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Spatio-temporal hierarchical Bayesian analysis of wildfires with 1 
Stochastic Partial Differential Equations. A case study from Valencian 2 
Community (Spain) 3 
 4 
 5 
Abstract 6 
 7 
The spatio-temporal study of wildfires has two complex elements that are the computational 8 
efficiency and longtime processing. Modelling the spatial variability of a wildfire could be 9 
performed in different ways, and an important issue is the computational facilities that the new 10 
methodological techniques afford us. The Markov random fields methods have made possible to 11 
build risk maps, but for many forest managers, it is more advantageous to know the size of the 12 
fire and its location. In the first part of this work, Stochastic Partial Differential Equation with 13 
Integrated Nested Laplace Approximation is utilised to model the size of the forest fires 14 
observed in the Valencian Community (Spain) and so it does the inclusion of the time effect, 15 
and the study of the emergency calls. The most crucial element in this paper is the inclusion of 16 
the improved meshes for the spatial effect and the time, these are, 2d (locations) and 1d (time) 17 
respectively. The advantage of the use of spatio-temporal meshes is described with the inclusion 18 
of Bayesian methodology in all the scenarios. 19 

Keywords: Bayesian Inference; INLA; SPDE; Spatio-temporal Mesh; wildfire. 20 

1. Introduction 21 

 22 
Modelling the incidence of wildfires and the fire size is necessary to understand how 23 

global warming and climate change may affect the landscape in the coming years, and 24 

to determine what factors are related to spatial incidence and the size of the burned area 25 

([1]; [2]). Wildfires are associated with their spatial coordinates, the time effect and the 26 

corresponding covariates. Thus, even though methods such as Markov Random Fields 27 

may also be useful to respond to some scientific questions of interest, spatial point 28 

processes are the most appealing analytical tool to investigate the spatial and spatio-29 

temporal distribution of forest fires ([3]; [4]). 30 

Previous studies have solved the wildfires problem by producing risk maps or by 31 

calculating the probability of a starting wildfire at some location inside a study area D 32 

using statistical methods ([5]; [6]; [7]). These studies used statistical methods to 33 

produce wildfire risk maps included Markov Random Fields ([1]) and spatial point 34 

processes ([8]; [9]). Despite their usefulness, most of the studies have not considered the 35 
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burned area caused by each wildfire as in this paper given that it is used INLA-SPDE.  1 

To begin with, the first part of the work is devoted to the study of the best spatial 2 

mesh for the data. The models that are introduced in this work have been compared with 3 

the use of the Deviance Information Criterion (DIC) and the Watanabe-Akaike 4 

information criterion (WAIC) ([10]; [11]). 5 

In addition, the most essential point of this work is to show the benefits of using 6 

Stochastic Partial Differential Equation (SPDE) with Integrated Nested Laplace 7 

Approximation (INLA) for spatio-temporal wildfire data ([12]; [13]; [14]; [15]; [16]), 8 

including the mesh for the temporal effect, one dimension (1d - time) and for the spatial 9 

effect (2d - locations). Nowadays, the problem is to choose the perfect mesh formed 10 

with the SPDE of each pattern in spatio-temporal processes. A prerequisite for creating 11 

mesh processes is the exploratory data analysis which is fundamental in this research. 12 

 13 

Moreover, the noteworthy elements in the paper are the different data used to 14 

this methodology (INLA - SPDE). The outline applied to wildfires in Valencian 15 

Community includes two different data set. Firstly, are the real locations and temporal 16 

wildfires, and secondly the emergency calls about the corresponding wildfires. 17 

Data set 18 

 19 
The patterns produced by wildfire in the Valencian Community are analysed and 20 

its location is in the north-east coast of the Iberian Peninsula. The region is bordered by 21 

