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1 Introduction

Functional data analysis dealing with random curves has attained a great deal of
attention in a wide range of scientific fields. For instance, excellent works on infinite-
dimensional data, such as curves, images, and surfaces can be found in textbooks
and papers such as Ramsay and Silverman (2002), Ramsay and Silverman (2005),
Ferraty and et al. (2006) or Cardot et al. (2007). Moreover, we can find a wealth of
papers dealing with functional random effect models. In this line, Abramovich and
Angelini (2006) and Krafty et al. (2011) developed a functional random intercept
model, while Greven et al. (2010) used a functional random effects model (with
intercept and slope) for longitudinal random functions. In their papers, they used
functional principal component tools and a regression model to estimate the covariance
functions. However, these standard functional data techniques are often based on the
condition that the functional observations are independent, which is not realistic in
many contexts.

Furthermore, in recent years, many scientific studies have collected functional data
that exhibit correlation structures amenable to explicit modeling. Such structures may
arise from a longitudinal study design (e.g. Morris and Carroll (2006); Greven et al.
(2010)), crossed designs (e.g. Aston et al. (2010)), or spatial sampling of curves (e.g.
Delicado et al. (2010); Giraldo et al. (2010); Giraldo et al. (2011); Gromenko et al.
(2012); Nerini et al. (2010); Staicu et al. (2010)).

In the same line, Bosq (2000) provided a comprehensive introduction to the theory
of functional time series. The introduction contains facts from the theory of probability
in Hilbert and Banach spaces and also some basic theory of autoregressive and linear
processes in these spaces. One of the basic works on functional time series is to split
the time record into natural intervals and use the curve in each interval as a whole
observed unit (see, for example, Antoniadis et al. (2006)). In a related work, Horvath
et al. (2010) considered the change point in the covariance operator of the functional
autoregressive process. Alternatively, we find some relevant references dealing with
regression models for dependent functional data that worth mentioning. Morris and
Carroll (2006) proposed wavelet-based functional mixed models, and Scheipl et al.
(2015) considered a particular class of functional additive mixed models.

Spatial functional data analysis (SFDA) is a new branch of functional statistics that
handles spatially correlated functional data. Functional kriging and cokriging are two
main objectives in this context. As an application, we can refer to brain scans which are
functions over a spatial domain. See Reiss and Ogden (2010), Zipunnikov et al. (2011)
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and Guillas and Lai (2010).

Our work is motivated by neuroimaging studies containing repeated measurements
of spatially correlated functional data. In particular, we develop a linear mixed effect
model for spatial data when both the response and explanatory variables are functional.
We introduce a functional mixed effect random model for modeling such spatial data.

To highlight the distinctiveness of our model from the preceding models such as
Greven et al. (2010), two points are noteworthy. Firstly, Greven et al.’s model is
a random effect one while the model we propose is a mixed effect random model.
Secondly, the former model is introduced to handle longitudinal data sets while our
model considers spatial data analysis. To this aim, the spatial locations form the index
set, while the contributing effects to the response variable are set as a linear mixture of
fixed and random effects. Specifically, let

{Xs: seIDc]Rd}

be a spatial functional process. Every X; is a random element whose trajectories are
real (or complex) functions in L*([0, 1], dt) (Ferraty and et al. (2006)). We say that Xj is
second-order integrable if E||X 5|7 < oo, where the norm is the L2([0, 1], df) norm.

