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Abstract: Although various algorithms have widely been studied for bankruptcy and credit risk
prediction, conclusions regarding the best performing method are divergent when using different
performance assessment metrics. As a solution to this problem, the present paper suggests the employment
of two well-known multiple-criteria decision-making (MCDM) techniques by integrating their preference
scores, which can constitute a valuable tool for decision-makers and analysts to choose the prediction
model(s) more properly. Thus, selection of the most suitable algorithm will be designed as an MCDM
problem that consists of a finite number of performance metrics (criteria) and a finite number of classifiers
(alternatives). An experimental study will be performed to provide a more comprehensive assessment
regarding the behavior of ten classifiers over credit data evaluated with seven different measures, whereas
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking
Organization METHod for Enrichment of Evaluations (PROMETHEE) techniques will be applied to rank
the classifiers. The results demonstrate that evaluating the performance with a unique measure may lead
to wrong conclusions, while the MCDM methods may give rise to a more consistent analysis. Furthermore,
the use of MCDM methods allows the analysts to weight the significance of each performance metric
based on the intrinsic characteristics of a given credit granting decision problem.

Keywords: multi-criteria decision-making; credit granting; prediction; TOPSIS; PROMETHEE

1. Introduction

The 2007–2008 global financial crisis and the recommendations on banking regulations have attracted
the growing interest of institutions in credit and operational risk management, which has become a key
determinant of success because incorrect decisions may lead to heavy losses. One major difficulty for
financial institutions relates to credit granting and, more specifically, how to discriminate between default
and non-default applicants.

Conventional methods for credit risk management have usually been based on subjective decisions
made by analysts, using past experiences and well-established guidelines, but the increasing needs
of companies and the huge amounts of financial data now available have motivated the design and
application of more formal and precise techniques to make credit granting decisions more efficiently. Thus,
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the use of statistical and operations research methods depicted a first step towards this objective [1–3].
However, some assumptions of the statistical models are often difficult to meet in practice, which makes
these methods theoretically null and void for databases with a limited number of samples [4]. In more
recent years, important efforts have been addressed to exploit a variety of artificial intelligence and machine
learning techniques, ranging from biologically inspired algorithms [5–8] to ensembles of classifiers [9–12],
cluster analysis [13–16], and support vector machines [17–19], to shape solutions for both bankruptcy and
credit risk prediction. An interesting advantage of these methods over the statistical models is that those
automatically derive information from the past observations available in a data set, without assuming any
specific prior knowledge.

From a practical viewpoint, credit granting decision can be expressed in the form of a two-class
prediction problem in which a new case has to be assigned to one of the predetermined classes according
to a set of input or explanatory attributes. These attributes or variables gather a diversity of information
that summarizes both socio-demographic features and financial status of the credit applicants, whereas
the classifier gives an output based on their financial solvency. Generally, a credit risk prediction system
attempts to assign a credit applicant to either non-defaulter or defaulter. Let us assume a set of n
past observations S = {(x1, y1), . . . , (xn, yn)}, where each instance xi is described by D input attributes,
xi1, xi2, . . . xiD, and yi is the class (defaulter/non-defaulter), then the objective of a prediction model δ is to
estimate the value y for a new sample x, that is, δ(x) = y.

A considerable number of papers whose purpose has been to conduct a comparison of credit
risk prediction algorithms are available in the literature, but their conclusions are often contradictory
because of the criteria used for the evaluation. For instance, Desai et al. [20] showed that linear models
perform worse than artificial neural networks when using the proportion of defaulters correctly predicted,
and logistic regression achieves the highest proportion of non-defaulters and defaulters correctly predicted.
Bensic et al. [6] noticed that the probabilistic neural networks are superior to learning vector quantization,
classification and regression tree (CART), logistic regression, multilayer perceptron, and radial basis
function based on the prediction accuracy. Yobas et al. [21] concluded that linear discriminant analysis
is superior to decision trees, genetic algorithms, and neural networks when using the percentage of
applicants correctly classified. Wang [12] showed that bagging and stacking with a decision tree as base
classifier were the best performing algorithms when using type-I error, type-II error, and overall accuracy.
Baesens et al. [17] found that the neural networks are superior to other methods based on the area under
the receiver operating characteristic curve (ROC) curve, while the support vector machines perform the
best in terms of overall accuracy. Bhaduri [22] tested some artificial immune systems against well-known
classifiers on accuracy for two benchmark credit scoring data sets. Antonakis and Sfakianakis [23]
compared linear discriminant analysis, decision trees, k-nearest neighbors decision rule, multilayer
perceptron, naïve Bayes classifier, and logistic regression, pointing out that the k-nearest neighbors
model performed the best in terms of accuracy, and the multilayer perceptron achieved the highest rate
based on the Gini coefficient.

