

UNIVERSITAT JAUME I

ESCOLA SUPERIOR DE TECNOLOGIA I CIÈNCIES EXPERIMENTALS GRADO EN INGENIERÍA ELÉCTRICA

Actualización y mejora de la automatización de un horno para esmaltes

TRABAJO FIN DE GRADO

AUTOR Javier Albalate Escorihuela

> DIRECTOR Ignacio Peñarrocha Alós

Castellón, Octubre de 2019

Índice

Memoria	8
Anexos a la memoria	48
Pliego de condiciones	82
Presupuesto	83

Índice de figuras y tablas

Figura 1. Situación de ENDEKA CERAMICS SAU en la provincia de Castellon	14
Figura 2. Detalle de la situación de ENDEKA CERAMICS SAU	15
Figura 3. Detalle de ENDEKA CERAMICS SAU	15
Figura 4. Extracto del esquema unifilar, pertenece a una de las tarjetas de digitales.	salidas 17
Figura 5. Código extraído del PLC	18
Figura 6. PLC actual y a su lado las tarjetas de E/S.	18
Tabla 7. Componentes principales de la instalación automática actual	19
Tabla 8. Componentes generales del horno	20
Figura 9. Componentes principales del horno.	20
Figura 10. Botonera principal de la instalación	21
Figura 11. Detalle del CPU actual en la instalación	28
Figura 12. Características generales de la familia CQM1H	29
Figura 13. PLC Omron de la familia CJ2M	30
Figura 14 Características de la familia de PLC's de Omron CJ2M	30
Figura 15. PLC Siemens SIMATIC S7-1500	31
Figura 16. CPU's de la familia 1500 de Siemens	32
Figura 17. Características generales de la familia 1500.	32
Figura 18. PLC correspondiente a la familia CompactLogix™ 5370 L3	33
Figura 19. Familia CompactLogix™ 5370 L3 y sus principales características.	33
Tabla 20. Símbolos lenguaje Ladder.	34
Figura 21. Ejemplo lenguaje diagrama de bloques	35
Figura 22. Ejemplo de lenguaje SFC en CX Programmer	36
Figura 23. Modelos de pantallas Omron de la serie NB	37
Figura 24. Modelos y características de HMI de la familia KPT de Siemens	38
Figura 25. Modelos y características de HMIs de la familia 2713P de Rockwell	
Automation	39
Tabla 26. Evaluación del tipo de renovación.	41
Figura 27. Resultado de la valoración de las diferentes alternativas de renovaciór	າ 42
Tabla 28. Evaluación del tipo de control.	43
Figura 29. Resultado de la valoración de las diferentes alternativas de control	43
Figura 30. Comparación de precios de dos módulos de entradas digitales	45
Figura 31. Red de dispositivos Profinet: PLC, Módulo de interfaz y HMI	46
Figura 32. Diferentes targetas junto al módulo de interfaz ET 200-S	46
Figura 33: Ejemplo de secuencia sin símbolos	49
Figura 34: Símbolos creados	49
Figura 35: Ejemplo de secuencia con símbolos creados	50
Figura 36: Canales 1, 2, 3 y 4 en el buscador de direcciones	50

Figura 37:	Ejemplo del escalado del canal 2, correspondiente a la presión del	
oxígeno		51
Figura 38.	bits correspondientes al canal 5	52
Figura 39.	Símbolos creados para los bits del canal 5	53
Figura 40.	Bits del canal 100	53
Figura 41.	Bits del canal 101	54
Figura 42.	Bits del canal 102	54
Figura 43.	Ejemplo de símbolos creados para los bits del canal 100	55
Figura 44.	Detalle del unifilar haciendo referencia a algunos de los contactores con protección magnetotérmica.	su 70
Figura 45.	Detalle del esquema unifilar de la primera tarjeta de entradas digital Omron ID212	es 70
Figura 46.	Detalle del esquema unifilar de la primera tarjeta de salidas digitales Omro OD214	on 71
Figura 47.	Detalle del esquema unifilar de una de las tarjetas de entradas analógic Omron AD042	as 71
Figura 48.	Detalle de los tipos de entradas y salidas que acepta el modelo de PLC	72
Figura 49.	Explicación de las partes del PLC y características básicas de cada CPU.	72
Figura 50.	Características principales de cada CPU	73
Figura 51.	Información general de la tarjeta CH200-ID212	74
Figura 52.	Información detallada de los modelos ID211 e ID212	74
Figura 53.	Detalle de las características de las tarjetas de salidas digitales de la fami CQM1, entre ellas la OD214	lia 75
Figura 54.	Detalles de la configuración y conexionado de la tarjeta AD042	75
Figura 55.	. Detalle de la explicación de los leds indicadores y la función de l terminales.	os 76
Figura 56.	Características técnicas de las entradas analógicas y gráfico de entrada salida.	vs 77
Figura 57.	Detalle de la conexión de los terminales y especificaciones técnicas de l salidas analógicas.	as 78
Figura 58.	Explicación de los indicadores luminosos y funcionalidad de cada terminal	79
Figura 59.	Representación de la salida de la tarjeta, tanto voltaje cómo corriente, en función de la entrada representada en Hexadecimal	79

Memoria

Índice de la memoria

1. Objeto	7
2. Alcance	8
3. Antecedentes	9
3.1 Documentación de partida	11
3.2 Componentes	13
3.2 Funcionamiento actual	15
4. Normas y referencias	17
5. Software	17
6. Bibliografía	17
7. Definiciones y abreviaturas	18
8. Requisitos de diseño	19
9. Análisis de soluciones	19
9.1 Diferentes alternativas de renovación	19
9.1.1 Renovación total de la instalación	19
9.1.2 Renovación parcial de la instalación	20
9.1.3 Renovación total de la instalación eléctrica y automática	20
9.1.4 Renovación total de la instalación automática	21
9.1.5 Renovación parcial de la instalación automática	21
9.2 PLC	21
9.2.1 Omron	23
9.2.2 Siemens	25
9.2.3 Rockwell Automation	27
9.3 Lenguaje de programación	29
9.3.1 Ladder	29
9.3.3 Diagrama de bloques	31
9.3.4 IL	31
9.3.5 SFC	32
9.4 Pantalla	32
9.4.1 Omron	33
9.4.2 Siemens	33
9.4.3 Rockwell Automation	34
9.5 Control	35
9.6.1 Control renovado	35
9,5,2 Control adaptado a pequeños cambios	36

ı	М	F	M	\cap	R	ΙΔ

9.5.3 Mantener el control actual	36
9.6. Valoración de las alternativas.	36
9.6.1 Renovación de la instalación	36
9.6.2 PLC	37
9.6.3 Lenguaje de programación	38
9.6.4 Pantalla	38
9.6.5 Control	38
10. Resultados	39
11. Conclusiones	42

1. Objeto

El objeto del presente proyecto es la renovación del sistema de automatización en un horno para esmaltes, pudiendo mejorarse y modificarse según las futuras necesidades. También, se pretende renovar todo el hardware que gobierna dicha automatización.

El proyecto se puede dividir en 6 fases, documentar la instalación a nivel hardware, realizar ingeniería inversa del código actual (Anexo 1) selección del nuevo material, planteamiento del nuevo código (Anexo 2) siguiendo el resultado del paso anterior, sustitución del hardware e implementación de la nueva programación y por último puesta en marcha.

La motivación de dicho proyecto es el estado en el que se encuentra la instalación, estando todo el sistema de automatización totalmente obsoleto y descatalogado. Ello supone un grave problema a la hora de encontrar repuestos o realizar modificaciones.

2. Alcance

ENDEKA CERAMICS S.A.U. es una empresa productora de esmaltes y tintas para la industria cerámica. En la guerra de los precios existente, tener la última tecnología, con la posibilidad de mejorar la instalación en función de las necesidades, es indispensable para tener unos precios competitivos.

El alcance de dicho proyecto es la renovación del sistema actual de automatización totalmente obsoleto. Se pretende poner al día toda la instalación, para poder ser modificada/mejorada en un futuro.

3. Antecedentes

ENDEKA CERAMICS SAU se encuentra al este de España, en la provincia de Castellón y en el municipio de Vall d'Alba, en la Carretera Cabanes Km 4.

En las figuras 1, 2 y 3 se puede observar la situación geográfica y su aspecto exterior.

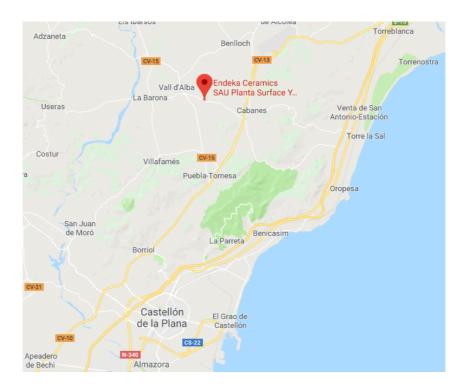


Figura 1. Situación de ENDEKA CERAMICS SAU en la provincia de Castellón

Figura 2. Detalle de la situación de ENDEKA CERAMICS SAU

Figura 3. Detalle de ENDEKA CERAMICS SAU

En el año 2002 se llevó a cabo la instalación del horno junto con todo el sistema de automatización. La instalación fue ejecutada a cargo de la empresa **ELTEC di Grasselli M. automazioni**.

3.1 Documentación de partida

La documentación aportada por el cliente para la realización del proyecto es el esquema unifilar, la programación extraída del PLC y fotografías de la instalación.

A continuación se muestra un extracto de cada uno. En la figura 4 se muestra parte del esquema unifilar, en la figura 5 se encuentra parte del código extraído del PCL y por último en la figura 6 se puede ver una foto del conjunto del PLC con los módulos de E/S.

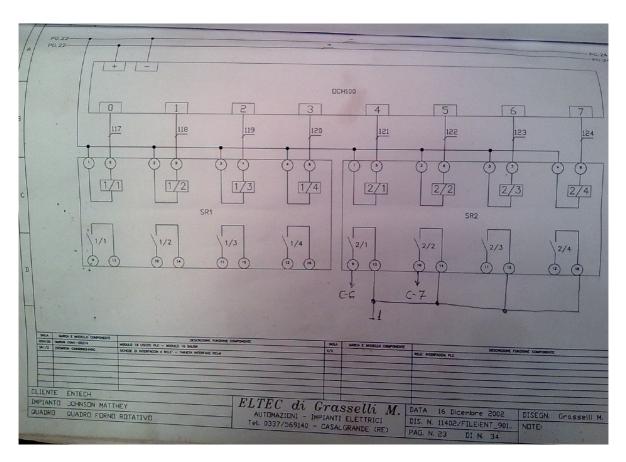


Figura 4. Extracto del esquema unifilar, pertenece a una de las tarjetas de salidas digitales.

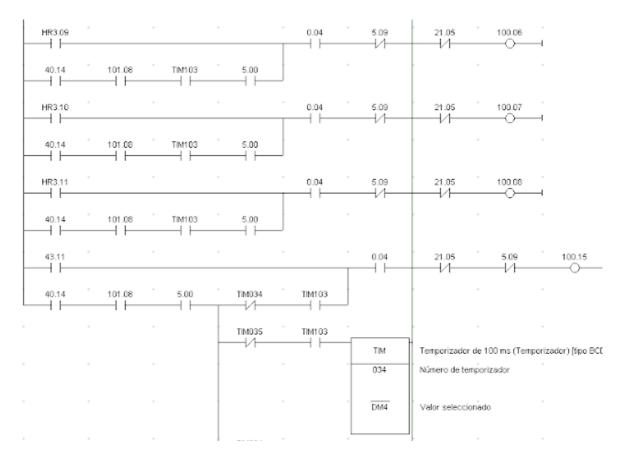


Figura 5. Código extraído del PLC

Figura 6. PLC actual y a su lado las tarjetas de E/S.

3.2 Componentes

Consultando el esquema unifilar (Anexo 3), se listan todos los componentes relacionados con la automatización del sistema:

Componente	Cantidad
Contactores	21
Inversores	3
Electroválvulas	2
Electroválvulas regulables	2
Relés	47
Finales de carrera	9
Sonda de nivel	1
Caudalímetros	2
Presostatos	3
Sonda PT100	1
Pirómetro	1
Pulsadores	7
Selectores	11
PLC Omron CQM1H-CPU51	1
Tarjetas de entradas digitales ID212	2
Tarjetas de salidas digitales OD214	3
Tarjetas en entradas analógicas AD042	2
Tarjeta de salidas analógicas DA022	1

Tabla 7. Componentes principales de la instalación automática actual

En la tabla 7 se encuentran numerados los componentes principales del horno, dichos componentes se ven representados en el diagrama de la figura 9.

Componente	Cantidad
1- Tolva	1
2- Tolvín	1
3- Vibrador	5
4- Horno	1
5- Quemador	1
6- Tornillo sin-fin	4
7- Espiral	1
8- Molino	1
9- Filtro	1
10- Chimenea	1

Tabla 8. Componentes generales del horno

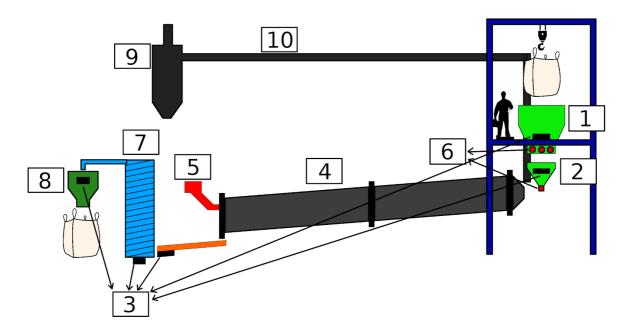


Figura 9. Componentes principales del horno.

La programación del sistema se realizó mediante el software de Omron CX-Programer, cómo se puede ver en la figura 5 el lenguaje utilizado es el Ladder. El código actual no es el que el programador introdujo en el PLC en 2002, sino el que se ha extraído del PLC, sin símbolos ni comentarios, solo se encuentran direcciones de memoria, esto ocurre por la imposibilidad de tener acceso al código con símbolos y comentarios.

Además de este problema, existen algunos elementos de la instalación que no funcionan como deberían. Ya que se han ido deteriorando, algunos no se han reparado y otros simplemente se han anulado para realizar la tarea manualmente.

Un ejemplo de ello es el presostato de la chimenea, que mediante la presión en el interior de la chimenea, se controlaba la obstrucción de la misma debido a la deposición de cenizas, introduciendo unos pulsos de aire comprimido se empujaban las cenizas hacia el filtro, situado en el exterior de la nave.

3.2 Funcionamiento actual

En este apartado se describe el funcionamiento general del horno:

Puesta en marcha:

Para realizar la puesta en marcha de la instalación, se deben colocar todos los selectores a 1, excepto los que hacen referencia al modo manual. A continuación se mantiene el pulsador "**Principio ciclo**" durante 10 segundos. En ese instante todos los elementos mecánicos entran en funcionamiento según el orden establecido. Una vez todo el sistema mecánico está en funcionamiento, se presiona el pulsador "Arranque quemador", a partir de entonces el horno aumentará la temperatura hasta el valor fijado.

