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Methodological Details

Ensemble Averaged Variational Transition State Theory. As mentioned in the text deviations 

from classical Transition State Theory (TST) as a result of quantum tunneling effects can be 

estimated by means of Ensemble-Averaged Variational Transition State Theory (EA-

VTST).1-3 In this approach, the theoretical estimation of the rate constant can be written as in 

equation (1) of the text. 
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classical mechanical (CM) PMF. It includes a correction for quantizing the vibrations 

orthogonal to the reaction coordinate and the vibrational free energy of the reactant mode 

that correlates with motion along the reaction coordinate, calculated as:
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where Wvib(T,ξ*) corrects WCM(T, ξ*) to account for quantized vibrations orthogonal to the 

reaction coordinate along which the PMF is defined, ξ, at the maximum of the PMF, ξ*; 

Wvib,R(T) corrects WCM(T, ξR) for quantized vibrations at the reactant side minimum of the 

PMF, ξR, and   is a correction for the vibrational free energy of the reactant mode that 

correlates with motion along the reaction coordinate.1 

To correct the classical mechanical PMF, WCM, normal mode analyses were performed for 

the quantum region atoms. To perform these calculations, in addition to the PMFs obtained 

as described above, we localized 10 TS structures starting from different configurations of 

the corresponding simulation windows in the heavy and light enzymes. After tracing the 

minimum energy path, we optimized 10 reactant structures and obtained the Hessian matrix 

for all the stationary structures. The final quantum mechanical corrections to the quasi-

classical activation free energy at the simulated temperatures (Table S3) were obtained as an 

average over these structures. 
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Calculation of the tunneling transmission coefficient. The tunneling transmission 

coefficients, κ(T), were calculated with the small-curvature tunneling (SCT) approximation, 

which includes reaction-path curvature appropriate for enzymatic hydride transfers and, in 

particular, for DHFR.4-6 The final tunneling contribution (see main text) is obtained as the 

average over the reaction paths of 10 TS structures.

Calculation of the recrossing transmission coefficient. Grote-Hynes (GH) theory can be 

applied to describe the evolution of the system along the reaction coordinate at the TS. In 

particular, the recrossing transmission coefficient, (T,ξ), can be obtained as the ratio between 

the reactive frequency and the equilibrium barrier frequency7:
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with the equilibrium frequency derived from a parabolic fit of the PMF around the maximum 

and the reactive frequency r is obtained via the GH equation8-9: 
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TS(t) is the friction kernel obtained at the TS, assuming that recrossings take place in the 

proximity of this dynamic bottleneck9-10: 
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where FRC(t) is the force on the reaction coordinate and RC the associated reduced mass. For 

the evaluation of the TS friction kernel, we ran 50 ps of constrained MD simulations at the 

top of the PMF. The simulations were carried out at 273, 278, 283, 288, 293, 298, 303, 308, 

313, 318, 328 and 338 K. A small time step of 0.05 fs was used to ensure the convergence of 

the algorithm and forces acting on the reaction coordinate were saved at each simulation step. 

GH theory has been demonstrated to provide transmission coefficient in very good agreement 

with those obtained from activated trajectories initiated at the TS ensemble for the methyl 

transfer reaction catalyzed by cathechol O-methyltransferase11 and for the hydride transfer 
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step of formate dehydrogenase.12 In the case of EcDHFR (Table S1) estimations obtained 

using the GH equation provides transmission coefficients also close to that previously 

reported based in trajectory analysis.13 Thus, the recrossing transmission coefficients, , were 

calculated using eq. S3 for the light and heavy versions of the TmDHFR enzyme prepared as 

described below. The values obtained at the different temperatures are presented in Table S2. 

The transmission coefficients of the two versions were found to be statistically different.

Table S1: Transmission coefficients of light and heavy version of EcDHFR evaluated by means of 

rare events Molecular Dynamics simulations (data from ref 13) and using GH theory at 300 K.

Enzyme MD GH

Light EcDHFR 0.57 ± 0.02 0.59 ± 0.02

Heavy EcDHFR 0.49 ± 0.02 0.52 ± 0.02
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Table S2: Transmission coefficients of light and heavy TmDHFR evaluated using GH theory. 