The contradictory conclusions of those studies and some other similar works suggest that no classifier
can be considered the best on any performance evaluation metric. However, model selection is a subject
of great interest for credit risk management, which advises the need of using more influential techniques
for assessing the performance of prediction methods. Taking the limitations of individual performance
scores into account, this paper suggests the synergetic application of MCDM models to provide a more
comprehensive evaluation of credit granting decision systems. Thus, the TOPSIS and PROMETHEE
methods rank a set of prediction models using a single scalar score that will be derived from aggregating
their preference rates, showing that this technique allows for more consistent conclusions regarding the
effectiveness of credit risk prediction models than the use of individual performance measures.
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Henceforward, the paper is organized as follows. Section 2 offers an overview of MCDM and describes
the two methods used here. Section 3 presents the details of the experimental design, with the description of
the databases and the performance measures. Section 4 discusses the results of the experiments conducted.
Section 5 summarizes the main conclusions that can be drawn from the present work and outlines possible
avenues of further research.

2. Multiple-Criteria Decision-Making

Over the past several years, MCDM models have acquired a great relevance because this paradigm
presents a number of features that make it especially suitable for analyzing hard real-life problems. One of
the fundamental features of the MCDM methodologies refers to the fact that most of them can cope
with both quantitative and qualitative data, along with the subjective opinions and/or the preferences of
experts [24]. From a theoretical viewpoint, MCDM is a powerful component of operations research that
encompasses some analytical tools and techniques to appraise the strengths and weaknesses of a set of
M competing alternatives A = {a1, a2, . . . , aM} evaluated on a family of N (usually conflicting) criteria
of different nature C = {c1, c2, . . . , cN}, with the objective of making an accurate decision regarding the
preference judgment of the decision-maker [25,26]. Thus, an MCDM problem can be generally represented
by means of a (M× N) decision matrix as that shown in Table 1.

Table 1. Decision matrix for a general MCDM problem (zij denotes the value of alternative ai assessed
by criterion cj).

c1 c2 · · · cN

a1 z11 z12 · · · z1N
a2 z21 z22 · · · z2N
...

...
...

. . .
...

aM zM1 zM2 · · · zMN

Choosing the best alternative requires combining partial evaluations of each alternative into an
aggregated value by using an aggregation operator Ψ : A → R that relates a global value Ψ(ai) to
alternative ai. This aggregation operator depends on the preferences of the analyst, which can be expressed
regarding the relevance of criteria through weights w = {w1, w2, . . . , wN} ∈ [0, 1]N . Thus, the aggregation
operator can be defined as

Ψ(ai) =
N

∑
j=1

wja
j
i , (1)

where aj
i are the partial evaluations of the alternative ai.

MCDM methods can be categorized into two general groups [27]: the multi-objective decision-making
approach assumes a theoretically infinite (or a very large) number of alternatives, whereas the multi-attribute
decision-making requires the assessment of a finite number of alternatives, which corresponds to the most
common situation in financial decision-making problems (e.g., credit approval applications).

A rather different taxonomy identifies four categories [28]: (i) multi-objective mathematical
programming, (ii) multi-attribute utility/value theory, (iii) outranking relations, and (iv) preference
disaggregation analysis. As already pointed out, the present work concentrates on the outranking relations
approach because it is recognized as one of the most effective ways to face the complexity of business and
financial decision-making problems. In addition, unlike other MCDM techniques, the outranking relations
methods are able to deal with any kind of problematics.

Performance assessment of classification algorithms requires dealing with various complementary
criteria of interest, typically weighting the gains of each criterion against the others. Taking this into account,
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choosing the best performing prediction model can be considered as a particular MCDM problem, where M
represents the number of prediction models (alternatives) and N expresses the number of performance
assessment measures (criteria). In the framework of credit risk analysis, the MCDM techniques ought to
allow analysts and decision-makers to pick up the algorithm that yields a closely optimal compromise
between the evaluation criteria.