Figura 10. Botonera principal de la instalación

Una vez el horno alcanza la temperatura fijada, la secuencia sigue.

El orden de arranque se realiza de modo que no quede material de la última vez que estuvo en funcionamiento, a continuación se detalla el orden:

- 1º Molino.
- 2º Espiral vibradora.
- 3º Vibrador Horno
- 4º Horno
- 5° Sinfin del tolvin
- 6° Vibrador de carga
- 7° Sin fines de la tolva

Actualmente los tiempos entre pasos no son configurables.

La parada del sistema se realiza pulsando el pulsador "Parada ciclo", el orden en el que se para el sistema es el inverso que el de inicio, para dejar el conjunto sin material en el interior.

A continuación se muestran los pasos que sigue el horno para la cocción del material:

- 1º Puesta en marcha
- 2º Un operario descarga un Big Bag de material en la tolva con la ayuda de un cabrestante eléctrico.
- 3º Los tres tornillos sin fin de la tolva empujan el material hacia el tolvín, este tiene una sonda de nivel, la cual activa o desactiva el funcionamiento de los tornillos de la tolva.
- 4° El tornillo sin fin del tolvín introduce el material en el horno rotativo.
- 5° El horno rotativo tiene una cierta inclinación, por lo que el material avanza en el horno por gravedad a la vez que se cuece.
- 6º La temperatura del horno está regulada por un PID, este PID gobierna las válvulas de gas y oxigeno, manteniendo siempre el coeficiente estequiométrico especificado.
- 7º Una vez el material sale del horno, es transportado mediante un canal vibrador hasta la espiral vibradora.
- 8º La espiral vibradora eleva el material hasta el molino.
- 9º El molino muele el material cocido, la salida del molino está dirigida por gravedad a un Big Bag.
- 10° Un operario sustituye el Big Bag lleno con la ayuda de un traspalet por uno vacío.

11º Cuando no queda material en la tolva, si se quiere seguir produciendo, un operario vuelve a llenar la tolva, si no, un operario para el sistema de forma manual mediante el pulsador "Parada ciclo".

4. Normas y referencias

Norma UNE 157001: Criterios generales para la elaboración formal de los documentos que constituyen un proyecto técnico.

Norma IEC 61131-3 (ST): Norma del texto estructurado en programación.

5. Software

El software utilizado para la realización del presente proyecto es el siguiente:

- Google Drive: Documentos, Hojas de cálculo y Presentaciones.
- CX Programmer
- TIA Portal Siemens v15
- Microsoft Excel 2016
- VMware Workstation Pro
- Gimp 2.10

6. Bibliografía

- Unifilar de la instalación (Anexo 3)
- Datasheet PLC Omron CQM1H-CPU51 (Anexo 4)
- Datasheet tarjeta de entradas digitales ID212 (Anexo 5)
- Datasheet tarjeta de salidas digitales OD214 (Anexo 6)
- Datasheet tarjeta de entradas analógicas AD042 (Anexo 7)
- Datasheet tarjeta de salidas analógicas DA022 (Anexo 8)

7. Definiciones y abreviaturas

Central Processing Unit (CPU): Unidad Central de Procesamiento, es un dispositivo programable que interpreta instrucciones mediante operaciones lógicas, aritméticas y de entradas o salidas.

Controlador Lógico Programable (PLC): más conocido como autómata programable, es una CPU utilizada en la rama de automatización industrial. En este caso, las referencias a PLC, hacen alusión a la CPU y a todos los periféricos como tarjetas de entradas y salidas, fuentes de alimentación o cualquier dispositivo necesario para la gestión del sistema.

Human Machine Interface (HMI): es una interfaz máquina-humano, en la que se interactúa de forma sencilla con la máquina. Accediendo a datos cómo alarmas, consumos o nivel de producción. También se puede acceder a alguna configuración del sistema, como el modo manual, establecer diferentes valores a tiempos de espera, coeficientes estequiométricos, caudales, o cualquier consigna que deba ser accesible y configurable de forma sencilla por el usuario. Una característica común es la visualización de un dibujo que hace referencia a la instalación, en la que se ve el estado de cada elemento.

Personal Computer (PC): hace referencia a un ordenador personal, el cual procesa datos para ofrecer una información útil al usuario.

Ladder: es un lenguaje de programación gráfico muy popular dentro de los PLCs debido a que está basado en los esquemas eléctricos de control.

Entradas y salidas (E/S): se refiere a entradas y salidas de información codificada de forma digital, pueden ser digitales o analógicas. Suelen ir ligadas a las tarjetas de adquisición de datos, esta puede estar conectadas a un PC, PLC o cualquier dispositivo similar.

Structured Control Language (SCL): lenguaje de programación de alto nivel basado en texto estructurado utilizado por Siemens.

Datasheet: de origen inglés, significa ficha técnica, ficha de características o hoja de características. Contiene información técnica sobre el componente al que hace referencia.

8. Requisitos de diseño

Los requisitos demandados por el cliente son los siguientes, ordenados por orden de prioridad:

- 1º **Requisitos propios**: Para estar en consonancia con el resto de la instalación, el fabricante del hardware debe ser Siemens y la programación se debe realizar en lenguaje SCL (así es como Siemens llama a su lenguaje basado en texto estructurado).
- 2º **Económico**: El presupuesto debe ser lo más ajustado posible.
- 3° **Fiabilidad**: la instalación debe funcionar de la misma manera que lo hace en la actualidad, también debe ser duradera en el tiempo.
- 4° **Flexibilidad**: Una vez se realice la puesta en marcha, la instalación se debe poder modificar o ampliar sin ningún tipo de dificultad.

9. Análisis de soluciones

Las posibles soluciones que se han barajado son las siguientes:

9.1 Diferentes alternativas de renovación

En todas las alternativas que se proponen, se tiene siempre en cuenta las futuras mejoras y ampliaciones.

9.1.1 Renovación total de la instalación

Esta solución es la opción más drástica, consiste en sustituir el conjunto actual por otro totalmente nuevo. Se trata de una renovación total, diseñando la futura instalación acorde a las necesidades actuales y futuras. Pudiendo hacer un conjunto mucho más eficiente y con menor coste operativo.

Para ello se deberá rediseñar la capacidad del horno, teniendo en cuenta las necesidades de producción actuales, por tanto, también se deberá rediseñar las instalaciones de gas natural, oxígeno y aire comprimido, teniendo que adaptarlas a las necesidades de caudales y presiones del nuevo horno y sus necesidades térmicas. Debido a esto, también se redimensionará toda la valvulería, adaptándola a los nuevos requisitos.

Por otro lado se deberá dimensionar todo el cableado, tanto de la parte de fuerza como de la parte de control. Se sustituirá todos los componentes de la parte eléctrica y control, tales como interruptores diferenciales, magnetotérmicos, fusibles, PLC, tarjetas de E/S, relés, contactores, pulsadores, sensores y actuadores.

En cuanto al sistema de interfaz de usuario también se renovará el sistema actual, el cual consta en un PC, pantalla, ratón y teclado; totalmente desactualizado.

9.1.2 Renovación parcial de la instalación

Esta solución trata de renovar las partes de la instalación más deterioradas y que actualmente limitan la capacidad de mejora del sistema, además de la renovación completa del sistema eléctrico y automático.

Para esta solución, se deberá determinar el estado de todos los componentes de la instalación, se sustituirá todos aquellos que presenten síntomas de deterioro, por unos de las mismas características.

En cuanto a la instalación eléctrica y automática se deberá sustituir la actual por una nueva y equivalente. Sin tener que realizar ningún tipo de cálculo, ya que no variará ningún equipo en cuanto a potencia se refiere.

9.1.3 Renovación total de la instalación eléctrica y automática

En esta solución se renovaría completamente toda la instalación eléctrica y automática, manteniendo todo el sistema productivo.

En este caso se deberá buscar el equivalente de todos los componentes de la instalación correspondientes a la parte eléctrica y automática, tales como interruptores diferenciales, magnetotérmicos, fusibles, relés, contactores, pulsadores, sensores y actuadores.

9.1.4 Renovación total de la instalación automática

En esta solución se sustituiría todo el conjunto de sensores, actuadores, PLC, HMI, tarjetas de E/S y cualquier dispositivo relacionado con ellos.

Para este caso, se sustituirá cualquier elemento relacionado con la automatización, por lo que se buscará elementos de las mismas características.

Los elementos que se sustituirán son PLC, Interfaz de usuario, tarjetas de E/S, sensores y actuadores. Obteniendo un sistema de automatización totalmente actual.

9.1.5 Renovación parcial de la instalación automática

En este caso se renovaría los elementos estrictamente necesarios, siendo estos del sistema de automatización. Y concretamente los que están descatalogados, por lo que se mantendría el conjunto de sensores y actuadores.

Para llevar a cabo esta alternativa, se sustituirá exclusivamente los elementos relacionados con el sistema de automatización que estén actualmente descatalogados o totalmente desactualizados, siendo estos el PLC, las tarjetas de E/S y sistema de interfaz de usuario.

9.2 PLC

El modelo de PLC que está instalado en la actualidad cómo se puede ver en la figura 11 es el Omron **CQM1H CPU51**, sus características principales se pueden consultar en la captura realizada al manual en la figura 12.

Las características de los PLC's actuales más sencillos, son superiores al existente. Por lo tanto, se requiere un PLC sencillo y modular, al que se le pueda añadir más tarjetas en un futuro.

Figura 11. Detalle del CPU actual en la instalación

El PLC actual tiene junto a él 2 tarjetas de entradas digitales de 16 entradas cada una, 3 tarjetas de salidas digitales con 16 salidas cada una, 2 tarjetas de entradas analógicas con 4 entradas cada una y una tarjeta de salidas analógicas con 2 salidas.

1-2-3 CPUs

Especificaciones básicas

Modelo	Nº de puntos de	Capacidad de	Entradas en la CPU	Capaci- dad de dad de	dad de dad de incorporados opcionale			Tarjetas opcionales	Unidades de comuni-		
	E/S (ver nota)	programa (palabras)		DM (palabras)	EM (palabras)	Puerto de periféricos	Puerto RS-232C		Ca	caciones	caciones
CQM1H- CPU61	512	15.2 K	c.c.: 16	6 K	6 K	Sí	Sí	Soportado	Soportado		
CQM1H- CPU51		7.2 K		6 K	Ninguna						
CQM1H- CPU21	256	3.2 K		3 K				No soportado	No soportado		
CQM1H- CPU11							No				

Nota Número de puntos de E/S = Número de puntos de entrada (\leq 256) + Número de puntos de salida (\leq 256).

Número máximo de unidades

CPU	Número máximo de unidades conectables					
	Unidades de comunicaciones	Tarjetas opcionales	Unidades de E/S	Unidades especiales de E/S		
CQM1H-CPU61	1	2	11			
CQM1H-CPU51]					
CQM1H-CPU21	Ninguna	Ninguna	1			
CQM1H-CPU11						

Figura 12. Características generales de la familia CQM1H

A continuación se plantean diferentes alternativas a escoger para sustituir el PLC actual.

9.2.1 Omron

Figura 13. PLC Omron de la familia CJ2M

Modelo	CJ2M-CPU11	CJ2M-CPU12	CJ2M-CPU13	CJ2M-CPU14	CJ2M-CPU15	
Capacidad de E/S de Unidades instalables	2.560 puntos/	40 unidades (ma	áx. 3 bastidores	expansores)		
Capacidad de programa	5 Kpasos	10 Kpasos	20 Kpasos	30 Kpasos	60 Kpasos	
Capacidad de memoria de datos	EM: 32 Kcanales/banco x 1 banco EM			DM: 32 Kcanales, EM: 32 Kcanales/banco x 4 bancos		
Memoria de seguimiento de datos	8 Kcanales					
Fuente/memoria de comentarios	1 MB					
Definiciones de bloques de función	256 2.048					
Instancias de bloques de función	256 2.048					
Área de programa de bloques de función	20 Kpasos					
Ethernet incorporado	No					
USB incorporado	Sí					
Puerto RS-232 incorporado	Sí					
Slot para tarjeta opcional de comunicaciones	No					
Tiempo de ejecución de instrucción LD	40 ns					
Módulos de E/S de pulsos complementarios	Soportado*					
Funcionamiento síncrono de la unidad	No					
Estructuras de datos definidas por el usuario**	Sí					
Dimensiones de la unidad (H x A x F)	90 x 31 x 84,5	mm				

Figura 14 Características de la familia de PLC's de Omron CJ2M

De la familia CJ2M, el modelo más sencillo es el **CJ2M-CPU11**, con el que cumplimos los requisitos de la instalación actual y futura.

9.2.2 Siemens

De la marca Siemens se ha escogido la familia S7-1500, al ser de nueva generación, pasarán muchos años hasta quedar descatalogada. También se ha escogido por ser modular, por lo que se puede ir mejorando la instalación sin ningún tipo de problema.

Figura 15. PLC Siemens SIMATIC S7-1500

Dentro de la familia 1500 existe un gran número de posibilidades, La CPU considerada como correcta, nuevamente es la más sencilla, **CPU 1510SP-1 PN**. En la figura 16 se observan todas las CPU's que componen la familia 1500.

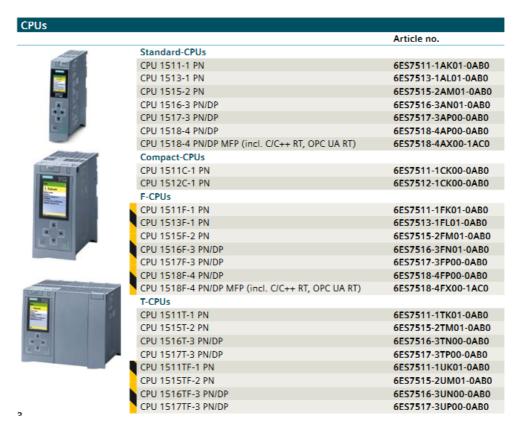


Figura 16. CPU's de la familia 1500 de Siemens

Las características principales de la CPU 1511-1 PN se encuentran la figura 17, en la que se puede observar que cumple con creces los requisitos actuales y futuros.