Temperature  (K) Light Heavy

278 0.61 ± 0.02 0.59 ± 0.01

283 0.61 ± 0.01 0.60 ± 0.02

288 0.60 ± 0.01 0.60 ± 0.01

293 0.61 ± 0.01 0.61 ± 0.02

298 0.61 ± 0.02 0.60 ± 0.01

303 0.60 ± 0.01 0.59 ± 0.01

308 0.59 ± 0.01 0.59 ± 0.02

313 0.60 ± 0.02 0.59 ± 0.01

318 0.59 ± 0.02 0.58 ± 0.01

328 0.58 ± 0.02 0.57 ± 0.02

338 0.57 ± 0.02 0.56 ± 0.02
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Table S3. Temperature dependence of the contributions to the rate constant due to: recrossing (γ) tunneling (), 

classical free energy barrier ( ), vibrational corrections ( ), vibrational free energy corresponding ∆𝐆𝐂𝐌
𝐚𝐜𝐭(𝐓,𝛏) ∆𝐆𝐐𝐌

𝐯𝐢𝐛(𝐓)

to the reaction coordinate at the reactants ( ), quasi-classical free energy of activation ( ) and effective ∆𝐆𝑪𝑴
𝑹𝑻𝑭 ∆𝐆𝑸𝑪

𝒂𝒄𝒕

phenomenological free energies of activation ( ) as determined from QM/MM calculations. The value derived ∆𝐆 ‡
𝒆𝒇𝒇

from the experimental rate constants14 are also provided ( ). All free energies are given in kcal·mol-1. ∆𝐆 ‡
𝒆𝒙𝒑