Well-known examples of the numerous MCDM algorithms that have been presented in the literature
are TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), which is a representative
of the multi-attribute value theory, and PROMETHEE (Preference Ranking Organization METHod for
Enrichment of Evaluations), which belongs to the outranking techniques. Apart from their conceptual
and implementational simplicity, both of these methods present some interesting benefits over other
models [29]; for instance, they provide a single result in the form of a scalar value that constitutes the logic
of human decision.

2.1. The TOPSIS Method

The basis of TOPSIS is to rank the alternatives or to discover the best alternative by simultaneously
minimizing the distance to the positive ideal solution and maximizing the distance from the negative ideal
solution [30]. The positive ideal solution (a+) is shaped as a mixture of the best performance values of
any alternative for each criterion, whilst the negative ideal solution (a−) corresponds to the mixture of the
worst performance values.

Afterwards, the procedure follows by computing the separations of each alternative ai from the
positive and negative ideal solutions, d+i and d−i , using the N-dimensional Euclidean distance. Finally,
the relative proximity to the ideal solution is computed as Ri = d−i /(d+i + d−i ). Note that Ri ∈ [0, 1]
because d+i ≥ 0 and d−i ≥ 0. Then, the alternatives can be ranked using this index in decreasing order,
without the need for criterion preferences to be independent [31].

Let us assume an MCDM problem with M alternatives and N criteria represented as a decision
matrix (Table 1); then, the TOPSIS method can be defined following the steps of Algorithm 1. It is worth
noting that the alternatives are completely ranked based on their global utilities and, on the other hand,
the criterion preferences are not required to be independent [30].

Algorithm 1 TOPSIS

1: Compute the normalized decision matrix, where the normalized value nij of the original score zij is
computed as

nij =
zij√
M
∑

i=1
z2

ij

i = 1, . . . , M j = 1, . . . , N.

2: Compute the weighted normalized values vij = wjzij, where wj denotes the weight of the criterion cj

and ∑N
j=1 wj = 1

3: Compute the positive and negative ideal solutions

a+ = {v+1 , . . . , v+N} = {(max
j

vij|i ∈ I), (min
j

vij|i ∈ J)},

a− = {v−1 , . . . , v−N} = {(min
j

vij|i ∈ I), (max
j

vij|i ∈ J)},

where I and J are associated with benefit and cost criteria, respectively

4: Compute the separation of each alternative from the positive and negative ideal solutions

d+j =

√
N
∑

j=1
(vij − v+j )

2 and d−j =

√
N
∑

j=1
(vij − v−j )

2 i = 1, . . . , M.
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Algorithm 1 Cont.

5: Compute the relative proximity to the ideal solution. The relative closeness of the alternative ai with

respect to a+ is defined as R+
i =

d−i
d+i +d−i

i = 1, . . . , M

6: Rank alternatives based on the decreasing order of R+
i

2.2. The PROMETHEE Method

The PROMETHEE methodology [32] intends to select the best alternatives (PROMETHEE I) or to sort
the alternatives based on their values over different criteria (PROMETHEE II). As an outranking relations
technique, the PROMETHEE method quantifies a ranking through the pairwise comparisons (differences)
of alternatives (ai, aj) to determine the preference index π(ai, aj) ∈ [0, 1], which reflects how ai is preferred
to aj on criterion ck. The calculation of the preference index is based on the specification of the normalized
weights wk and the preference functions Pk(ai, aj) for each criterion ck. The idea of this index is similar to
that of the global concordance index in the ELECTRE methodology: the higher the preference index is,
the higher the strength of the preference for ai over aj.

On the other hand, the PROMETHEE methodology also makes use of the concepts of positive and
negative preference flows [33]: the positive preference flow φ+(ai) evaluates how a given alternative ai
outranks the remaining alternatives, and the negative preference flow φ−(ai) measures how an alternative
ai is outranked by all the other alternatives. Finally, the global net preference flow, which is calculated as
φ(ai) = φ+(ai)− φ−(ai), indicates how an alternative ai is outranking (φ(ai) > 0) or outranked (φ(ai) < 0)
by all the other alternatives on all the evaluation criteria. As a result, the alternative ai with the maximum
global net preference flow will be deemed to be the best.