			Modular design			Compact design
			Standard-CPUs	Technology-CPUs	Multifunctional platform	Compact-CPUs
	CPU-types		CPU 1511, 1513, 1515, 1516, 1517, 1518	CPU 1511T, 1515T, 1517T, 1516T	CPU 1518 MFP	CPU 1511C, 1512C
1	Efficient	IEC languages	x	x	x	x
	engineering	C/C++	-	-	x	-
2	Innovative	Onboard-I/Os	-	-	-	x
	design	PROFINET interfaces/ ports (max.)	1/2 to 3/4	1/2 to 2/3	3/4	1/2
3	High	Bit performance	60 ns to 1 ns	60 ns to 2 ns	1 ns	60 ns to 48 ns
	performance	Communication options	OPC UA, PROFINET (incl PtP, Modbus RTU and M		lenergy and PROFIdrive),	PROFIBUS ***, TCP/IP,
		Program memory	150 KB to 6 MB	150 KB to 3 MB	4 to 6 MB	175 to 250 KB
		Data memory	1 MB to 20 MB	1 MB to 8 MB	20 MB additional 20 MB for exe- cuting ODK applications	1 MB
4	Reliable diagnostics	Integrated system diagnostics	х	х	×	х
5	Safety Integrated	Fail-safe	x	х	х	-
6	Technology Integrated	Motion Control functions	External encoder, output cam, measuring input Speed and positioning axis Relative synchronism PID controllers (integrated) Counters, pulse width modulation, pulse train outputs (with technology modules)	External encoder, output cam, measuring input Speed and positioning axis Relative synchronism PID controllers (integrated) Counters, pulse width modulation, pulse train outputs (with technology modules) Absolute synchronism, camming	External encoder, output cam, measuring input Speed and positioning axis Relative synchronism PID controllers (integrated) Counters, pulse width modulation, pulse train outputs (with technology modules)	External encoder, output cam, measuring input Speed and positioning axis Relative synchronism PID controllers (integrated) Counters, pulse width modulation, pulse train outputs (integrated)

Figura 17. Características generales de la familia 1500.

9.2.3 Rockwell Automation

En cuanto a la marca Rockwell Automation, los criterios de selección de la familia se centran en los costes y el tamaño de la instalación a la que está dirigida. Se trata de la familia CompactLogix™ 5370 L3 (figura 18), esta familia está dirigida a pequeñas instalaciones de control, siendo la familia con el precio más contenido.

Figura 18. PLC correspondiente a la familia CompactLogix™ 5370 L3

En la figura 19 se puede observar los diferentes CPU's que forman dicha familia y sus principales características.

Especificaciones del controlador CompactLogix 5370 L3

	1769-L30ER	1769-L30ERM	1769-L30ER-NSE	1769-L33ER	1769-L33ERM	1769-L36ERM		
Memoria de usuario	1 MB	1 MB	1 MB	2 MB	2 MB	3 MB		
Tareas del controlador	32	32	32	32	32	32		
Programas por tarea	100	100	100	100	100	100		
Control de movimiento integrado		Eje de lazo de posición de movimiento CIP de 4 ejes			Eje de lazo de posición de movimiento CIP de 8 ejes	Eje de lazo de posición de movimiento CIF de 16 ejes		
Tamaño de formato	55 mm de ancho x 118 mm de alto x 105 mm de profundidad							
Homologaciones	cULH (Clase I División 2), KCC/UL (UL 508), ULH (Clase I y II, División 2 y Clase III, Divisiones 1 y 2)/ ATEX, CE, C-Tick, GOST-R y Marino							
Módulos expansores locales	8	8	8	16	16	30		
Puntos de E/S de expansión locales	256	256	256	512	512	960		
Adiciones de módulos de comunicación	DeviceNet con 1769-SDN o de otros fabricantes							
Tarjeta de memoria Flash	Clasificación industrial y tarjeta de memoria Secure Digital (SD) certificada (1 y 2 opciones); todos los controladores se envían con tarjeta de 1 GB							
Servovariadores (lazo de posición CIP)		4			8	16		
Nodos IP de E/S Ethernet	16	16	16	32	32	48		
Ejes virtuales	100	100	100	100	100	100		
Retroalimentación solamente, par, velocidad, Vhz (variadores de movimiento CIP máx.)		16			32	48		

Figura 19. Familia CompactLogix™ 5370 L3 y sus principales características.

Se observa como la CPU más sencilla de la familia es suficiente para controlar nuestro sistema. Por lo que el modelo 1769-L30ER cumpliría con el cometido necesario.

9.3 Lenguaje de programación

9.3.1 Ladder

Se trata de un lenguaje de programación muy común, durante décadas ha sido muy utilizado, es fácilmente entendible por cualquier técnico o operario que tenga conocimientos de esquemas eléctricos de control, ya que está basado en esa lógica. Los bloques básicos son los siguientes:



Tabla 20. Símbolos lenguaje Ladder.

Los bloques más utilizados además de los anteriores son:

- Temporizadores.
- Detectores de flanco (subida o bajada).
- Generador de flancos.
- SET.
- RESET.
- KEEP.
- Contadores.

Se trata de un lenguaje muy sencillo de entender y de programar, pero no es eficiente para instalaciones complejas o de grandes dimensiones.

En la actualidad el PLC de la instalación que se pretende renovar está programado en este lenguaje.

9.3.2 Texto estructurado

El lenguaje de programación basado en texto estructurado es un lenguaje de alto nivel similar a PASCAL adaptado al control de procesos. Las funciones principales son:

- IF THEN
- ELSIF
- ELSE
- FOR
- CASE

Es un lenguaje muy flexible el cual se puede adaptar a cualquier situación de la industria. Actualmente es uno de los más utilizados.

9.3.3 Diagrama de bloques

Se trata de un lenguaje gráfico, el cual consta de bloques, los cuales representan funciones, estos tienen entradas y salidas. A estas se pueden conectar otras de bloques diferentes o puntos lógicos del programa.

En la siguiente imagen se puede observar un ejemplo de este lenguaje, en el que se utilizan puertas lógicas (AND, NOT y OR)

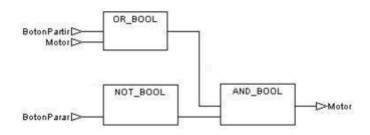


Figura 21. Ejemplo lenguaje diagrama de bloques

Este lenguaje se utiliza en instalaciones en las que el sistema a automatizar es sencillo.

9.3.4 IL

Este tipo de lenguajes se utiliza cuando se requiere una velocidad de procesamiento muy alta o cuando el CPU tiene limitaciones es este aspecto.

Se trata del lenguaje más cercano al lenguaje máquina, son instrucciones codificadas en hexadecimal, se accede directamente a los registros del CPU. Es el nivel más bajo de programación.

Este lenguaje puede variar mucho según la marca y el modelo del PLC, ya que cada fabricante distribuye la memória de una forma y utiliza unas instrucciones diferentes a los demás.

9.3.5 SFC

El lenguaje SFC o Sequential Function Chart, deriva del grafcet, y por lo tanto se trata de un lenguaje gráfico como pueden ser el Diagrama de Bloques o el Ladder.

Como se puede observar en la figura 22, dicho lenguaje se compone principalmente de etapas asociadas a acciones y transiciones basadas en condiciones lógicas.

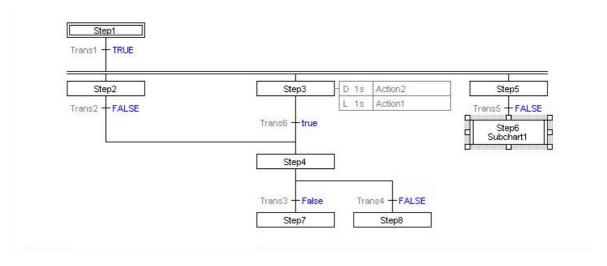


Figura 22. Ejemplo de lenguaje SFC en CX Programmer

9.4 Pantalla

La pantalla utilizada en la actualidad es una pantalla de tubo catódico con más de 20 años. En este caso se pretende sustituir dicha pantalla por una HMI tactil.

A continuación se presentan las diferentes opciones ofrecidas por los fabricantes de PLCs mencionados en el punto 9.2.

9.4.1 Omron

A continuación se muestran los diferentes modelos de pantalla de la serie NB de Omron.

Se ha escogido esta serie debido a su simplicidad y a su compatibilidad con la serie CJ de Omron elegida en el punto 9.2.1

Product name	Specifications	Order code
NB3Q	3.5 inch, TFT LCD, Color, 320 × 240 dots	NB3Q-TW00B
	3.5 inch, TFT LCD, Color, 320 \times 240 dots, USB Host, Ethernet	NB3Q-TW01B
NB5Q	5.6 inch, TFT LCD, Color, 320 × 234 dots	NB5Q-TW00B
	5.6 inch, TFT LCD, Color, 320 \times 234 dots, USB Host, Ethernet	NB5Q-TW01B
NB7W	7 inch, TFT LCD, Color, 800 × 480 dots	NB7W-TW00B
	7 inch, TFT LCD, Color, 800 \times 480 dots, USB Host, Ethernet	NB7W-TW01B
NB10W	10.1 inch, TFT LCD, Color, 800 \times 480 dots, USB Host, Ethernet	NB10W-TW01B

Figura 23. Modelos de pantallas Omron de la serie NB

9.4.2 Siemens

Hay diferentes tipos de familias de HMI en Siemens, una de las que podemos utilizar para la familia de PLCs Siemens elegida, la S7-1500 es la familia KPT, está dentro de los sistemas HMI más sencillos de Siemens.

	KTP400 Basic	KTP700 Basic DP KTP700 Basic	KTP900 Basic	KTP1200 Basic DP KTP1200 Basic			
Type of operation	4" Touch + Key	7" Touch + Key	9" Touch + Key	12" Touch + Key			
Display	Widescreen TFT, 65k colors, LED backlighting						
Size (in inches)	4.3"	7"	9"	12.1"			
Resolution (W x H in pixels)	480 x 272	800 x 480	800 x 480	1,280 x 800			
MTBF ⁵⁾ backlighting (in h)	20,000	20,000	20,000	20,000			
Front dimensions (in mm)	141 x 116	214 x 158	267 x 182	330 x 245			
Operator controls	Touch screen and tactile keys	Touch screen and tactile keys	Touch screen and tactile keys	Touch screen and tactile keys			
Function keys (programmable) / system keys	41-	81-	8/-	10/-			
Usable memory							
User memory	10 MB	10 MB	10 MB	10 MB			
Memory for options / recipes 4)	-1256 KB	-1256 KB	-1256 KB	-1256 KB			
Alarm buffer	•	•	•	•			
Interfaces							
Serial/MPI/PROFIBUS DP/ PROFINET (Ethernet)	-1-1-1•	• 3) • • — — — •	-1-1-1•	• 3) • • — — — — •			
USB host / USB device	1/-	1/-	1/-	1/-			
Slot for CF / Multimedia / SD	-1-1-	-1-1-	-1-1-	-1-1-			
Functionality (when configured with WinCC TIA Portal)							
Signaling system (number of messages / message classes)	1,000/32	1,000/32	1,000/32	1,000/32			
Process pictures	250	250	250	250			
Tags	800	800	800	800			

Figura 24. Modelos y características de HMI de la familia KPT de Siemens

9.4.3 Rockwell Automation

El modelo de HMI elegido para el PLC de Rockwell Automation es el 2713P-T12WD1, se ha selecionado este modelo por ser el de mayor tamaño y ser compatible con el modelo de PLC seleccionado. En la figura 25 se pueden observar las características principales de la familia 2713P.

Technical Specifications - PanelView 5310 Terminals

	6-in. Touch	7-in. Wide Touch	9-in. Wide Touch	10.4-in. Touch	12.1-in. Wide Touch				
Attribute	2713P-T6CD1 2713P-T6CD1-B ⁽¹⁾	2713P-T7WD1 2713P-T7WD1-B ⁽¹⁾	2713P-T9WD1 2713P-T9WD1-B ⁽¹⁾	2713P-T10CD1 2713P-T10CD1-B ⁽¹⁾	2713P-T12WD1 2713P-T12WD1-B ⁽¹⁾				
Operator input	Touch	Touch							
Display type	Color TFT LCD (thin-film-tran	sistor, liquid-crystal display)							
Display size, diagonal	5.7-in. screen	7-in. widescreen	9-in. widescreen	10.4-in. screen	12.1-in. widescreen				
View area, W x H	115 x 86 mm (4.5 x 3.4 in.)	152 x 91 mm (6.0 x 3.6 in.)	196 x 118 mm (7.7 x 4.6 in.)	211 x 158 mm (8.3 x 6.2 in.)	261 x 163 mm (10.3 x 6.4 in.)				
Display resolution/ aspect ratio	640 x 480 VGA/4:3	800 x 480 WVGA/5:3	800 x 480 WVGA/5:3	800 x 600 SVGA/4:3	1280 x 800 WXGA/16:10				
Color depth	24-bit color graphics (16.7 m	illion colors)			•				
Brightness, typical	300 cd/m ² (Nits)								
Backlight	Light-emitting diode, non Life: 50,000 h min at 40 °C	-replaceable (104°F) to half-brightness							
Backlight power consumption, typical	2.4W	3 W	3.5 W	4W	5 W				
Touch screen	Analog resistive Actuation rating: 1 million presses Operating force: <100 grams								
Battery (real-time clock backup)	Battery life: 4 years min at	 Accuracy: +/-2 minutes per month. Battery life: 4 years min at 25 °C (77 °F) Replacement: CR2032 lithium coin cell 							
Memory RAM User available	1 GB RAM 1 GB nonvolatile storage for p	projects							
Secure Digital (SD) card slot	One SD card slot for external	One SD card slot for external storage; supports cat. no. 1784-SDx cards. See Secure Digital (SD) Cards on page 6.							
USB ports Host Device	One USB high-speed 2.0 host port (type A) supports removable drives for external storage. One high-speed 2.0 device port (type B) supports connection to host computer (available in a future release).								
Ethernet port	One 10/100Base-T, Auto MDI	One 10/100Base-T, Auto MDI/MDI-X Ethernet port for controller communication.							
Status indicators	STS (status, green), ERR (error, red)								
Software	Studio 5000 environment provides single portal to View Designer and Logix Designer applications.								

Figura 25. Modelos y características de HMIs de la familia 2713P de Rockwell Automation

9.5 Control

A la hora de realizar el control del sistema se plantean las siguientes posibilidades.

9.6.1 Control renovado

En el caso de renovar totalmente la maquinaria (punto <u>9.1.1</u> de la memoria), se deberá realizar un estudio del funcionamiento de la nueva instalación. Esto supondría una gran ventaja para el cliente, ya que, el funcionamiento se adapta totalmente a él.

Sin embargo, el estudio para realizar el control total llevaría un largo tiempo, por lo que supondría un sobrecoste.

9.5.2 Control adaptado a pequeños cambios

En el caso de una renovación parcial del sistema (puntos <u>9.1.2</u>, <u>9.1.3</u>, <u>9.1.4</u> y <u>9.1.5</u> de la memoria), los cambios a realizar en el control serán mucho menores que en el apartado anterior, teniendo que adaptar los cambios realizados a las necesidades del cliente, manteniendo la base del control.

9.5.3 Mantener el control actual

Otra posibilidad es no realizar ningún cambio significativo en el control del sistema, esto se debe a que los operarios tienen muy interiorizado el funcionamiento del sistema, cualquier cambio significativo podría suponer un largo periodo de adaptación, con los problemas productivos que ello supone.

9.6. Valoración de las alternativas.

En este punto se va a valorar las diferentes alternativas frente a los requisitos. El peso que se ha dado a los requisitos es: 50% a los requisitos propios, 25% al coste, 10% a la fiabilidad y un 5 % a la flexibilidad.