In practice, a subset of the spatial functional process is observed at a finite set T in
[0, 1]. Precisely, we assume that {X,(tx), tx € T} withk=1,...,mandi=1,...,nare the
observations of the spatial functional process observed at the s; spatial locations and
times t;. We assume that the spatial functional process X;(t) satisfies

I

Xs(t) = Z ni(Hgi(s) + Ur(t) f1(s) + Ua(t) f2(s) + &s(t) (1.1)
i=1

= n'(H)gs + U (HEs +e5(t), teT seD, (1.2)

where for every i, 1; € L2([0,1],dt) stands for the ith functional regression coefficient,
and Uj,j = 1,2 are random elements in L%([0,1],dt); the factors gi(s),i=1,...,I and
fi(s),j = 1,2 are real functions on D. It should be noted that g;(s),i = 1,...,I and
fi(s),j = 1,2 are functions of the spatial locations. This highlights that our model is a
spatially-dependent model. We refer to 1(t)gs as the fixed effects term, and to U’ (#)f;
as the random effect term, with n’(t) = {n1(¢), ..., ni(t)} and U(t) = {U1(t), Ua(t)}. Also,
f; = (fi(s), f2(s)) and gs = (g1(s), ..., g1(s)). Finally, €4() is a white noise measurement
error. Note that without loss of generality, we can extend the bivariate random effect
part of the model to a multivariate random effect, but for simplicity of notation we use
this bivariate case.
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Throughout the paper, we assume that U and &; are uncorrelated zero-mean random
elements in L%([0, 1], dt). In addition, we assume that the white noise & € L3([0, 1], dt)
is homoscedastic, i.e. its variance ¢? is constant on [0,1]. Let K;;(.,.) denote the auto-
covariance function of U, j = 1,2, and K1 5(., .) be the cross-covariance function between
U; and Us. Therefore, &5(t) is both white noise and homoscedastic. Thus

cov (esi(t), esj(t’)) = 020;,;011,

where 6 stands for the kronecker’s delta. We will show that the covariance between
the two sites s; and s; at points t and ¢’ depends on their spatial locations. In other
words, the random part of the model (1.1) causes this model to be a non-stationary
spatial model.

In this paper, the aim is to fit a linear mixed-effect model as in (1.1) to spatial
functional data with repeated measurements. To estimate the covariance functions
we follow Greven et al. (2010). On the other side, to predict a functional data at a
particular unsampled site, we use a universal kriging approach for non-stationary data
as in Caballero ef al. (2013). The paper is organized as follows. Section 2 is devoted
to some essential preliminaries. The estimation technique is given in Section 3, while
Section 4 develops the corresponding prediction techniques. A simulation study is
presented in Section 5. Finally, the data set of Canadian Temperature is analyzed in
Section 6. The paper ends with some final conclusions.

2 Preliminaries

We consider the general expansion technique of the terms in (1.1) and of the associated
covariances. Note that the covariance operator K(.,.) of U(.) = (Uj(.), Us()) belongs to
L2([0,1],dt) x L*([0,1],dt). For t,t’ € T, this operator can be written in matrix form as

K(t,t') = [Ki,j(t, t')]. The Mercer expansion of the covariance operator at times t,t' € T
of the process U(t) is then given by

Y OB
k=1
[ Lot AOEOOL () Ty A} (OPF (¢)

K(t, ')

Yoo At () L2y A ()
Kii(tt') Kyt t)

, N |- 2.1
Koq(t, ') Kpo(t,t') @1)
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as mentioned by Greven et al. (2010) and Ramsay and Silverman (2005), and where
¢ () = {qbi(t), cpi(t)}’ is the k-th eigenfunction of K(¢, t) corresponding to the k-th
eigenvalue Ay, with Ay > Ay > --- > 0, and ¢" is the conjugate transpose. Note that

{(l)k, ke IN} forms an orthonormal basis of H?, where H = L([0,1]), with respect to
the additive scalar product

1 1
(o), (i, ) = fo Ty ()1 () + fo o (1) (1) .