The general PROMETHEE methodology can be easily implemented in the form of a stepwise
procedure as defined in Algorithm 2.

Algorithm 2 PROMETHEE

1: For each pair (ai, aj) of a finite set of alternatives A = {a1, a2, . . . , aM}, compute aggregated preference
indices

π(ai, aj) =
N
∑

k=1
Pk(ai, aj)wk and π(aj, ai) =

N
∑

k=1
Pk(aj, ai)wk

2: Compute the positive and negative preference flows

φ+(ai) =
1

M−1 ∑
a∈A

π(ai, A) and φ−(ai) =
1

M−1 ∑
a∈A

π(A, ai)

3: Compute the net preference flow for each alternative as φ(ai) = φ+(ai)− φ−(ai)

The global net preference flow φ(ai) indicates how an alternative ai is outranking (φ(ai) > 0)
or outranked (φ(ai) < 0) by all the remaining alternatives on all the evaluation criteria. As a result,
the alternative ai with the maximum global net preference flow will be identified as the best one.

3. Experiments

A series of experiments were conducted to assess the performance of a pool of classifiers through
the TOPSIS and PROMETHEE tools for some credit granting decision problems, with the purpose of
demonstrating that the synergetic application of MCDM models makes better decisions than using a
single measure to determine the best performing prediction algorithm. The TOPSIS and PROMETHEE
techniques were run with the Sanna open source software [34], whereas the classifiers were tested in the
WEKA environment [35] using their default parameters (see Table 2):
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• Artificial neural networks: Bayesian belief network (Bnet), multilayer perceptron (MLP), and radial
basis function (RBF);

• Statistical models: naïve Bayes classifier (NBC), logistic regression (logR), support vector machine
(SVM) and nearest neighbor classifier (1NN);

• Rule-based classifier: RIPPER;
• Decision trees: C4.5 and random forest (randF).

Table 2. Parameter values of the classifiers.

Model Parameters

Bnet Initial count for estimating the conditional probability tables of the Bayes network = 0.5;
Naive Bayes network used as the initial structure; K2 hill climbing algorithm for structure
learning; Bayesian Dirichlet score to evaluate the structure learned

MLP Broyden–Fletcher–Goldfarb–Shanno optimization algorithm; Sigmoid transfer function;
Learning rate = 0.3; Momentum = 0.2; Maximum number of training epochs = 500;
Neurons in the hidden layer = 2

RBF Normalized Gaussian RBF; Center vectors of the functions determined using K-means
clustering

logR Multinomial logistic regression; Quasi-Newton optimization method; Ridge value in the
log-likelihood = 1.0 × 10−8

SVM Linear kernel; Soft margin constant = 1.0: Tolerance = 0.001; Round-off error
ε = 1.0 × 10−12; Sequential minimal optimization algorithm

1NN Euclidean distance
RIPPER Number of folds = 3 (one fold is used for pruning, the rest for growing the rules);

Minimum total weight of the instances in a rule = 2.0; Number of optimization runs = 2
C4.5 Number of folds = 3 (one fold is used for pruning, the rest for growing the tree); Minimum

number of instances per leaf = 2; Error-based pruning; Pruning confidence factor = 0.25
randF Number of trees = 100; Number of randomly chosen attributes at each node = log2(D) + 1

3.1. Data Sets

Table 3 reports some characteristics of the six real-life credit data sets used for the experiments,
including the number of input or explanatory variables, the total number of instances and the number of
instances in each class, and the imbalance ratio (IR) calculated as the ratio of the number of instances in
the minority class to the number of instances in the majority class.

The Australian and German databases were obtained from the UCI Machine Learning Database
Repository (http://archive.ics.uci.edu/ml/). The Australian database contains 690 samples of credit card
applicants, 307 of which were labeled as solvent and 383 as unable to pay their debts; each sample is
described by 14 input variables. The German credit database represents a credit screening application,
comprising cases on 24 explanatory variables for a total of 1000 applicants: 700 were considered as
creditworthy and 300 were labeled as non-creditworthy.