9.6.1 Renovación de la instalación

	Requisitos propios	Coste	Fiabilidad	Flexibilidad
Renovación total de la instalación	Al ser una instalación totalmente nueva, cumpliria totalmente dicho requisito	No cumpliria al ser la opción más costosa	Esta opción sería totalmente fiable.	Al ser una instalación totalmente nueva es totalmente flexible.
Renovación parcial de la instalación	Al renovar parcialmente la instalación, esta cumpliría	Al renovar mucho del material existente, no cumpliría	Al renovar los componentes más deteriorados, aseguramos la fiabilidad.	La no renovación total de la instalación supone que no es flexible al 100%
Renovación total de la instalación eléctrica y automática	Este requisito se cumple debido a que afecta a los componentes relacionados con es sistema de automatización	Debido a la renovación del sistema eléctrico y automático el coste no sería muy elevado	La renovación únicamente de los sistemas eléctrico y automático, la fiabilidad del sistema en general no se puede asegurar.	La no renovación total de la instalación supone que no es flexible al 100%
Renovación parcial de la instalación automática	Este requisito se cumple debido a que afecta a los componentes relacionados con es sistema de automatización	Debido a la renovación del sistema automático el coste sería el más bajo de las opciones	La renovación únicamente del sistema automático, la fiabilidad del sistema en general no se puede asegurar.	La no renovación total de la instalación supone que no es flexible al 100%

Tabla 26. Evaluación del tipo de renovación.

Peso de las diferentes opciones:

	Renovación parcial de la instalación	Renovación total de la instalación eléctrica y automática	
70%	60%	75%	75%

Figura 27. Resultado de la valoración de las diferentes alternativas de renovación

Las mejores opciones son la renovación total de la instalación eléctrica y automática y la renovación parcial de la instalación automática. Debido a que el primer requisito lo cumplen las dos alternativas al completo, el coste será el que defina la opción a elegir.

Al tratarse de una renovación parcial del sistema de automatización, es coste será menor que el de una renovación total del sistema eléctrico y automático, por lo tanto la mejor opción es realizar una renovación parcial de la instalación automática.

9.6.2 PLC

Debido a que el primer requisito demanda que todos los sistemas de automatización sean del fabricante Siemens, no hay cabida a más opciones.

9.6.3 Lenguaje de programación

Debido a que el primer requisito demanda que el lenguaje utilizado para programar el PLC sea SCL, por lo que el resto quedan descartados.

9.6.4 Pantalla

Debido a que el primer requisito demanda que todos los sistemas de automatización sean del fabricante Siemens, no hay cabida a más opciones.

9.6.5 Control

Para decidir qué nivel de modificación se va a realizar en el sistema, se barajan las diferentes alternativas bajo los requisitos impuestos con los mismos pesos que en el punto <u>9.6.1</u>.

	Requisitos propios	Coste	Fiabilidad	Flexibilidad
Control renovado	Al tratarse de una renovación completa, este requisito se cumple	Al tratarse de una renovación completa, el coste en horas de trabajo será muy alto	Con este nuevo código se asegura la fiabilidad del mismo.	Debido a que es un código nuevo, la flexibilidad es total
Control adaptado a pequeños cambios	Debido a que el lenguaje actual es el Ladder, no cumpliría este requisito	El coste de esta alternativa no sería de gran relevancia si se compara con la anterior	Al tratarse de un código ajeno, no se puede asegurar su fiabilidad	Al tener el código extraído del PLC antiguo, podría lograrse una cierta flexibilidad
Control actual	Debido a que el lenguaje actual es el Ladder, no cumpliría este requisito	El coste de esta alternativa sería 0€	Al tratarse de un código ajeno, no se puede asegurar su fiabilidad	Al tener el código extraído del PLC antiguo, podría lograrse una cierta flexibilidad

Tabla 28. Evaluación del tipo de control.

Peso de las diferentes opciones:

Control renovado	Control adaptado a pequeños cambios	Control actual
65%	30%	30%

Figura 29. Resultado de la valoración de las diferentes alternativas de control

11. Resultados

La solución que más se ajusta a los requisitos de diseño es la <u>9.1.5</u> en la que se renueva la parte obsoleta del sistema de automatización y se renueva todo el software, por lo tanto los cambios que se realizarán en el control del sistema serán mínimos.

Para empezar, se debe hacer ingeniería inversa del código que proporciona la empresa ENDEKA CERAMICS SAU, se pueden consultar los pasos seguidos para llegar a comprender el código antiguo en el <u>Anexo 1</u> para poder generar el nuevo código que controle el sistema, se puede consultar parte de la nueva programación en el <u>Anexo 2</u>.

En cuanto al fabricante de los elementos que controla el sistema, por imposición del cliente debe ser Siemens, por ello, se selecciona el PLC de Siemens **CPU 1511-1 PN** de la familia 1500, la elección de este PLC viene dada por las siguientes razones:

- Precio contenido si se compara con PLCs de Siemens de prestaciones superiores.
- Posibilidad de programarlo en SCL, uno de los requisitos del cliente.
- Se puede utilizar el protocolo de comunicación PROFINET, el cual está extendido por toda la empresa ENDEKA CERAMICS SAU.
- Al ser una automatización sencilla y no requerir de gran potencia de procesamiento, el PLC más sencillo de la familia es suficiente.

Al ser el coste uno de los principales requisitos para la realización del proyecto, se decide no poner la instalación habitual de módulos de E/S. Se decide sustituir el sistema habitual por un sistema que se suele utilizar para controlar sistemas alejados del PLC, el cual cuenta con un módulo de interfaz ET 200s, que comunica con el PLC principal mediante PROFINET. Este conjunto resulta más económico que el habitual. A modo comparativo podemos ver en la figura 30 dos módulos de E/S que ofrecen las mismas características pero uno es el del montaje habitual y otro el de una instalación lejana al PLC.

Pese a que el primero es de 8 entradas y el segundo de 16, el precio es prácticamente 4 veces superior.

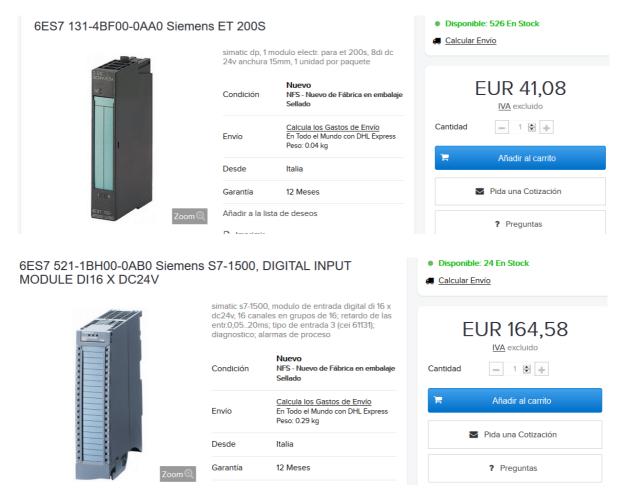


Figura 30. Comparación de precios de dos módulos de entradas digitales

La pantalla seleccionada para la instalación es la del fabricante Siemens de la familia KPT, esto se debe a que el resto de la instalación es de Siemens, además de ser un requisito de diseño.

Se trata de un modelo con pantalla táctil y comunicación PROFINET, dentro de la misma familia se elige el modelo de 12", ya que aporta mayor confort a la hora de la utilización por parte de los operarios.

En la siguiente imagen (Figura 31) se pueden observar los diferentes dispositivos unidos por la red PROFINET

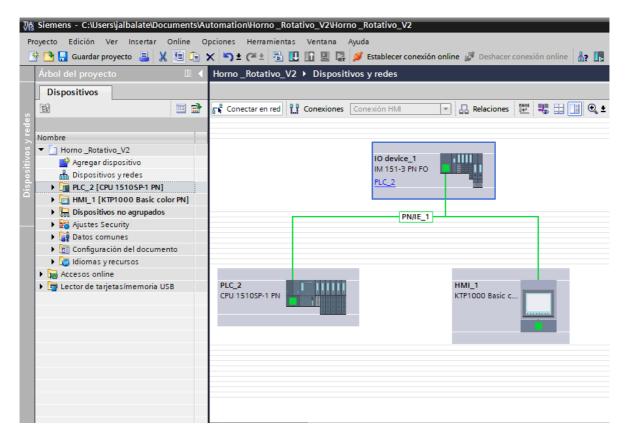


Figura 31. Red de dispositivos Profinet: PLC, Módulo de interfaz y HMI

En la figura 32 se pueden observar todos los módulos utilizados para en el módulo de interfaz ET 200-S

Figura 32. Diferentes targetas junto al módulo de interfaz ET 200-S

12. Conclusiones

El trabajo realizado durante el proyecto ha sido:

- Análisis inicial del sistema.
- Ingeniería inversa con la ayuda del código extraído del PLC y esquema eléctrico.
- Elección del nivel de actuación en la instalación según los criterios planteados por el cliente.
- Elección del material en consecuencia del nivel de actuación.
- Programación del nuevo PLC.

Tras estas actuaciones se espera:

- Alargar la vida útil de la instalación.
- Obtener un sistema más flexible a la hora de realizar ampliaciones o modificaciones.
- Tener acceso a repuestos de las piezas que actualmente están descatalogadas, todas ellas relacionadas con el PCL y sus periféricos.

Anexos a la memoria

Índice de Anexos a la memoria

Anexo 1: Ingeniería inversa	48
Anexo 2: Programación renovada y adaptada al nuevo sistema	61
Anexo 3 Unifilar de la instalación	70
Anexo 4 Datasheet PLC Omron CQM1H-CPU51	73
Anexo 5 Datasheet tarjeta de entradas digitales CH200-ID212	76
Anexo 6 Datasheet tarjeta de salidas digitales OD214	77
Anexo 7 Datasheet tarjeta de entradas analógicas AD042	78
Anexo 8 Datasheet tarjeta de salidas analógicas DA022	80

Anexo 1: Ingeniería inversa

El primer paso debe ser identificar qué canales pertenecen a las entradas y salidas. Se empieza buscando el primer canal del PLC, el cero. Consultando las referencias cruzadas, se puede ver que el canal cero tiene 16 bits,

Estos sólo corresponden a contactos, y no se activan a lo largo del código, por lo que se trata de entradas digitales o variables que se modifican en la HMI. Buscando en el esquema unifilar (Anexo 3), se puede ver en la página número veinte, que la primera tarjeta de entradas la nombra IN-CHO, por dicha nomenclatura, se entiende que es el canal o y que son entradas. Observando las foto de la instalación (Figura 6) se puede ver que se corresponde al modelo ID212, se comprueba en en su datasheet (Anexo 5) que se trata de una tarjeta de 16 entradas digitales. Por lo que se crean dichas referencias, para así obtener un código legible figura 33, figura 34 y figura 35.

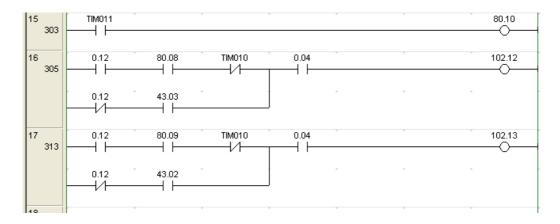


Figura 33: Ejemplo de secuencia sin símbolos

Nombre	Tipo de datos	Dirección / Valor	Ubicación de	Uso	Comentario
' DI_PROT_MOTOR	BOOL	0.00			Protección motor
' DI_PUL_INI_CICLO	BOOL	0.01			Pulsador de incio de ciclo
' DI_PUL_FIN_CICLO	BOOL	0.02			Pulsador de fin de ciclo
' DI_CONT_QUEM_RC1	BOOL	0.03			Contactor quemador
' DI_ALIM	BOOL	0.04			Alimentación
' DI_SEL_C_HOR	BOOL	0.05			Selector de carga del horno
' DI_SEL_DESC_HOR	BOOL	0.06			Selector de descarga del horno
' DI_CONT_QUEM_RC2	BOOL	0.07			Contactor quemador
' DI_SEL_ROT_HOR	BOOL	0.08			Selector rotación horno
' DI_SEL_SALIDA_HOR	BOOL	0.09			Selector de salida del horno
DI_SEL_VAL_FILTRO	BOOL	0.10			Selector de la válvula de filtro rotativo
' DI_SEL_QUEM	BOOL	0.11			Selector activación quemador
DI_DAPO_MAN_AUT	BOOL	0.12			Selector manual/automático de la vál
DI_SEL_M_A_VALVULA	BOOL	0.13			Selector manual/automático de la vál
' DI_SIL_SIRENA	BOOL	0.14			Pulsador para silenciar la sirena
' DI_ERR_INV	BOOL	0.15			Error en el inversor

Figura 34: Símbolos creados

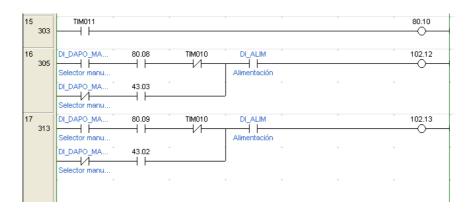


Figura 35: Ejemplo de secuencia con símbolos creados

A continuación, se observa en la foto de la instalación (Figura 6) que el siguiente modelo de tarjeta es el AD042 y cómo se observa en el datasheet (Anexo 7) se trata de una tarjeta con 4 canales de entrada (4 entradas analógicas). Consultando el unifilar (Anexo 3) se puede ver que esas 4 entradas analógicas corresponden a:

- Canal 1: Caudal del oxígeno.
- Canal 2: Presión del oxígeno.
- Canal 3: Caudal del gas natural.
- Canal 4: Presión del gas natural.

Consultando el código, se comprueba que dichos canales pertenecen a entradas analógicas, ya que se puede ver cómo se trata la información haciendo un escalado (Figura 36 y Figura 37).

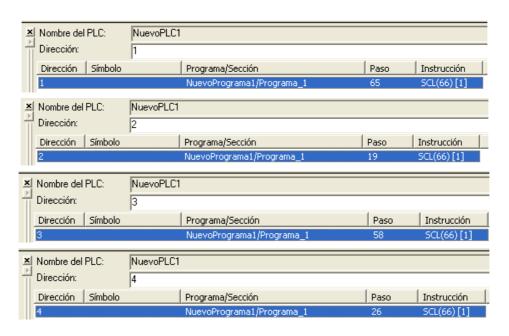


Figura 36: Canales 1, 2, 3 y 4 en el buscador de direcciones

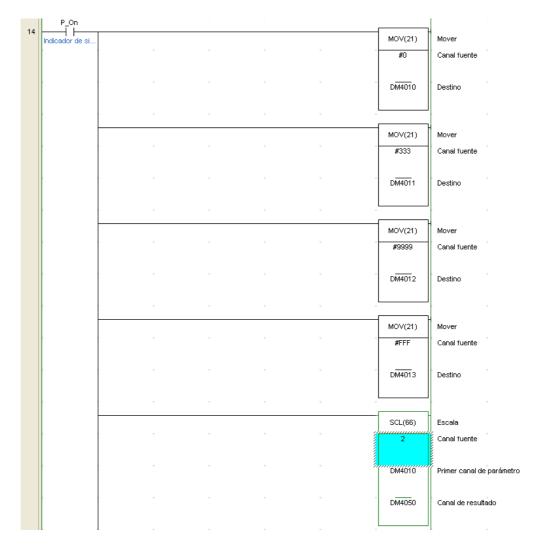


Figura 37: Ejemplo del escalado del canal 2, correspondiente a la presión del oxígeno

Siguiendo con el mismo procedimiento, la tercera tarjeta de la instalación (Figura 6), se trata del mismo modelo que la primera, el ID212, por lo que es una tarjeta de 16 entradas digitales. Siguiendo la lógica utilizada hasta ahora, dicha tarjeta deberá enviar los datos al canal cinco de la memoria del PLC. Se comprueba buscando la dirección (Figura 38) y efectivamente son entradas digitales.

