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ORBITS OF MAXIMAL INVARIANT SUBGROUPS AND
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ANTONIO BELTRÁN
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SPAIN

Abstract. Let A and G be finite groups having coprime orders and suppose that A
acts on G via automorphisms. We give some solvability criteria for G according to the
number of orbits that appear by the action of the fixed point subgroup CG(A) on the
set of maximal A-invariant subgroups of G, and likewise, on the set of non-nilpotent
maximal A-invariant subgroups. We also obtain some characterizations and further
structure properties of these groups. In the course of our study we prove an independent
result concerning maximal factorizations of classical simple groups.

1. Introduction

A topic of interest in Finite Group Theory is to investigate the structure and properties
of a group G under certain conditions on its maximal subgroups. An elementary result
claims that a finite group all whose maximal subgroups are conjugate must be necessarily
a cyclic group of prime power order. In 1980, S. Adnan proved by elementary methods
that when G has exactly two conjugacy classes of maximal subgroups then G is solvable.
In fact, the order of G is divisible by exactly two primes and it has a very specific structure
([1], [2]). However, groups having three or more conjugacy classes of maximal subgroups
need not be solvable. For instance, there exist simple groups such as PSL(2,7) that have
exactly three conjugacy classes of maximal subgroups, two of which are interchanged by
an outer automorphism of order 2. Afterwards, once the Classification of the Finite Simple
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2 SHAO AND BELTRÁN

Groups (CFSG) was completed, V.A. Belonogov gave a precise description of such groups
(see [3]).

In this paper we pose a more general hypothesis. We assume that a finite group A is
acting coprimely on a group G by automorphisms, that is, (|G|, |A|) = 1, and we focus on
the set of maximal A-invariant subgroups of G. Now, conjugates of maximal A-invariant
subgroups of G need not be A-invariant, that is, in general G does not act on the set
of maximal A-invariant subgroups. But the fixed point subgroup, CG(A), which usually
plays a crucial role in the coprime action setting, does act on this set. Accordingly, there
is sense in studying the case in which there are few CG(A)-orbits of maximal A-invariant
subgroups in G. We demonstrate the solvability of G and determine its structure when
there only exist at most two orbits.

Our first result, which is precise and elementary, deals with the case of just one orbit.
When all maximal A-invariant subgroups of G are conjugate by some element in CG(A),
then G is not necessarily a cyclic (or abelian) group of prime power order, as it happens
when A = 1. We prove the following characterization in Section 2.

Theorem A. Suppose that a finite group A acts coprimely on a finite group G. Then all
maximal A-invariant subgroups of G are CG(A)-conjugate if and only if G is a p-group
and A acts irreducibly on G/Φ(G). In this case, G has exactly one maximal A-invariant
subgroup, which is Φ(G).

Unlike Adnan’s work, the case of two orbits of maximal invariant subgroups is much
more complex. Once we manage to reduce the problem to simple groups, we need to
appeal to the CFSG for studying those maximal factorizations in a simple group of Lie
type in which both maximal subgroups have coprime indexes. This is previously done in
Section 3 with a case-by-case analysis on the maximal factorizations of the finite simple
groups of Lie type, which are given in [11] (classical groups) and [13] (exceptional groups).
We think that Theorem 3.4 is of particular interest.

Before stating our main result, whose proof is given in Section 4, we will establish some
notation. For every prime p, we will denote by SylAp (G) the set of A-invariant Sylow
p-subgroups of G. We recall that this set is not empty by elementary coprime action
properties, and that any two subgroups lying in SylAp (G) are CG(A)-conjugate.

Theorem B. Suppose that a finite group A acts coprimely on a finite group G. If all
maximal A-invariant subgroups of G lie in two CG(A)-orbits, then G is solvable and one
of the following conditions holds:

(1) G is a prime power order group.
(2) G = PQ, where P ∈ SylAp (G) and Q ∈ SylAq (G), and P EG. In addition, P/Φ(P )

is QA-irreducible, that is, P/Φ(P ) has no proper non-trivial QA-invariant sub-
group.

Taking one more step, it was recently proved that if a group G has a single conjugacy
class of non-nilpotent maximal subgroups, then G is solvable. This is an immediate
consequence of Theorem 1.2 of [15]. Likewise, it has been shown that if G has at most two
conjugacy classes of non-nilpotent maximal subgroups, thenG is solvable as well (Theorem
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1.1 of [14]). Both results require the CFSG. We wonder whether these properties can be
transferred into the coprime action scenario and give a positive answer in Section 5.

Theorem C. Suppose that a group A acts coprimely on a group G. If G has at most two
CG(A)-orbits of non-nilpotent maximal A-invariant subgroups, then G is solvable.

2. Proof of Theorem A

We present some results that will be needed for proving our main results, but first we
make an observation. The hypotheses in our main theorems are inherited by A-invariant
quotients. Indeed, if N E G is A-invariant, then the obvious inclusion CG(A)N/N ≤
CG/N(A) is sufficient for this purpose, and of course this inclusion is not related to the
coprimality of the action. Regarding coprime action we state two standard properties.
They will be applied in the framework of solvable groups although the statements and
proofs are easily extensible to p-solvable groups. We refer to [12, Chapter 8] for a detailed
presentation and other basic properties of coprime action.

Lemma 2.1. [5, Lemma 2.3] Let A be a group acting coprimely on a p-solvable group G.
If H is a maximal A-invariant subgroup of G, then |G : H| is a p-number or a p′-number.

Lemma 2.2. Let A be a group acting coprimely on a p-solvable group G. If H is a
maximal A-invariant normal subgroup of G, then |G : H| is a p-number or a p′-number.

Proof. Since the semidirect product GA is p-solvable and G/H is a chief factor of it, G/H
is either a p-group or a p′-group. �

The fact of using inductive arguments to obtain the solvability in Theorem B forces
us to prove first the solvability of a group when it possesses only one orbit of maximal
invariant subgroups. So we start by proving Theorem A, whose proof is elementary.

Proof of Theorem A. Assume that all maximal A-invariant subgroups of G are CG(A)-
conjugate. We prove first that G is a p-group. Suppose on the contrary that |G| is divisible
by more than one prime. Then, for some prime p, we take P ∈ Syl Ap (G) and there exists a
maximal A-invariant subgroup M of G such that P ≤M . Now, |G : M | must be divisible
by at least one prime q 6= p, and then we choose N to be a maximal A-invariant subgroup
of G containing an A-invariant Sylow q-subgroup of G. We certainly have that M and N
cannot be conjugate, since they have different order, contradicting the hypotheses.

For the second part, let us consider G/Φ(G), which is also acted on by A and is an
elementary abelian p-group for some prime p. Maschke Theorem ([12, 8.4.6]) asserts that
the action of A on G/Φ(G) is semisimple. On the other hand, the hypotheses imply that
all maximal A-invariant subgroups of G/Φ(G) are CG(A)-conjugate, so by joining both
facts, we deduce that G/Φ(G) has no proper non-trivial A-invariant subgroup, that is, A
acts irreducibly on G/Φ(G), as required.