The Iranian database is an adaptation of a customers’ data set of a small private bank [36]. It contains
950 observations tagged as non-defaulters and 50 as defaulters, where each sample is formed by 27 explanatory
variables. The Polish database consists of financial information regarding 120 firms registered over a 2-year
period [37], with a total of 112 bankrupt and 128 non-bankrupt accounts. The Thomas database [38]
comprises the data of 1225 applicants for a credit product, each one being shaped by 12 input attributes.
Finally, the SabiSPQ database consists of 944 instances and 16 explanatory variables that describe firms
whose accounts are established in the Spanish Mercantile Registry [39]. This constitutes a fully balanced
data set with 472 healthy companies and 472 companies that failed during the period 2000–2003.

http://archive.ics.uci.edu/ml/
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Table 3. Overview of the databases used in the experiments.

#Variables #Positive #Negative #Instances IR

Australian 14 307 383 600 0.80
sabiSPQ 16 472 472 944 1.00
Polish 30 128 112 240 1.14
German 24 700 300 1000 2.33
Thomas 12 902 323 1225 2.79
Iranian 27 950 50 1000 19.00

3.2. Performance Assessment Measures

Standard performance assessment measures for credit risk prediction include accuracy, area under
the ROC curve, Kolmogorov–Smirnov statistic, geometric mean of accuracies, root mean squared error,
Gini coefficient, and F-measure [38,40,41], among many others. For a problem with two classes, as is the
case of the data set used in our experiments, most of these measures are easily obtained from a (2× 2)
confusion matrix as that shown in Table 4, where each entry represents the amount of correct (true-positive,
true-negative) or wrong (false-positive, false-negative) decisions (classifications or predictions).

Table 4. Confusion matrix for a two-class problem.

Predicted Class

True class True-positive (TP) False-negative (FN)
False-positive (FP) True-negative (TN)

Numerous prediction systems typically employ the accuracy (Acc) rate to assess the performance of
the classifiers, thus describing the proportion of correct classifications on a given data set. Nevertheless,
practical and theoretical evidences demonstrate that the accuracy can be heavily biased regarding
imbalance in class distribution and proportions of correct and incorrect classifications. As financial
data are commonly strongly skewed, the area under the ROC curve (AUC) has been proposed as a suitable
measure without regard to class distribution or misclassification costs [17,42]. For all practical purposes,
the AUC for a two-class problem can be calculated as the arithmetic average of sensitivity (or true-positive
rate, TP-rate) and specificity (or true-negative rate, TN-rate) [43]:

AUC =
sensitivity + speci f icity

2
, (2)

where the sensitivity is the proportion of non-defaulters correctly classified, and the specificity denotes the
proportion of defaulters classified as defaulters.

Other powerful measures based on simple indices are the geometric mean of accuracies (G-mean)
and the F-measure. The geometric mean attempts to maximize the accuracy on each individual class while
keeping a small difference between sensitivity and specificity. This metric penalizes those classifiers that
yield large differences between true-positive and true-negative rates. It is worth pointing out that the
geometric mean is closely linked to the distance to perfect classification in the ROC space:

G-mean =
√

sensitivity · speci f icity. (3)
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On the other hand, the F-measure is defined as follows:

F-measure =
2 · sensitivity · precision
precision + sensitivity

, (4)

where precision = TP/(TP + FP).
Finally, the root mean squared error (RMSE) corresponds to a standard performance evaluation metric

widely-used in a variety of classification problems. Let p1, p2, . . . , pm and a1, a2, . . . , am be the predicted
and actual outputs on the test samples, respectively. The root mean squared error allows for measuring
the difference between the predicted outputs and the true labels, estimating the deviation of the prediction
model from the target value [44]:

RMSE =

√
1
m

m

∑
i=1

(pi − ai)2. (5)

3.3. Experimental Protocol

As databases are small in size, the performance of the classifiers were evaluated with the 5-fold
cross-validation method because this seems to be a trustworthy strategy. Each data set was randomly
partitioned into five stratified subsets of equal size: for each round, four blocks were used for training
a learning algorithm and the remaining one for testing purposes (see Figure 1). In addition, ten repetitions
were run for each trial in order to achieve more stable and reliable outcomes. Finally, the prediction results
of all classifiers on the seven criteria were averaged across the 50 runs and then analyzed with the TOPSIS
and PROMETHEE methods.

Figure 1. Diagram of the 5-fold cross-validation method (blocks in blue represent the testing folds at each step).