Consultando el unifilar (Anexo 3), se crean los símbolos y tener cada vez un código más legible.

Nombre del PLC:	NuevoPLC1	Rango: Todo	
Dirección:	5		
Dirección Símbolo	Programa/Sección	Paso Instruc	
5.00	NuevoPrograma1/Programa_5	334 ANDNO	
5.00	NuevoPrograma1/Programa_5	422 AND [1]	
5.00	NuevoPrograma1/Programa_5	431 AND [1]	
5.00	NuevoPrograma1/Programa_8	798 AND [1]	
5.00	NuevoPrograma1/Programa_10	1132 AND [1]	
5.00	NuevoPrograma1/Programa_10	1144 AND [1]	
5.00	NuevoPrograma1/Programa_10	1156 AND [1]	
5.00	NuevoPrograma1/Programa_10	1168 AND [1]	
5.02	NuevoPrograma1/Programa_5	336 LDNOT	
5.03	NuevoPrograma1/Programa_5	338 LDNOT	[1]
5.03	NuevoPrograma1/Programa_7	618 AND [1]	
5.04	NuevoPrograma1/Programa_5	339 ANDNO	Τ[
5.04	NuevoPrograma1/Programa_7	628 AND [1]]
5.05	NuevoPrograma1/Programa_9	864 ORNOT	[1
5.07	NuevoPrograma1/Programa_5	348 ANDNO	Τ[
5.08	NuevoPrograma1/Programa_5	354 ANDNO	T [
5.09	NuevoPrograma1/Programa 5	434 ANDNO	Τĺ
5.09	NuevoPrograma1/Programa_8	840 LD[1]	
5.09	NuevoPrograma1/Programa_10	1136 ANDNO	T [
5.09	NuevoPrograma1/Programa_10	1148 ANDNO	Τİ
5.09	NuevoPrograma1/Programa_10	1160 ANDNO	
5.09	NuevoPrograma1/Programa_10	1175 ANDNO	
5.09	NuevoPrograma1/Programa_10	1185 ANDNO	
5.10	NuevoPrograma1/Programa 5	360 ANDNO	
5.10	NuevoPrograma1/Programa_9	893 AND [1]	
5.11	NuevoPrograma1/Programa_5	341 LDNOT	
5.11	NuevoPrograma1/Programa_9	859 ORNOT	-
5.12	NuevoPrograma1/Programa_5	344 LDNOT	
5.12	NuevoPrograma1/Programa_9	860 ORNOT	
5.13	NuevoPrograma1/Programa_5	342 LD[1]	-
5.13	NuevoPrograma1/Programa_5	345 LD[1]	
5.13	NuevoPrograma1/Programa_5	351 LD[1]	
5.13	NuevoPrograma1/Programa_5	357 LD [1]	
5.13	NuevoPrograma1/Programa_5	363 LD[1]	
5.13	NuevoPrograma1/Programa_5	368 LD[1]	
5.13	NuevoPrograma1/Programa 5	376 LD[1]	
5.13	NuevoPrograma1/Programa 5	381 LD[1]	
5.13	NuevoPrograma1/Programa_5	386 LD[1]	
5.13	NuevoPrograma1/Programa_5	391 LD[1]	
5.13	NuevoPrograma1/Programa_5	397 LD [1]	
5.13	NuevoPrograma1/Programa_5	402 LD[1]	
5.13	NuevoPrograma1/Programa_5	405 ANDNO	Т
5.13	NuevoPrograma1/Programa_5	409 LD [1]	٠,١
5.13	NuevoPrograma1/Programa_5	414 ANDNO	ΤΙ
5.13	NuevoPrograma1/Programa_5	418 LD[1]	۱ ۱
5.13	NuevoPrograma1/Programa_5	433 ANDNO	т
5.13	NuevoPrograma1/Programa_5	472 AND [1]	
5.13	NuevoPrograma1/Programa_5 NuevoPrograma1/Programa_11	1193 AND [1]	-
5.13	NuevoPrograma1/Programa_11 NuevoPrograma1/Programa 11	1193 AND [1]	•
5.13	, , , <u> </u>		
	NuevoPrograma1/Programa_9 NuevoPrograma1/Programa 9	996 AND [1]	
5.14 5.15	NuevoPrograma1/Programa_9 NuevoPrograma1/Programa 5	1003 ORNOT 404 LDNOT	-
	NUEVOPROGRAMA LIPROGRAMA 5	404 LDNOT	

Figura 38: bits correspondientes al canal 5

Nombre	Tipo de datos	Dirección	Comentario
· DI_FC_SIN_FIN_C	BOOL	5.00	Final de carrera del sinfín de carga
' DI_FC_DAPO_2	BOOL	5.01	Final de carrera de la válvula dapo, abierta/cerrada
' DI_FC_DAPO_1	BOOL	5.02	Final de carrera de la válvula dapo, abierta/cerrada
* DI_FC_VAL_AIRE_1	BOOL	5.03	Final de carrera de la válvula de aire
' DI_FC_VAL_AIRE_2	BOOL	5.04	Final de carrera de la válvula de aire
· DI_FC_QUEM_1	BOOL	5.05	Final de carrera del quemador insertado/extraido
· DI_FC_QUEM_2	BOOL	5.06	Final de carrera quemador insertado/extraido
* DI_FC_BLQ_VAL_1	BOOL	5.07	Final de carrera del bloqueo de la electroválvula cerrada/abierta
' DI_FC_BLQ_VAL_2	BOOL	5.08	Final de carrera del bloqueo de la electroválvula cerrada/abierta
¹ DI_SND_CARGA	BOOL	5.09	Sonda de la tolva de carga
* DI_FC_LAV_QUEM	BOOL	5.10	Final de carrera del lavado del quemador
· DI_P_GAS_MIN	BOOL	5.11	Presostato presión mínima en el gas
· DI_P_O2_MIN	BOOL	5.12	Presostato presión mínima de oxigeno
¹ DI_RSET_AL	BOOL	5.13	Pulsador reset alarma
· DI_SEL_POT	BOOL	5.14	Selector de potencial, 0 = bajo, 1=auto
· DI_P_CHIM	BOOL	5.15	Presostato de la chimenea

Figura 39: Símbolos creados para los bits del canal 5

Siguiendo la misma técnica, las tres siguientes tarjetas son iguales, se trata del modelo **OD214**, se comprueba en su datasheet (Anexo 6) que se trata de tarjetas de salidas digitales, de 16 salidas cada una. En el unifilar (Anexo 3) se observa que su nomenclatura es **OCH100**, **OCH101** y **OCH102**, claramente se intuye que son salidas y que los canales el 100, 101 y 102. Buscando las direcciones en el código y efectivamente, se trata de salidas digitales (Figura 40), (Figura 41) y (Figura 42). Con ayuda del unifilar, se crean los símbolos necesarios (Figura 3).

×	Nombre del PLC:	NuevoPLC1		Rango: Todo	
ī	Dirección:	100			
	Dirección Símbolo		Programa/Sección	Paso	Instrucción
	100.00		NuevoPrograma1/Programa_8	696	OUT [1]
	100.01		NuevoPrograma1/Programa_8	697	OUT [1]
	100.02		NuevoPrograma1/Programa_8	738	OUT [1]
	100.02		NuevoPrograma1/Programa_8	796	AND [1]
	100.03		NuevoPrograma1/Programa_8	748	OUT [1]
	100.04		NuevoPrograma1/Programa_7	531	OUT [1]
	100.05		NuevoPrograma1/Programa_7	556	OUT [1]
	100.06		NuevoPrograma1/Programa_10	1138	OUT [1]
	100.07		NuevoPrograma1/Programa_10	1150	OUT [1]
	100.08		NuevoPrograma1/Programa_10	1162	OUT [1]
	100.11		NuevoPrograma1/Programa_7	619	OUT [1]
	100.11		NuevoPrograma1/Programa_7	631	ANDNOT [1]
	100.12		NuevoPrograma1/Programa_7	629	OUT [1]
	100.12		NuevoPrograma1/Programa_7	634	ANDNOT [1]
	100.13		NuevoPrograma1/Programa_8	661	OUT [1]
	100.14		NuevoPrograma1/Programa_8	830	OUT [1]
	100.15		NuevoPrograma1/Programa_10	1176	OUT [1]

Figura 40: Bits del canal 100

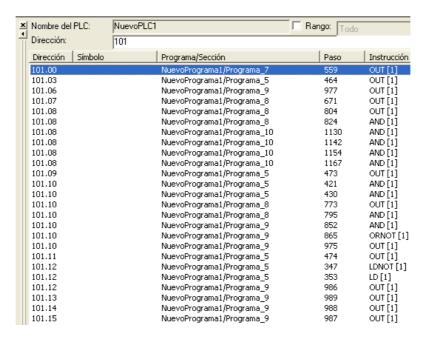


Figura 41:Bits del canal 101

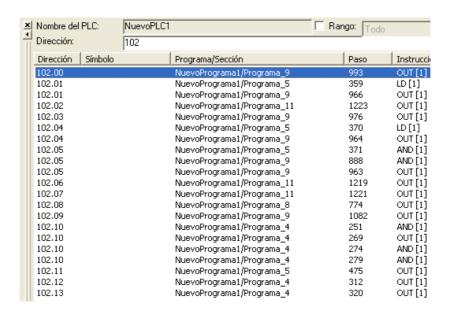


Figura 42: Bits del canal 102

Nombre	Tipo de datos	Dirección / Valor	Ubicación de	Uso	Comentario
' DO_VIBRADOR_1	BOOL	100.00			Vibrador 1 descarga horno
' DO_VIBRADOR_2	BOOL	100.01			Vibrador 2 descarga horno
' DO_VIBRS_CANAL_H	BOOL	100.02			Vibradores 1 y 2 canal de descarga h.
DO_VENT_ESPIRAL	BOOL	100.03			Ventilador espiral
DO_VALV_FILTRO	BOOL	100.04			Activación de la válvula del filtro rot
DO_VENTILADOR_FILTRO	BOOL	100.05			Activación del ventilador del filtro
DO_SF_1_CARGA_H	BOOL	100.06			Sin fín 1 canal carga horno
DO_SF_2_CARGA_H	BOOL	100.07			Sin fín 2 canal carga horno
DO_SF_3_CARGA_H	BOOL	100.08			Sin fín 3 canal carga horno
' DO_ABRIR_AIRE	BOOL	100.11			Abrir aire falsa
DO_CERRAR_AIRE	BOOL	100.12			Cerrar aire falsa
DO_MOLINO_HORNO	BOOL	100.13			Molino a la salida del horno
· DO_VIBR_TOLVIN	BOOL	100.14			Vibrador tolvín canal carga horno
· DO_VIBR_PULMÓN	BOOL	100.15			Vibrador canal pulmón
DO_VIBR_1_DESC_HOR	BOOL	101.00			Activación del vibrador 1 para la des
DO_C_QUEMADOR	BOOL	101.03			Activación del contactor del quemador
DO_PIL_ARR_QUEM	BOOL	101.06			Piloto arranque del quemador
DO_B_SIN_FIN	BOOL	101.08			Bornes inversor sin fin
DO_BORNES_SIN_FIN	BOOL	101.09			Activación de los bornes de mando d
DO_BORNES_INV	BOOL	101.10			Bornes de mando del inversor
DO_BORNES_ROT_HOR	BOOL	101.11			Activación de los bornes de mando d
DO_BLOQUE_GAS	BOOL	101.12			Activación bloque gas
DO_ESC_GAS	BOOL	101.13			Escape de gas
• DO_ESC_02	BOOL	101.14			Escape de oxigeno
DO_B_PRES_GAS	BOOL	101.15			Bajar presión en el gas
DO_A_PRES_GAS	BOOL	102.00			Aumentar presión en el gas
DO_LAV_QUEM_PRIN	BOOL	102.01			Lavado del quemador principal
DO_LIMP_PIRO	BOOL	102.02			Limpieza en el pirómetro
DO_PILOTO_GAS	BOOL	102.03			Piloto gas
DO_GAS_ESTANCO	BOOL	102.04			Activación relé gas estanco
DO_GAS_GENERAL	BOOL	102.05			Activación relé gas general
· DO_AL_PRES_CHIM	BOOL	102.06			Lámpara alarma presostato chimenea
· DO_HORNO_AUTO	BOOL	102.07			Lámpara horno automático
DO RELÉ 11 1	BOOL	102.08			Activación relé 11/1

Figura 43: Ejemplo de símbolos creados para los bits del canal 100

Se observa que los bits 100.09, 100.10, 101.01, 101.02, 101.04, 101.05, 102.14, y 102.15 no se utilizan. Se tendrá en cuenta a la hora de adquirir el nuevo hardware.

En el unifilar no hay información a partir de la salida 102.08, que corresponde a la salida 8 de la tercera tarjeta de salidas digitales en el cuadro eléctrico, por lo que no se crean los símbolos

La siguiente tarjeta que se observa en el cuadro es el modelo **DA022**, consultando el datasheet (Anexo 8) se ve que se trata de una tarjeta de salidas analógicas con dos canales (2 salidas), estas corresponden a dos electroválvulas reguladoras de presión, una para el gas y otra para el oxígeno.

Una vez definidas todas las entradas y salidas, se empieza a estudiar la estructura del código.