  ∆GQM
vib (T) ∆GCM

act(T,ξ) ∆G𝑄𝐶
𝑎𝑐𝑡 ∆G𝐶𝑀

𝑅𝑇𝐹 ∆G ‡
eff ∆G ‡

exp

T = 278 K

Light 0.61±0.02 5.5±0.8 -2.29±0.04 16.02±0.8 0.411±0.011 15.4±1.6 17.89±1.0

Heavy 0.59±0.01 5.1±0.8 -2.23±0.04
17.9±0.7

16.05±0.7 0.374±0.005 15.4±1.6 17.89±1.0

T = 283 K

Light 0.61±0.01 5.2±0.7 -2.28±0.04 16.03±0.8 0.408±0.01 15.4±1.5 18.13±0.9

Heavy 0.60±0.02 4.9±0.7 -2.22±0.04
17.9

16.05±0.7 0.371±0.005 15.4±1.5 18.12±0.9

T = 288 K

Light 0.60±0.01 5.0±0.7 -2.27±0.04 16.14±0.8 0.405±0.011 15.5±1.5 18.25±0.9

Heavy 0.60±0.01 4.6±0.7 -2.21±0.04
18.0

16.16±0.7 0.368±0.005 15.6±1.5 18.25±0.9

T = 293 K

Light 0.61±0.01 4.7±0.6 -2.26±0.04 16.14±0.8 0.402±0.011 15.5±1.4 18.35±0.9

Heavy 0.61±0.01 4.4±0.7 -2.20±0.04
18.0

16.17±0.7 0.364±0.005 15.6±1.5 18.35±0.9

T = 298 K

Light 0.61±0.02 4.5±0.6 -2.25±0.04 16.25±0.7 0.399±0.011 15.7±1.4 18.44±0.8

Heavy 0.60±0.01 4.2±0.6 -2.19±0.04
18.1±0.6

16.27±0.6 0.360±0.005 15.7±1.4 18.45±0.8

T = 303 K

Light 0.59±0.01 4.3±0.5 -2.24±0.04 16.26±0.7 0.396±0.011 15.7±1.3 18.55±0.8

Heavy 0.59±0.01 4.1±0.6 -2.18±0.04
18.1

16.28±0.6 0.356±0.005 15.8±1.4 18.55±0.8

T = 308 K

Light 0.59±0.01 4.1±0.5 -2.23±0.04 16.47±0.7 0.392±0.011 15.9±1.3 18.65±0.7

Heavy 0.59±0.02 4.0±0.5 -2.17±0.04
18.3

16.49±0.6 0.352±0.005 16.0±1.3 18.66±0.7

T = 313 K

Light 0.60±0.02 4.0±0.5 -2.22±0.04 16.47±0.7 0.389±0.011 15.9±1.3 18.74±0.6

Heavy 0.59±0.01 3.9±0.5 -2.16±0.04
18.3

16.49±0.6 0.348±0.005 16.0±1.3 18.74±0.6

T = 318 K

Light 0.59±0.02 3.8±0.4 -2.21±0.04 16.68±0.65 0.385±0.010 16.2±1.2 18.85±0.5

Heavy 0.58±0.01 3.7±0.5 -2.15±0.04
18.5±0.6

16.70±0.64 0.343±0.005 16.2±1.3 18.85±0.5

T = 328 K

Light 0.58±0.02 3.5±0.5 -2.19±0.04 16.79±0.65 0.377±0.010 16.3±1.3 19.09±0.3

Heavy 0.58±0.02 3.4±0.4 -2.13±0.04
18.6

16.81±0.64 0.334±0.005 16.4±1.2 19.09±0.3

T = 338 K

Light 0.57±0.02 3.5±0.5 -2.17±0.04 16.90±0.55 0.368±0.010 16.4±1.3 19.35±0.1 

Heavy 0.56±0.02 3.4±0.4 -2.11±0.04
18.7±0.4

16.92±0.54 0.324±0.005 16.5±1.2 19.36±0.1
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Table S4. Temperature dependence of the contributions for the monomeric version TmDHFR to the 

rate constant due to: recrossing (γ) tunneling (), classical free energy barrier ( ), vibrational ∆𝐆𝐂𝐌
𝐚𝐜𝐭(𝐓,𝛏)

corrections ( ), vibrational free energy corresponding to the reaction coordinate at the ∆𝐆𝐐𝐌
𝐯𝐢𝐛(𝐓)

reactants ( ), quasi-classical free energy of activation ( ) and effective phenomenological ∆𝐆𝑪𝑴
𝑹𝑻𝑭 ∆𝐆𝑸𝑪

𝒂𝒄𝒕

free energies of activation ( ) as determined from QM/MM calculations. The value derived from ∆𝐆 ‡
𝒆𝒇𝒇

the experimental rate constants14 are also provided ( ). All free energies are given in kcal·mol-1. ∆𝐆 ‡
𝒆𝒙𝒑

  ∆GQM
vib (T) ∆GCM

act(T,ξ) ∆G𝑄𝐶
𝑎𝑐𝑡 ∆G𝐶𝑀

𝑅𝑇𝐹 ∆G ‡
eff

T = 278 K

Light 0.66±0.01 5.0±0.8 -1.80±0.04 16.23±0.64 0.435±0.010 15.57±1.2

Heavy 0.66±0.01 4.9±0.8 -1.80±0.04
17.6±0.5

16.21±0.61 0.415±0.006 15.56±1.2

T = 298 K

Light 0.55±0.01 4.2±0.7 -1.77±0.04 16.96±0.74 0.426±0.010 16.46±1.6

Heavy 0.54±0.01 4.1±0.6 -1.77±0.04
18.3±0.7

16.93±0.73 0.405±0.005 16.46±1.6

T = 318 K

Light 0.44±0.02 3.6±0.4 -1.74±0.04 17.87±1.04 0.414±0.010 17.57±1.9

Heavy 0.41±0.01 3.5±0.5 -1.74±0.04
19.2±1.0

17.85±1.03 0.391±0.005 17.60±1.9

Table S5. Averaged structural parameters of the reactant state, RS, and transition state, TS, from the 

PMFs of TmDHFR obtained at 278, 298, 318 and 338 K. Distances are in Å and angles in degrees.
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                   278 338