Now, the Karhunen-Loeve expansion of the random process is given by

ue = Y &xpy(t),
k=1

where the principal component scores (PC scores)
1 1
&= (U) = [ thwolwd+ [ Ui,
0 0

are uncorrelated zero-mean random variables with variances Ax. In practice, it is often
considered the finite-dimensional approximations of the U(t) process, namely,

N
U = ) Expy(t).
k=1

In Section 3, we discuss practical methods to find a suitable N. Now, considering N
fixed, the model (1.1) can be written as

N
Xs(t)=n'(Dgs + ) EPj(Of + (), teT,seD. (2.2)
k=1

3 Estimation

This section presents estimation methods of the parameters of the model in (1.1) or
(2.2). In particular, the terms and associated functionals of (1.1) that we estimate in this
section are
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(i) the unknown functions n;(t),i=1,...,[;
(ii) the bivariate covariance function KK;

(iii) the variance o? of the white noise measurement.

We assume that all the Hilbertian random elements and random processes are
Gaussian. Noting that Y = (X, (t1),..., X5 (tm), Xs,(t1), ..., X, (tn)) has a Gaussian
distribution, we let y and I' denote the corresponding mean and variance, and IL the
corresponding log-likelihood function. In Theorem 3.1, we show that the information
matrix has a block-diagonal form for parameters n and vech(I'), the latter being the
vector of unique elements of matrix I'. This fact has a direct effect: we can estimate the
mean and the variance parameters separately.

Theorem 3.1. Under the above assumptions,

oL (du\
o (%) (Y -,
JL

°F —0.5T 1+ 05I Y (Y - (Y — )T,

and the information matrix for parameters n and vech(I') is given by

JL JL
7 = [ cov(gn ’ 811 ) COU( 1911 ’ 3vech(1")) l
- L
cov(z?vech(r)’ 811) Cov(avech(r)’ 19vech(l“))

o\ -1 (u
(3)r () ’ :
0 05D T er 1D
where ® denotes the Kronecker product of matrices, vec(I') is a column vector obtained by
stacking the column of the matrix T on top of each other, vech(I') denotes the vector of unique
elements of the symmetric matrix I', and D is a full rank matrix that is called duplication matrix,

where vec(T') = Dvech(T). Based on D, vech(T') = D*vec(T) where D* is the generalized inverse
matrix D+ = (D' D) 1D, (For more details about vec and vech, see Demidenko (2004).)

Proof. The vector of all realizations Y has Gaussian distribution, thus

1 1
L= —%log(Zn) - Elogll"l - E(M - T NY - p),
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and using matrix differentiation properties

JL u\. .,
o (%)l’ Y -,

JL

F ~0.5 1 + 05T (Y — ) (Y —pw) T

The information matrix for parameters 1 and vech(T) is also given by

since

since the

P cov(‘m) cov( o avfc%(r))
COU( QUgc]Il;(l" ) COU( avech(l") )
o\ 1 (0
@) 0 ,
0 050" T er 1D
JL. du 1
cov(% = cov((%)l" )( ) Y —w)

(gi;)l" cov(Y, I~ ( )

e (3] = )

cov(%, ?%:) = cov((g—i;) (Y -p), 05T (Y - u)(Y - y)'l"_l)

= (‘;—;‘) I oY, 05T HY — )Y - w) T =0,

121

third moment of the normal distribution is zero. Let T = I’_% and e =



122 nasirzadeh et al.

I 2(X - ). Then,

cov(vech(0.5T Y — p)(Y — ) T™Y) = cov(vech(0.5(Te)(Te)))
= D*cov(0.5(Te)(Te) ) D™
= 0.25D%cov((Te) ® (Te)) D’
= 0.25D*cov((T @ T)(e ® €)D"
= 02507 (T®T)cov(e®e)(T @ T)D*
= 05DYT®TN,, (T @ T)D"
= 05DHTQT)(T ®T)N,,D"
= 05DY(TRT)T T )D
= 05D%(TT @ TT)D"
= 05D"T eI HD.

O

As the information matrix has a block-diagonal form, we can maximize the likeli-
hood function over the mean and the variance parameters separately. Our estimation
procedure can be outlined as follows

Step 1 Use the ordinary least square method to estimate the vector of functional regres-
sion coefficients n(t) = (n1(t), ..., ni(t))" as it was discussed earlier.