Catalonia to the north and the Iberian System range of mountains to the west. 22 

Furthermore, the region is delimited to the east by the Mediterranean Sea. It is a region 23 

with a surface area of 23,245 square kilometres, representing 4.6% of the Spanish 24 

national territory. 25 

A total of 315 fires were recorded in the studied area in 2015 (Figure 1). In 26 

addition to the locations of the fire centroids in Cartesian coordinates (Mercator 27 

transversal projections, UTM, Datum ETRS89, zone 31-N), several covariates were also 28 

considered. 29 

[Here Figure 1] 30 

 31 

 32 
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Data exploration steps used in such cases are: 1 

1) Exploratory Data Analysis 2 

2) Outliers  3 

3) Collinearity  4 

4) Relationships between the response variable (Y) and the covariates (X’s) 5 

5) Variance Inflation factors 6 

6) Interactions  7 

7) Zero inflation justification 8 

 9 

The covariates that directly affect wildfires are typology, cause, causative, days 10 

last rain, maximum temperature, relative humidity, wind speed, wind direction, 11 

combined model (relation between elements in a wildfire), danger degree and a fire 12 

type. The relationships between the covariates are shown in Figure 2 (boxplots). 13 

[Here Figure 2] 14 

 15 

The next step is the Variance Inflation factors (GVIF) and seeks the optimal 16 

variables and using only values below 2 because these are informative (Table 1). 17 

 18 

[Here Table 1] 19 

 20 

The collinearity study of the covariates, the possible structure of outliers' 21 

problems and the possible pattern appear in Figure 3. The most likely option to obtain 22 

patterns is the relationship between each covariate and the response variable TOTAL 23 

(burned tree and not tree together), and as a result, in this illustration there is no pattern 24 

present. 25 

 [Here Figure 3] 26 
 27 

In Figure 4 all the possible distances between points, extensive or short, are 28 

studied and this enables us to continue with the study.  29 

 30 

 [Here Figure 4] 31 

 32 

Finally, before selecting the model, the number of zeroes determines if the 33 

variable data is high. The decision regarding the selected model depends on the number 34 
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of zeroes found, and if there are many of them proximate zero or zero, the best 1 

likelihood family is Zero-inflated. In our case, there is 42.22% of zero data, and it is 2 

unavoidable the use of Zero-inflated model.  (Figure 5).  3 

 4 

 [Here Figure 5] 5 

 6 

On the other hand, the second data used which reinforces the analysis of the 7 

wildfires in the Valencian Community, is the use of the emergency calls in the same 8 

period for the incidences.  In Figure 6 appear the locations of the emergencies calls. The 9 

main characteristic of this data set is the position of a real wildfire which is proximate to 10 

any population, and in consequence it is necessary an early intervention and resolution 11 

of the problem. 12 

 13 

 [Here Figure 6] 14 

 15 

The rest of the paper is organised as follows. Section 2, Methodology, gives all 16 

the details needed to clarify the Bayesian methodology used and Spatial Point Process. 17 

Section 3 is devoted to the Data set, and Section 4 includes the models for burned area 18 

among different wildfires scenarios. Finally, Discussions and Conclusions are in 19 

Section 5. 20 

 21 

2. Methodology 22 

 23 

Integrated Nested Laplace Approximation (INLA) 24 

 25 

This work offers the possibility of studying Spatial Point Processes by using integrated 26 

nested Laplace approximation (INLA) [29 and 30]. [16] develops the INLA 27 

methodology for approximate Bayesian inference as an alternative to traditional Markov 28 

chain Monte Carlo methods. INLA focuses on models that can be expressed as latent 29 

Gaussian Markov random fields (GMRF) for their computational properties, and the 30 

data applied in this case possesses such characteristics. 31 

   32 
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The data can be idealised as realisations of a stochastic process indexed by: 1 

𝑌(·) = {𝑦(𝑠), 𝑡)) ∈ 𝑅. × 𝑅}                 (1) 2 

where si represents spatial and ti is for temporal, with both of them Y(·) is a spatio-3 

temporal subset of R2xR.  4 

The advantages of using INLA over other methods, such as basic statistical 5 

methods or more complex ones (like Markov Chain Monte Carlo (MCMC) ([17])), are 6 

the following: 7 

• It works with reasonable computational times, thereby allowing the user to work 8 

with complex models quickly and efficiently. 9 

• It allows the integration of as many covariates as desired, and also the incorporation 10 

of new covariates in the model in later steps. 11 

• It allows the level of significance of covariates to be analysed. 12 

• It does not require working with normal distributions exclusively, since its base is on 13 