Conversely, assume that G is a p-group and that A acts irreducibly on G/Φ(G). It
is straightforward that Φ(G) is maximal A-invariant in G. Let M be another maximal
A-invariant subgroup of G. The fact that Φ(G) is A-invariant and the maximality of M
imply that G = MΦ(G). However, M is contained in some maximal subgroup of G, say
M1, and then G = M1Φ(G) = M1, a contradiction. So there exists a single maximal
A-invariant subgroup in G, which is Φ(G). �
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Remark 2.3. Under the hypotheses of Theorem A, if C := CG(A) < G, then C ≤ Φ(G).
If on the contrary C = G, then G must be cyclic of prime order.

3. Maximal factorizations with subgroups of coprime indexes in simple
groups of Lie type

For dealing with the two-orbits case, we need to study factorizations in finite simple
groups of Lie type, when both factors have coprime indexes. This fact quickly leads to
be able to exclude exceptional groups of Lie type. Furthermore, we will see that the fact
of introducing coprime action on a simple group lead us to be able to exclude the case in
which the defining field of the group has order pf with p prime and f a power of 2. Let L̂
be a classical linear group on vector space V and centre Z (so that L = L̂/Z is a classical

simple group), and let Ĝ be a group such that L̂E Ĝ ≤ GL(V ). For a subgroup X of Ĝ,

we denote by ˆX the subgroup (XZ ∩ L̂)/Z of L. Let d = |Z|. We also denote by 1
d
M

the factor group of MZ/Z in L. As we said in the Introduction, our discussion is based
and follows the notation and terminology of [11] and [13].

Lemma 3.1. ([13, Theorem A]) Let G be finite classical simple group of Lie type defined
over the field F of order pf with p a prime. Assume that f is not a power of 2. If
G = MN is a nontrivial factorization of G, then interchanging M and N if necessary,
the triple (G,M,N) lies in Tables 2-7 in the Appendix.

Lemma 3.2. ([10, Lemma 3]) Let a,m and n be natural numbers. Then

(a) (am − 1, an − 1) = a(m,n) − 1,
(b) ((an − 1)/(a(m,n) − 1), am − 1) = (n/(m,n), a(m,n) − 1).

Lemma 3.3. ([18, Lemma 6]) Let a, s, t be positive integers. Then

(a) (as + 1, at + 1) =

{
a(s,t) + 1, if both s/(s, t) and t/(s, t) are odd;
(2, a+ 1), otherwise.

(b) (as − 1, at + 1) =

{
a(s,t) + 1, if s/(s, t) is even and t/(s, t) is odd;
(2, a+ 1), otherwise.

Theorem 3.4. Let G be a non-abelian simple group of Lie type over a field of order q.
Let q = pf with p a prime and f not power of 2. If M and N are subgroups of G with
(|G : M |, |G : N |) = 1, then the triple (G,M,N) (interchanging M and N if necessary)
lies in Table 1 below.

Proof. Since (|G : N |, |G : M |) = 1, we have G = MN . Moreover, there must be
maximal subgroups A and B satisfying M ≤ A and N ≤ B. Trivially, G = AB. In the
proof of this theorem, we will replace M and N by such A and B to check the condition
(|G : M |, |G : N |) = 1 many times appealing to [11].

By [13, Theorem B], we may conclude that G is not an exceptional simple group of Lie
type by calculation. Therefore, G can be assumed to be a classical simple group of Lie
type, that is, G is isomorphic to PSLn(q), PSp2m(q), U2m(q), Ω2m+1(q) or PΩ±2m(q) by
[13, Theorem A]. We do a case-by-case analysis following Lemma 3.1 which consists of
checking that in all the cases that not appear in Table 2, the indexes of M and N are not
coprime.
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Table 1. Triple (G,M,N)

G M N Remark
PSLn(q) ˆGLa(q

b).b P1 = qn−1 : GLn−1(q) ∼= Pn−1 b is a prime and ab = n = bs,

b - (q − 1), d = (n, q − 1) = 1

PSLn(q) PSpn(q).a P1 = qn−1 : GLn−1(q) ∼= Pn−1 n = 2s, s ≥ 2 and q is even,

d = (n, q − 1) = 1, a = 1 or 2

PSp2m(q) O−2m(q) Pm = qm(m+1)/2 : GLm(q) m > 2 is odd, q is even, d =

(2, q − 1) = 1

PSUn(q) N1 = 1
d
GUn−1(q) Pm = qm

2

: ( 1
d
SLm(q2).(q − 1)) n = 2m, 2 | m and q is even,

d = (n, q + 1)

PΩ+
2m(q) N1 = Ω2m−1(q) Pm = qm(m−1)/2 : 1

d
GLm(q) ∼=

Pm−1

m is odd, q is even, d = (2, q−1)

Case 1. G ∼= PSLn(q), n ≥ 2.

Then |G| = qn(n−1)/2

d

n∏
i=2

(qi − 1), where d = (n, q − 1).

(1) M =ˆGLa(q
b).b and N = P1, ab = n and b is a prime.

By [11, Proposition 4.3.6], |M | = b
d(q−1)q

n(a−1)/2
a∏
i=1

(qbi − 1) and then

|G : M | = qn(n−a)/2

b

n−1∏
i=1,b-i

(qi − 1).

By [11, Proposition 4.1.6], we have N = P1
∼= qn−1 : (1

d
GLn−1(q)). Hence

|N | = 1

d
qn(n−1)/2

n−1∏
i=1

(qi − 1)

and |G : N | = qn−1
q−1 . By the hypothesis of coprimality, we get that (qn− 1, qi− 1) = q− 1

for b - i and i = 2, ..., n. It follows that (n, i) = 1. This forces that n = bs and a = bs−1.
Take any i such that (n, i) = 1. We have that ( q

n−1
q−1 , q

i − 1) = (n, q − 1) by Lemma 3.2.

Since (|G : M |, |G : N |) = 1, we get that (n, q − 1) = 1. In particular, b - (q − 1).

(2) M = PSpn(q).a and N = P1 or Pn−1, where a = (2, q − 1)(n/2, q − 1)/(n, q − 1)
and n ≥ 4 is even.

Then |M | = aqn
2/4

n/2∏
i=1

(q2i − 1) and

|G : M | = qn(n−2)/4

a(n, q − 1)

(qn−1 − 1)(qn−2 − 1) · · · (q3 − 1)

(qn−2 − 1)(qn−4 − 1) · · · (q4 − 1)
=

qn(n−2)/4

a(n, q − 1)

n/2∏
i=2

(q2i−1 − 1).

Clearly, |P1| = |Pn−1|. Hence |N | = 1
d
qn(n−1)/2

n−1∏
i=1

(qi − 1) and |G : N | = qn−1
q−1 .
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Since (|G : M |, |G : N |) = 1, we have (n, n− i) = 1 for every i = 1, 3, 5, ..., n− 1. Then
n is a power of 2. Write n = 2s with s ≥ 2. By the same reason as in (1) of this case, we
can get that q − 1 is odd, in particular, q is even.

(3) M = PSpn(q).a and N = Stab(V1⊕Vn−1), where a = (2, q−1)(n/2, q−1)/(n, q−1)
and n ≥ 4 is even.