                                      RS  TS RS TS

(C4cofac-Ht)-d(C6subs-Ht) -2.07 -0.24 -2.07 -0.25

d(C4cofac-C6subs) 4.23±0.1 2.64±0.1 4.23±0.1 2.62±0.1

d(C4cofac-Ht) 1.10±0.03 1.22±0.03 1.10±0.03 1.22±0.03

d(C6subs-Ht) 3.17±0.04 1.47±0.04 3.18±0.04 1.47±0.04

d(HN7cof-OILE15) 2.6±0.5 3.3±0.7 2.8±0.5 3.1±0.6

d(HN7cof-OALA8) 2.3±0.3 2.0±0.2 2.2±0.3 2.0±0.2

d(O7cof-HNALA8) 4.6±0.4 4.6±0.2 4.1±0.3 4.7±0.2

d(N8subs-Nε
ARG28) 3.8±0.3 3.1±0.1 3.9±0.3 2.8±0.1

d(N8subs-Nη1
ARG28) 3.6±0.3 3.5±0.1 3.7±0.3 3.6±0.1

d(N2subs-OASP27) 2.7±0.1 2.7±0.1 2.9±0.2 2.7±0.1

d(N2subs-OεASP27) 3.5±0.2 3.4±0.2 3.0±0.2 4.1±0.2

d(H5subs-OILE100) 2.2±0.2 2.8±0.5 2.0±0.2 3.2±0.7

(C4cofac–Ht–C6subs ) 162±8 159±7 161±9 158±8

298 318

RS RS RS TS

d(C4cofac-Ht)-d(C6subs-Ht) -2.07 -0.23 -2.07 -0.23

d(C4cofac-C6subs) 4.23±0.1 2.63±0.1 4.21±0.1 2.63±0.1

d(C4cofac-Ht) 1.10±0.03 1.22±0.03 1.10±0.03 1.23±0.03

d(C6subs-Ht) 3.18±0.04 1.46±0.04 3.18±0.04 1.46±0.04

d(HN7cof-OILE15) 2.2±0.3 2.7±0.5 2.8±0.4 3.1±0.6

d(HN7cof-OALA8) 2.5±0.3 2.0±0.2 2.1±0.2 2.0±0.2

d(O7cof-HNALA8) 4.9±0.5 4.6±0.2 4.3±0.3 4.6±0.2

d(N8subs-Nε
ARG28) 3.9±0.3 3.2±0.2 3.7±0.3 3.0±0.1

d(N8subs-Nη1
ARG28) 3.5±0.2 3.5±0.1 3.4±0.2 3.6±0.2

d(N2subs-OASP27) 2.8±0.1 2.8±0.1 2.8±0.1 2.7±0.1

d(N2subs-OεASP27) 3.6±0.3 3.5±0.3 3.5±0.3 3.3±0.2

d(H5subs-OILE100) 2.2±0.2 2.6±0.3 2.3±0.3 2.8±0.4

(C4cofac–Ht–C6subs ) 161±9 162±7 159±9 160±7
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Table S6. Averaged structural parameters of the reactant state, RS, and transition state, TS, from 2 

ns QM/MM MD simulations of the windows corresponding to the reactant and transition state of the 

hydride transfer in EcDHFR at 298. Distances are in Å and angles in degrees. Data from ref 15.15

RS TS

C4cofac –Ht- C6subs 141±15 163±7

d ( C4cofac –Ht)- d (C6subs-Ht) -1.9±0.4 -0.18±0.04

d (C4cofac- C6subs ) 3.9±0.2 2.63±0.06

d ( C4cofac –Ht) 1.09±0.03 1.24±0.03

d (C6subs-Ht) 2.9±0.4 1.42±0.04

d (HN7Ncofac-OALA7) 2.2±0.5 2.1±0.2

d (HN7Ncofac-NALA7) 3.7±0.5 3.5±0.2

d ( HN7Ncofac -SMET20) 4.6±0.7 2.6±0.3

d (HO3cofac-NASN18) 3.8±0.6 4.1±0.6

d (HO2cofac-OALA19) 3.2±0.4 3.2±0.5

d (HO2cofac-NALA19) 3.1±0.2 3.0±0.2

d (HN7Ncofac-OILE14) 3.0±0.9 3.5±0.4

d ( HN5subs -SMET20) 3.1±0.4 2.9±0.4

d (HN3subs-OASP27) 1.8±0.1 1.9±0.2

d (HN2subs-OASP27) 1.8±0.2 1.8±0.1
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Figure S1. AM1-SRP/MM PMFs, , obtained at four different temperatures starting from ∆GCM
act(T,ξ)

different TS configurations. The reaction coordinate is the antisymmetric combination of distances 
describing the hydride transfer.

Figure S2. Experimental (red) and theoretical (blue) effective activation free energies versus 
temperature for the dimeric TmDHFR. Error bars are indicated as vertical lines.
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Figure S3. Calculated effective activation free energies versus temperature for the monomeric 
TmDHFR.

Figure S4. Radial Distribution Function around N5 for EcDHFR (blue line), TmDHFR dimer 

(black line) and TmDHFR monomer (red line).
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Figure S5.     Cross-correlation matrixes obtained from 50 ns MD simulations at 298 K for: a) the 
monomer of TmDHFR, b) the full dimer of TmDHFR.
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A)

Monomeric
TmDHFR

Dimeric
TmDHFR

M20 loop FG loop GH loop

B)

Figure S6.   A) Ramachandran plots for the M20, FG and GH loops of monomeric and dimeric 
TmDHFR obtained after 50 ns MD simulations. The yellow points represent the pair of  and 
 values for each residue of the loops. Significant differences are observed only for the M20 loop. B) 
Time evolution of the  and  dihedral angles of residue 16 in the monomeric (blue) and dimeric 
form (red) of TmDHFR.
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