Bayesian inference. 14 

 15 

The data can be presented by a collection of observations  ([18]; 16 

[19]; [20]; [29] and [30]). In statistical analysis, to estimate a general model it is useful 17 

to shape the mean for the additive linear predictor, defined on a suitable scale: 18 

 19 

𝜂) = 𝛽3 + ∑ 𝛽6𝑧6) + ∑ 𝑓9(𝜈9));
)<=

>
6<=         (2) 20 

                     21 

 22 

Where  is a scalar, which represents the intercept,  are the coefficients 23 

of the linear effects of the covariates on the response, and24 

 is a collection of functions defined in terms of a set of other 25 

covariates represented as , different from the previous covariates. The 26 

first step in defining the structure of the data . A very general approach 27 

consists in specifying a distribution for characterised by a parameter 28 

(usually the mean ) defined as a function of a structured additive predictor 29 
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through a link function , such as . The additive linear predictor  is defined 1 

as follows ([21]): 2 

 3 

𝜂) = 𝛽3 + ∑ 𝛽)) 𝑧)                                  (3) 4 

 5 

Where 𝛽)	represents the coefficient that quantifies the effect of the covariates in the 6 

response zi. This statistical analysis can be carried out with the freeware statistical 7 

package R, version 3.4.3 ([22]) and the R-INLA package 2017 ([15]). 8 

 9 

The priors for the formulas (1) to (3), are an important element. The fixed effects and are 10 

typically normally distributed, centered on 0 and with a large variance, while 𝑣ij are 11 

called random effects(hyperparameters) and are typically normally distributed with an 12 

exchangeable structure, i.e., 𝑣ij ∼ Normal(0, 𝜎𝑣2 ). With this, a prior distribution needs 13 

to be specified on the regression parameters 𝜷 = {𝛽0,...,𝛽M} including the intercept, 14 

and on the variance 𝜎2 of the outcome. The choice of prior is:  15 

𝛽m ∼ Normal(0,106), m = 1,...,M  16 

log(𝜏) = log(1⁄𝜎2) ∼ logGamma(1, 10−5).  17 

 18 

The aim is to perform the inferential process and to obtain the posterior distribution for 19 

𝜷 and 𝜎2.  20 

 21 

If we are interested in changing the prior for the regression parameters, for instance, 22 

reducing the variability on the prior for 𝛽0 and 𝛽1, specifying 𝛽0 ∼ Normal(0, 10000) 23 

and 𝛽1 ∼ Normal(0, 1), we can achieve it in R- I NLA using the option control.fixed. It 24 

is also possible to modify the specification of the prior on the outcome precision 25 

(remember𝜏=1⁄𝜎2) using the option control.family of the inla command. By default, a 26 

noninformative logGamma prior is assumed on the logarithm of the precision, which is 27 

equivalent to assume a Gamma prior on the precision 𝜏 ∼ Gamma(1, 10−5).  28 

 29 

In the case of the temporal correlation is considered here the commonly used random 30 

walk (RW). This random walk structure is characterized by a variance parameter, on 31 
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which we need to specify a prior distribution, in our case logGamma(1, 10−5).  In R-1 

INLA the default internal representation for the SPDE parameters is log(𝜏) = 𝜃1 and 2 

log(𝜅) = 𝜃2, with 𝜃1 and 𝜃2 being given a joint Normal prior distribution (by default 3 

independent Normal(0, 1) priors are used). 4 

 5 

When the battery of competing models has been obtained, the DIC and the 6 

WAIC criterium can be obtained for each one of the models to select the most suitable 7 

one, those that occur to have a higher level of complexity and a greater goodness-of-fit. 8 