Since |PSpn(q)| = qn
2/4

(2,q−1)

n/2∏
i=1

(q2i − 1), we have

|G : M | = qn(n−2)/4

a(n, q − 1)
(qn−1 − 1)(qn−3 − 1)(qn−5 − 1) · · · (q3 − 1).

By [11, Proposition 4.1.4], we have N = 1
d
GLn−1(q), so

|N | = 1

d
q(q−1)(q−2)/2

n−1∏
i=1

(qi − 1).

Consequently, |G : N | = qn−1(qn−1)
q−1 . But in this case (|G : M |, |G : N |) 6= 1, a contradic-

tion.

Case 2. G ∼= PSp2m(q) with m ≥ 2.

Let d = (2, q − 1). Then |G| = qm
2

d

∏m
i=1(q

2i − 1). By [11, Proposition 4.1.19], we

have P1 = q2m−1 : 1
d
(PSp2(m−1)(q) × (q − 1)) and Pm = qm(m+1)/2 : 1

d
GLm(q). Thus,

|Pm| = 1
d
qm

2
m∏
i=1

(qi − 1) and |G : Pm| =
m∏
i=1

(qi + 1).

(1) M ∼= PSp2a(q
b).b and N = P1.

Then |M | = b
d
qma

a∏
i=1

(q2bi − 1) and |G : M | = 1
b
qm(m−a)

a∏
i=1,b-i

(q2i − 1). We also have

that |N | = 1
d2
qm

2
(q − 1)

m−1∏
i=1

(q2i − 1) and |G : N | = d(q2m−1)
q−1 . Lemma 3.2 implies that

(q2 − 1) | (q2m − 1, q2i − 1). This gives (|G : M |, |G : N |) 6= 1, a contradiction.

(2) M = Sp2a(q
b).b and N = O+

2m(q) or O−2m(q), where q is even and ab = m with b a
prime.

Then |M | = bqm
2/b

a∏
i=1

(q2i − 1) and

|N | = 1

2
qm(m−1)(qm − 1)

m−1∏
i=1

(q2i − 1), or |N | = 1

2
qm(m−1)(qm + 1)

m−1∏
i=1

(q2i − 1).

Hence |G : M | = 1
b
qma(b−1)

a∏
i=1,b-i

(q2i − 1) and |G : N | = 2
d
qm(qm + 1) or 2

d
qm(qm − 1).

Clearly, both indexes are not coprime, a contradiction.
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(3). M = O−2m(q), N = Pm and q is even.

Since |M | = 1
2
qm(m−1)(qm + 1)

m−1∏
i=1

(q2i − 1) and |N | = qm
2
m∏
i=1

(qi − 1), it follows that

|G : M | = qm(qm − 1) and |G : N | =
m∏
i=1

(qi + 1).

Let q = 2t. Assume that mt/(mt, it) = m/(m, i) is even and it/(mt, it) = i/(m, i) is
odd, so (2mt − 1, 2ti + 1) = 2(mt,it) + 1 by Lemma 3.3, and we easily get a contradiction.
Therefore, we can assume that there is no i with 1 ≤ i ≤ m such that m/(m, i) is even
and i/(m, i) is odd. If m is even, we take i = 1. Then m/(m, i) is even and i/(m, i) is
odd, a contradiction. If m is odd, then (qm−1, qi+1) = 1 for every 1 ≤ i ≤ m by Lemma
3.3. It follows that if G ∼= PSp2m(q) with m ≥ 2, then M = O−2m(q) and N = Pm, with q
and m even, are the desired subgroups.

(4) M = Sz(q) and N = O+
4 (q), and m = 2, q = 2f , f ≥ 3 odd.

We have |G| = q4(q2−1)(q4−1), |M | = q2(q2 +1)(q−1) and |N | = 1
2
q2(q2−1)2. Hence

|G : M | = q2(q+ 1)2(q− 1) and |G : N | = 2q2(q2 + 1). Notice that q2 | (|G : M |, |G : N |),
which is a contradiction.

(5) M = G2(q) and N = O+
6 (q), O−6 (q), P1 or N2. In addition, m = 3 and q even.

In this case |G| = q9(q2 − 1)(q4 − 1)(q6 − 1), d = 1 and |M | = q6(q6 − 1)(q2 − 1). Thus
|G : M | = q3(q4− 1). By [11, Proposition 4.1.3], we know that N2 = PSp2(q)× PSp4(q).
Hence |N | = 1

2
q6(q2−1)(q3−1)(q4−1), 1

2
q6(q2−1)(q3 +1)(q4−1), q9(q−1)(q2−1)(q3−1)

or q4(q4 + q2 + 1). It easily leads to a contradiction.

Case 3. G = PSUn(q), n ≥ 3 is even.

Let d = (n, q+1) and n = 2m. Then |G| = q(n
2−n)/2

d

n∏
i=2

(qi− (−1)i). By [11, Proposition

4.1.4], we have Pm = qm
2

: (1
d
SLm(q2).(q − 1)) and N1 = 1

d
GUn−1(q).

(1) M = N1 and N = Pm.

Then |M | = (q−1)
d
q2m

2−m∏m
i=2(q

2i − 1) and |N | = qm(2m−1)

d(q+1)

m∏
i=1

(q2i − 1). So |G : M | =

q2m−1(q2m − 1)/(q + 1) and |G : N | =
m∏
i=1

(q2i−1 + 1).

Assume that m is even and write n = 2am1, where a and m1 are positive integers and
(2,m1) = 1. It follows that qm− 1 = (qm1 − 1)

∏a−1
i=0 (q2

im1 + 1). We have that qm1+1
q+1

is an

integer. Notice that (qm1 − 1, q2i−1 + 1) = (2, q + 1) and (q2
jm1 + 1, q2i−1 + 1) = (2, q + 1)

by Lemma 3.3. If q is odd, we get (|G : M |, |G : N |) 6= 1, a contradiction. If q is even,

we obtain (q2
jm1 + 1, q2i−1 + 1) = 1 and (qm1 − 1, q2i−1 + 1) = 1 by Lemma 3.3. So we

conclude that (|G : M |, |G : N |) = 1. So in this case, the subgroups M = N1 and N = Pm
are the desired subgroups.
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Assume now that m is odd, so qm+1
q+1

is an integer. As (qm− 1, q2i−1 + 1) = q(m,2i−1) + 1

by Lemma 3.3, we deduce that (|G : M |, |G : N |) 6= 1, a contradiction.

(2) M = N1 and N = PSp2m(q).a, n = 2m, a = (2,q−1)(m,q+1)
(n,q+1)

.

We have |G : M | = q2m−1(q2m − 1)/(q + 1). Since |N | = aqm
2

(2,q−1)

m∏
i=1

(q2i − 1), we deduce

that q | |G : N |, which is a contradiction.

Case 4. G = Ω2m+1(q), m ≥ 3, q odd.

In this case, |G| = 1
2
qm

2
m∏
i=1

(q2i − 1). By [11, Proposition 4.1.20], we know that Pm =

qm(m−1)/2 : 1
2
GLm(q) and P1 = q2m−2 : (1

2
GL1(q) × Ω2m−1(q)).2. It follows that |Pm| =

1
2
qm(m−1)

m∏
i=1

(qi − 1) and |P1| = 1
(2,q−1)q

m2−1(q − 1)
m−1∏
i=1

(q2i − 1). Hence

|G : Pm| = qm
m∏
i=1

(qi + 1).

