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Abstract

We address the production of structures intended as conduits made from natural 

biopolymers, capable of promoting the regeneration of axonal tracts. We combine 

hyaluronic acid (HA) and silk fibroin (SF) with the aim of improving mechanical and 

biological properties of HA. The results show that SF can be efficiently incorporated 

into the production process, obtaining conduits with tubular structure with a matrix of 

HA-SF blend. HA-SF has better mechanical properties than sole HA, which is a very 

soft hydrogel, facilitating manipulation. Culture of rat Schwann cells shows that cell 

adhesion and proliferation are higher than in pure HA, maybe due to the binding motifs 

contributed by the SF protein. This increased proliferation accelerates the formation of a 

tight cell layer, which covers the inner channel surface of the HA-SF tubes. 

Biocompatibility of the scaffolds was studied in immunocompetent mice. Both HA and 

HA-SF scaffolds were accepted by the host with no residual immune response at 8 

weeks. New collagen extracellular matrix and new blood vessels were visible and they 

were present earlier when SF was present. The results show that incorporation of SF 

enhances the mechanical properties of the materials and results in promising 

biocompatible conduits for tubulization strategies. 

Keywords: biomaterials, hyaluronic acid, silk fibroin, tissue engineering, nerve 

guidance conduits.
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1. Introduction

Injuries and diseases affecting the nervous system have very high incidence and 

prevalence, affecting millions of people around the world. New concepts and solutions 

are in demand for both the central nervous system (CNS) and the peripheral nervous 

system (PNS). In the human CNS axons do not regenerate spontaneously after damage 

or degeneration, causing life-long functional deficit as in the case of spinal cord injury, 

traumatic brain damage or cerebral infarction [1]. Failure of axonal regeneration is 

probably due, among other factors, to the formation of an impenetrable glial scar, 

composed mainly of astrocytes, that inhibits axonal growth and myelination [2]. This 

causes regenerative neurons to be blocked and unable to reach their synaptic target. In 

the PNS there is successful endogenous axon regeneration in adult humans for distances 

of few centimetres [1]. Here damage is followed by a degeneration of the distal segment 

of the nerve, known as Wallerian degeneration, while the proximal segment of the nerve 

suffers only minimal damage [3,4]. After the distal segment degeneration, Schwann 

cells and phagocytic cells such as macrophages remove myelin and axonal debris while 

producing cytokines that improve the axonal growth, creating a growth cone able to 

direct axon regrowth until reconnection with the distal target. Finally, Schwann cells 

myelinate the re-growing axon forming new myelin sheaths [4,5]. Nonetheless, in cases 

of larger damages the process of regeneration is not successful.

In order to improve over the limitations of current therapies tissue engineering 

approaches invoke the combination of cell supply, bioactive molecules and scaffolds 

based on biomaterials [6,7]. conduits  typically consist in hollow tubes used to connect 

the two ends of a damaged nerve, guiding the axonal regeneration between both sides of 

the injury [8]. Their main goal is to protect the spontaneous regeneration process. 

Conduits must guide tissue regeneration from one end to the other of the lesion, 

avoiding the growth of fibrous tissue and retaining the neurotrophic factors secreted by 

the damaged nerve remnants [9]. Tubular scaffolds should have a porosity large enough 

to allow the exchange of oxygen and nutrients, and small enough to prevent the 

infiltration of inflammatory cells into the conduit and to minimize the outflow of cells 

and growth factors out of the structure; furthermore, they should possess adequate 

mechanical properties to allow its manipulation during surgery and be flexible and soft 

enough not to compress the regenerated axons [6,9].
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Here we present conduits made from hyaluronic acid (HA), a natural biomaterial that 

is widely present in the extracellular matrix of most tissues [10]. HA is a non-branched 

glycosaminoglycan formed by repetitions of D-glucuronic acid and D-N-

acetylglucosamine [10]. HA has an excellent biocompatibility and unique biological 

properties, as it regulates the immune and inflammatory response, the cell 

differentiation, the vascularization, the scar tissue formation and the cell adhesion to 

extracellular matrix (ECM) proteins [10,11]. In addition, HA modulates the behaviour 

of glial and immune cells [10]. A very important characteristic of HA is its high 

hydrophilicity, due to hydrogen bonding interactions between its chains and water 

[12,13]. Scaffolds made out of HA have been studied for the regeneration of the CNS, 

showing their biocompatibility and ability to induce neural regeneration [14–18].

Tubular scaffolds made out of HA are able to induce seeded Schwann cells to form 

highly organized structures in vitro [19,20]. The HA tubes acted as a template in 

organizing the growth of the Schwann cells into cylindrical cell sheets. To improve the 

properties of such biohybrids (structures composed by NGCs with cells) and their 

biological response here we incorporate Bombyx mori silk fibroin (SF) in the production 

process of the scaffolds. SF is the term conventionally used for referring to the heavy 

chain protein which is the main constituent of the silk fibers of the cocoons [21] . SF is 

a protein with a molecular weight in excess of 300 kDa [22] that presents the specific 

motif of sequence –GAGAGS–. Due to its biological function, SF has robust 

mechanical properties and, in addition, a notable biocompatibility [23] and remarkable 

cell adhesion. This latter property might be favoured by the presence of arginine 

residues in the sequence of SF.  The arginine residues might be recognized by cell 

membrane adhesion proteins such as integrins and would contribute to the good 

biological response to the material [22–25]. Besides its excellent in vitro and in vivo 

biocompatibility SF also shows a slow proteolytic biodegradation [23,26–28]. 

Combinations of HA and SF have been previously studied as patches for cardiac 

reparation [29–31], films for growth factor release [32] and dermal tissue regeneration 

[33], 3D matrices for cartilage tissue engineering [34], and scaffolds for osteoarthritis 

surgery [35], tissue engineering [36–39] and dermal tissue reconstruction [40]. The 

presence of SF enhances the mechanical properties of the structures and increases the 

resistance to degradation when compared to those based only on HA [39,41,42], while 

the presence of HA increases the water retention and the cell growth when compared to 

scaffolds made only of SF [38,39,41–43]. Regarding the methods of combination of HA 
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and SF previously studied, these are based on the physical [42], covalent [44] or 

enzymatic [39] cross-linking of both materials, being the SF the majority component.