Step 2 Safely assume that the fixed effects part of the model is zero, otherwise it suffices
to consider
Xs(t) = Xs(t) — ﬁ,(t)gS/

and then estimate the covariance function K (including auto-covariances and
cross-covariances) and o2, as explained in Section 3.2. In the process we need to
estimate the eigenvalues and eigenfunctions and the principal component scores
(as detailed in Section 3.3).

Step 3 Re-estimate the fixed effects part of the model implementing a generalized least
square method, where the weight is (K + &21)71.

Step 4 Return to step 2 if the convergence criterion is not met.

Step 5 Perform prediction at the site sy by evaluating X, (see details in Section 4).
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3.1 Estimation of the Covariance Function and o2

To estimate 0> and K, Greven et al.  (2010) suggested a method for finding the
bivariate covariance function in a longitudinal random effect model when the sub-
jects or clusters are independent. We extend their idea to our spatial model. Let
Cij(t,t') = Cov(X,(t), Xs ;(t")) be the covariance between two sites s; and s; at points ¢
and #’. Now, for all sites s; and s; at points f and ¢’

Ci,j(tl tl)

Cov (X, (1), Xs,(t))

= Coo(f,U(t) + e5,(1), £, U(') + &5,(t)

= £,Couo(U(t), U(t")fs; + Cov(es (1), &,(t))

= Kt ), + 07011055, (3.1)

where 05,5, is again the Kronecker’s delta.

We can assume, for the moment, that Xs(t) := X;(t) — '(t)gs, therefore X;(t) has
mean zero. An estimation for the covariance function between the two sites s; and s;
at points t and t’ is given by C’\?,-,]-(t, t') = X, ()X, (). Under the settings given in the
introduction and (1.1), a straightforward solution to estimate the covariance function
is by using linear regression with the inputs of {ky1(t,t'), k12(t, '), ki2(t', 1), koo(t, t)},
{Xsi(t)ij(t’), i,j=1,...,n} and {f(s)f(s;),i,j = 1,...,n}. We can also estimate the cor-
responding diagonal elements of the covariance function through linear regression
over {ku1(t, i), k120t te), kia(ti, 0), koalte t), k = 1,...,m, 0%, {Xs(t) Xs,(h),0,] =
1,...,n,k =1,...,m} and the block diagonal of {f(s;) ® f(s;), 651.,5]., i,j=1,...,n}. The
covariance functions are symmetric, so ky,1(t,t') = ki1(t',t), koo(t,t') = kop(t',t) and
kia(t,t') = ko1 (', t), for t’ > t. Finally, we use a bivariate smoothing technique in t and
t’ over {121,1 tt), ’Aq,z(t, t), lAq,z(t’ b)), IAcz,z(t, ')} to estimate the covariance functions (see
Green and Silverman (1994) and Krivobokova et al. (2007)).

3.2 Eigenvalue, Eigenvector, and PC Scores Estimation

Having obtained an estimation of the covariance matrices Kij = {Ki, ittt €
{t1,....tm},1,] = 1,2, we now proceed to estimate the eigenvalues and eigenfunctions by
spectral decomposition of the covariance functions. Following the expansion given in
(2.1), and considering the finite-dimensional approximation and the spectral decompo-
sition, we can write the estimated covariance matrix Kas K = ¥ ﬁké)k(f)z, where A; and
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~ A A ’
Q) = {qb}(, (j),%} , are the k-th eigenvalue and the k-th orthonormal vector, respectively.
Now note that we can rewrite our model in a more general form as

Y=p+W0+e, (3.2)

where 0 = (&11, ..., SN, -y Enl, -, Enn)’ 1S the Vector of principal component scores and
W is an nm X nN block diagonal matrix, where the i-th diagonal block fori =1, ...,n is