That is to say, models that show the lowest WAIC and DIC should be chosen ([10]; 9 

[11]): 10 

 11 

𝐷𝐼𝐶 =J 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠	𝑜𝑓	𝑓𝑖𝑡J+J𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦J = 𝐷(𝜃) + 2𝑝W          (4) 12 

Where 𝐷(𝜃) is the deviance evaluated at the posterior mean of the parameters and 𝑝W  13 

denotes the ‘effective number of parameters’, which measures the complexity of the 14 

model ([10]). When the model is true, 𝐷(𝜃) should be approximately equal to the 15 

‘effective degrees of freedom’, 𝑛 − 𝑝W . 16 

Stochastic Partial Differential Equation (SPDE) 17 

 18 

The Stochastic Partial Differential Equation (SPDE) approach is used for the 19 

study of spatial effect with the Matérn covariance function. The triangulation presented 20 

allows the spatio-temporal covariance function and the dense covariance matrix of a 21 

Gaussian Field (GF) to be replaced with a neighbourhood structure and a sparse 22 

precision matrix. This yields substantial computational advantages ([5]; [13]), and this 23 

approach makes possible to detect the risk factors effects in the spatial distribution of 24 

wildfire patterns ([23]). 25 

 26 

In this case, the covariance structure of the Matérn type for the dispersion matrix 27 

𝛴, that is, if  hij=||xi-xj|| denotes the distance between two arbitrary wildfires within W 28 

the covariance of their fire sizes is given by  29 

 30 

𝐶Zℎ)\] =
=

^(_).`ab
(𝜅ℎ)\)_𝐾_(𝜅ℎ)\)                (5) 31 
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Where 𝐾_ denotes a Bessel function of second kind and order 𝜏, which controls 1 

the smoothness of the process. The parameters 𝜏 and 𝜅 relate empirically to the nominal 2 

range of the spatial covariance ( 𝑟 = √8𝜏/𝜅). The Matérn covariance is a general model 3 

that encompasses covariance models such as the Exponential and the Gaussian, 4 

commonly used in geostatistical analyses ([12]).  5 

 6 

The structure and the basis functions used are defined on a triangulation of domain D: 7 

 8 

𝑋(𝑠) = ∑ 𝜑9(𝑠)j
9<= 𝜔9         (6) 9 

       10 

where n is the total number of vertices in the triangulation; {φl(s)} is the set of base 11 

functions and {ωl} are the zero-mean Gaussian distributed weights.  12 

These basis are presented as: 13 

 14 

𝜑9(𝑠) = l 				1				𝑎𝑡	𝑣𝑒𝑟𝑡𝑖𝑥						0				𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒	    (7) 15 

                 16 

The key is to calculate {ωl}, which reports the value of the spatial field at each 17 

vertex of the triangle. The values inside the triangle will be determined by linear 18 

interpolation ([5]; [24]). 19 

 20 

The choice problem of the best mesh for the SPDE approximation could be 21 

solved using the correct elements of the mesh shown in Figure 7, where it is different 22 

for 1d mesh used for the temporal effect because it is easier for a one-dimension mesh. 23 

 [Here Figure 7] 24 

3. Application. Burned area in wildfires 25 

Spatial mesh with SPDE 26 

 27 
A wildfire is any uncontrolled fire in combustible vegetation that occurs in the 28 

countryside or a wilderness area ([8]; [25]). A wildfire differs from other fires by its 29 

extensive size, and they are characterised in terms of the cause of ignition, their physical 30 

properties or the weather effect on the fire ([26]; [27]).   31 
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Wildfires are a natural element of the Mediterranean ecosystem, and their 1 

prevention and suppression is in the benefit of lowering the levels of risk and its 2 

vulnerability to values that are tolerable for society ([8]). 3 

A wildfire is associated with its spatial coordinates, longitude and latitude of the 4 

centroid of the burned area or the place where it was detected, along with other 5 

variables such as size or cause of the forest fire. The spatial-temporal stochastic is the 6 