The present work aimed at combining SF and HA in a way such that the cell-

templating ability of the HA tubes was preserved, while their mechanical properties and 

biological response were improved. Our interest thus was in combining both materials 

but with a majority fraction of HA. It may be noted that both HA and SF are materials 

currently approved by the United States Food and Drug Administration (FDA) for 

different uses in biomedical applications in humans, particularly in guidance of 

peripheral nerve regeneration. [45–48].

2. Materials and methods

2.1. SF preparation

Fibroin was extracted from Bombyx mori cocoons. Initially, the cocoons were 

degummed in an aqueous Na2CO3 solution (0.2 w/v) and heated to 121 °C in an 

autoclave (Sturdy SA-252F) for 50 minutes. The degumming process solubilizes the 

sericin coating that covers the fibroin fibers, so that it can be removed. Fibroin was 

washed with distilled water for 20 minutes and the washing step was repeated three 

times. The fibers were allowed to dry overnight and then immersed in a 9.3 M LiBr 

solution and introduced in a furnace at 60 °C for 4 hours, so that a fibroin solution was 

obtained. After being dissolved, the silk solution was dialyzed against deionized water 

to remove the LiBr salt. Dialysis membranes (BioDesign Dialysis Tubing) with a 

MWCO of 3500 Da were used. Water was changed every 8 hours and the whole process 

proceeded for 48 hours. After dialysis the fibroin solution was centrifuged at 5000 rpm 

for 20 minutes at 21 °C to remove any debris. Finally, the fibroin was lyophilized and 

stored in a freezer at -20 °C.

2.2. HA and HA-SF films preparation

A 5 % w/w solution of HA derived from Streptococcus equi (1.5-1.8 MDa, 53747, 

Sigma-Aldrich) in NaOH 0.2 M was elaborated by gently stirring for 24 hours under 

normal conditions of temperature and pressure (NCTP, 25 °C, 100 kPa). The solution 
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was then homogenized by agitation at NCTP for 20 minutes and mixed with the divinyl 

sulfone cross-linker (DVS; V3700, Sigma-Aldrich) in a 9:10 DVS:HA monomeric units 

molar ratio. This mixture (hereinafter referred to as HA) was kept under stirring for 10 

seconds to achieve the correct mixing and to begin the crosslinking process.

The elaboration of biomaterials based on the combination of HA and SF is analogous 

to that of HA, with the exception that, after the elaboration of the HA solution, it was 

mixed with SF in a concentration of 3 % w/v (hereinafter referred to as HA-SF). The 

process was then continued by homogenization of the solution by stirring for 20 minutes 

and cross-linking with DVS, as it was done for HA.

Then, the material was injected by pipetting into a polytetrafluoroethylene (PTFE) 

mold formed by two flat faces on both sides of a U-shaped intermediate plate. After the 

injection of the material into the mold, it was left for 1 hour in NCTP to achieve the 

complete crosslinking of the material. Afterwards, it was frozen for 4 hours at -20 °C 

and then for 24 hours at -80 °C. Once frozen, the material was lyophilized (LyoQuest-

85, Telstar Life Science) for 24 hours at 20 Pa and -80 °C. Finally, the different parts of 

the mold were separated to proceed to the extraction of the film.

2.3. HA and HA-SF conduits preparation

To obtain the consuits, the biomaterials obtained as described in 2.1.2 were injected 

by pipetting into a PTFE mold formed by elongated channels with a square profile of 

2 mm per side. A polycaprolactone fiber (PCL; Polysciences) with a diameter between 

950 and 1050 μm was introduced into the center of each channel to form the lumen of 

the conduit. At both ends of the PCL fiber, a PTFE sheath was inserted with a thickness 

slightly greater than 2 mm. By pressing the ends of the fiber it was fixed in the center of 

the channel at the same approximate distance from all the walls. After the injection of 

the material into the mold, it was left for 10 minutes in NCTP to achieve the complete 

crosslinking of the material. Subsequently, it was subjected to freezing and 

lyophilization with the same parameters used for films. Finally, the PCL fibers were 

removed from the inside, forming the lumen of the conduit.

To study the effect of the dissolution of SF in a basic medium, unprocessed SF 

(hereinafter referred to as untreated SF) was compared with a 3 % w/v SF solution in 

deionized water (hereinafter referred to as water-treated SF) and with a 3 % w/v SF 
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solution in NaOH 0.2 M (hereinafter referred to as NaOH-treated SF). The solutions 

were homogenized by stirring in NCTP for 20 minutes and then they were spilled into a 

PTFE plate to give them a film shape. They were then frozen and lyophilized with the 

same parameters as the other films.

2.4. Morphology characterization

For the characterization of the surface morphology and of the geometry of axial 

and cross-sectional cuts of conduits, a field emission scanning electron microscope 

(FESEM; ULTRA 55, ZEISS Oxford Instruments) was used. The preparation of the 

samples consisted primarily in a desiccation under vacuum conditions during the 24 

hours prior to the test to avoid interferences due to evaporated water. Subsequently 

samples were placed on a carbon tape and a carbon bridge was created between the 

sample and the carbon tape. Finally, samples were coated with a thin layer of platinum. 

Conduits were cut longitudinally and transversally to observe the interior of the lumen 

and the morphology of the porosity of the walls. The voltage used was 2 kV. The study 

was performed with three different samples (n = 3) made of HA and HA-SF.

2.5. Elemental analysis

The FESEM was also used to carry out an elemental analysis through an energy 

dispersive X-ray spectroscopy (EDS) to verify the presence of SF, by studying the 

nitrogen (N) content. Samples were prepared as above. The elemental analysis provided 

the mass fraction (ω) of N, oxygen (O) and sulfur (S) in each selected area of the 

material. The voltage used was 2 kV. The study was performed with three different 

samples (n = 3) of films made of HA and HA-SF. 

