 and M4 vs. their computational cost in comparison
with Liu’s approach.

the augmented dynamical system technique is employed.

3 Generalization to highly oscillation problems

During the last decade so much effort has been devoted to the design and anal-
ysis of numerical integrators especially adapted to solve different classes of or-
dinary differential equations exhibiting high oscillation. For example, we can
cite trigonometric integrators and their modifications for solving the highly
oscillatory second order autonomous system q′′ = −Aq + g(q) with a sym-
metric semi-definite matrix A [28,29], adiabatic integrators for linear systems
with time-dependent skew-Hermitian matrices [4], heterogeneous multiscale
methods for mechanical systems subjected to fast vibrations [30], etc., for
which special analytical techniques have been developed, such as the modu-
lated Fourier expansions [4] and the averaging based on word series [31]. In all
cases, special integrators are constructed (or adapted) to particular classes of
problems exhibiting high oscillation.

There are, however, highly oscillatory time-dependent systems which are not
easily formulated in such a way that these special integrators can be advan-
tageously applied, but still can be described by Eq. (10). This is the case, in
particular, of classical mechanical systems with time-dependent frequencies or
nonlinear equations of the form y′ = ε−1A(t, y)y, where ε is a small parameter.
For these systems we show next two different procedures to get numerical ap-
proximations based on the Magnus expansion depending on the the particular
matrix A(t, y).
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First approach. The first technique constitutes a generalization of the
so-called modified Magnus methods proposed by Iserles [32,33] and further
extended in [17] to the scalar equation y′′ + a(t, y, y′)y = 0. Here we consider
a generic problem (10) with a high oscillatory n× n matrix A.

To begin with, assume that yn ≈ y(tn) has been computed and the goal is to
determine the approximation yn+1 at tn+1 = tn + hn. We first factorize the
solution at intermediate times as

y(tn + τ) = eτA(tn,yn) z(τ), τ ≥ 0. (25)

By inserting Eq. (25) into y′ = A(t, y)y, we obtain the differential equation
satisfied by z(τ), namely

dz

dτ
= B(τ, z)z, z(0) = yn, (26)

where

B(τ, z) = e−τA(tn,yn)
(
A
(
tn + τ, eτA(tn,yn) z

)
− A(tn, yn)

)
eτA(tn,yn) . (27)

The new variable z(τ) may be seen thus as a correction to the approximation
provided by the first term of the Magnus expansion discretized with Euler’s
method, and satisfies a differential equation of the same type as y(t), but
with some important differences: (i) ‖B‖ � ‖A‖ by construction, and (ii)
their entries are highly oscillatory since they are obtained from the entries
of exp(τA). Therefore, if the Magnus expansion is applied to Eq. (26), ap-
proximations with a significantly smaller error are expected, even if the same
quadratures are used.

To be more specific, consider the first Magnus iteration applied to Eq. (26)
with a fixed step size h, and denote for simplicity Ω[1](h) ≡ Ω[1](tn+1, tn),

Ω[1](h) =
∫ h

0
G1(τ) dτ, (28)

where

G1(τ) = e−τA(tn,yn)
(
A
(
tn + τ, eτA(tn,yn) yn

)
− A(tn, yn)

)
eτA(tn,yn), (29)

and discretize this integral with the Simpson rule, so that

Ω[1](h) ≈ u(h) ≡ h

6

(
4G1

(h
2

)
+G1(h)

)
, (30)

since G1(0) = 0. The resulting scheme

yn+1 = ehA(tn,yn) eu(h) yn, (31)
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Fig. 3. Error in the solution for the highly oscillatory problem of Example 3. M1mf
corresponds to the modified scheme (31).

although simple, already provides a reasonable description of the system, as
is illustrated by the following example.