process by which controlling the moment in time when it was produced, all wildfires 7 

can be identified. Temporal clustering of wildfires, whether deriving from multiple 8 

ignition lightning events, arson ([28]), or other sources, combined with favourable fuel 9 

and weather conditions, can force suppression resource rationing across space. Spatial 10 

clustering can also indicate the presence of risk factors. The temporal effect is included 11 

as a covariate mesh (1d) in the model. 12 

 13 

The steps for modelling the application that includes the spatial effect created 14 

with the mesh, are firstly creating the spatial locations, by Matérn covariance, and then, 15 

is created the spatial mesh structure ([13]). In the next steps, the covariates are included, 16 

and the SPDE spatial model is done and introduced as a function in the final model 17 

([16]). 18 

 19 

Following the possibilities studied in previous works, the meshes are shown in 20 

Figure 8, and in Figure 9, following the natural instructions ([12]), are selected the best 21 

meshes. 22 

 23 

 [Here Figure 8 and Figure 9] 24 

 25 

The models applied for the real data, that is, wildfires in the Valencian 26 

Community in 2015, have both non-spatial and spatial effects and these affects the 27 

computing time (Table 2). Table 3 shows the value of real data parameters for each 28 

model. In Figure 10, the difference between the values of the parameters appears, and it 29 

is crucial for the final results. 30 

 31 

[Here Table 2, Table 3, Figure 10] 32 
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Table 4 below shows the summary results related to goodness-of-fit for the 1 

battery of models. DIC and WAIC. 2 

[Here Table 4] 3 

With these results, it can be deduced that including a higher number of 4 

covariates improves any statistical model because DIC and WAIC become lower and 5 

provides a better prediction.  6 

 7 

[Here Figure 11] 8 

 9 

In this case, validation is performed by comparing residuals and the correlation 10 

between the real data and the model data. The relationship with distances can also be 11 

seen in Figure 11, above. Figure 12 bellow shows the spatial effect of the Valencian 12 

Community in two formats. The correlation in this case, ρ = 0.8309389, has a high 13 

value which suggests a good result.  14 

[Here Figure 12] 15 

Spatio-temporal meshes  16 

 17 

The second part for the applied data is the analysis of emergency calls about the 18 

wildfires in 2015 in the Valencian Community. 19 
 20 

In this case, for the inclusion of the time effect, the temporal 1d mesh is 21 

developed in 4 parts (blue lines in Figure 13). The black lines are the mouthparts of the 22 

data. 23 

 24 

[Here Figure 13] 25 

 26 

The next step is developing the spatial 2d mesh (left) and regionalised mesh 27 

(right) when the contour of the region is not used (Figure 14). The leftward mesh is used 28 

for the inclusion of the spatial effect in the models and this reduces the computing time. 29 

 30 

[Here Figure 14] 31 

With these data and with k= 4 (four temporal parts), the models tested are shown 32 

in Table 5 and the structure of their parameters in Figure 15. The inference to the 33 
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parameters is another advantage of the use of Bayesian methodology. In Figure 16 the 1 

region models are presented without the use of region contour. 2 

 3 

[Here Table 5, Figure 15 and Figure 16] 4 

 5 

Then, the introduction of the contour in the model defines the studied region. 6 

The 2d mesh is different, and the outside part of the region is not necessary. In Figure 7 

17 the new mesh and regionalised zones are shown, and the red dots are the regions 8 

without points. 9 

 10 

[Here Figure 17] 11 

 12 

With these data and with k= 4 (four temporal parts), the models tested are (Table 6 and 13 