2.6. Stability against swelling and drying cycles

This study was carried out to evaluate the possible loss of material in cycles of 

swelling and drying. For this purpose, both the amount of non-crosslinked mass and the 

water uptake were studied. Disc-shaped films of 8 mm dry diameter ( ) of HA and D0
HA-SF were used. Samples were first vacuum desiccated for 6 hours at 50 °C. They 
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were then weighed ( ) using a balance (AX205, Mettler-Toledo Inc., sensitivity of m0
0.01 mg). After that, discs were swollen in deionized water for 24 hours to attain the 

maximum degree of swelling and the diameter was measured ( ). The process was D1
then carried out a second time: samples were first air-dried for 6 hours and then dried in 

a desiccator for 6 hours with continuous vacuum and a temperature of 50 °C; they were 

then weighed ( ). Finally, discs were swollen in deionized water for 24 hours and the m
diameter was measured ( ). To study the loss of mass, the parameter  was D2 m/m0
calculated, while the water uptake was characterized through the parameter  for Di/D0
the first (i=1) and the second (i=2) swelling. The swelling ratio (Q) was also calculated 

as  for the first (i=1) and the second (i=2) swelling. The procedure was (��/�0)3
repeated for 4 different discs (n = 4) of each material.

2.7. Dimensional change in swelling

To study the swelling characteristics , conduits dimensions were measured 

before and after the absorption of water. For this purpose, conduits made of HA and 

HA-SF were prepared with two different lengths: samples of approximately 4 mm in 

length to study the change in length and samples of approximately 1 mm in length to 

study changes in the lumen diameter. Samples were examined and photographed using a 

binocular magnifying glass (MZ APO, Leica Microsystems). Once images of dry 

samples were acquired, they were swollen in deionized water for 24 hours and images 

in swelling state were acquired. The measurement of the dimensions was performed 

using the ImageJ/FIJI image processing software [49]. The dimensions (length, lumen 

diameter) in dry and swollen conditions were calculated for 4 different samples (n=4). 

The variation of the dimensions of the conduits was calculated by the ratios L/L0 

(length in swelling state (L) divided by length in dry state (L0)) and D/D0 (lumen 

diameter in swelling state (D) divided by lumen diameter in dry state (D0)).

2.8. Density and porosity

Density and porosity of samples were determined gravimetrically, using a 

balance (AX205, Mettler-Toledo Inc., sensitivity of 0.01 mg) equipped with a density 

measurement kit. First, the weight of the NGC in air ( ) was measured. Subsequently, ��
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the sample was immersed in n-octane (n-octane: 412236, Sigma-Aldrich) and placed 

under vacuum for 30 minutes to replace the air inside the pores by n-octane. After 

removing the n-octane from the lumen of the conduit with an absorbent paper, the 

weight of the conduits was measured with n-octane in the pores ( ). Finally, the NGC ��
with n-octane in the pores was completely submerged in n-octane and the apparent 

weight of the conduits immersed in n-octane ( ) was measured. Following ��
Archimedes, the density of the sample without considering the air inside the pores was 

obtained applying equation (1), were  is the density of n-octane. The porosity was ρo
then calculated applying equation (2). This procedure was performed for 3 samples (n = 

3) of HA and HA-SF.

(1)������� = ���� ‒�� ∙ ��
(2)�������� =  ����� ����! = �� ‒���� ‒��

2.9. Thermogravimetric analysis (TGA)

A thermogravimetric analyzer (TGA/SDTA 851 Mettler-Toledo operated using the 

STARexx software) was used to study the thermal degradation and composition of the 

materials. To study the effect of the basic manufacture conditions on SF, untreated, 

water-treated and NaOH-treated samples of SF were measured. Samples were first 

maintained at a temperature of 30 °C for 2 minutes. Then a heating ramp was applied 

from 30 °C to 120 °C with a heating rate of 10 °C/min. After that, a preheating stage 

consisting of maintaining a temperature of 120 °C for 30 minutes was applied to 

eliminate all the water content of the sample. Finally, a heating ramp was applied from 

120 °C to 720 °C with a heating rate of 10 °C/min. The procedure was performed under 

a positive nitrogen flow ( ) of 20 ml/min and was repeated for three different samples N2
(n=3) of each of the materials mentioned above. As a result, thermograms in which the 

mass loss of the sample is represented as a function of temperature were obtained. 

These curves were normalized dividing through the weight existing at the end point of 

the preheating plateau. 
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Assuming that thermal degradation proceeds in composite HA-SF samples as it 

would for both pure separate components, an estimate of mass loss in composites is 

given by equation (3), were  and  are the experimental curves of pure HA ∆mHA ∆mSF
and SF, respectively, and  is the mass fraction of SF.ωSF

 ∆mcomp = ωSF · ∆mSF + (1 - ωSF) · ∆mHA

(3)

This equation was employed to deduce a value of  from the measured curves of ωSF
. For this purpose,  given by equation (3) was least-squares ∆mHA, ∆mSF,  ∆mexp ∆mcomp

fitted to taking  as fitting parameter.∆mexp ωSF
2.10. Characterization of mechanical properties

The mechanical characterization of the materials was performed by rotational 

rheometry (Discovery Hybrid Rheometer DHR, TA Instruments) in order to study the 

effect of incorporating SF on the shear modulus (G) of the material. The samples 

(circular films 20 mm in diameter) were studied in a state of swelling in deionized water 

for 24 hours.

An oscillation test was performed with a frequency of 1 Hz and torque amplitudes 

ranging from 10 to 100 μN  with a logarithmic sweep. Since the samples’ diameter, ∙ m
20 mm, didn’t coincide with the diameter of the rheometer plates, 25 mm, the modulus 

values calculated by the equipment’s software were corrected to take this mismatch into 

account, by multiplying the software’s data with the ratio of both areas.

2.11. Schwann cell culture

Culture of rat Schwann cells (rSCs; P10301, Innoprot) was performed on 8 mm 

diameter films and on NGCs made of HA and HA-SF to study the cell adhesion and 

proliferation.

A sanitization of the materials (films and conduits) was first carried out by 

immersion in 70 % ethanol (ET00021000, Scharlab) for 2 hours, in 50 % ethanol for 

10 minutes and in 30 % ethanol for another 10 minutes. Thereafter the ethanol residues 
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were removed by performing 3 washes of 10 minutes with ultrapure water (Mili-Q®). 

The preconditioning of the materials was done by immersion in culture medium 

(Dulbecco's modified Eagle medium with a high glucose level (4.5 g/L) (DMEM; 

21331020, Life Technologies) supplemented with 10 % of fetal bovine serum (FBS; 

10270-106/A3381E, Life Technologies) and 1 % penicillin/streptomycin (P/S; 

15140122, Life Technologies)) and incubation at 37 °C for 24 hours in a humidified 

atmosphere containing 5 % CO2.