4. Results

Tables 5–10 provide the results of each classifier on the seven performance assessment criteria
(accuracy, root mean squared error, true-positive and true-negative rates, AUC, geometric mean,
and F-measure) for each database. On the other hand, Table 11 reports the mean value across all data sets
generated by each prediction model on each metric, which is here used to illustrate the performance of that
classifier. For each performance metric, the best performing algorithm has been highlighted in boldface.

As can be observed in Tables 5–10, no algorithm achieved the best performance across all criteria.
For instance, when analyzing the results over the Australian database, logistic regression, RIPPER, and
random forest were the prediction methods with the highest accuracy rate and F-measure, whereas the
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naïve Bayes classifier was the best performing algorithm in terms of TN-rate. Even a more obvious example
is for the results over the Thomas database: the Bayesian belief network, logistic regression, MLP, and
SVM achieved the highest rates when using the accuracy, the naïve Bayes classifier was the model with the
highest true-negative rate and geometric mean, and MLP and random forest were the best algorithms on
the F-measure.

These results show that there was a significant discrepancy regarding the set of criteria. Consequently,
different conclusions about the best performing method could be drawn based on the performance
assessment metric used. These conflicting outcomes depict a realistic scenario in which a pool of analysts
or decision-makers might make very different decisions depending on the criteria used to measure the
performance of a credit granting decision system. In our opinion, this reflects an illustrative example of
real-life applications where the MCDM techniques should be taken into consideration for making more
consistent, trustworthy decisions.

Table 5. Performance results for the Australian database.

Acc RMSE TP-Rate TN-Rate AUC TN-Rate F-Measure

Bnet 0.85 0.34 0.81 0.89 0.91 0.85 0.85
NBC 0.77 0.44 0.59 0.92 0.89 0.74 0.76
logR 0.87 0.32 0.88 0.86 0.93 0.87 0.87
MLP 0.83 0.38 0.82 0.84 0.90 0.83 0.83
SVM 0.86 0.38 0.93 0.80 0.86 0.86 0.86
RBF 0.81 0.36 0.73 0.89 0.90 0.81 0.81
1NN 0.81 0.43 0.80 0.83 0.81 0.81 0.82
RIPPER 0.87 0.34 0.84 0.89 0.88 0.86 0.87
C4.5 0.86 0.36 0.83 0.88 0.86 0.85 0.86
randF 0.87 0.31 0.87 0.87 0.93 0.87 0.87

Table 6. Performance results for the sabiSPQ database.

Acc RMSE TP-Rate TN-Rate AUC G-Mean F-Measure

Bnet 0.89 0.33 0.80 0.98 0.93 0.89 0.89
NBC 0.87 0.36 0.77 0.98 0.90 0.87 0.87
logR 0.89 0.30 0.85 0.94 0.93 0.89 0.89
MLP 0.85 0.34 0.78 0.92 0.90 0.85 0.85
SVM 0.78 0.47 0.75 0.81 0.78 0.78 0.78
RBF 0.78 0.39 0.58 0.99 0.83 0.76 0.78
1NN 0.77 0.48 0.75 0.79 0.77 0.77 0.77
RIPPER 0.89 0.30 0.81 0.97 0.92 0.89 0.89
C4.5 0.87 0.33 0.84 0.91 0.90 0.87 0.87
randF 0.90 0.27 0.85 0.95 0.95 0.90 0.90

Table 7. Performance results for the Polish database.

Acc RMSE TP-rate TN-rate AUC G-mean F-measure

Bnet 0.73 0.49 0.71 0.76 0.82 0.73 0.73
NBC 0.69 0.53 0.89 0.46 0.75 0.64 0.67
logR 0.74 0.44 0.76 0.71 0.81 0.73 0.74
MLP 0.74 0.45 0.81 0.65 0.81 0.73 0.74
SVM 0.71 0.54 0.67 0.75 0.71 0.71 0.71
RBF 0.71 0.43 0.80 0.62 0.80 0.70 0.71
1NN 0.75 0.50 0.77 0.73 0.75 0.75 0.75
RIPPER 0.74 0.44 0.76 0.71 0.77 0.73 0.74
C4.5 0.69 0.49 0.67 0.71 0.71 0.69 0.69
randF 0.79 0.39 0.83 0.74 0.86 0.78 0.79
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Table 8. Performance results for the German database.