By [11, Proposition 4.1.6], we have N−1 = Ω−2m(q).2 and |N−1 | = qm
2−m(qm+1)

m−1∏
i=1

(q2i−1).

(1) M = N−1 and N = Pm.

Hence |G : M | = 1
2
qm(qm − 1) and |G : N | = qm

m∏
i=1

(qi + 1). So we get that q divides

both indexes, a contradiction.

(2) m = 3, M = G2(q) and N = P1, N
+
1 , N

−
1 or N−2 .

In this case G = Ω7(q), |G| = 1
2
q9(q6 − 1)(q4 − 1)(q2 − 1) and |M | = q6(q6 − 1)(q2 − 1).

Therefore, |G : M | = 1
2
q3(q4 − 1).

By [11, Proposition 4.1.6], we have N+
1 = Ω+

6 (q).2 and N−2 = (Ωε
2(q)×Ω5(q)).2

2, where
ε = ±1. Hence |P1| = 1

2
q8(q − 1)(q2 − 1)(q4 − 1), |N+

1 | = q6(q3 − 1)(q2 − 1)(q4 − 1),
|N−1 | = q6(q3 + 1)(q2 − 1)(q4 − 1) and |N−2 | = q4(q − ε)(q2 − 1)(q4 − 1). It follows that

|G : N | = 1
(q−1)q(q

6 − 1), 1
2
q3(q3 + 1), 1

2
q3(q3 − 1) or 1

2
q (q

6−1)
q−ε . It is easy to see that this

leads to (|G : M |, |G : N |) 6= 1, a contradiction.

(3) m = 3,M = G2(q) and N = N+
2 .

By the same reason as in (2), this case can be ruled out.

(4) m = 6,M = PSp6(q).a(a = 1, 2) and N = N−1 .

In this case |G| = |Ω13(q)| = 1
2
q36(q12 − 1)(q10 − 1) · · · (q2 − 1)

|M | = 1

2
q9(q2 − 1)(q4 − 1)(q6 − 1)a and |N | = q30(q6 + 1)

5∏
i=1

(q2i − 1).
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Hence |G : M | = q27(q12− 1)(q10− 1)(q8− 1)/a and |G : N | = 1
2
q6(q6− 1). So we get that

(|G : M |, |G : N |) 6= 1, a contradiction.

(5) m = 12,M = F4(q) and N = N−1 .

Note that |G : N | = 1
2
qm(qm − 1). By the same argument as in (2), we obtain a

contradiction.

Case 5. G = PΩ−2m(q), m ≥ 4.

(1) M = P1 and N =ˆGUm(q), m odd.

In this case |G| = 1
(4,qm+1)

qm(m−1)(qm + 1)
m−1∏
i=1

(q2i − 1). By [11, Proposition 4.1.6], we

have

|P1| =
1

d(4, qm−1 + 1)
q(m−1)(m−2)(q − 1)(qm−1 + 1)

m−2∏
i=1

(q2i − 1),

where d = 1 or 2. It follows that

|G : M | = d(4, qm−1 + 1)

(4, qm + 1)
q2m−2(qm + 1)(qm−1 − 1)/(q − 1).

By [11, Proposition 4.1.18], we have that N ∼= q+1
a
.Um(q).[(q+1,m)], where a = (q+1, 4).

Hence |N | = (q+1)
a
q(m

2−m)/2
m∏
i=1

(qi − (−1)i) and |G : N | = a(qm−1+1)
(q+1)

q(m
2−m)/2

m−2∏
i=1

q2i−1
qi−(−1)i .

So we get that q | (|G : M |, |G : N |), a contradiction.

(2) M = N1 and N =ˆGUm(q), m odd.

By [11, Proposition 4.1.6], we have M = Ω2m−1(q) and thus

|G : M | = 1

(4, qm + 1)
qm−1(qm + 1).

Arguing as in (2), we obtain

|G : N | = a

(q + 1)
q(m

2−m)/2(qm−1 + 1)
m−2∏
i=1

q2i − 1

qi − (−1)i
,

where a = (4, q + 1). This implies that q | (|G : M |, |G : N |), a contradiction.

Case 6. G = PΩ+
2m(q), m ≥ 5.

In this case, we have |G| = 1
(4,qm−1)q

m(m−1)(qm − 1)
∏m−1

i=1 (q2i − 1) and d = (2, q − 1).

Clearly, |Pm| = |Pm−1|. By [11, Proposition 4.1.20], we know that Pm = qm(m−1)/2 :

1
d
GLm(q). Hence |Pm| = qm(m−1)

d

m∏
i=1

(qi − 1) and |G : Pm| = d
(4,qm−1)

m−1∏
i=1

(qi + 1).

(1) M = N1 and N = Pm or Pm−1.
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By [11, Proposition 4.1.6], M = Ω2m−1(q) and thus |G : M | = 2
(4,qm−1)q

m−1(qm − 1).

Note that |G : N | = d
(4,qm−1)

m−1∏
i=1

(qi + 1). Assume that m is even. We can get that

(qm/2 + 1) | (|G : M |, |G : N |), a contradiction. So we assume that m is odd.
If q ≡ −1(4), then 2

(4,qm−1) = 1 and d
(4,qm−1) = 1. By Lemma 3.3, (qm−1, qi+ 1) = 2 for

every 1 ≤ i ≤ m− 1. So we get that (|G : M |, |G : N |) 6= 1, a contradiction. If q ≡ 1(4),
then 4 | (qm−1), 2

(4,qm−1) = 1
2

and d
(4,qm−1) = 1

2
. By Lemma 3.3, we have (qm−1, qi+1) = 2

for every 1 ≤ i ≤ m− 1. Therefore, 2 | (|G : M |, |G : N |), a contradiction.
If q is even, then (qm−1, qi+1) = 1 for every 1 ≤ i ≤ m−1 by Lemma 3.3. Furthermore,

(|G : M |, |G : N |) = 1. We conclude that M and N are the desired subgroups.

(2) M = N1 and N =ˆGUm(q).2, where m is even.

By [11, Proposition 4.1.18], we have that |N | = 2b
a
q(m

2−m)/2
m∏
i=1

(qi − (−1)i), where

a = (q + 1, 2) and b = 1 if q is odd, b = 2 if q is even. Hence

|G : N | = a

2b(4, qm − 1)
q(m

2−m)/2

m−1∏
i=1

(qi + (−1)i).

So we get that q | (|G : M |, |G : N |), a contradiction.

(3) M = N1 and N = (PSp2(q) ⊗ PSpm(q)).a, where m is even, q > 2 and a =
(2,m/2, q − 1).

By [11, Proposition 4.1.12], we have |N | = ac(q2−1)
2(2,q−1) q

(m2/4+1)
m/2∏
i=1

(q2i − 1), where c = 1

or 2. Hence |G : N | = 2(2,q−1)(qm−1)
ac(4,qm−1)(q2−1)q

(3m2/4−m−1)
m−1∏

i=m/2+1

(q2i − 1). By (1) of Case 6, we

have |G : M | = 1
(4,qm−1)q

m−1(qm − 1). So we conclude that q | (|G : M |, |G : N |), a

contradiction.