After the expansion of the rSCs in a cell culture flask, they were washed with PBS 

and a trypsin/EDTA solution (T/E; 25200-072, Life Technologies) was then added to 

break the cell-matrix and cell-cell interactions in order to remove the cells from the 

bottom of the culture bottle. After centrifugation at 1080 rpm for 5 minutes, the pellet 

was resuspended in Schwann cell culture medium (P60123, Innoprot). At this moment, 

the seeding with rSCs in passage 5 was performed with a seeding density of 10.000 

cells per film and 250.000 cells per NGC. Finally, the culture was introduced in an 

incubator at 37 °C with a humid atmosphere containing 5 % CO2 for 1 and 5 days in the 

case of films and for 1, 5 and 10 days in the case of NGCs, renewing the Schwann cell 

culture medium every 48 hours.

2.12. Fluorescent staining of the cytoskeleton

The morphologies of the cells were examined by fluorescently staining their F-actin 

cytoskeletons. Stains were performed on the cultured rSCs to carry out the labelling of 

specific proteins and observe the cellular arrangement. The following procedure was 

repeated after 1 and 5 days of culture in the case of films and after 1, 5 and 10 days in 

the case of conduits.

First, the Schwann cell medium was removed and the materials (films and conduits) 

were washed with PBS. Thereafter, cells were fixed with 4 % paraformaldehyde (PFA; 

47608, Sigma-Aldrich) for 20 minutes at room temperature. After cell fixation, 3 

washes of 10 minutes with DPBS were performed to remove PFA residues. At this 

point, the non-specific bindings were blocked and the cell membrane was permeabilized 

by the use of a blocking buffer composed of DPBS with 3 % bovine serum albumin 

(BSA; A7906, Sigma-Aldrich) and 0.1 % Tween20 (P1379, Sigma-Aldrich) for 45 

minutes at room temperature. Cells were finally stained with FITC-phalloidin (B607, 

Life Technologies) to mark the cytoskeleton actin filaments (green colour) and with 
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DAPI (D9564, Sigma-Aldrich) at a 1/5000 dilution for 10 minutes to mark the cells 

nuclei (blue colour). The imaging was performed using a confocal microscope (LEICA 

TCS SP5, Leica microsystems).

From the images obtained by confocal microscopy, and thanks to staining with 

FITC-phalloidin, the total area occupied by the cells cytoskeleton was calculated. 

ImageJ/FIJI image processing software was used for this purpose [49]. Four different 

samples (n = 4) of HA and HA-SF films and conduits were studied.

2.13. MTS cell proliferation assay

To evaluate the cell proliferation inside the conduits, MTS assays (CellTiter 96 

Aqueous One Solution Cell Proliferation Assay, Promega) were carried out on HA and 

HA-SF conduits (n = 3 each). When incorporated to the cells, the MTS was bioreduced 

by metabolically active cells at different times of cell culture (1, 5 and 10 days) in a rate 

proportional to the number of live cells. After 3 hours of incubation with the reagent, 

the medium was removed and its absorbance was measured with a Victor Multilabel 

Counter 1420 spectrophotometer (Perkin-Elmer) at 490 nm.

2.14. Biocompatibility of subcutaneously implanted scaffolds

All procedures were performed under the Spanish Regulations for animal 

experimentation (Laws 53/2013, 178/2004) with the approval of Animal Care 

Committee of the Polytechnic University of Madrid (Madrid, Spain) and according to 

the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines. In vivo 

studies were conducted in adult male CD-1 mice (35-40 g body weight; 12-15 weeks 

old; n=5 mice for each group). All mice were bred and housed in the animal facility of 

the Centre for Biomedical Technology. All animals were kept at constant temperature 

(±22°C) and humidity (~52 %) with free access to food and water in 12 hours light/dark 

cycle. 

HA and HA-SF scaffolds (1.5 x 6 mm) were subcutaneously implanted at different 

locations in each mouse to compare the bioresponse of both scaffolds in the same 

animal and reduce data dispersion due to inter-animal variability. A sanitization of the 

materials was previously carried out by immersion in 70 % ethanol for 2 hours, in 50 % 

ethanol for 10 minutes and in 30 % ethanol for another 10 minutes. Afterwards the 
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ethanol residues were removed by performing 4 washes of 10 minutes with ultrapure 

water. The preconditioning of the materials was done by immersion in PBS for 24 

hours. 

Surgeries were performed under anaesthesia with 2% Isoflurane in air. The back of 

each mouse was shaved, and the skin was disinfected with povidone-iodine. All 

surgeries were made under aseptic conditions and Vaseline was administrated to protect 

the eyes from dehydration. To implant the scaffolds, an incision of approximately 1 cm 

was made on the dorsal part of each mouse and the subcutaneous space was separated 

with scissors. The incisions were then sutured with 3-0 surgical Nylon. Buprenorphine 

(0.05-0.1 mg/kg) was administered as a pain reliever for 48 hours post-surgery and, if 

signs of pain were seen, Ibuprofen (30 mg/kg) was dispensed via oral in drinking water 

for 1 week. All animals were then carefully monitored for the following 3 days by 

animal care services. Sham-operated animals as negative controls were subjected to 

identical procedures, but no scaffolds were implanted in this case. 

At different time points after scaffolds implantation (1, 4 and 8 weeks), the mice 

were euthanized in 100 % CO2 atmosphere (5-10 min) followed by cervical dislocation. 

The dorsal skin was carefully resected and immediately immersed in PBS solution. The 

skin sections containing the scaffolds together with the surrounding tissues were excised 

and fixed in 4% paraformaldehyde for 7 days. Before cutting, skin sections were 

cryoprotected in 30% sucrose. Samples were embedded in optimal cutting temperature 

compound and serial 10 μm thick sections were cut with a Microm HM550 cryostat 

(Thermo Scientific, Kalamazoo, USA). Cryostat sections were stained with 

hematoxylin-eosin (H&E) and Masson’s trichrome. To examine cell infiltration, 

extracellular matrix deposition and neovascularisation, micrographs were captured 

through an Olympus BX51 microscope (Olympus DP70, Olympus America Inc. Center 

Valley, PA, EEUU).