Example 3. It is defined by

x′1 = x2

x′2 = −tx3
1 + g(t)

(32)

with g(t) = t cos(t2) (−4t+ cos2(t2)) − 2 sin(t2)). The function g is chosen so
that the exact solution when x1(0) = 1, x2(0) = 0 reads

x1(t) = cos(t2), x2(t) = −2t sin(t2), (33)

clearly exhibiting an increasingly oscillatory character as time goes on. Sys-
tem (32) can be recast in the form Eq. (10) by introducing the vector y =
(x1, x2, x3 = 1)T and the augmented matrix

A(t, y) =


0 1 0

−tx2
1 0 g(t)

0 0 0

 . (34)

We integrate this problem in the interval t ∈ [0, 20] with the modified scheme
(31) (which we call M1mf), M2, M3 and M4, determining the relative error
in the solution as a function of the CPU time needed for the computation.
The results are depicted in Figure 3.

We see that the modified scheme (31) with a fixed step size provides a similar
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accuracy as the much more elaborated 4th-order method with variable step
size implementation. Notice that (modified) trigonometric integrators cannot
applied to this system in a straightforward way.

Second approach. In the special, but important, situation when A(t, y)
has a purely imaginary spectrum and can be diagonalized for fixed values t
and y, yet another specially adapted procedure can be applied. In that case
we can write

A(tn, yn) = V DV −1, with D = diag(iλj), λj ∈ R, (35)

so that
G1(τ) = V e−τD M̃(τ) eτD V −1 (36)

with
M̃(τ) = V −1

(
A
(
tn + τ, eτA(tn,yn) yn

)
− A(tn, yn)

)
V. (37)

The first term of the Magnus expansion applied to Eq. (26) reads thus

Ω[1](h) = V
∫ h

0
e−τD M̃(τ) eτD dτ V −1. (38)

Notice that the entries of the matrix in the previous integral are given by(
e−τD M̃(τ) eτD

)
k`

= ei(λ`−λk)τ M̃k`(τ). (39)

As before, the next stage in the procedure consists in applying a conveniently
chosen quadrature rule to Eq. (38). Given the highly oscillatory character of
Eq. (39), it seems appropriate to consider a Filon-type method [19]. Since the
entries in Eq. (38) are of the form

∫ h
0 g(s) eiωs ds, we propose the quadrature

rule ∫ h

0
g(τ) eiωτ dτ ≈ b1g(0) + b2g(h/2) + b3g(h), (40)

where the weights bi are determined in such a way that Eq. (40) is exact for
g(τ) = 1, τ, τ 2:

b1(ω, h) =
i

ω
+

3 + eiωh

hω2
− 4i

1− eiωh

h2ω3

b2(ω, h) = −4
1 + eiωh

hω2
+ 8i

1− eiωh

h2ω3

b3(ω, h) = −i
eiωh

ω
+

1 + 3 eiωh

hω2
− 4i

1− eiωh

h2ω3
.

(41)

Notice that

(b1, b2, b3)→ h
(

1

6
,
2

3
,
1

6

)
when ω → 0

and thus the Simpson rule is obtained in this limit.

14



●
●

●
●

●
●

●
●

■

■

■

■

■

■

◆

◆

◆

◆

◆

◆

◆
◆

▲
▲

▲
▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

0.1 1

10-2

10-6

10-10

CPU (s)

E
rr
o
r
in
S
o
lu
ti
o
n

● M2

■ M4

◆ M1mf

▲ M1ms

Fig. 4. Error in the solution for the highly oscillatory problem of Example 4. M1mf
corresponds to the modified scheme (31) and M1ms corresponds to the modified
scheme (43).

In our case, since M̃(0) = 0, the approximation reads

(
Ω[1](h)

)
ij
≈ u(h) ≡ Vik

(
b2(ωk`, h)M̃(

h

2
) + b3(ωk`, h)M̃(h)

)
k`

(V −1)`j, (42)

where now ωk` ≡ λ` − λk. Finally,

yn+1 = ehA(tn,yn) eu(h) yn. (43)

Example 4. With

D = i

 1 0

0
(
1 + t(y1 + y2)