Sitf o utf,
Sitfs - Nt

Gilt)fo o O

Under the above formulations related to model (3.2), we make use of the following
theorem to estimate the principal component score 0.

ar 06\ (H O
e/ 0 R/
where H = I, ® diag{Ay, ..., An} and R = 2L scnm Are dispersion matrices for the random
effect © and the error effect e, respectively. Clearly, H and R are non-singular and positive

definite matrices. Also, let V.= WHW' + R, then the best linear unbiased predictor (BLUP)
for O is given by

Theorem 3.2. Let

6 = HWV (Y -p)
= WRW+HYTWRY(Y - p).

Proof. The proof is obtained using the results suggested by Henderson et al. (1959),
Greven ef al. (2010) and Yao et al. (2005). O

Concerning the question of the number of eigenfunctions, N, one possible method
is to use an AIC-type criterion (Yao et al. ,2005). An alternative method is to choose the
number of components with a leave-one-curve-out cross-validation technique (Rice and
Silverman , 1991). Greven ef al. (2010) and Soltani et al. (2017) proposed the Fraction
of Variation Explained (FVE) as a method to select the random effects in linear mixed
models. To be more precise, FVE states that when the eigenvalues are in decreasing
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order, then the minimum number N satisfying
N
Z /\l’ + (72
i=1

(o]
Z /\i + o2
i=1

>,

gives the sufficient number of significant factors, where « is a positive number less than
one but close to it.

3.3 Estimation of the Fixed Effect Term

We consider here the estimation of the parameters in the fixed effects part of the
model (1.1). In particular, we need to estimate each of the I functional parameters ;(t)
withi = 1,...,,I. To find a smooth estimate of the mean function of this model, i.e.
the total fixed effect population mean surface given by u(t,s)= n’(t)gs;, we can follow
Krivobokova et al. (2007) and Lin and Carroll (2000). We can use this estimator
for step 1 of the algorithm. One basic method to perform the estimation of fixed
effect parameters in step 3 is the weighted least square estimation method, where the
weighted matrix is the inverse of the covariance function of the random effect part
shown in Section 3.1.

Now, we suggest an alternative fixed effects method to estimate the functional fixed
effect parameters, n;, i = 1,...,I. In this method, we consider the fixed effects model
as an alternative to model (1.1). We consider the bivariate random functional U as
fixed, but unknown nuisance functional parameter. With this assumption, the only
random variable is ¢;;, which is a zero-mean Gaussian variable with variance a2. So,
the ordinary least square estimator is equivalent to
2

min
n

Z Y - ﬂ/(t)gs - Z és/kﬂ’f)kfs
s k

where Y, = (X;s(t1), ..., Xs(tm)). Also, (i)k and és/k are the estimators of ¢, and the best
linear unbiased predictor of &, respectively, which are already obtained in Sections
(3.1) and (3.2).
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4 Prediction

The basic idea of kriging is to predict the functional values at an unobserved site sy with
the information given in the observed sites sy, ..., s, and under the structure given by the
linear spatial mixed effect model (1.1). Also, assume we have estimated the unknown
parameters, n;(t),i =1, ..., I, Kand 02. Assume we are interested in predicting the value
of the functional process X, () at the unobserved location syp. An unbiased predictor
will be a linear weighted function of the observed functional process at other sites
(following the model (1.1) and providing a minimum variance of the prediction error).

Let Zs(t) = (X s, () s X, (1)) be the vector of observations, and consider the model
(1.1) in the matrix form

Zs(t) = Xa(s)n(t) + Xo(s)U(E) + &), teT, (4.1)

where Xi(s) = [gs,i] and X2(s) = [f;,,j] are two matrices of sizen X [and n X 2,1 <k <
n, 1<i<I j=1,2 Also &(t) = (&5,(t), ..., €,(t)) represents a vector of functional
errors. Therefore Ees(t) = 0 and EZs(t) = Xi(s)n(t).