2.15. Statistical analysis

Results were expressed as mean ± standard deviation (SD). The statistical 

analysis of the results was performed with the software GraphPad Prism 6 using the 

non-parametric Mann-Whitney test based on rank comparison. Statistically significant 

differences are indicated by an asterisk (*), indicating a p-value below 0.05. Four 

asterisks (****) indicate a p-value below 0.0001.
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3. Results and discussion

3.1. Effect of preparation procedures on material composition

The crosslinking reaction of HA with DVS takes place in basic pH [10]. Since an 

aqueous solution of SF was mixed with the basic HA-DVS solution during the material 

preparation process, it was necessary to assess the effect of exposure of SF to the basic 

solution. A thermogravimetric analysis (TGA) of untreated SF, water-treated SF and 

NaOH-treated SF (Fig. 1A) shows slight modifications of the temperature-dependent 

mass loss. Prolonged exposure of SF to a basic medium causes hydrolysis of peptide 

bonds [50]. Therefore, when SF is added to the solution of 5 % HA in 0.2 M NaOH, it is 

subjected to a basic medium throughout the process and it suffers the hydrolysis of a 

number of peptide bonds. Chemical alteration of silk by immersion in a NaOH solution 

accumulates to the reduction in the molecular weight induced by the degumming 

process. It was found that this reduction is larger when Na2CO3 is added to the 

degumming medium due to the resulting pH of the solution [51]. TGA data reflects an 

alteration as a difference in both curves in the range between 500 °C and 700 °C. Fig. 

1B shows the thermograms of untreated HA, NaOH-treated SF and of HA-SF films. 

The composite HA-SF materials have degradation patterns somehow intermediate, as 

expected. With these data, an estimate of the SF mass fraction in the composite sample 

can be obtained by least-square fitting the parameter in equation (3), as explained 

above. This gives a figure of = 37±5, close enough to the theoretical  = )*+, ,-. )*+, /0
37.50±0.01, confirming efficient incorporation of SF to the HA matrix during the 

manufacturing process.

The different N content of SF and HA is reflected in the EDS data in Table 1. 

Theoretically, the mass fractions of N  in HA and in HA-SF samples are 2.60 % ()1)
and 6.75 %, respectively. As shown in Table 1, the experimental mass fractions of N 

were lower than the theoretical ones. It should be noted that the elemental analysis is 

performed on very small areas of material, so a non-homogeneous distribution of SF 

could produce this difference. In addition, elemental analysis by EDS is sensitive solely 

to surface composition. Table 1 shows also the ratios between  and the mass )1
fractions of O and S. All these parameters were substantially higher in the HA-SF 

samples than in the HA samples, proving the presence of SF in the matrices.
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3.2. Stability against swelling and drying cycles

The loss of mass of HA and HA-SF films after prolonged immersion in water was 

analysed to determine the stability against solution of the SF incorporated to the HA 

matrix, and whether the presence of SF could alter the sol fraction of HA in the 

crosslinked gel. As seen on Table 1, there were no significant differences in the mass 

loss between HA and HA-SF films after being swollen in water. A similar sol fraction 

(around 30 %) obtained in both systems.

Dimensional change upon swelling was expressed by computing the ratio of 

measured diameters of discs after swelling (D) and dry (D0). Though small, the effect of 

SF is to constrain swelling and dimensional change, as expected (Table 1).

HA HA-SF

 [%]ωNexp 1.0 ± 0.1 3.8 ± 0.9

 ωN/ωO 0.04 ± 0.01 0.20 ± 0.01ωN/ωS 0.18 ± 0.03 1.2 ± 0.2

m/m0 0.72 ± 0.01 0.70 ± 0.01

 (1st swelling) D/D0 2.0 ± 0.1 1.78 ± 0.06

 (2nd swelling)D/D0 2.1 ± 0.1 1.92 ± 0.09

Q (1st swelling) 8 ± 1 5.7 ± 0.6

Q (2nd swelling) 9 ± 2 7± 1

Table 1. Physicochemical properties of HA and HA-SF films. The quantities are defined 

in the text. Mass fraction from elemental analysis ( ); swelling parameters: mass )
(m/m0), diameter (D/D0) and swelling (Q) ratios. Values are expressed as mean ± SD.

3.3. Mechanical properties of HA-SF
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The mechanical behaviour of HA and HA-SF discs was assessed in shear 

experiments, in a rotational rheometer. Fig. 2A shows the storage modulus (G', the real 

part of the complex shear modulus) obtained as a function of the oscillatory torque. G' 

quantifies the recoverable energy in a cycle, and thus measures the elasticity of the 

material. There is a clear increase of G' in samples containing SF, practically doubling 

the G' value for all the oscillation torques. This implies that the addition of SF allows 

the material to store more energy without suffering permanent deformation, indicating 

that interactions between SF and HA molecules make the HA chains less pliable to 

deformation, resulting in a greater stiffness of the material. There is a slight decrease in 

G' when the magnitude of the applied torque increases. This non-linear behaviour of the 

material is indicative of strain-softening, and may be due to the rupture of SF···HA and 

HA···HA intermolecular interactions with larger values of torque. The loss modulus (G'', 

the imaginary part of the complex shear modulus) is shown on Fig. 2B. G'' is a measure 

of the non-recoverable energy in a cycle due to different dissipative processes, and 

characterizes the viscous component of the material’s response. Large values of G'' are 

typical of soft hydrogels, and originate in internal friction due to water diffusion and 

chain slippage during deformation. Presence of SF in the material results in an increase 

of G'', especially for low torque amplitudes, where the increase is almost double. This is 

indicative of the occurrence of new, additional frictional processes in the medium, 

arising from the SF···HA interactions as relative slippage and as formation and diffusion 

of defects. When the oscillation torque exceeds 40 , the difference decreases μN ∙ m
considerably. The fact that this difference is sensibly higher at lower deformations may 

suggest that it be related to the diffusion of water molecules in both gels, which is 

altered in the presence of the protein molecules. As already commented, the stiffness of 

the HA-SF material, as characterized by G', is greater than that of HA; however, its 

viscoelasticity, as characterized by the ratio G'/G'', doesn’t change very much (see Table 

2).