Acc RMSE TP-rate TN-rate AUC G-mean F-measure

Bnet 0.72 0.43 0.85 0.42 0.74 0.60 0.71
NBC 0.76 0.42 0.86 0.51 0.79 0.66 0.75
logR 0.77 0.40 0.89 0.50 0.79 0.67 0.76
MLP 0.71 0.51 0.79 0.53 0.74 0.65 0.71
SVM 0.77 0.48 0.90 0.47 0.68 0.65 0.76
RBF 0.73 0.42 0.84 0.48 0.74 0.63 0.72
1NN 0.67 0.58 0.76 0.45 0.61 0.58 0.67
RIPPER 0.73 0.44 0.87 0.40 0.64 0.59 0.71
C4.5 0.72 0.48 0.83 0.46 0.67 0.62 0.72
randF 0.76 0.40 0.91 0.41 0.78 0.61 0.74

Table 9. Performance results for the Thomas database.

Acc RMSE TP-Rate TN-Rate AUC G-Mean F-Measure

Bnet 0.74 0.44 0.97 0.10 0.60 0.31 0.67
NBC 0.63 0.51 0.69 0.46 0.60 0.56 0.65
logR 0.74 0.43 0.97 0.10 0.63 0.31 0.66
MLP 0.74 0.44 0.93 0.20 0.70 0.43 0.69
SVM 0.74 0.52 1.00 0.00 0.50 0.00 0.63
RBF 0.73 0.44 0.98 0.02 0.59 0.14 0.63
1NN 0.66 0.59 0.77 0.34 0.56 0.52 0.66
RIPPER 0.73 0.44 0.94 0.15 0.55 0.38 0.68
C4.5 0.72 0.44 0.94 0.13 0.57 0.35 0.67
randF 0.73 0.44 0.91 0.22 0.64 0.45 0.69

Table 10. Performance results for the Iranian database.

Acc RMSE TP-Rate TN-Rate AUC G-Mean F-Measure

Bnet 0.95 0.23 0.99 0.02 0.72 0.14 0.93
NBC 0.24 0.87 0.20 0.90 0.60 0.42 0.32
logR 0.94 0.23 0.99 0.02 0.71 0.14 0.94
MLP 0.93 0.24 0.97 0.20 0.70 0.44 0.93
SVM 0.95 0.22 1.00 0.00 0.50 0.00 0.93
RBF 0.95 0.22 1.00 0.00 0.61 0.00 0.93
1NN 0.93 0.27 0.96 0.32 0.64 0.55 0.93
RIPPER 0.94 0.23 0.99 0.04 0.52 0.20 0.92
C4.5 0.94 0.23 0.99 0.10 0.57 0.31 0.93
randF 0.95 0.21 0.99 0.16 0.79 0.40 0.94

The conflicting points related to the employment of single performance assessment criteria led to carry
out some experiments with the MCDM methods included in this study. Taking into account that identifying
relative weights of criterion importance is nontrivial, one can use either subjective weighting methods or
objective weighting methods [45]. While the subjective methods determine weights solely according to the
decision-maker’s judgments/preferences, the objective methods define weights by solving mathematical
models automatically without any consideration of the decision maker’s preferences. In general, objective
weighting is applied to situations where reliable subjective weights cannot be obtained [46].

In this work, the weights used by the TOPSIS and PROMETHEE methods were set in line with
the relative relevance of the performance evaluation measures for credit granting decision problems.
For instance, AUC, G-mean, and F-measure have traditionally been deemed as significant performance
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metrics for this application domain because they choose optimal methods independently of the class
distribution and the misclassification costs [44,47]. Keeping these questions in mind, elicitation of weights
was based on the subjective procedure of the fuzzy approach proposed by Wang and Lee [45] and then
the weights were normalized in the interval [0, 1] (see the last row of Table 11).

Table 11. Performance results averaged across the six experimental databases.