Siguiendo el código línea a línea e instrucción a instrucción se crean 145 símbolos:

BOOL	0.00	Protección motor
BOOL	0.01	Pulsador de inicio de ciclo
BOOL	0.02	Pulsador de fin de ciclo
BOOL	0.03	Contactor quemador
BOOL	0.04	Alimentación
BOOL	0.05	Selector de carga del horno
BOOL	0.06	Selector de descarga del horno
BOOL	0.07	Contactor quemador
BOOL	0.08	Rotación horno
BOOL	0.09	Selector de salida del horno
BOOL	0.10	Selector de la válvula de filtro rotativo
BOOL	0.11	Selector activación quemador
BOOL	0.12	Selector manual/automático de la válvula DAPO
BOOL	0.13	Selector manual/automático de la válvula
BOOL	0.14	Pulsador para silenciar la sirena
BOOL	0.15	Error en el inversor
UINT	1	Lectura analógica del caudal del O2
UINT	2	Lectura analógica presión O2
UINT	3	Lectura analógica caudal GAS
UINT	4	Lectura analógica presión GAS
BOOL	5.00	Final de carrera del sinfín de carga
BOOL	5.01	Final de carrera de la válvula dapo, abierta/cerrada
BOOL	5.02	Final de carrera de la válvula dapo, abierta/cerrada
BOOL	5.03	Final de carrera de la válvula de aire
BOOL	5.04	Final de carrera de la válvula de aire
BOOL	5.05	Final de carrera del quemador insertado/extraído
BOOL	5.06	Final de carrera quemador insertado/extraído
BOOL	5.07	Final de carrera del bloqueo de la electroválvula cerrada/abierta
	BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL	BOOL 0.02 BOOL 0.03 BOOL 0.04 BOOL 0.05 BOOL 0.06 BOOL 0.07 BOOL 0.09 BOOL 0.10 BOOL 0.11 BOOL 0.12 BOOL 0.12 BOOL 0.13 BOOL 0.14 BOOL 0.15 UINT 1 UINT 2 UINT 2 UINT 3 UINT 3 UINT 4 BOOL 5.00 BOOL 5.01 BOOL 5.02 BOOL 5.04 BOOL 5.05 BOOL 5.04

		1	
DI_FC_BLQ_VAL_2	BOOL	5.08	Final de carrera del bloqueo de la electroválvula cerrada/abierta
DI_SND_CARGA	BOOL	5.09	Sonda de la tolva de carga
DI_FC_LAV_QUEM	BOOL	5.10	Final de carrera del lavado del quemador
DI_P_GAS_MIN	BOOL	5.11	Presostato presión mínima en el gas
DI_P_O2_MIN	BOOL	5.12	Presostato presión mínima de oxígeno
DI_RSET_AL	BOOL	5.13	Pulsador reset alarma
DI_SEL_POT	BOOL	5.14	Selector de potencial, 0 = bajo, 1=auto
DI_P_CHIM	BOOL	5.15	Presostato de la chimenea
ERROR_ARRANQUE_HOR NO	BOOL	11.00	
ARRANQUE_HORNO	BOOL	12.00	
POT_AUTO	BOOL	12.12	
AL_ALIM	BOOL	20.00	Alarma alimentación
AL_PROT_MOT	BOOL	20.01	Alarma protección motor
AL_ERR_INV	BOOL	20.02	Alarma error en el inversor
AL_P_GAS_MIN	BOOL	20.06	Alarma presión mínima de gas
AL_P_O2_MIN	BOOL	20.07	Alarma presión mínima de oxígeno
AL_PMIN_GAS	BOOL	20.12	Alarma presión del gas insuficiente?
AL_PMIN_O2	BOOL	20.13	Alarma presión de oxígeno insuficiente?
AL_PMAX_GAS	BOOL	20.14	Alarma presión del gas excesiva?
AL_PMAX_O2	BOOL	20.15	Alarma presión de oxígeno excesiva?
SIRENA	BOOL	28.00	activación sirena acústica
Ta_FIL_SUP_A_CONS	BOOL	30.00	Temperatura del filtro superior a la consigna
Ta_FIL_INF_A_CONS	BOOL	30.01	Temperatura del filtro inferior a la consigna
FIN_CICLO	BOOL	36.05	Final del ciclo
INICIO_CICLO	BOOL	40.14	Inicio del ciclo
STATE_0	BOOL	60.00	Estado o
STATE_1	BOOL	60.01	Estado 1
STATE_2	BOOL	60.02	Estado 2
STATE_3	BOOL	60.03	Estado 3

STATE_4	BOOL	60.04	Estado 4
STATE_5	BOOL	60.06	Estado 5
SAT_Ta_MAX	BOOL	90.01	Bit de saturación máxima en el PID de Tª
SAT_Tª_MIN	BOOL	90.02	Bit de saturación mínima en el PID de temperatura
SAT_Q_O2_MAX	BOOL	90.03	Bit de saturación máxima del PID de caudal de O2
SAT_Q_O2_MIN	BOOL	90.04	Bit de saturación mínima del PID de caudal de O2
DO_VIBRADOR_1	BOOL	100.00	Vibrador 1 descarga horno
DO_VIBRADOR_2	BOOL	100.01	Vibrador 2 descarga horno
DO_VIBRS_CANAL_H	BOOL	100.02	Vibradores 1 y 2 canal de descarga h.
DO_VENT_ESPIRAL	BOOL	100.03	Ventilador espiral
DO_VALV_FILTRO	BOOL	100.04	Activación de la válvula del filtro rotativo
DO_VENTILADOR_FILTRO	BOOL	100.05	Activación del ventilador del filtro
DO_SF_1_CARGA_H	BOOL	100.06	Sinfín 1 canal carga horno
DO_SF_2_CARGA_H	BOOL	100.07	Sinfín 2 canal carga horno
DO_SF_3_CARGA_H	BOOL	100.08	Sin fín 3 canal carga horno
DO_ABRIR_VAL_DAPO	BOOL	100.09	Abrir válvula DAPO
DO_CERRAR_V_DAPO	BOOL	100.10	Cerrar válvula DAPO
DO_ABRIR_AIRE	BOOL	100.11	Abrir aire
DO_CERRAR_AIRE	BOOL	100.12	Cerrar aire
DO_MOLINO_HORNO	BOOL	100.13	Molino a la salida del horno
DO_VIBR_TOLVIN	BOOL	100.14	Vibrador tolvín canal carga horno
DO_VIBR_PULMÓN	BOOL	100.15	Vibrador canal pulmón
DO_LAV_FIL	BOOL	101.00	Caja lavado filtro
DO_PIL_AIRE_QUEM	BOOL	101.01	Piloto válvula aire quemador
DO_SCORTA	BOOL	101.02	SCORTA, no hay descripción en unifilar
DO_SIR	BOOL	101.03	Activación del contactor del quemador
DO_CONS_1	BOOL	101.04	consigna 1
DO_CONS_2	BOOL	101.05	Consigna 2
DO_PIL_ARR_QUEM	BOOL	101.06	Piloto arranque del quemador
DO_VIB_MOL_SAL_ESP	BOOL	101.07	Vibrador
DO_B_SIN_FIN	BOOL	101.08	Bornes inversor sin fin

			Activación de los bornes de mando
DO_BORNES_SIN_FIN	BOOL	101.09	del inversor del sin fin
DO_BORNES_INV	BOOL	101.10	Bornes de mando del inversor
			Activación de los bornes de mando
DO_BORNES_ROT_HORNO	BOOL	101.11	del inversor para la rotación del horno
DO_BLOQUE_GAS	BOOL	101.12	Activación bloque gas
DO_ESC_GAS	BOOL	101.13	Escape de gas
DO_ESC_O2	BOOL	101.14	Escape de oxígeno
DO_B_PRES_GAS	BOOL	101.15	Bajar presión en el gas
DO_A_PRES_GAS	BOOL	102.00	Aumentar presión en el gas
DO_LAV_QUEM_PRIN	BOOL	102.01	Lavado del quemador principal
DO_LIMP_PIRO	BOOL	102.02	Limpieza en el pirómetro
DO_PILOTO_GAS	BOOL	102.03	Piloto gas
DO_GAS_ESTANCO	BOOL	102.04	Activación relé gas estanco
DO_GAS_GENERAL	BOOL	102.05	Activación relé gas general
DO_LAM_PRES_CHIM	BOOL	102.06	Lámpara alarma presostato chimenea
DO_HORNO_AUTO	BOOL	102.07	Lámpara horno automático
DO_RELÉ_11_1	BOOL	102.08	Activación relé 11/1
AO_Q_GAS	UINT	103	Salida analógica control caudal gas
AO_Q_O2	UINT	104	Salida analógica control caudal de oxígeno
AI_P_AIRE	UINT	232	Lectura presión aire
AI_PIRO	UINT	233	Lectura pirómetro horno
AI_P_DAPO	UINT	234	Lectura presión válvula DAPO
Al_PT100	UINT	235	Lectura PT100 filtro
P_O2_SCL	UINT	DM100	Presión del oxígeno escalada
P_GAS_SCL	UINT	DM101	Presión del gas escalada
Q_O2	UINT	DM103	Caudal O2
Q_O2_SCL	UINT	DM103	Variable del caudal de O2 escalada
Q_GAS_SCL	UINT	DM104	Caudal del gas escalado
Ta_FILTRO	UINT	DM106	T ^a filtro
TEMP_HORNO	UINT	DM107	Temperatura del horno
CONS_T_HOR	UINT	DM200	Consigna de la Tª del horno en la pantalla
DELT_SUP_T_H	UINT	DM201	Delta superior de la temperatura del horno

			Delta inferior de la temperatura del
DELT_INF_T_H	UINT	DM202	horno
CONS_T_FIL	UINT	DM203	Consigna de la temperatura del filtro
CONS_PRES_H	UINT	DM204	Consigna de la presión del horno en mmH2O
VUELTAS_H	UINT	DM205	Vueltas de rotación del horno en vueltas/min
VUELTAS_CARGA	UINT	DM206	Vueltas de rotación de la carga en vueltas/min
TEMP_más_DELTA	UINT	DM250	Consigna de temperatura más delta superior
TEMP_menos_DELTA	UINT	DM252	Consigna de temperatura menos delta inferior
Q_02_SCL_x10	UINT	DM460	Variable Q_O2_SCL, multiplicada por 10
Q_GAS_SCL_COPIA	UINT	DM465	
AP_ESTQ	UINT	DM470	Aporte estequiométrico
CONS_T_H_SCL_BIN_COPI A	UINT	DM500	
PID_Ta_H	UINT	DM550	Salida del PID de la temperatura del horno
PID_Ta_SCL	UINT	DM557	Salida PID Tª escalada
SAT_PID_Ta_MAX	UINT	DM565	Consigna máxima de saturación para la salida del PID de temperatura del horno
SAT_PID_Ta_MIN	UINT	DM571	Consigna mínima de saturación para la salida del PID de Tª
CTES_PID_Q_O2	WORD	DM600	Constantes del PID Q O2
PID_Q_O2	UINT	DM650	Salida PID caudal O2
PID_Q_O2_SCL	UINT	DM657	Salida PID caudal O2 escalada
SAT_PID_Q_O2_MAX	UINT	DM665	Consigna de saturación máxima de la salida del PID de Q de O2
SAT_PID_Q_02_MIN	UINT	DM671	Consigna de saturación mínima de la salida del PID de caudal de O2
ESC_Ta_H	UINT	DM710	Factor de escalado de Tª del horno
CONS_T_H_SCL	UINT	DM714	consigna t ^o horno escalada
CONS_T_H_SCL_BIN	UINT	DM715	
P_O2_AUX	UINT_BCD	DM4050	Presión O2
P_GAS_AUX	UINT_BCD	DM4051	Presión del gas
Q_GAS_AUX	UINT_BCD	DM4054	Caudal del gas

Anexo 2: Programación renovada y adaptada al nuevo sistema

En el presente anexo, se muestra parte de la programación realizada para el nuevo sistema. Dicha programación está realizada en el programa TIA Portal V15 de Siemens en el lenguaje SCL.

El siguiente fragmento almacena el valor de las entradas en la memoria del PLC.

```
(*-----*)
      REGION ANALOG_INPUTS
      //---- KILN ----//
      //
      // Air pressure
      "FC1_Scale_Inputs"(scale_in := "AI_P_AIR",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_p_air,
            out_min := #c_min_p_air,
            scale_out => "FB40_KILN_DB".KILN.I.P_AIR);
      // O2 pressure
      "FC1_Scale_Inputs"(scale_in := "AI_P_O2",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_p_o2,
            out_min := #c_min_p_o2,
            scale_out => "FB40_KILN_DB".KILN.I.P_O2);
      // Gas pressure
      "FC1_Scale_Inputs"(scale_in := "AI_P_GAS",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_p_gas,
            out_min := #c_min_p_gas,
            scale_out => "FB40_KILN_DB".KILN.I.P_GAS);
      // Q O2
      "FC1_Scale_Inputs"(scale_in := "AI_Q_O2",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_q_o2,
            out_min := #c_min_q_o2,
            scale_out => "FB40_KILN_DB".KILN.I.Q_O2);
```

```
// Q GAS
      "FC1_Scale_Inputs"(scale_in := "AI_Q_GAS",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_q_gas,
            out_min := #c_min_q_gas,
            scale_out => "FB40_KILN_DB".KILN.I.Q_GAS);
      // Pirometer
      "FC1_Scale_Inputs"(scale_in := "AI_PIRO",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_piro,
            out_min := #c_min_piro,
            scale_out => "FB40_KILN_DB".KILN.I.PIRO);
      // DAPO
      "FC1_Scale_Inputs"(scale_in := "AI_P_DAPO",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_p_dapo,
            out_min := #c_min_p_dapo,
            scale_out => "FB40_KILN_DB".KILN.I.P_DAPO);
      //---- FILTER ----//
            PT 100
      "FC1_Scale_Inputs"(scale_in := "AI_PT100",
            scale_max := #c_max_scale,
            scale_min := #c_min_scale,
            out_max := #c_max_pt100,
            out_min := #c_min_pt100,
            scale_out => "FB20_FILTER_DB".FILTER.I.T_FILTER);
END_REGION
(*-----*)
REGION DIGITAL_INPUTS
      REGION FEEDER
      "FB50_FEEDER_DB".FEEDER.I.FC_SF_CRG := "DI_FC_SF_CRG";
```

```
"FB50_FEEDER_DB".FEEDER.I.SND_TOL := "DI_SND_TOL";
END REGION
REGION KILN
"FB40_KILN_DB".KILN.I.PROT_M := "DI_PROT_M";
"FB40_KILN_DB".KILN.I.C_QUEM_1 := "DI_C_QUEM_1";
"FB40_KILN_DB".KILN.I.ERR_INV := "DI_ERR_INV";
"FB40_KILN_DB".KILN.I.FC_VAL_2 := "DI_FC_VAL_2";
"FB40_KILN_DB".KILN.I.FC_VAL_A_1 := "DI_FC_VAL_A_1";
"FB40_KILN_DB".KILN.I.FC_VAL_A_2 := "DI_FC_VAL_A_2";
"FB40_KILN_DB".KILN.I.FC_QUEM_1 := "DI_FC_QUEM_1";
"FB40_KILN_DB".KILN.I.FC_BQ_EV_1 := "DI_FC_BQ_EV_1";
"FB40_KILN_DB".KILN.I.FC_BQ_EV_2 := "DI_FC_BQ_EV_2";
"FB40_KILN_DB".KILN.I.FC_L_QUEM := "DI_FC_L_QUEM";
"FB40_KILN_DB".KILN.I.PR_MIN_GAS := "DI_PR_MIN_GAS";
"FB40_KILN_DB".KILN.I.PR_MIN_O2 := "DI_PR_MIN_O2";
"FB40_KILN_DB".KILN.I.PR_CHIM := "DI_PR_CHIM";
END_REGION
```

END_REGION

Como se puede ver en las entradas analogicas, se ha creado una función para escalar la información y trabajar con las unidades deseadas. A continuacion se muestra dicha función.