(4) M = N−2 and N = Pm or Pm−1.

By [11, Proposition 4.1.6], we have |M | = d
(2,q−1)q

(m−1)(m−2)(q±1)(qm−1±1)
m−2∏
i=1

(q2i−1),

where d = 1 or 2, or |M | = 8
(4,qm−1−ε1)q

(m−1)(m−2)(q−ε1)
m−2∏
i=1

(q2i−1), where ε = ±1. Hence

|G : M | = (2, q − 1)

d(4, qm − 1)
q2m−2(qm−1 ∓ 1)(qm − 1)/(q ± 1), or

|G : M | = (4, qm−1 ± 1)

8(4, qm − 1)
q2m−2(qm−1 ∓ 1)(qm−1 ± 1)(qm − 1)/(q ± 1).

Note that |Pm| = |Pm−1| and |G : N | = (2,q−1)(q2−1)
(4,qm−1)

∏m−1
i=1 (qi + 1). Assume first that

(qm−1 − 1) | |G : M |. If m is even, we get that 1
2(q+1)

q2m−2(qm−1 − 1) and (2,q−1)(q2−1)
(4,qm−1) are
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integers. Since (qm/2+1) | (qm−1,
m−1∏
i=1

(qi+1)), we have that (qm/2+1) | (|G : M |, |G : N |),

a contradiction. If m is odd, we also can get that (q(m−1)/2 + 1) | (qm−1 − 1,
m−1∏
i=1

(qi + 1)),

again a contradiction.
Assume now that (qm−1 + 1) | |G : M |. Clearly, (qm−1 + 1) | (|G : M |, |G : N |), a

contradiction.

(5) M = P1 and N =ˆGUm(q).2, where m is even.

By [11, Proposition 4.1.20], we get |P1| = 1
2(2,q−1)q

m2−m(qm−1 − 1)(q − 1)
m−2∏
i=1

(q2i − 1).

Hence |G : M | = 2(2,q−1)
(4,qm−1)(q−1)(q

m − 1)(qm−1 + 1).

By (2), we have |G : N | = (4,q+1)
2b(4,qm−1) q

(m2−m)/2
m−1∏
i=1

(qi + (−1)i). If m/2 is even, then

(qm/2 + 1) | (qm − 1,
m−1∏
i=1

(qi + (−1)i)). If If m/2 is odd, we have that (qm/2 − 1) divides

(qm − 1,
m−1∏
i=1

(qi + (−1)i)). This yields a contradiction.

(6) M = N1 and N =ˆGLm(q).2.

By [11, Proposition 4.1.6], we have |M | = Ω2m−1(q) and thus |G : M | = 2
(4,qm−1)q

m−1(qm−
1). By [11, Proposition 4.1.7],

|N | = (2,m)q(m
2−m)/2

m∏
i=1

(qi − 1) or

1

d
q(m

2−m)/2

m∏
i=1

(qi − 1),

where d = 2 or 4. Hence

|G : N | = 1

(4, qm − 1)(2,m)
q(m

2−m)/2

m−1∏
i=1

(qi + 1), or

d

(4, qm − 1)
q(m

2−m)/2

m−1∏
i=1

(qi − 1).

This shows that q | (|G : M |, |G : N |), a contradiction. �
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4. Proof of Theorem B

We will prove first the solvability in Theorem B. We use π(G) to denote the set of
primes dividing |G|. If n is an integer and p is a prime, np will denote the p-part of n. We
will use the following standard lemma to deal with the action on direct product of simple
groups.

Lemma 4.1. [12, 8.1.6 (a)] Suppose that a finite group A acts on a finite group G which
allows a direct decomposition G = H1 × · · · × Hn, that is A-invariant under A, i.e.,
Ha
i ∈ {H1, ..., Hn} for all a ∈ A and all i ∈ {1, ..., n}. Assume further that A acts

transitively on {H1, ..., Hn}. Let H ∈ {H1, ..., Hn} and let B = NA(H) and let T a
transversal of B in A. Then

(a) CG(A) = {
∏

t∈T c
t | c ∈ CH(B)} ∼= CH(B).

(b) if B acts trivially on H and P ≤ H such that 〈PH〉 = H, then

G = 〈CG(A),
∏
t∈T

P t〉.

Theorem 4.2. Suppose that a finite group A acts coprimely on a finite group G. If all
maximal A-invariant subgroups of G lie in two CG(A)-orbits, then G is solvable

Proof. We argue by minimal counterexample. Let C := CG(A) and choose M and N to
be two maximal A-invariant subgroups of G that are not C-conjugate. Of course, we can
assume that G is not a prime power order group. First we show that (|G : M |, |G : N |) =
1. Assume that there is a prime p dividing (|G : M |, |G : N |). Let P ∈ SylAp (G) and
let U be a maximal A-invariant subgroup of G such that P ≤ U . Clearly, U cannot be
conjugate to M or N , which gives a contradiction. Thus, (|G : M |, |G : N |) = 1, and in
particular, we get G = MN . We continue the proof with several steps.

Step 1. G does not have any non-trivial proper A-invariant normal subgroup, and hence
G = S1 × . . .× Sn with Si non-abelian simple isomorphic groups.

Suppose that K < G is a minimal A-invariant normal subgroup of G. By minimality
of G (and Theorem A), it is obvious that G must have trivial Fitting subgroup. Also,
we can assume without loss that K ≤ N . Let p ∈ π(K) and Kp ∈ SylAp (K). Then the
Frattini argument gives NG(Kp)K = G, so NG(Kp) 6≤ N c for all c ∈ C. Now NG(Kp) is
A-invariant and proper in G, because F(G) = 1. As a consequence, NG(Kp)

c ≤ M , for
some c ∈ C. Since Kc

p is also an A-invariant Sylow p-subgroup of K, by the arbitrariness of
p we deduce that K ≤M , which is impossible again by the Frattini argument. Therefore,
K = G, and the step follows.

Step 2. G is a simple group of Lie type.

Assume that n ≥ 1 and write S := S1. By step 1 we know that A acts transitively
on the Si. Let B = NA(S) and T a transversal of B in A. As B acts on S, by minimal
counterexample, we can assume that S has at least three maximal B-invariant subgroups,
say M1,M2 and M3, lying in different CS(B)-orbits. We certainly have that

∏
t∈T M

t
i for

i = 1, 2, 3 are A-invariant subgroups of G, and there is no loss to assume that two of them,
say

∏
t∈T M

t
1 and

∏
t∈T M

t
2 are respectively contained in two C-conjugate maximal A-

invariant subgroups of G, say M and M c, with c ∈ C. It certainly follows that M1 ⊆M∩S
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and M2 ⊆M c ∩ S. Now, since S EG then M c ∩ S = (M ∩ S)c, and by applying Lemma
4.1(a), c can be assumed to belong to CS(B). Hence we can assert that M ∩ S and
M c ∩ S are B-invariant subgroups of S. But the maximality of M1 and M2 implies then
that M1 = M ∩ S and M2 = M c ∩ S = (M ∩ S)c, that is, M1 and M2 are conjugate in
CS(B), contradicting or assumption. This proves that n = 1. Furthermore, we note that
we can assume C < G, otherwise the action is trivial and our theorem is just the original
version of Adnan, as pointed out in the Introduction. Now the fact that the alternating
and the sporadic simple groups do not admit non-trivial coprime action allows to conclude
that S is simple of Lie type.