)−1

 , V =

 1 1

1 −1

 , (44)

we fix x1(0) = 1, x2(0) = 0 and compute the norm of error in t = 20. As the
exact solution we take, for convenience, the output generated by the function
NDSolve of Mathematica with a very stringent tolerance, although any other
procedure with the same requirements could aslo be used (e.g., the DOPR853
routine designed by Hairer and Wanner [23]). We can then apply Eq. (43) but
also the first approach (31). The corresponding results are collected in Figure
4. We observe that the procedure (31) (line M1mf) gives the best results,
whereas Eq. (43) (line M1ms) is as efficient as the much elaborated scheme
M4. Notice that both M1mf and M1ms do not require the computation of
commutators, and thus both are particularly favorable when the dimension of
the problem is not so small.
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4 Application to non-autonomous partial differential equations of
evolution type

The Magnus expansion can also be applied for the integration in time of cer-
tain linear time-dependent partial differential equations (PDEs) of evolution.
A common approach in this setting is to first discretize in space, for which
procedures such as finite differences, pseudo-spectral methods based on collo-
cation with trigonometric polynomials, etc. exist. The resulting (large) system
matrix of linear ordinary differential equation inherits fundamental properties
of the corresponding PDE. For instance, if the original PDE corresponds to
the Schrödinger equation of quantum mechanics, then the coefficient matrix
of the resulting ordinary differential equation is skew-Hermitian. Although in-
terpolatory Magnus integrators present some drawbacks in this setting due to
the presence of commutators, it is possible to introduce some modifications
and design efficient new classes of commutator-free schemes [34].

Motivated by the results achieved for the linear case, we try to generalize the
treatment to reaction–diffusion equations. These appear in models describing
the time evolution of chemical or biological species in a medium such as water
or air. Another well-known example is the evolution of the the population of
one or several species distributed in space under the action of two concurrent
phenomena: reaction between species and diffusion which makes the species
spread out in space. From a mathematical point of view, they belong to the
class of semi-linear parabolic partial differential equations of the form

∂u

∂t
= C∆u+ F (u, t), (45)

where each component of u(x, t) ∈ Rd represents the concentration (or the
population) of one species, C is a diagonal matrix containing the diffusion rates
and F models local interactions between species. The case F (u, t) = r(t)u(1−
u) corresponds to Fisher’s (also called Kolmogorov–Petrovsky–Piskunov) equa-
tion, and is used to describe the spreading of biological populations.

For simplicity, we only consider one species and one space dimension, i.e.,

∂u

∂t
=
∂2u

∂x2
+ r(t)u(1− u), u(x, 0) = u0(x), (46)

with periodic boundary conditions in the space domain [0, 1]. We analyze, in
particular, a periodic time dependence in the reaction term,

r(t) = β cos(ωt), β, ω > 0 (47)

and initial condition u0(x) = sin(2πx). After discretization in space with finite
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differences we arrive at the differential equation

dU

dt
= A(U, t) ≡ DU + F (U, t), (48)

where U = (u1, . . . , uN)T ∈ RN , the second derivative has been approximated
by the matrix D of size N ×N given by

D = (∆x)−2



−2 1 1

1 −2 1

1 −2 1
. . . . . . . . .

1 1 −2


, (49)

and F (U, t) is now defined by

F (U, t) = β cos(ωt)
(
u1(1− u1), . . . , uN(1− uN)

)
. (50)

We choose N = 100, β = ω = 1 and compute the relative error (in the 2-
norm) at the final time t = 1 by applying the previous algorithms based on
the Magnus expansion, in particular schemes M2 and M4. We also compare
with the well known 2nd-order Strang splitting scheme. This requires taking
t as a new coordinate xt and consider instead the enlarged system

d

dt

 U
xt

 =

DU
1

+

F (U, xt)

0

 . (51)

The solution of each subsystem at time t = h is given by

ϕ
[1]
h :

 U(h) = ehD U0

xt(h) = h+ xt(0)
, and ϕ

[2]
h :



u1(h) = ehc u1(0)
1+u1(0)(ehc−1)

...

uN(h) = ehc uN (0)
1+uN (0)(ehc−1)

xt(h) = xt(0)

(52)

respectively, with c ≡ β cos(ω xt(0)). The Strang splitting applied to this sys-
tem