Figure 18): 14 

 15 

[Here Table 6, Figure 18 and Figure 19] 16 

 17 

Finally, in Figure 19 the models with the contour included is presented. 18 

4. Discussions and Conclusions  19 

 20 

In this work, the study of wildfires with Bayesian methodology, including SPDE 21 

for spatial and temporal effect, is done. The phases proposed for considering the best 22 

solution for each case are presented and modelled using latent Gaussian field which is 23 

extended to Gaussian Random Markov Fields.  24 

A computationally efficient method for Bayesian inference, based on INLA and 25 

SPDE, was presented and the newest element is the inclusion of meshes in time (one 26 

dimension - 1d) and space (two dimensions - 2d). We looked at an application for 27 

modelling a wildfire data set in which the process is faster and more precise. This 28 

method is faster than the other ones proposed in previous works, and it a basic 29 

advantage for new research. 30 

 31 

The advantage of INLA-SPDE is that it can predict the subsequent marginal 32 

distributions of the model parameters as well as the model responses without carrying 33 
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out extensive simulations. This methodology can be potentially applied to mapping the 1 

spatial distribution of environmental variables or in all kinds of spatial point patterns in 2 

geostatistical issues, including covariates. The use of triangulated meshes in INLA-3 

SPDE may lead to two possibilities, working with simple or complex databases.  4 

 5 

As a conclusion, the wildfire data and emergency calls have a similar behaviour 6 

in space and time as it is shown in this study.  Hence, it is relevant for following 7 

research since data set about real locations or emergency calls of wildfires depend on 8 

the accessibility of getting both. The obtained models in this investigation show that the 9 

time covariate is an essential element for the behaviour of the wildfires, and not only the 10 

other covariates as the elevation, human effects or climatological effect. 11 

 12 

The results show that INLA-SPDE could also be a complementary tool in the 13 

wildlife biologist's analytical toolkit, where models are specified using a syntax that 14 

should be familiar to users of R, and where data are formatted straightforwardly with 15 

relatively few lines of codes, and that implies a leading advance in spatial statistics. 16 

 17 
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Figures: 1 

 2 

Figure 1: Distribution of forest fires in the Valencian Community in 2015. 3 
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 5 
 6 
 7 

 8 

 9 
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 1 

Figure 2: Boxplot covariates, in the first line are, cause, days last rain, temp_max, in the 2 
second line are Relative_H, wind speed, wind direction and in the third line are 3 

combined model, danger degree, a fire type.	4 
 5 

 6 

 7 

 8 

 9 
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 1 
 2 

Figure 3: Response vs covariates. 3 

. 4 

 5 

 6 

 7 

 8 

Figure 4: Frequency and cumulative proportion of distances between points. 9 
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 1 

Figure 5: Frequency of the response variable (total burned area). The highest values are 2 

zeroes. 3 

 4 

 5 

Figure 6: Locations of emergency calls about wildfires. 6 

 7 

 8 
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 1 

2 

 3 
 4 

Figure 7: Mesh elements. in the first line on the left the mesh with the points and 5 

on the right the number of vertices. In the second line are all the elements of the 6 

mesh. 7 

 8 

 9 
 10 
 11 
 12 

 13 

  14 

Figure 8: The 13 meshes, with respective numbers of vertices: 1612, 1430, 1612, 2021, 15 

1732, 1356, 1592, 2071, 794, 1778, 600, 1836, 2801. 16 
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 1 

 2 

Figure 9: The meshes selected, with the previous steps. 3 

 4 
 5 
 6 
 7 
 8 

 9 

Figure 10: Comparison of parameters with and without spatial effect. 10 
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 12 
 13 
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 1 

Figure 11: Spatial effect. 2 

 3 

 4 

Figure 12: Differences between real and model data (left), and Correlation–distance 5 

(right). 6 

 7 
 8 

 9 

Figure 13: 1d mesh for the emergency calls of wildfires. 10 
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 1 
 2 

          3 
 4 

Figure 14: Spatial 2d mesh (left) regionalised mesh (right) without contour. 5 

 6 
 7 
 8 

   9 

Figure 15: Parameters of M1 and M2. 10 
 11 
 12 
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        1 
 2 

Figure 16: Modelled total burned area with the model M1 (left) and model M2 (right). 3 