Acc RMSE TP-Rate TN-Rate AUC G-Mean F-Measure

Bnet 0.81 0.38 0.86 0.53 0.79 0.59 0.80
NBC 0.66 0.52 0.67 0.71 0.76 0.65 0.67
logR 0.83 0.35 0.89 0.52 0.80 0.60 0.81
MLP 0.80 0.39 0.85 0.56 0.79 0.66 0.79
SVM 0.80 0.44 0.88 0.47 0.67 0.50 0.78
RBF 0.79 0.38 0.82 0.50 0.75 0.51 0.76
1NN 0.77 0.48 0.80 0.58 0.69 0.66 0.77
RIPPER 0.82 0.37 0.87 0.53 0.71 0.61 0.80
C4.5 0.80 0.39 0.85 0.53 0.71 0.62 0.79
randF 0.83 0.34 0.89 0.56 0.83 0.67 0.82

Weight 0.02762 0.20048 0.08524 0.04286 0.21954 0.21571 0.20855

Table 12 reports the ranks and the preference values of the prediction models given by TOPSIS
and PROMETHEE. Note that the higher the ranking, the better the classifier. The analysis of the ranks
produced by these two MCDM techniques reveals that the random forest and logistic regression algorithms
were the best performing algorithms since both TOPSIS and PROMETHEE agreed with their decisions.
Paradoxically, despite the conclusions drawn by some authors [17], the SVM appeared as one of the
worst alternatives for credit granting decision problems according to the ranks produced by TOPSIS and
PROMETHEE; this situation could be explained by the employment of unsuitable performance assessment
criteria, while the MCDM techniques could correct such misleading results. In addition, the naïve Bayes
classifier and the 1NN decision rule were among the worst ranked classification algorithms.

Table 12. Preference rankings given by TOPSIS and PROMETHEE.

TOPSIS PROMETHEE

Alternative Rank R+
i Rank φ(ai)

Bnet (4) 0.76538 (5) 0.05905
NBC (10) 0.17492 (8) −0.38273
logR (2) 0.87375 (2) 0.48095
MLP (6) 0.70375 (3) 0.18736
SVM (8) 0.44787 (10) −0.60858
RBF (5) 0.71332 (9) −0.38358
1NN (9) 0.31014 (7) −0.32921
RIPPER (3) 0.80342 (4) 0.13517
C4.5 (7) 0.70363 (6) −0.13937
randF (1) 0.96282 (1) 0.98095

Despite the ranks achieved with TOPSIS and PROMETHEE being rather similar to one another,
a composite ranking score was further defined as the mean of the preference values of both techniques for
each prediction method i. This composite score allows for combining the preference rates R+

i and φ(ai) of
an alternative (prediction model) i in a fair manner as follows:
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score(i) =
R+

i + φ(ai)

2
. (6)

Furthermore, this score can be easily generalized to L different MCDM methods as:

Generalized score(i) =
1
L ∑

j∈L
valuej, (7)

where valuej denotes the preference value given by the method j.
Figure 2 displays a graphical representation of the composite scores, which is a simple way of

visualizing the rationale of the decisions made. It clearly shows that both random forest and logistic
regression are superior to all the other classifiers and, on the other hand, the poor performance achieved
by the naïve Bayes, SVM and 1NN algorithms is also apparent.

Figure 2. Composite ranking scores.

5. Conclusions

The present analysis supports the synergetic application of MCDM techniques for the performance
assessment of credit granting decision systems. Through a series of experiments, it has been shown that
the employment of an individual metric may give rise to inconsistent conclusions about what is the best
prediction model for a given problem, which would lead to selecting an inappropriate method with not
the most reliable results.

TOPSIS and PROMETHEE, which are two well-known MCDM techniques, have been tested in
the experiments applying ten prediction models (alternatives) to six real-world bankruptcy and credit
data sets and using seven performance evaluation criteria. The use of single performance metrics have
designated different classifiers as the most suitable alternatives. These results suggest that credit granting
decision corresponds to a real-world application where the MCDM techniques are especially useful to
consistently assess a pool of classifiers and help decision-makers to choose the most beneficial model.
In our experiments, both TOPSIS and PROMETHEE have determined that random forest and logistic
regression are the best performing prediction methods on most of the performance evaluation measures.
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Furthermore, we have also introduced a plain score that can be easily expressed as a linear combination
of the preference values given by a number of MCDM methods. The most important advantages of this
simple score are two-fold: (i) it converts the individual preference values of the MCDM models into a single
scalar, thus allowing for making more trustworthy decisions; and (ii) it can be graphically represented for
a better understanding of the decisions made.

In the experiments, we have tested 10 classification models using their default parameter values
given in WEKA. It is known that some of these classifiers can yield widely different results depending
on the value of their parameters (e.g., the kernel function used in SVM, or the number of decision trees
in a random forest). As future work, a more exhaustive analysis of the optimal parameter values for the
classification problem here addressed should be performed.
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