IF #SYSTEM_IN.HMI.op.STATE.START_CYCLE.STARTED AND (#SYSTEM_IN.HMI.op.STATE.STATE = 60 OR #SYSTEM_IN.HMI.op.STATE.STATE = 40 OR #SYSTEM_IN.HMI.op.STATE.KILN.STARTED) THEN

REGION ROTACIÓN_HORNO

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_BRN_I_RH, // Detección del flanco ascendente en el modo manual de la rotación del horno

Q => #Posedge_MAN_BRN_I_RH);

IF #Posedge_MAN_BRN_I_RH THEN

#KILN.M.BRN_I_RH := #KILN.O.BRN_I_RH; // Igualamos el estado manual

al automático anterior

END IF:

IF NOT (#KILN.M.MANUAL_BRN_I_RH) THEN // Modo automático

#KILN.O.BRN_I_RH := TRUE;

ELSIF #KILN.M.MANUAL_BRN_I_RH THEN // Modo manual

#KILN.O.BRN_I_RH := #KILN.M.BRN_I_RH;

END_IF;

END_REGION

REGION RELÉ_11/1

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_11_1, // Detección del flanco ascendente en el modo manual de la rotación del horno

Q => #Posedge_MAN_11_1);

IF #Posedge_MAN_11_1 THEN

#KILN.M."11_1" := #KILN.O."11_1"; // Igualamos el estado manual al automático anterior

END_IF:

IF NOT (#KILN.M.MANUAL_11_1) THEN // Modo automático

#KILN.O."11_1" := TRUE;

ELSIF #KILN.M.MANUAL_11_1 THEN // Modo manual

#KILN.O."11_1" := #KILN.M."11_1";

END_IF;

END_REGION

REGION KILN

IF #KILN.I.S_QUEM AND #SYSTEM_IN.HMI.op.STATE.KILN.STARTED THEN #T_KILN_1(IN := TRUE,

```
PT := #KILN TIME 1):
      END_IF;
      IF #T KILN 1.Q THEN
      #T_KILN_1(IN := FALSE,
            PT := #KILN_TIME_1);
      #T_KILN_2(IN := TRUE,
            PT := #KILN_TIME_2);
      #KILN.O.LAV_QUEM := TRUE;
      END IF:
      IF #T KILN 2.Q THEN
      #T_KILN_2(IN := FALSE,
            PT := #KILN_TIME_2);
      #T_KILN_3(IN := TRUE,
            PT := #KILN_TIME_3);
      #KILN.O.LAV_QUEM := FALSE;
                                           //Tengo que desactivarlo yo?
      #KILN.O.PIL_ARR_QM := TRUE;
      #KILN.O.PIL_GAS := TRUE;
      #KILN.O.GAS_EST := TRUE;
      #KILN.O.GAS_GEN := TRUE;
      END_IF;
      IF #T_KILN_3.Q THEN
      #KILN.O.EV_GAS := TRUE;
      #KILN.O.EV_O2 := TRUE;
      #KILN.O.BLQ_GAS := TRUE;
      END_IF;
      IF #KILN.O.PIL_ARR_QM AND #KILN.O.PIL_GAS AND #KILN.O.GAS_EST AND
#KILN.O.GAS_GEN AND #KILN.O.EV_GAS AND #KILN.O.EV_O2 AND #KILN.O.BLQ_GAS
THEN
      #SYSTEM_IN.HMI.op.STATE.KILN.STARTED := TRUE;
      END_IF:
      END_REGION
      IF #KILN.I.PIRO < #KILN.HMI.TEMP_KILN THEN
      REGION AUMENTAR_PRESIÓN_GAS
```

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_INCR_P_GAS, // Detección del flanco ascendente en el modo manual de la rotación del horno

Q => #Posedge_MAN_INCR_P_GAS);

IF #Posedge_MAN_INCR_P_GAS THEN
#KILN.M.INCR_P_GAS := #KILN.O.INCR_P_GAS; // Igualamos el estado manual
al automático anterior

END_IF;

IF NOT (#KILN.M.MANUAL_INCR_P_GAS) THEN // Modo automático #KILN.O.INCR P GAS := TRUE:

ELSIF #KILN.M.MANUAL_INCR_P_GAS THEN // Modo manual #KILN.O.INCR_P_GAS := #KILN.M.INCR_P_GAS;

END_IF;

END_REGION

REGION DISMINUIR_PRESIÓN_GAS

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_REDC_P_GAS, // Detección del flanco ascendente en el modo manual de la rotación del horno Q => #Posedge_MAN_REDC_P_GAS);

IF #Posedge_MAN_REDC_P_GAS THEN
#KILN.M.REDC_P_GAS := #KILN.O.REDC_P_GAS; // Igualamos el estado manual
al automático anterior

END_IF;

IF NOT (#KILN.M.MANUAL_REDC_P_GAS) THEN // Modo automático #KILN.O.REDC_P_GAS := FALSE;

ELSIF #KILN.M.MANUAL_REDC_P_GAS THEN // Modo manual #KILN.O.REDC_P_GAS := #KILN.M.REDC_P_GAS;

END_IF;

END_REGION

ELSIF #KILN.I.PIRO >= #KILN.HMI.TEMP_KILN THEN

REGION AUMENTAR_PRESIÓN_GAS

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_INCR_P_GAS, // Detección del flanco ascendente en el modo manual de la rotación del horno

Q => #Posedge_MAN_INCR_P_GAS);

IF #Posedge_MAN_INCR_P_GAS THEN
#KILN.M.INCR_P_GAS := #KILN.O.INCR_P_GAS; // Igualamos el estado manual

al automático anterior END IF:

IF NOT (#KILN.M.MANUAL_INCR_P_GAS) THEN // Modo automático #KILN.O.INCR_P_GAS := FALSE;

ELSIF #KILN.M.MANUAL_INCR_P_GAS THEN // Modo manual #KILN.O.INCR_P_GAS := #KILN.M.INCR_P_GAS;

END_IF;

END_REGION

REGION DISMINUIR_PRESIÓN_GAS

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_REDC_P_GAS, // Detección del flanco ascendente en el modo manual de la rotación del horno Q => #Posedge_MAN_REDC_P_GAS);

IF #Posedge_MAN_REDC_P_GAS THEN
#KILN.M.REDC_P_GAS := #KILN.O.REDC_P_GAS; // Igualamos el estado manual
al automático anterior

END IF:

IF NOT (#KILN.M.MANUAL_REDC_P_GAS) THEN // Modo automático #KILN.O.REDC_P_GAS := TRUE;

ELSIF #KILN.M.MANUAL_REDC_P_GAS THEN // Modo manual #KILN.O.REDC_P_GAS := #KILN.M.REDC_P_GAS;

END_IF;

END_REGION

ELSE

REGION AUMENTAR_PRESIÓN_GAS

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_INCR_P_GAS, // Detección del flanco ascendente en el modo manual de la rotación del horno

Q => #Posedge_MAN_INCR_P_GAS);

IF #Posedge_MAN_INCR_P_GAS THEN
#KILN.M.INCR_P_GAS := #KILN.O.INCR_P_GAS; // Igualamos el estado manual
al automático anterior

END_IF;

IF NOT (#KILN.M.MANUAL_INCR_P_GAS) THEN // Modo automático #KILN.O.INCR P GAS := FALSE:

ELSIF #KILN.M.MANUAL_INCR_P_GAS THEN // Modo manual #KILN.O.INCR_P_GAS := #KILN.M.INCR_P_GAS;

END_IF;

END_REGION

REGION DISMINUIR_PRESIÓN_GAS

"R_TRIG_DB"(CLK := #KILN.M.MANUAL_REDC_P_GAS, // Detección del flanco ascendente en el modo manual de la rotación del horno

Q => #Posedge_MAN_REDC_P_GAS);

IF #Posedge_MAN_REDC_P_GAS THEN
#KILN.M.REDC_P_GAS := #KILN.O.REDC_P_GAS; // Igualamos el estado manual
al automático anterior

END_IF;

IF NOT (#KILN.M.MANUAL_REDC_P_GAS) THEN // Modo automático #KILN.O.REDC_P_GAS := FALSE;

ELSIF #KILN.M.MANUAL_REDC_P_GAS THEN // Modo manual #KILN.O.REDC_P_GAS := #KILN.M.REDC_P_GAS;

END_IF;

END REGION

END_IF;

#SYSTEM_IN.HMI.op.STATE.KILN.STARTED := TRUE;

END_IF;

Por último, vemos la función PID_TEMP, propia del software de Siemens, esta función controla la temperatura del horno mediante las válvulas de gas natural y oxígeno.

IF #SYSTEM_IN.HMI.op.STATE.START_CYCLE.STARTED AND (#SYSTEM_IN.HMI.op.STATE.STATE = 60 OR #SYSTEM_IN.HMI.op.STATE.STATE = 40 OR #SYSTEM_IN.HMI.op.STATE.KILN.STARTED) THEN

"PID_TEMP_KILN"(Setpoint := #PID_KILN.HMI.SETPOINT, Input := #PID_KILN.I.TEMP_KILN, ManualEnable := #PID_KILN.HMI.MANUAL_EN, ManualValue := #PID_KILN.HMI.MANUAL_VALUE, OutputHeat => #PID_KILN.O.PID_OUT, SetpointLimit_H => #PID_KILN.HMI.SETPOINT_LIM_H, SetpointLimit_L => #PID_KILN.HMI.SETPOINT_LIM_L, InputWarning_H => #PID_KILN.HMI.INPUT_WARNING_H, InputWarning_L => #PID_KILN.HMI.INPUT_WARNING_L, State => #PID_KILN.HMI.STATE, Error => #PID_KILN.HMI.ERROR_PID); END_IF;

Anexo 3 Unifilar de la instalación

En este anexo se muestran las capturas más significativas del unifilar de instalación actual, es cuál ha sido necesario en el proceso de ingeniería inversa visto en el Anexo 1.

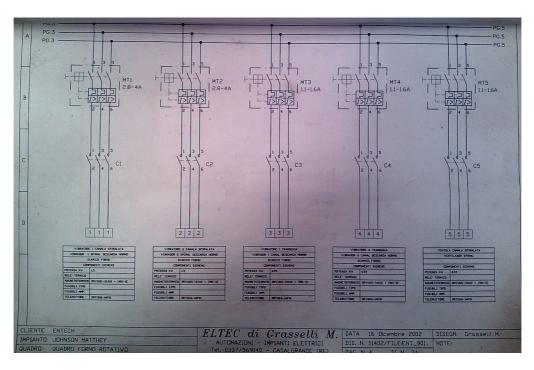


Figura 44. Detalle del unifilar haciendo referencia a algunos de los contactores con su protección magnetotérmica.

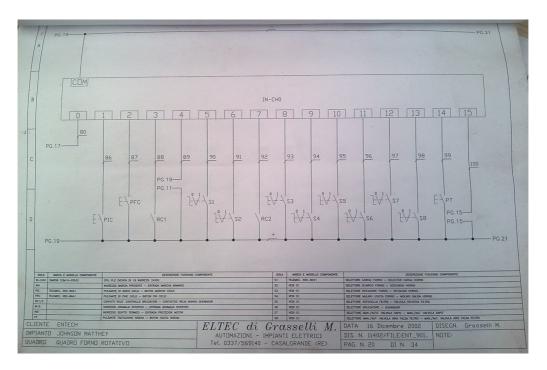


Figura 45. Detalle del esquema unifilar de la primera tarjeta de entradas digitales Omron ID212

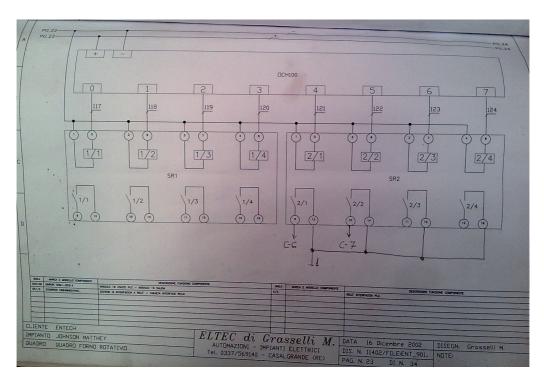


Figura 46. Detalle del esquema unifilar de la primera tarjeta de salidas digitales Omron OD214

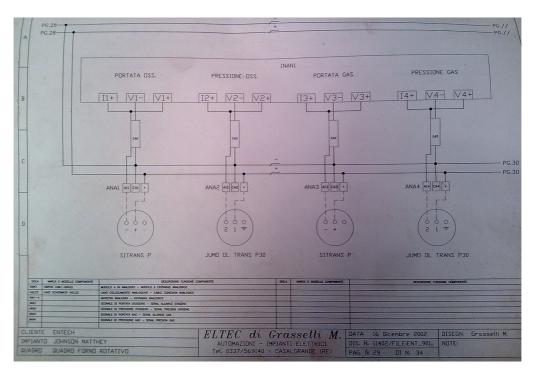


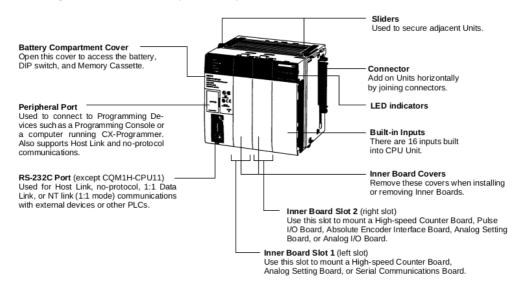
Figura 47. Detalle del esquema unifilar de una de las tarjetas de entradas analógicas Omron AD042

Anexo 4 Datasheet PLC Omron CQM1H-CPU51

■ I/O MODULES

Input Modules

Input type	Number of inputs	Input voltage	Input current	Common type	Connector type	International standards	Part number	
DC inputs	8	12 to 24 VDC	10 mA	Independent	Terminal	U, C, N, L, CE	CQM1-ID211	
	16	12 VDC	6 mA	Shared	block	U, C	CQM1-ID111	
		24 VDC]			U, C, N, L, CE	CQM1-ID212	
	32	12 VDC	4 mA	Shared	Connector	U, C	CQM1-ID112	
		24 VDC	1			U, C, N, L, CE	CQM1-ID213	
AC inputs	8	100 to 120 VAC	5 mA	Shared		Terminal	U, C, L, CE	CQM1-IA121
		200 to 240 VAC	6 mA		block		CQM1-IA221	


Output Modules

Output type	Number of outputs	Max. switching voltage	Max. switch- ing current	Common type	Connector type	International standards	Part number
Contact	8	250 VAC,	2 A	Independent	Terminal	U, C, N, L	CQM1-OC221
outputs	16	24 VDC		Shared	block		CQM1-OC222
	8			Independent	CE	CQM1-OC224	
Transistor	8	24 VDC	2 A (NPN)	Shared	Terminal	U, C, N, L, CE	CQM1-OD211
	16		0.3 A (NPN)	(fused)	block		CQM1-OD212
	32		0.1 A (NPN)		Connector		CQM1-OD213
Transistor	8	24 VDC	1 A (PNP)	Shared	Terminal	U, C, L, CE	CQM1-OD215
	16		0.3 A (PNP)	(fused)	block		CQM1-OD214
	32		0.5 A (PNP)		Connector	CE	CQM1-OD216
Triac	8	240 VAC	0.4 A	Shared (short circuit pro-	Terminal block	U, C, L	CQM1-OA221
	6			tected	DIOCK	CE	CQM1-OA222

Figura 48. Detalle de los tipos de entradas y salidas que acepta el modelo de PLC

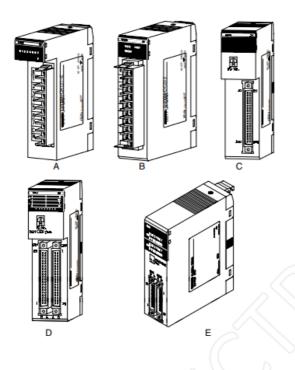
■ NOMENCLATURE

The following illustration shows the main components of a CQM1H-CPU61 CPU Unit.