 4 

 5 
 6 

   7 
 8 

Figure 17: Spatial 2d mesh (left) regionalised mesh (right). 9 

 10 
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 1 

 2 

Figure 18: Parameters of M3 (up) and 4 (down). 3 

 4 

 5 
 6 

Figure 19: Modelled total burned area with the model M3 (left) and model M4 (right). 7 

 8 
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Tables: 1 
 2 
 GVIF - Step 1 GVIF - Step 2 

typology 1.060767 1.060414 

group typology 2.441872  

cause 1.211273 1.080824 

causative 2.444984  

days last rain 1.256075 1.221050 

temp_max 1.520976 1.490312 

Relative_H 1.412322 1.385338 

wind speed 1.435472 1.435213 

wind direction 1.690188 1.676258 

combined model 1.182671 1.171493 

danger degree 1.412806 1.393972 

fire type 1.103011 1.100342 

total tree 1.114397 1.107647 

total no tree 1.199396 1.194232 

Table 1: Values of GVIF in the two steps. 3 

 4 
 5 
 6 

  Model 

1 

Model 

2 

Non-spatial 

effect 

 1.7078 1.3112 

Spatial effect  14.7019 23.9632 

Table 2: Computational Time for each model in seconds. 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
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 1 

  
𝛽3	

Mean [0.025 quant, 0.975 

quant] 

𝛽=	
Mean [0.025 quant, 0.975 

quant] 

𝛽.	
Mean [0.025 quant, 0.975 

quant] 

M1 - Non-Spatial 

effect 
2.2439 [2.1916, 2.2955] -0.0352 [-0.0394, -0.0311] 0.0016 [0.00152, 0.0017] 

M1 - Spatial Effect 0.2974 [-0.2243, 0.7566] -0.0148 [-0.0300, -0.0002] 0.0025 [0.0015, 0.0036] 

M2 - Non-Spatial 

effect 
2.2439 [2.1917, 2.2955] -0.0352 [-0.0394, -0.0311] 0.0016 [0.0015, 0.0017] 

M2 - Spatial Effect 0.2384 [-0.3764, 0.7848] -0.0163 [-0.029, -0.0039] 0.0033 [0.0022, 0.0045] 

 κ = 0.5166625 σu = 2.467049 r = 5.694205 

Table 3: Parameters of the model. 2 

 3 
 4 
 5 
 6 

  DIC             WAIC 

M1 - Non-spatial effect  5183.299      

4574.274 

M1- Spatial effect  5184.681      

4573.108 

M2 - Non-spatial effect  1104.704      

1131.896 

M2- Spatial effect  -Inf                   -Inf 

Table 4: DIC and WAIC. 7 

 8 

 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
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 1 
 2 
 3 

  
𝛽3	

Mean [0.025 quant, 

0.975 quant] 

𝛽= (temporal 

covariate) 

Mean [0.025 quant, 

0.975 quant] 

DIC 

M1: 

y ~  𝛽3 + f(s, model = spde) 
1.366 [1.269, 1.464] 14.861 [3.240, 43.698] -1878.22 

M2:  

y ~ 𝛽3 + f(s, model = spde, group = 

s.group, control.group = list(model = 

'ar1', hyper = list(theta = pcrho)))+ 

f(covariate, model = "rw2") 

1.378 [1.282, 1.475] 14.734 [3.219, 43.328] -1865.49 

Table 5: Parameters of the models M1 and M2  4 

 5 
 6 

  
𝛽3	

Mean [0.025 

quant, 0.975 quant] 

𝛽= (temporal covariate) 

Mean [0.025 quant, 0.975 

quant] 

DIC 

M3: 

y ~   f(s, model = spde) 
- 15.054 [3.258, 44.191] 

-1943.04 
 

M4: 

y ~ 𝛽3+ f(s, model = spde, group 

= s.group, control.group = 

list(model = 'ar1', hyper = 

list(theta = pcrho)))+ 

f(covariate, model = "rw2") 

1.322 [1.222, 

1.421] 
15.007 [3.263, 44.248] 

-1987.28 
 

Table 6: Parameters of the models M3 and M3. 7 

 8 