HA HA-SF10 78 ∙ 9 100 78 ∙ 9 10 78 ∙ 9 100 78 ∙ 9
G'/G'' 6.8± 0.7 6± 1 7± 2 7± 2
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Table 2. G'/G'' ratios for HA and HA-SF at two different torque values,  and 10 μN ∙ m
. Values are expressed as mean ± SD.100 μN ∙ m

3.4. Adhesion and proliferation of Schwann cells on HA-SF films

Rat Schwann cells (rSCs) were seeded and cultured for 1 and 5 days on HA and HA-

SF films in order to assess differences in adherence and proliferation. For the 

visualization of the cells by confocal microscopy, a staining process was performed 

with FITC-phalloidin 488 to visualize their cytoskeletal actin fibers (green color) and 

with DAPI to visualize the cell nucleus (blue color). For the day 1, Fig. 3A and 3C 

show representative images of both studied cases in order to appreciate the differences 

in the total extent of the cytoskeleton, which is indicative of the cell adhesion 

characteristics on the material. On HA substrates (Fig. 3A) early cell adhesion was 

scarce, and the cells had a marked globular morphology, in conformity with known 

facts [52]. This is a consequence of the highly hydrophilic nature of HA: the enormous 

amounts of water molecules which surround the HA chains hinder ECM protein 

deposition on its surface and thus difficult cell adhesion. This means that cell adhesion 

on the surface of HA materials must rely primarily on physical phenomena such as the 

surface roughness, where differential accumulation of HA molecules offers more stable 

anchoring sites to ECM proteins. With the material containing SF (Fig. 3C) early cell 

adhesion was clearly greater, with the cells exhibiting a much more developed 

cytoskeleton. Several studies have shown that SF has good cell adhesion properties 

[25,53]. Although the RGD (Arg-Gly-Asp) cell binding motif as such is not present in 

the aminoacid sequence of Bombyx mori SF, an amino acid sequence has been observed 

in a non-repetitive C-terminal region with a large number of basic amino acids, 

especially arginine, which play a key role in the cell adhesion properties of SF [25]. 

Arginine residues can be recognized by transmembrane cell adhesion proteins such as 

integrins, which mediate in the interaction between cell and substrate [54,55].

In order to quantify somehow the extent of cell adhesion, the total area occupied by 

the cytoskeleton of the cells was measured (Fig. 3E), confirming the conclusions 

obtained in a qualitative way. It can be seen that early cell adhesion in HA films is very 

low, while addition of SF clearly enhances early cell adhesion.

The same features were analysed after 5 days of cell culture (Fig. 3B and 3D) in 

order to compare early with late cell adhesion characteristics. On HA films cells now 
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exhibited an elongated shape (arrows in Fig. 3B). Some cells have been able to attach to 

specific sites on the material surface due to mediated cell···HA interactions, but 

preferentially the cells entertain cell···cell bonds forming filamentary structures with the 

shape of a necklace. In contrast, cells cultured on films with SF (Fig. 3D) show larger 

fibrillary cytoskeleta spread on the material, indicative of a greater cell···surface 

interaction. When quantified (Fig. 3E), this conclusion is further reinforced.

3.5. Morphology and physicochemical properties of conduits

Longitudinal (axial) and transverse cuts of conduits show the lumina of the 

conduits and the porous walls, Fig. 4. Both in HA and HA-SF conduits the lumen 

surface is always tighter and less porous than the walls, which is important to ensure 

that the cells seeded within the lumen are retained inside the conduit and cannot 

protrude across its walls. This is due to the fact that the surface of the PCL fiber used as 

a template of the lumen is hydrophobic; thus, in its vicinity non-swollen HA chains are 

predominant [19,20]. Water crystallization and subsequent lyophilization then produce a 

thin layer of denser HA close to the lumen. The pores observed in the conduit’s wall 

matrix are produced by the phase-separation of water during the crystallization process. 

This structure ensures good diffusion of molecules across the conduit (water, oxygen, 

nutrients, factors), while efficiently retains the cells seeded inside the tube. The addition 

of SF to the HA matrix of the conduits thus didn’t modify the main features of the 

original HA conduits. Fig. 4D' shows a detail of the internal surface of the HA-SF 

conduit, where elongated structures arranged on the surface (indicated with arrows) 

could correspond to SF fibers.

The swelling behaviour of HA and HA-SF conduits was characterized by the 

change in dimensions of conduit length and lumen diameter, Table 3. There is no 

significant difference in dimensional change between HA and HA-SF samples. Though 

very small, the effect of SF seems to be to introduce some anisotropy in the conduit’s 

swelling as compared with the HA tubes: the HA-SF tubes swell somewhat less than the 

HA tubes transversally to their axis, while they swell somewhat more axially. This may 

have to do with anisotropies of the SF fibril distribution induced during the phase 

separation of crystallized water, a process which is determined by the geometry of the 

heat transfer between gel and mold during cooling.
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Table 3 shows the density and porosity of conduits made of HA and HA-SF. 

Regarding the density values, there’s a slight decrease for HA-SF conduits, but it is not 

enough to show a statistical difference. This slight decrease may be due to the 

incorporation of SF, since SF has a lower density than HA [56,57]. Regarding the 

porosity values, the slight differences are not significant. This could be expected, since 

the pores are produced by the crystallization of the large amounts of water present in the 

samples, which are insignificantly influenced by the presence of the SF molecules.

HA HA-SF

L/L0 1.41 ± 0.06 1.6 ± 0.2

 Dlumen/Dlumen0 1.21 ± 0.06 1.11 ± 0.05

Density [g cm-3] 1.22 ± 0.08 1.1 ± 0.1

Porosity [%] 79 ± 1 78 ± 5

Table 3. Physicochemical properties of HA and HA-SF conduits. Density was 

calculated by equation (1) and porosity by equation (2). Swelling ratios L/L0 (length) 

and D/D0 (diameter) are explained in the text. Values are expressed as mean ± SD.

3.6. HA-SF-Schwann cells biohybrids

Schwann cells seeded within the lumen of HA tubular scaffolds create a 

continuous cylinder which adapts to the inner channel surface, which acts as a template 

for the formation of such a cell sheath [19,20]. In HA tubes this process needs 9 days, 

and it is the result of the interplay of cell proliferation and cell···cell contacts being 

preferred over cell···material contacts, due to the highly hydrophilic nature of the HA 

matrix. To study this process in HA-SF tubes rSCs were seeded and cultured for 1, 5 

and 10 days. Staining with FITC-phalloidin and DAPI permit to visualize the cell 

cytoskeleton (green in Fig. 5) and nuclei (blue), respectively. A comparison of Fig. 5A 

and 5D shows that at day 1 there are already differences between both materials, cell 

density and spread being higher in the HA-SF tubes. At day 5 (Fig. 5B and 5E) 

considerable proliferation of SCs has occurred in both cases. However, while the 
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number of cells inside the HA conduit is still not enough to form the rSCs sheath, in the 

case of the HA-SF conduit the cell population is already organized as a cell cylinder 

(arrows in Fig. 5E indicate how this sheath folds). This indicates that the higher cell 

adhesion and proliferation obtained by the incorporation of SF to the conduits allows us 

to obtain the rSCs sheath earlier when compared with NGCs based solely on HA. After 

10 days culture the cell sheath is fully developed in both scaffolds, Fig. 5C and 5F. 