Clearly, at s, and following (1.1) and (1.2) we have
Xso(t) = n/(t)gSQ + U,(t)fSo + ESo(t)/

where, following (1.1), g, = (31(S0), -, 1(s0))" and £5;, = (fi(s0), f2(s0))’. A functional
universal kriging predictor (Caballero et al. , 2013) for X, (t) is given by

Xso(t) = X' Zs(1),

where the components of A are real numbers obtained such that X, (t) is an unbiased
estimator of X, (t). This will be the case if EX;,(t) = EX,(f), t € T, i.e. if

A Xi(s)n®) = 7' (H)gs,,

or equivalently
A'X1(s) = g,

Finally, A is chosen by minimizing the mean square prediction error, i.e.

mAinMSE(so) = min f Var(Xs, () — X, (1))dt.
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Note that we can write Var(X;, (t) — Xs,(t)) in a simpler form

Var(Xs (t) = Xy (1)) Var(X' Zs(t) — Xy (1)
Var(X' Zs(t)) + Var(Xs, (1) — 2Cov(A" Zs(t), X, (1))

A'Var(Zs(t)A + Var(Xs, (1)) — 24" Cov(Zs(t), X5, (1)),

where
L =Var(Zs(t)) = Var(Xi(s)n(t) + Xa(s)U(t) + &(t))
= Xa(s)VarU(t)X)(s) + Var(es(t))
= Xo(s)K(t ) X)(s) + 021,
and
a%(t) = Var(Xs,(t)) = Var(n'(£)gs, + U (H)fs, + €5,())
= f] VarU(tfs, + o
= f, Kt tfs, +0*
Note also that

c(t) = Cov(Zs(t), X5, (1)) = [Cov(Xs, (), X5y (1)), - - ., Cov(Xs, (1), X5, (1)),
where foreachi=1,...,n

Cov(Xs,(t), X5 (1) = COU(U'(t)gsi +U (Ofs; + &5,(t), Tl'(t)gso + U/(t)fso + &5, (1))
= £, K(t, s,

Now, let us consider the function
oA, v)= f(/\'E/\) (tHdt — Zf/\’c(t)dt + fa(z)(t)dt —2[A"X1(s) — g'(s0)] v, (4.2)
Q

Q Q

where v is the vector of Lagrange multipliers for the condition of unbiasedness. The

)
minimum of ¢ is found in those values of A and v for which the partial derivatives —

dA

and —— are zero. As a specific case of Caballero et al. (2013), A and {5, (¢) are achieved

as v
[ fcmdt]+ [

Q Q Q

-1 -1

A= X1(s)W7 " {g(s0) — W2},
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and
-1

Xso(t) = d'(t)dt Xdt|  +(g(so) — Wa) W1_1Xi (s)| | Zdt Zs(t),
[<e\] [

-1

-1
where Wy = X](s) [ i Edtl Xi(s) and Wy = X/(s) { i Edtl [ e(v)at.
Q Q Q

5 Simulation Studies

This section includes two subsections. In Subsection 5.1 a simulation study is presented
to examine the estimation procedure introduced in Section 3. The second simulation
study in Subsection 5.2 takes into consideration the feasibility of the prediction method
mentioned in Section 4.

5.1 Parameters Estimation Procedure

In this subsection, we conduct a simulation study to analyze the estimation procedure
presented in Section 3. In particular, we simulated L = 1000 data sets from the spatial
functional mixed effects model

Xs(t) = sin(r)x? + cos(rit)xy + Ui (t)x + Ua(t)y + &5(t), £ € [0,1], (5.1)

where the spatial location s = (x,y) is a pair of integers in the rectangular window
which is scaled to [—4, 4] x [—4, 4], the fixed effects parameters are fo(f) = sin(rtt) and
B1(t) = cos(mt). We let var(es(t)) = 02 =005 N=4and A, =215 k=1,...,4. We
generated all the random functions in points {32, + = 1,...,40} c [0,1]. Let the PC
scores have normal distributions, i.e, & ~ (0 Ak), for all s € [-4,4] X [-4,4] and
k=1,...,4. Finally, let the eigenfunctions be