Step 3. Contradiction.

By minimal counterexample we can assume that A acts faithfully on G, otherwise the
action of A/CA(G) on G leads to a contradiction. Hence A can be assumed to be (up to
conjugation) an automorphism group of the underlying field of G, which has order, say
q = pf , for some prime p. In particular, |A| must divide f , and since (|G|, |A|) = 1 then
|A| is odd. As a consequence f cannot be a power of 2. Thus, we can apply Theorem 3.4,
so (G, M , N) can be assumed to be one of the triples appearing in Table 1. If one of M
and N is not A-invariant, there will be a contradiction. Consequently, we may assume
that both M and N are A-invariant, and certainly M � N . Let A0 be a subgroup of A
of order r, where r is a prime and q = qr0. Since |A| is odd, we get that r is odd too.
Write G = G(q). Then G0 := CG(A0) = G(q0), that is, C is the same Lie type group as
G but defined over the field of q0 elements. Since A is a field automorphism group of G,
we have that A is cyclic, and as a result G0 is A-invariant. Now we discuss the different
possibilities according to Table 1.

Case 1. G = PSLn(q).

In this case, G0 = PSLn(q0). By Table 1, we have d = (n, q − 1) = 1. So, by [11,
Proposition 4.5.3], G0 is a maximal A-invariant subgroup of G, which is not isomorphic
to M or N , a contradiction.

Similarly, we can rule out the cases G = PSp2m(q) and G = PΩ+
2m(q).

Case 2. G = PSUn(q).

In this case, G0 = PSUn(q0). Note that G0 is A-invariant and all maximal A-invariant
subgroups of G lie in two C-orbits, so we have G0 ≤ M c or G0 ≤ N c for some c ∈ C.
Without loss of generality, we may assume that G0 ≤ M or G0 ≤ N . Assume first
that G0 ≤ M . Since M = 1

d
GUn−1(q) is A-invariant, CM(A0) = 1

d
GUn−1(q0) is also

A-invariant. Thus we get G0 = 1
d
GUn−1(q0), a contradiction. Assume then G0 ≤ N . By

[11, Proposition 4.5.3], it follows that NG(G0) is a maximal A-invariant subgroup of G.

Hence NG(G0) = N = qm
2

: (1
d
SLm(q2).(q− 1)). By comparing the orders of NG(G0) and

N , we find the final contradiction. �

Once we have proved the solvability in Theorem B, we address the structure part, which
provides a more detailed description of those groups having exactly two orbits of maximal
invariant subgroups.
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Theorem 4.3. Suppose that a group A acts coprimely on a group G. If all maximal
A-invariant subgroups of G lie in two CG(A)-orbits, then one of the following conditions
holds:

(1) G is a prime power order group.
(2) G = PQ, where P ∈ SylAp (G) and Q ∈ SylAq (G), and P EG. In addition, P/Φ(P )

is QA-irreducible.

Proof. Write C := CG(A). Let M and N be two maximal A-invariant subgroups of G
that are not C-conjugate. By the above theorem G is solvable, and by Lemma 2.1 we
know that |G : M | and |G : N | are prime powers, say pa = |G : M | and qb = |G : N |.
Also, we will assume that G has not prime power order, otherwise we get case (1). An
earlier argument in the above theorem shows that (|G : M |, |G : N |) = 1, which means
that p 6= q. Next we prove that G = PQ, where P ∈ SylAp (G) and Q ∈ SylAq (G). Suppose
on the contrary that |π(G)| ≥ 3. The solvability of G and Glauberman’s Lemma (for
instance [12, Theorem 6.2.2]) guarantee that G has an A-invariant Hall {p, q}-subgroup,
say H, and then we take a maximal A-invariant subgroup W of G such that H ≤ W .
Clearly, W is not C-conjugate to M or N , again a contradiction. We conclude that
|π(G)| = 2. For the following, we assume that π(G) = {p, q}, and if P ∈ SylAp (G) and

Q ∈ SylAq (G), then we can write G = PQ, as wanted.

Let S be a maximal A-invariant normal subgroup of G. The hypotheses imply that
S ≤M or S ≤ N . Without loss of generality, we assume S ≤M . Since G is solvable, by
Lemma 2.2, we have that |G : S| is a prime power. Likewise, without loss, we may assume
that |G : S| = qb, and thus P ≤ S. By the Frattini argument, we have G = NG(P )S.
Clearly, NG(P ) is A-invariant and NG(P ) � M c for every c ∈ C. If NG(P ) < G, then
there is some A-invariant maximal subgroup U of G such that NG(P ) ≤ U . However, U
cannot be C-conjugate to M or N , and this is a contradiction. Therefore NG(P ) = G,
that is, P EG and the first part of (2) is proved.

To prove the last assertion of (2), we note that QA acts coprimely on P/Φ(P ). If
the action is not irreducible, Masche’s Theorem ([12, 8.4.6]) gives P = HK for some
QA-invariant subgroups H and K such that Φ(P ) < H,K < P . Then HQ and KQ are
A-invariant subgroups and not contained in M , because P ≤M by the above paragraph.
Since H,KEG, this yields H,K ≤ N , hence P ≤ N , which provides a contradiction. �

We end this section with some examples illustrating that all the cases appearing in
Theorems A and B occur and that the bound 2 in Theorem B is the best possible.

Example 1. Aside from cyclic p-groups acted on by coprime automorphisms, which
always satisfy the hypothesis of Theorem A, the easiest example is the group G = Q8

which has an automorphism of order 3 acting non-trivially. The only maximal invariant
subgroup of G is Z(G) = Φ(G). A more general example is any extraspecial p-group P of
order p2n+1 with exponent p. It is possible to find a coprime automorphism of P , whose
order divides pn+1, acting trivially on Z(P ) = Φ(P ) and irreducibly on P/Z(P ) (see [17]
for instance).

Example 2. We show that case (1) of Theorem B can happen, that is, there exists a
finite p-group P acted on by a group A of coprime order such that P has exactly two
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CP (A)-orbits of maximal A-invariant subgroups. Let P be the extraspecial group of order
27 and exponent 3, which has the following presentation

P = 〈x, y, z | x3 = y3 = z3 = 1, [x, z] = 1, [y, z] = 1, yx = xyz〉.

We consider a ∈ Aut(P ) defined by xa = y, za = z2 and ya = x. So o(a) = 2, A = 〈a〉
acts coprimely on P and C := CP (A) = 〈xyz2〉.