Previous studies showed that this kind of cell structure took 9 days to develop in HA 

tubular scaffolds [19,20]. We now see that the presence of SF protein in the HA matrix 

preserves the templating ability of the scaffold channel to induce the formation of the 

cell cylinder and accelerates it. Thus, while SF significantly increases cell adhesion on 

the channel surface due to the supply by SF of additional binding motifs, still cell···cell 

binding is preferred over cell···surface binding, as revealed by the easiness with which 

the cell cylinder gets unstuck from the scaffold (Fig. 5E and 5F).

A MTS assay performed after 1, 5 and 10 days of cell culture (Fig. 6) shows that the 

presence of SF significantly translates into higher cell proliferation inside the conduits, 

explaining the earlier formation of the cell sheath in the HA-SF conduits.

3.7. Biocompatibility of subcutaneously implanted biomaterials

During the study there were no cases of pain, inflammation or infection caused 

by the implantation of scaffolds. The skin sections containing the scaffolds were 

photographed at 1, 4 and 8 weeks after their implantation (Fig. 7). As can be seen in 

Fig. 7, the scaffolds are surrounded by healthy tissue since the first week. The presence 

of blood vessels near to or in direct contact with the scaffolds is also always visible 

(white arrows in Fig. 7).

Biocompatibility of subcutaneously implanted biomaterials was assessed by H&E 

and Masson’s trichrome staining of fixed scaffolds after its implantation for 1, 4 and 8 

weeks (Fig. 8 for HA scaffolds and Fig. 9 for HA-SF scaffolds). An overall view of a 

representative longitudinal section of each scaffold is shown in first place (A, E and I 

for H&E staining; C, G and K for Masson’s trichrome staining), and a magnified view 

of the perimeter of each biomaterial is shown in second place (B, F and J for H&E 

staining; D, H and L for Masson’s trichrome staining), at each post-implantation time 

point.
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One week after the scaffold implantation, a moderate immune response can be 

observed for both HA (Fig. 8 A-D) and HA-SF (Fig. 9 A-D) scaffolds. In both cases a 

fibrous capsule surrounding the scaffold is clearly visible, which is a typical reaction 

after the implantation of a biomaterial. There is also a dense population of granulocytes 

surrounding the scaffolds. Notably, some collagen structures and some cross sections of 

blood vessels and capillaries are present, although small and isolated.

After 4 weeks, a reduction of the immune response can be observed, corresponding 

to a mild foreign body reaction for both HA (Fig. 8 E-H) and HA-SF (Fig. 9 E-H) 

scaffolds. The population of granulocytes has been reduced and it has infiltrated inside 

the scaffold. Now, a greater presence of macrophages is observable, which indicates 

that the bioresorption process of the scaffold has begun. Remarkably, there is an 

increase of the number and extension of collagen structures, indicating that new 

extracellular matrix is being deposited. In addition, more cross sections of blood vessels 

and capillaries and more red blood cells are observable around and inside the scaffold. It 

seems that this process of collagen deposition and vascularization inside the scaffold is 

accelerated when SF is present, since more collagen structures and more blood vessels 

can be observed inside the scaffold.

Finally, after 8 weeks, the immune response has been drastically reduced, so both 

HA (Fig. 8 I-L) and HA-SF (Fig. 9 I-L) scaffolds have been completely resorbed. The 

fibrous capsule has disappeared and the population of granulocytes and macrophages at 

the scaffold site has almost disappeared, with the epidermis tissue surrounding the 

scaffold appearing normal. There is a clear increase of the deposition of collagen 

structures around and inside the cavities of the scaffolds, compared with week 4, and 

individual collagen fibres are clearly visible within the collagen matrix (Fig. 10). This 

increased presence of collagen structures is associated to the presence of active 

fibroblasts (spindle shaped cells in Fig. 10 B and Fig. 10 D for HA and HA-SF 

scaffolds, respectively), that can be observed infiltrating into the scaffold from the 

surrounding epidermis. Regarding the vascularization process, it is quite similar to the 

one observed after 4 weeks. Multiple cross sections of blood vessels and capillaries are 

observed around and inside the scaffold, as well as populations of isolated blood cells 

(Fig. 10). At this time there is not a notably difference between HA and HA-SF 

scaffolds regarding the collagen deposition and the vascularization.
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These results suggest that both HA and HA-SF scaffolds are biointegrated by the 

host after 8 weeks of implantation and that, furthermore, the processes of extracellular 

matrix deposition and angiogenesis are accelerated when SF is present.

Conclusions

Silk fibroin protein can be efficiently incorporated into the manufacturing 

process of HA-based tubular scaffolds intended as nerve conduits. The developed 

materials are stable over time after swelling and drying cycles. SF supplies cell-binding 

sequences which lead to higher Schwann cell adhesion and proliferation in the HA-SF 

materials when compared with the HA ones. While most physicochemical properties 

(density, porosity and swelling degree) of both materials are indistinguishable, 

manipulability and mechanical shear modulus are improved by the presence of SF. The 

HA-SF tubular scaffolds can act as templates of Schwann-cell macrocylinders, as had 

the HA scaffolds, but the process is significantly accelerated in HA-SF scaffolds. The 

biocompatibility of both HA and HA-SF scaffolds has been proven, and both 

biomaterials were accepted by the host after 8 weeks of implantation. This finding is of 

importance when thinking of the HA-SF-Schwann cells constructs as transplantable 

biohybrids, since it considerably shortens the in vitro and in vivo strategies, where 

tubulisation techniques are required for  regeneration.
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Fig. 1. A: Experimental thermograms of NaOH-treated SF (dotted line), water-treated 
(solid line) and untreated SF (dashed line). Values are expressed as mean ± SD. The 
thermograms show that SF exposed to a basic medium suffers a chemical alteration. B: 
Experimental thermograms of HA (solid line), HA-SF (dashed line) and NaOH-treated 
SF (dotted line). Values are expressed as mean ± SD. In the temperature range between 
220 °C and 370 °C there is an intermediate behavior of the HA-SF thermogram, 
indicating the presence of SF. The theoretical and the experimental mass fraction of SF 
in the HA-SF material is also indicated.