ﬁ(t) sin(2mt), qb} = V2/2,

@, (t) = cos(2mtt), @5 (t) = sin(67t),

(i)%( t) = sin(4mtt), %(t) = cos(67tt),

i( t) = cos(4mt), %(t) =sin(8ntt), te(0,1).
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In each simulation iteration U(t) = Zle ékq)k, where & is a number to be simulated
based on N(0, Ay).

The mean estimation of 62 is 62 = 0.0947. Table 1 shows the summary statistics and
Figure 1 depicts the box plot of the scaled differences between the estimated and the

true scores ‘S’L\/A_Ek”‘, k=1,2,3,4. Ascanbe noted from Table 1 and Figure 1, the scaled dif-

ferences between the estimated and the true scores have a standard normal distribution.

Table 1: The minimum, first and third quartiles, mean, median and maximum of the scaled
differences between the estimated and the true scores in Subsection 5.1.

min 1 th quartile mean median | 3 th quartile max

5i/‘£1 —2.8508 -0.5037 | —0.0052 | —0.0121 0.4991 3.1330
M

S22 | 99003 —0.4990 —0.0014 | —0.0007 0.4866 3.5097
iz

L5785 | 30004 —0.5417 0.0020 | —0.0074 0.5407 3.7634
Vis

Sazsa | 34066 —0.5723 —0.0151 | —-0.0161 0.5441 3.9189
Vi

Figure 1: The boxplot of the scaled differences between the estimated and the true scores in
Subsection 5.1.



130 nasirzadeh et al.

Figure 2 shows the true, the estimated and a 90% confidence interval for the func-
tional parameters f, and ;. Here, the black line shows the mean of the estimated
functions, the dash-dotted lines illustrates the true function, and the dashed lines de-
pict the pointwise 5th and 95th percentiles of the estimated functions. We note that the
mean and the true functions are close to each other and the true functions are located
within the confidence limits. Also, the MSE is given by

L
1Y [ - pecoier, k=01
=1

where L is the number of iterations and ‘BAl,k is the estimate of By for the [-th iteration,
calculated for each estimation of fy and f; giving 0.0008 and 0.0012, respectively. The
MSE indicates that both fy and 1 were accurately estimated.

Bo

Figure 2: Parameter estimation for the fixed effects part in Subsection 5.1.

Figure 3 shows the true, the estimated and a 90% confidence interval for (1)2, (1),1,
k=1,...,4. Theblack, dash-dotted and dashed lines are similar to what we mentioned
for the fixed effects in Figure 2. We note that the estimated functions are very close to
the true functions and the confidence band covers the true functions.

Moreover, it is noteworthy to mention that Kisa high dimensional matrix. There-
fore, it is not usual to estimate K, instead, the estimation of the eigenvalues and



Functional Model for Spatial Data 131

eigenfunctions were employed, noting the result according to Mercer Lemma (2.1),

K(t, ') = Lilq A () (t).

02 04 08

Figure 3: Estimation of the eigenvectors in Subsection 5.1.
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5.2 Prediction

In this subsection, we generated a spatial functional X s, at site sp = (5,1) using the
model (5.1). We then generated the functional mixed effect (5.1) for all spatial locations
s = (x, y) in the rectangular window [—4, 4] X [—4, 4] for 100 times. In each iteration, Xj,
was predicted using the suggested method in Section 4. The dash-dotted line in Figure
4 shows X so- The black line is the mean of the predicted functions, and the dashed lines
are the pointwise 5th and 95th percentiles of the predicted functions. As can be seen,
the mean and Xy, are very close to each other. Also, the confidence lines cover Xj,,
which justifies that our proposed prediction method works well.