Every maximal subgroup of P contains Z(P ) = Φ(P ) = 〈z〉 and thus, there exists a one
to one correspondence between the maximal subgroups of P and the maximal subgroups
of P/Φ(P ) ∼= C3 × C3. This provides the only 4 maximal subgroups in P , which are
exactly: M1 = 〈x〉 × 〈z〉, M2 = 〈y〉 × 〈z〉, M3 = 〈xy〉 × 〈z〉 and M4 = 〈x2y〉 × 〈z〉. Now A
acts on the set of these four subgroups by permuting M1 and M2 and fixing M3 and M4.
In particular, M3 and M4 are maximal A-invariant subgroups of P and form two different
C-orbits. There is not any other maximal A-invariant subgroup in P .

Example 3. The bound 2 for the number of orbits in Theorem B is the best possible
even when the action is non-trivial. For example, let G = PSL(2, 32) and let a be the
field automorphism of GF(25) of order 5. Set A = 〈a〉. It follows that C := CG(A) ∼=
PSL(2, 2). We know that G has exactly three conjugacy classes of maximal subgroups (see
for instance page 29 of [6]). Moreover, A acts on each of these classes since the subgroups
are normalizers of Sylow subgroups. By Glauberman’s Lemma we can take from each class
one A-invariant subgroup, and we obtain three maximal A-invariant subgroups lying in
three different C-orbits.

Open problem. As we have pointed out in the Introduction, Belonogov proved that
if a non-solvable group G has exactly three conjugacy classes of maximal subgroups,
then G/Φ(G) is isomorphic to PSL(2,7) or PSL(2, 2p) with p a prime. Our question
is: Is it possible to classify all non-abelian simple finite groups acted on by a coprime
automorphism group and having exactly three orbits of maximal invariant subgroups
under the action of the fixed point subgroup?

5. Proof of Theorem C

To address the case of one orbit of non-nilpotent invariant maximal subgroups in Theo-
rem C, we only use some results obtained by the authors in [4]. However, we remark that
they are based on the CFSG too. We state here these results, the first of which extends
Schmidt’s theorem on minimal non-nilpotent groups.

Theorem 5.1. [4, Theorem A] Let G and A be finite groups of coprime orders and
assume that A acts on G by automorphisms. If every maximal A-invariant subgroup of G
is nilpotent but G is not, then G is solvable and |G| = paqb for two distinct primes p and
q, and G has a normal A-invariant Sylow subgroup.

Theorem 5.2. [4, Theorem D] Suppose that a finite group A acts coprimely on a finite
group G and let p be a prime divisor of |G|. If the indices of all non-nilpotent maximal
A-invariant subgroups of G are powers of p, then G is solvable.
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Lemma 5.3. [4, Lemma 5.3] Let G be a finite group with F(G) = 1 and G′ = G and
suppose that a group A acts coprimely on G. If M is a nilpotent maximal A-invariant
subgroup of G, then M is a Sylow 2-subgroup of G.

Theorem 5.4. Suppose that a finite group A acts coprimely on a finite group G. If
all non-nilpotent maximal A-invariant subgroups of G have the same index, then G is
solvable.

Proof. We induct on the order of G. If all maximal A-invariant subgroups of G are
nilpotent, then by Theorem 5.1, G is solvable, so we can assume that G has at least one
non-nilpotent maximal A-invariant subgroup. Furthermore, we claim that G must posses
at least one nilpotent maximal A-invariant subgroup. Otherwise, all maximal A-invariant
subgroups of G would have the same index. Then, for every prime divisor of G we may
consider an A-invariant Sylow p-subgroup and take some maximal A-invariant subgroup
containing it. All these subgroups have then the same index, what easily leads G to have
prime power order, and the theorem is proved. Thus the claim is proved.

Suppose now that G has no proper non-trivial A-invariant normal subgroup and that
G is not solvable. We seek contradiction. Then we may write that G = S1× . . .×Sn with
Si non-abelian simple and isomorphic. For every prime p 6= 2, we take P ∈ SylAp (G). It
is clear that there exists a maximal A-invariant subgroup Hp of G containing P . As G
satisfies the hypotheses of Lemma 5.3 we get that Hp cannot be nilpotent. Furthermore,
|G : Hp| is certainly a p′-number for every p, and this fact joint with the hypotheses imply
that |G : Hp| is a power of 2. Theorem 5.2 applies, so G is solvable, a contradiction.

By the above paragraph, there exists a proper A-invariant normal subgroup 1 < N
of G, so G/N is solvable, by induction. Also, N can be assumed to be non-solvable or
the proof would be finished. As we have seen above, we can take a nilpotent maximal
A-invariant subgroup H of G. Then HN = G and G/N ∼= H/H ∩ N is nilpotent. In
particular, every maximal A-invariant subgroup of G/N provides an A-invariant maximal
subgroup of G containing N . Since N is not nilpotent, such subgroups are not nilpotent,
and hence have the same index in G. This forces G/N to be a p-group for some prime p.
By hypothesis, all non-nilpotent maximal A-invariant subgroups have a p-power index,
and again by Theorem 5.2, we have that G is solvable. This completes the proof. �

Corollary 5.5. Suppose that a finite group A acts coprimely on a finite group G. If
all non-nilpotent maximal A-invariant subgroups of G are CG(A)-conjugate, then G is
solvable.

Proof. If there is only one CG(A)-orbit of such subgroups, then all these subgroups have
the same index, and we can apply Theorem 5.4. �

The case of two orbits in Theorem C requires a more detailed analysis on simple groups.
Next we present some results that will be necessary for proving it. The first one is a deep
classification due to Kondriat’ev.

Lemma 5.6. [9, Corollary] Let G be a non-abelian simple group of Lie type over a field
of characteristic r. Let P be a Sylow 2-subgroup of G. If NG(P ) = P , then r is odd and
G is isomorphic to one of the following groups:
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A1(q) ∼= PSL(2, q), with q ≡ ±1(mod 8); Bn(q); Cn(q) ∼= PSp(2n, q) ∼= S2n(q) with
n = 1 or n ≥ 2 and q ≡ ±1(mod 8); Dn(q) ∼= PΩ+(2n, q) (n ≥ 4); E7(q), E8(q), F4(q),
G2(q), 2Dn(q) ∼= PΩ−(2n, q2) (n ≥ 4) or 3D4(q).

Remark 5.7. We list the orders of the groups appearing in Lemma 5.6 according to [6].
We classify them into two cases depending on the arithmetic structure of the order.

Case 1.

|A1(q)| = 1
2
q(q2 − 1).

|Bn(q)| = 1
2
qn

2
Πn
i=1(q

2i − 1), (n ≥ 2).

|Cn(q)| = 1
2
qn

2
Πn
i=1(q

2i − 1), (n ≥ 3).
|F4(q)| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1).
|G2(q)| = q6(q6 − 1)(q2 − 1).
|E7(q)| = 1

2
q63(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

|E8(q)| = q120(q30 − 1)(q24 − 1)(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q8 − 1)(q2 − 1).

Case 2.

|2Dn(q)| = qn(n−1)(qn+1)
(4,qn+1)

∏n
i=1(q

2i − 1), (n ≥ 4).

|Dn(q)| = qn(n−1)(qn−1)
(4,qn−1)

∏n
i=1(q

2i − 1), (n ≥ 4).

|3D4(q)| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) = q12

q4−1(q12 − 1)(q6 − 1)(q2 − 1).