Fig. 2. Storage modulus (A) and loss modulus (B) as a function of the oscillation torque 
for HA (circles) and HA-SF (squares). Values are expressed as mean ± SD. Presence of 
SF increases both the storage and the loss moduli. 

Fig. 3. A-D: Confocal microscopy images corresponding to rSCs cultured on HA for 1 
(A) and 5 days (B) and on HA-SF for 1 (C) and 5 days (D). The cytoskeleton is shown 
in green and the nuclei are shown in blue. Scale bar = 30 μm. E: Total area of rSCs 
cytoskeleta after 1 and 5 days of culture on HA and HA-SF. Cells cultured on HA-SF 
films presented a larger cytoskeleton area when compared to HA films, indicating a 
greater cell adhesion thanks to the presence of SF.

Fig. 4. FESEM images of axial cuts and cross sections of HA (A, B and B') and HA-SF 
(C, D and D') conduits. B' and D' show a detail of the internal surface of the conduit. 
Scale bar = 500 μm (A, B, C and D) and 100 μm (B' and D'). Matrix porosity is 
produced by the lyophilization process. The inner channel surface is less porous, due to 
the hydrophobic nature of the channel template. Arrows in D' indicate the presence of 
elongated structures on the surface of HA-SF conduits that may correspond to SF fibers.

Fig. 5. Confocal microscopy images corresponding to rSCs cultured inside HA tubes for 
1 (A), 5 (B) and 10 days (C), and inside HA-SF tubes for 1 (D), 5 (E) and 10 days (F). 
The cytoskeleton is shown in green and the nuclei are shown in blue. Scale bars = 100 
μm. The presence of SF seems to accelerate the formation of the cell sheath, which is 
completely developed in the HA-SF conduits at day 5 (arrows in E showing a fold of 
this structure), while it took 10 days to fully develop in HA tubes (arrows in C).

Fig. 6. MTS proliferation assays on rSCs cultures inside HA and HA-SF conduits at 
different culture times (1, 5 and 10 days). The presence of SF increases cell 
proliferation, explaining the earlier formation of the cell sheath in the HA-SF conduits.

Fig. 7. HA and HA-SF scaffolds were implanted subcutaneously by means of two 
independent skin incision of approximately 1 cm on the back of each mouse. The skin 
sections containing the scaffolds were photographed at 1 (A and B for HA and HA-SF 
scaffolds, respectively), 4 (C and D for HA and HA-SF scaffolds, respectively) and 8 (E 
and F for HA and HA-SF scaffolds, respectively) weeks after their implantation. 
Healthy tissue can be observed surrounding the scaffolds since week 1. A high 



capillarity (white arrows) that is near to or in direct contact with the scaffolds is also 
visible since the first week. Scale bars = 2 mm.

Fig. 8. Cross sections of representative HA scaffolds stained with H&E and Masson’s 
trichrome. One week after the implantation of the scaffold, an acute moderate foreign 
body reaction can be observed, with a large infiltration of granulocyte populations (A 
and B for H&E staining, C and D for Masson’s trichrome staining). A fibrous capsule 
surrounding the scaffold is clearly visible which is a typical reaction after the 
implantation of a biomaterial. After 4 weeks, a reduction of the immune response can be 
observed, corresponding to a mild foreign body reaction (E and F for H&E staining, G 
and H for Masson’s trichrome staining). The population of granulocytes has been 
reduced and there is a greater presence of macrophages. After 8 weeks, the scaffold has 
been completely resorbed and assimilated into the native tissue (I and J for H&E 
staining, K and L for Masson’s trichrome staining). The fibrous capsule has disappeared 
and there are no granulocytes present. Now the cells present are mainly macrophages 
and active fibroblasts. Also, an increase of collagen structures inside the scaffold can be 
observed thanks to the fact that active fibroblasts have managed to invade the 
biomaterial. Many cross-sections of blood vessels are also visible after 8 weeks. Scale 
bar = 2 mm (A, C, E, G, I and K) and 500 μm (B, D, F, H, J and L).

Fig. 9. Cross sections of representative HA-SF scaffolds stained with H&E and 
Masson’s trichrome. One week after the implantation of the scaffold a fibrous capsule 
surrounding the scaffold is clearly visible, corresponding to an acute moderate foreign 
body reaction (A and B for H&E staining, C and D for Masson’s trichrome staining). 
An infiltration of granulocyte populations is also observed. After 4 weeks, a clear 
reduction of the immune response can be observed, since there is a clear presence of 
blood vessels and collagen networks inside the scaffold and the population of 
granulocytes has been reduced (E and F for H&E staining, G and H for Masson’s 
trichrome staining). After 8 weeks, the fibrous capsule has disappeared and there are no 
granulocytes present, so the scaffold has been completely resorbed and assimilated into 
the native tissue (I and J for H&E staining, K and L for Masson’s trichrome staining). 
Now the cells present are mainly macrophages and active fibroblasts. Many collagen 
structures and cross-sections of blood vessels can be observed. Scale bar = 2 mm (A, C, 
E, G, I and K) and 500 μm (B, D, F, H, J and L).

Fig. 10. Details of cross sections of representative HA and HA-SF scaffolds after 8 
weeks of implantation. A and B: HA scaffold stained with Masson’s trichrome. C and 
D: HA-SF scaffold stained with Masson’s trichrome. In these images both the collagen 
deposition and the vascularization of HA and HA-SF scaffolds after 8 weeks of 
implantation are observable. Multiple collagen fibres (blue arrows) surrounded by 
active fibroblasts (green arrows) and cross-sections of blood vessels (red arrows) within 
the scaffold confirm the deposition of new extracellular matrix and the process of 
angiogenesis, respectively. The scaffold walls are indicated by black arrows. Scale bar = 
200 μm (A, C) and 100 μm (B, D).
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