ψh = ϕ
[1]
h/2 ◦ ϕ

[2]
h ◦ ϕ

[1]
h/2, (53)

results in the following algorithm for the step tn 7→ tn+1, providing an approx-
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Fig. 5. Relative error in the solution for the Fisher problem, equation (46). SS
corresponds to the Strang splitting (54).

imation Un+1 ≈ U(tn + h):

V1/2 = e
h
2
D Un

c = β cos
(
ω(tn + h/2)

)
do j = 1, . . . , N

V1,j =
ehc V1/2,j

1 + V1/2,j(ehc−1)

end do

Un+1 = e
h
2
D V1

(54)

where Vi = (Vi,1, . . . , Vi,N)T , i = 1
2
, 1.

Here again we compute the reference solution by applying the function NDSolve

of Mathematica with a very stringent tolerance. The corresponding results are
depicted in Figure 5. Notice that the scheme M4 is more efficient that the
Strang splitting SS. It is worth noticing that, although one could construct
higher order methods by composing the 2nd-order Strang splitting, the result-
ing schemes involve necessarily some negative coefficients, and thus present
severe instabilities. Only splitting or composition methods with complex co-
efficients are appropriate [5]. This is not the case of methods based on the
Magnus expansion.
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5 Concluding remarks

Nonlinear differential equations of the form Eq. (1) possessing specific qualita-
tive properties appear frequently in applications. Very often these properties
are associated with a special structure of the matrix A(t, y), namely A be-
longs to some Lie algebra. In particular, if A is skew-symmetric, then the
norm of the vector solution y(t) is preserved along the evolution, a feature
that seems convenient to retain also when the differential equation is approxi-
mately solved by numerical schemes. In contrast with other numerical integra-
tors like explicit Runge–Kutta and multi-step methods, the explicit schemes
based on the Magnus expansion considered here do preserve by construction
these features, thus providing the corresponding approximations a qualita-
tively superior performance. The methods are formulated as the exponential
of a conveniently chosen approximation of an integral involving the matrix A
evaluated at different times and commutators for order higher than two.

Although the methods are originally designed to deal with the explicitly
time-dependent nonlinear equation (1), they prove to be also competitive
in the treatment of autonomous problems with exactly the same formula-
tion, as shown by the examples considered here. This is an attractive fea-
ture of the schemes in comparison with other structure-preserving integrators
such as splitting methods: although in principle they can be applied to non-
autonomous problems, removing previously the time dependency by consid-
ering time as a new coordinate is typically required, and this may deteriorate
their overall efficiency [4].

Using the Magnus expansion in combination with the augmented dynami-
cal systems technique produces higher order GPS, so that we can apply the
variable-step methods presented here instead of the basic first-order GPS for
the same family of problems. In addition, highly oscillatory problems formu-
lated as Eq. (1) constitute a natural area of application of these schemes. With
just a previous linear transformation, M1 already provides good results for
general matrices A. If A, on the other hand, has a purely imaginary spectrum
and can be diagonalized, the formalism can be adapted and special quadrature
rules can be implemented.

Magnus-based schemes can also be applied to the time integration of reaction-
diffusion equations previously discretized in space. We have illustrated this
feature by applying several Magnus integrators to the well known Fisher equa-
tion and we plan to extend the treatment to other classes of explicitly time-
dependent nonlinear PDEs, such as the Gross–Pitaevskii equation. In that
case, however, and as in linear problems, the presence of commutators in the
algorithms might be problematic, and so one possibility might be to generalize
the treatment carried out in [34] to the nonlinear setting.
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Analytic approximations based on the Fer expansion have also been considered
in the linear case (Eq. (2) and applied to different physical problems [15,35].
In contrast to the Magnus expansion, the Fer approach consists in writing the
solution of Eq. (2 as an infinite product of exponentials of matrices, each one
containing higher order corrections. It is even possible to construct numerical
integrators by truncating appropriately the infinite series appearing in each
exponential, and replacing the integrals by suitable quadratures, just as in the
case of Magnus integrators [36]. It is then natural to consider their generaliza-
tion to nonlinear problems, just as we have carried out here for the Magnus
expansion, and this may constitute an interesting line of research to pursue.
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