Figure 4: Prediction of the new site sy = (5,1) in Subsection 5.2.

6 Real Data Analysis

To analyze a real data set we use the Canadian temperature data set which is a well
known data set in FDA consisting of mean daily temperatures for 35 Canadian weather
stations. These temperatures of the weather stations were in fda package in R and Ram-
say and Silverman’s home page (http://www.functionaldata.org) and the geographical
coordinates are in Canadian weather office homepage (http://www.climate.weatheroffice
.ec.gc.ca/climateData). Since Canada is a very widespread country, modeling the Cana-
dian temperature is interesting.
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We consider the model

Xs(t) = Bo(t) + Bi(t)x + Ba(t)y + Ba(B)x® + Ba(t)xy + Bs(t)y?
+ Ui(t)x + Ua(t)y + &s(t),

where x and y represent the normalized geographical coordinates of the weather sta-
tions and ;,i =0, ...,5 are the functional parameters. This data set has been analyzed
by numerous authors. Both Ramsay and Silverman (2005) and Giraldo et al. (2010)
suggested a Fourier basis with 65 functions to smooth the temperatures. We used a
Fourier basis with 65 functions to estimate the ;,i = 0,...,5, too. Figure 5 shows the
estimation of these functional parameters.

Just one principal component of the covariance function shows 82.67% of explained
average information. In particular, 50.62% of the variation is explained by U; and
32.05% is explained by U,. These values justify that both U; and U should remain in
the model. Also, it is important to mention that A1 = 16.24 and 62 = 3.40.
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Figure 5: The estimations of the functional parameters for the Canadian data set.
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In Figure 6, we show a four cell diagram. In the top-left plot we depict the average
daily temperature between 1960 and 1994 for 35 weather stations in Canada. The
top-right plot shows the weather prediction in all stations using our suggested Kriging
method. For this, each individual site was temporarily removed and its weather was
krigged using the temperature data of the other sites. The bottom-left plot shows the
residual curves. We note that the residuals are around zero, which justifies that our
model results in better estimation than those of Caballero et al. (2013). Finally, the
bottom-right plot depicts the average daily temperature reported at just one station,
the Fredericton weather station. The black line shows the average temperature while
the grey one shows our estimation which are very close of to each other. The sum
of the squared errors for the Fredericton weather station for the ordinary kriging for
function-valued data is 944.737, using universal kriging (Caballero et al. , 2013) for
functional data we get 918.7242, and for our prediction method we obtain 277.9509.

Temparatue

0 -10

Estimated Temparutue

0 -3

[ o0 200 300 o 100 200 on

Residuals
0

10

Figure 6: Canadian temperatures: The top-left plot depicts the average daily temperature
between 1960 and 1994 for 35 weather stations in Canada. The top-right plot shows the weather
prediction in all stations. The bottom-left plot shows the residual curves. The bottom-right plot
depicts the average daily temperature reported at Fredericton weather station.
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7 Conclusions

The standard functional data techniques are often based on the condition that the
functional observations are independent, but this remains a problem in many applied
contexts. Spatial functional data analysis arises as a new branch of functional statistics
that handles correlated functional data.

In this context, we have introduced a functional mixed effects random model for
modeling spatial data. Our model encompasses fixed and random effects, both being
linear combinations of L? functions and random elements, respectively. Estimation
and prediction procedures are depicted. The proposed model adapts easily to non-
stationary cases, and it can be considered a step forward in the analysis of spatial
functional data.

There are, however, several points for further improvements. Even if the number
of terms N in the expansions is selected using an objective method, the combination
of N with the number m of temporal observations can be dramatically high bringing
computational problems. A more global objective method dealing with both sizes at
the same time would ease this problem. Another topic is the selection of the orthonor-
mal basis functions. The question of which functions (wavelet basis, Fourier basis, etc)
should provide better fittings to a given data set is open for further research.
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