■ OVERVIEW

Model	I/O capacity (See Note.)	Program capacity	DM EM CPU capacity Unit				Inner Boards	Controller Link	
	(See Note.)	(words)	(words)	(words)	built-in inputs	Peripheral port	RS-232C port	Buarus	Module
CQM1H-CPU61	512	15.2 K	6 K	6 K	DC: 16	Yes	Yes	Supporte	d
CQM1H-CPU51		7.2 K	6 K	None					
CQM1H-CPU21	256	3.2 K	3 K					Not supp	orted
CQM1H-CPU11							No		

Figura 49. Explicación de las partes del PLC y características básicas de cada CPU.


■ CPU UNIT SPECIFICATIONS

Characteristics

Item	Specifications
Control method	Stored program method
I/O control method	Cyclic scan and direct output/immediate interrupt processing
Programming language	Ladder-diagram programming
I/O capacity	CQM1H-CPU11/21: 256 CQM1H-CPU51/61: 512
Program capacity	CQM1H-CPU11/21 : 3.2 kwords CQM1H-CPU51 : 7.2 kwords CQM1H-CPU61 : 15.2 kwords
User data memory capacity	CQM1H-CPU11/21 : 3 kwords CQM1H-CPU51 : 6 kwords CQM1H-CPU61 : 12 kwords (DM: 6 kwords; EM: 6 kwords)
Instruction length	1 step per instruction, 1 to 4 words per instruction
Number of instructions	162 (14 basic, 148 special instructions)
Instruction execution times	Basic instructions: 0.375 to 1.125 µs Special instructions: 17.7 µs (MOV instruction)
Overseeing time	0.70 ms
Mounting structure	No backplane (Modules are joined horizontally using connectors)
Mounting	DIN Track mounting (screw mounting not possible)
CPU Unit built-in DC input points	16
Maximum number of modules	Maximum of 11 modules total for I/O modules and Dedicated I/O modules
Inner Boards	CQM1H-CPU11/21: None CQM1H-CPU51/61: 2 Boards
Communications modules (Controller Link Module)	CQM1H-CPU11/21: None CQM1H-CPU51/61: 1 module

Figura 50. Características principales de cada CPU

Anexo 5 Datasheet tarjeta de entradas digitales CH200-ID212

General Information

Discrete I/O modules are available in a number of voltages, densities, terminal block, and connector types. Connector-style high-density I/O modules with 32 or 64 discrete I/O points per module have solder connectors included with the module.

Optional wiring methods are available using Omron's I/O blocks, screw terminal, crimp and ribbon connectors, and pre-terminated cables. These versatile high-density configuration options minimize rack space and wiring time. The Omron I/O Blocks provide single-point isolation and up to 5 A current capacity per point. Replaceable relays and solid-state plug-in modules allow easy maintenance.

There are five styles of discrete I/O modules in the C200H family. The profiles of each are shown here. Each module in the following pages is cross-referenced to the module style.

Modules include the appropriate connectors. Replacement connectors and terminal blocks for each style are shown here.

Style	Replacement Connector/Terminal
Α	4571022-4, PTC-2103
В	4571023-2, PTC-219
C,D	C500-CE401 Solder, 40-pin C500-CE402 Crimp, 40-pin C500-CE403 Ribbon, 40-pin C500-CE404 Solder, right angle C500-CE405 Crimp, right angle
E	C500-CE241 Solder, 24-pin C500-CE242 Crimp, 24 pin

Figura 51. Información general de la tarjeta CH200-ID212

Specifications

Part number	C200H-ID211	C200H-ID212
Number of inputs (per common)	8 pts (8 pts/com, 1 circuit)	16 pts (16 pts/com, 1 circuit)
Input voltage	12 to 24 VDC +10%/-15%	24 VDC +10%/-15%
Input current	10 mA, 24 VDC	7 mA, typical 24 VDC
Operating voltage		
ON	10.2 VDC min.	14.4 VDC min.
OFF	3.0 VDC max.	5.0 VDC max.
Input response time	// ^	
ON	1.5 ms max.	1.5 ms max.
OFF	1.5 ms max.	1.5 ms max.
Style/External connections	A/Removable terminal block	B/Removable terminal block
Input device requirement	Sinking (NPN) or sourcing (PNP)	Sinking (NPN) or sourcing (PNP)
Manual	C200H Installation Guide: W111	

Figura 52. Información detallada de los modelos ID211 e ID212

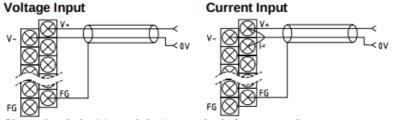
Anexo 6 Datasheet tarjeta de salidas digitales OD214

Output Modules

Outputs	Output Points	Max. Switching Voltage	Configuration	Model
Contact	8	250 VAC/ 24 VDC	Independent contacts	CQM1-OC221
	16		16 pts/ common	CQM1-OC222
	8		Independent	CQM1-OC224
Transistor	8	24 VDC	8pts/common	CQM1-OD211
	16	24 VDC PNP	16pts/common	CQM1-OD212
	32		32pts/common	CQM1-OD213
	16		16pts/common	CQM1-OD214
	8		8pts/common	CQM1-OD215
AC	8	100 to 240 VAC	4pts/common 2 circuits	CQM1-OA221
	6		4pts/common 2pts/common	CQM1-OA222

Figura 53. Detalle de las características de las tarjetas de salidas digitales de la familia CQM1, entre ellas la OD214

Anexo 7 Datasheet tarjeta de entradas analógicas AD042


DIP Switch Settings

The following table provides DIP switch settings for selection of the analog input range :

	Input range						
Input 1	Input 1 Input 2 Input 3 Input 4						
sw. 1: ON	sw. 3: ON	sw. 5: ON	sw. 7: ON	-10 to 10 V			
sw. 2: ON	sw. 4: ON	sw. 6: ON	sw. 8: ON	-10 10 10 V			
sw. 1: OFF	sw. 3: OFF	sw. 5: OFF	sw. 7: OFF	0 to 10 V			
sw. 2: ON	sw. 4: ON	sw. 6: ON	sw. 8: ON	01010 V			
sw. 1: ON	sw. 3: ON	sw. 5: ON	sw. 7: ON	0 to 5 V			
sw. 2: OFF	sw. 4: OFF	sw. 6: OFF	sw. 8: OFF	0 to 20 mA			
sw. 1: OFF	sw. 3: OFF	sw. 5: OFF	sw. 7: OFF	Conversion			
sw. 2: OFF	sw. 4: OFF	sw. 6: OFF	sw. 8: OFF	prohibited			

Analog Input Connections

Connect a two-conductor twisted pair shielded cable to the Analog Input Unit as shown in the following illustrations.

Short-circuit the V+ and the I+ terminals for current input.

Figura 54. Detalles de la configuración y conexionado de la tarjeta AD042

Indicators

Name	Color	Function
RDY	Green	Lit when unit is operating normally.
2CH/ 4CH	Orange	Lit when four words are occupied. Not lit when two words are occupied.
ERR	Red	Lit when dipswitches 18 are all off or when an internal error has occurred.

■ Terminals

The following table lists the usage of the terminals.

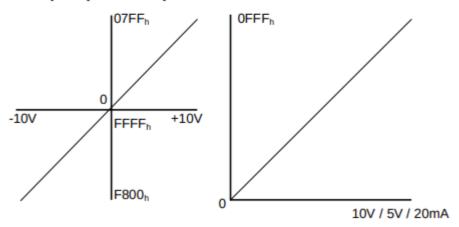
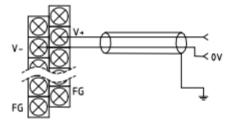
Terminal	Name	Function
A1	V1+	CH1 positive voltage input
B1	V1-	CH1 negative voltage / current input
A2	l1+	CH1 positive current input
B2	nc	
A3	V2+	CH2 positive voltage input
B3	V2-	CH2 negative voltage / current input
A4	12+	CH2 positive current input
B4	nc	
A5	V3+	CH3 positive voltage input
B5	V3-	CH3 negative voltage / current input
A6	13+	CH3 positive current input
B6	reserved	
A7	V4+	CH4 positive voltage input
B7	V4-	CH4 negative voltage / current input
A8	4+	CH4 positive current input
B8	reserved	
A9	FG	Connect to shielding of the input cable
B9	FG	Connect to shielding of the input cable

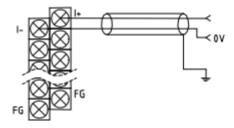
Figura 55. Detalle de la explicación de los leds indicadores y la función de los terminales.

Specifications

Number of inputs	4	
Input ranges	-10 V to +10 V	
	0 V to 10 V	
	0 V to 5 V	
	0 mA to 20 mA	
Resolution	12 bits	
Accuracy	25 ° C	0.5 %
	0 to 55 ° C	1.0 %
Conversion speed	1.2 ms / channel	
Insulation	500 V AC between output and PLC bus	
Current consumption	170 mA at 5 V DC	
Input type	differential	
Input impedance	voltage 1 MΩ	current 250 Ω
Power supply	internal DC/DC converter	

■ Graph input vs. output


Figura 56. Características técnicas de las entradas analógicas y gráfico de entrada vs salida.

Anexo 8 Datasheet tarjeta de salidas analógicas DA022

■ Voltage Output:

Current Output :

Specifications

Nr of analog outputs	2	
Output range	Voltage	-10 V to +10 V
	Current	0 mA to 20 mA
Load impedance	Voltage	> 2 kΩ
	Current	< 350 Ω
Resolution	Voltage	12 bit
	Current	11 bit
Accuracy	25 ° C	0.5 %
	0 to 55 ° C	1.0 %
Conversion speed	0.5 ms / 2 channels	
Insulation	500 V AC between outputs and PLC	
	bus	
Current consumption	340 mA at 5 V DC	
Total output current	50 mA	
Power supply	internal DC/DC converter	

Figura 57. Detalle de la conexión de los terminales y especificaciones técnicas de las salidas analógicas.

Indicators

Name	Color	Function
RDY	Green	Lit when unit is operating normally

Terminals

Terminal	Name	Function
A1	11+	CH1 positive current output
B1	11-	CH1 negative current output
A2	V1+	CH1 positive voltage output
B2	V1-	CH1 negative voltage output
A3	12+	CH2 positive current output
B3	12-	CH2 negative current output
A4	V2+	CH2 positive voltage output
B4	V2-	CH2 negative voltage output
A5	nc	
B5	nc	
A6	nc	
B6	пс	
A7	nc	
B7	nc	
A8	reserved	
B8	reserved	
A9	FG	
B9	FG	

Figura 58. Explicación de los indicadores luminosos y funcionalidad de cada terminal

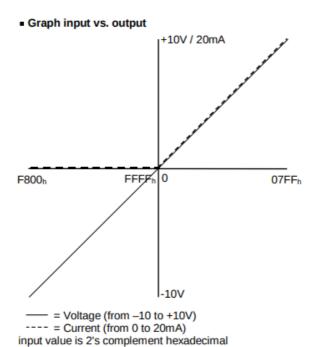


Figura 59. Representación de la salida de la tarjeta, tanto voltaje cómo corriente, en función de la entrada representada en Hexadecimal

Pliego de condiciones

1. Equipos necesarios

Para poder desarrollar el proyecto con garantías son necesarios los siguientes equipos:

- PC con los requisitos demandados por el software TIA Portal V15 (CoreTM i5-3320M 3.3 GHz, 8Gb de RAM y disco duro SSD de 300Gb).
- Licencia en vigor del software TIA Portal V15
- Router para conectar el PLC en red local y poder cargar el programa.
- Toma de corriente.
- Vehículo para llegar hasta ENDEKA CERAMICS SLU.
- Cable ethernet apantallado.

2. Normas de utilización

A la hora de conseguir un correcto funcionamiento, todo el personal que esté en contacto con la instalación deberá seguir las siguientes normas:

- Solo debe manipular la instalación el operario encargado del mantenimiento eléctrico/automático.
- La única persona que debe modificar parámetros del PLC debe ser el jefe de producción de ENDEKA CERAMICS SLU.
- A la hora de realizar una puesta en marcha, deberá estar siempre presente el responsable en la empresa que ha realizado la instalación.
- En caso de que el sistema se descontrole o entre en parada, se deberá retirar todo el material en modo manual por parte del jefe de producción, una vez resuelto el problema, se realizará una puesta en marcha también por parte del jefe de producción.

Presupuesto

COMPONENTES			
Elemento	Cantidad	Precio unitario	Precio total
PLC Siemens S7-1500	1	715,84€	715,84€
SIMATIC ET 200SP (Módulo de interfaz)	1	221,43 €	221,43 €
SIMATIC ET 200SP PS 24V/5A (Fuente de alimentación)	1	141,57 €	141,57 €
SIMATIC ET 200SP, DI 16x 24V	2	89,20 €	178.40€
SIMATIC ET 200SP, DQ 16x24VDC/0,5A	3	103.52€	301.56
SIMATIC ET 200SP, AI 2xl 2-/4	2	149,88 €	299.76€
SIMATIC ET 200SP, AQ 2xl ST	1	169,24 €	169,24 €
SIMATIC HMI KTP1200 BASIC PN	1	1700,05€	1700,05€
Material necesario	1	450€	450€
TOTAL			4177,85€

INGENIERÍA			
Concepto	Cantidad	Precio unitario	Precio total
Ingeniería inversa	100h	32€/h	3200€
Selección de material	5h	32€/h	160€
Diseño del nuevo control	200h	32€/h	6400€
TOTAL			9760€

PRESUPUESTO TOTAL			
Componentes	4177,85€		
Ingeniería	9760€		
Beneficio industrial (5%)	696.89€		
TOTAL	14634.74€		