Our next goal is to prove Lemma 5.9, which may be of independent interest. We need
first an elementary observation, so we omit its proof.

Lemma 5.8. Let q be an odd positive integer. If r is an odd positive integer, then qr−1
q−1

and qr+1
q+1

are odd.

Lemma 5.9. Let G and A be finite groups of coprime orders and assume that A acts on
G by automorphisms and let C := CG(A). If G is a group appearing in Lemma 3.2, then
|G : C| is odd.

Proof. Let |A| = r. Since (|A|, |G|) = 1, we have that r is odd. By hypothesis G is a
simple group of Lie type defined over a field of q elements, where q is odd. The action
can be assumed to be faithful; if not, the action of A could be replaced by the action of
A/CA(G). Moreover, we can identify A with the corresponding subgroup of Aut(G) and
A is Aut(G)-conjugate to some group of field automorphisms of G. If we write G = G(q),
then C = G(q0), where G(q0) is the Lie group of the same type as G, but defined over the
field of q0 elements. Note that q is odd and q = qr0. By Lemma 5.8

qi − 1

qi0 − 1
=

(qr0)
i − 1

qi0 − 1
=

(qi0)
r − 1

qi0 − 1

is odd. Assume that G is a group appearing in Case 1 of Remark 5.7. Then the orders
of C and G have the same arithmetic type and these orders are products of some qi − 1
and qj, so it is not hard to check that |G : C| is odd. Finally, since q = qr0 and r are odd,
one easily checks that (4, qn ± 1) = (4, qn0 ± 1). From this we can get that |G : C| is odd
as well for all those groups appearing in Case 2 of Remark 5.7. �
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The following result is also essential in the proof of Theorem C. It classifies those finite
simple groups having a subgroup with prime power index. This is absolutely non-trivial
and was established by Guralnick [7], and in fact, it was also used to prove Theorem 5.2.

Theorem 5.10. [7, Theorem 1] Let G be a non-abelian simple group with H < G and
|G : H| = pa, p prime. One of the following holds.

(a) G = An, and H ∼= An−1, with n = pa.
(b) G = PSL(n, q) and H is the stabilizer of a line or hyperplane. Then |G : H| =

(qn − 1)/(q − 1) = pa. (Note that n must be prime).
(c) G = PSL(2, 11) and H ∼= A5.
(d) G = M23 and H ∼= M22 or G = M11 and H ∼= M10.
(e) G = PSU(4, 2) ∼= PSp(4, 3) and H is the parabolic subgroup of index 27.

We are ready to prove Theorem C, which we state again, but previously we remark
that when A = 1 (or the action is trivial), then the result is exactly Theorem 1.1 of [14].

Theorem 5.11. Suppose that a group A acts coprimely on a group G. If G has at most
two CG(A)-orbits of non-nilpotent maximal A-invariant subgroups, then G is solvable.

Proof. Let G be a counterexample of minimal order. First we note that G has no solv-
able non-trivial A-invariant normal subgroups; otherwise the fact that the hypothesis are
inherited by A-invariant factors and the minimality of G yield to the solvability of G. On
the other hand, if all maximal A-invariant subgroups of G are nilpotent, then either G
is nilpotent and we are finished or it is not, and then we apply Theorem 5.1 to get that
G is solvable. Henceforth, we can assume that G has at least one non-nilpotent maximal
A-invariant subgroup. Likewise, G must have at least one nilpotent maximal A-invariant
subgroup, say M ; otherwise, all maximal A-invariant subgroups are non-nilpotent, so
there are only two orbits of maximal A-invariant subgroups, and Theorem B implies that
G is solvable, a contradiction.

Next we prove that M is a Sylow 2-subgroup of G. Notice that every non-trivial A-
invariant Sylow subgroup of M cannot be normal in G and thus, its normalizer in G is
M itself. We assert that M is a Hall subgroup of G, for if p were a common prime divisor
of |M | and |G : M |, then the Sylow p-subgroup of M would be normal in G since the
normalizer in G of a Sylow p-subgroup of M would grow, a contradiction. Let U be the
A-invariant 2-complement of M , which is also a nilpotent Hall subgroup of G. Assume
that U 6= 1. By a theorem of Wielandt (Satz IV.7.3 of [8]), there exists a normal subgroup
K of G such that G = MK and M ∩K = 1. Clearly K is A-invariant too. Let q ∈ π(K)
and Q ∈ SylAq (K). By the Frattini argument G = NG(Q)K. Then NK(Q) is normal in
NG(Q) and NG(Q)/NK(Q) ∼= G/K ∼= M . Thus NK(Q) is an (A-invariant) normal Hall
subgroup of NG(Q), and by the Schur-Zassenhaus Theorem NG(Q) has an A-invariant
subgroup M∗, which is isomorphic to M . By another well-known theorem of Wielandt,
as M is a nilpotent Hall subgroup of G, all such Hall subgroups are conjugate in G, so
we can apply Glauberman’s Lemma to conclude that M∗ and M are conjugate in CG(A).
In particular, M∗ is maximal A-invariant in G. Since 〈M∗, Q〉 = G and Q is normalized
by M∗ and Q, then Q E G, against the fact that G has no solvable A-invariant normal
subgroups. This contradiction proves that U = 1, that is, M ∈ Syl2(G), as required.
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We continue the proof by distinguishing two cases: whether G has non-trivial proper
A-invariant normal subgroups or not.

Case 1. We assume first that G has no non-trivial proper A-invariant normal subgroup.
Consequently G = S1 × . . . × Sn with Si non-abelian simple and isomorphic (possibly
n = 1). Furthermore, we know that A acts transitively on the set {S1, . . . , Sn}. Let
S := S1, B = NA(S) and T a transversal of B in A. We distinguish two subcases
depending on whether B acts trivially on S or not.

a) Assume that B acts trivially on S. First, we claim that S has a maximal Sylow
2-subgroup, say P . This will strongly reduce the possibilities for S. Indeed, if this is not
the case, we can take a subgroup H with P < H < S. Then we define H0 =

∏
t∈T H

t,
which is A-invariant containing properly a Sylow 2-subgroup of G. This contradicts the
maximality of M , so the claim is proved. Therefore, according to the classification of
the simple groups that posses maximal Sylow 2-subgroups (see [16]), it follows that S ∼=
PSL(2, q) where q is a Fermat or a Mersenne prime with q ≥ 17.

We can assume that n > 1 for if n = 1, then the action of A on G is trivial and
our result is exactly Theorem 1.1 of [14], so we are finished. Thus, by Lemma 4.1(a),
we have CG(A) ∼= CS(B) = S < G, and hence there exists a maximal A-invariant
subgroup K of G with CG(A) < K (observe that K itself is a single CG(A)-orbit of
non-nilpotent maximal A-invariant subgroups). We claim that K does not contain any

Sylow subgroup of G. Indeed, if K contains an A-invariant Sylow q-subgroup, say Q̂,
of G for a prime q, then we can write Q̂ =

∏
t∈T Q

t for some Q ∈ Sylq(S). But notice

that 〈QS〉 = Oq′(S) = S because S is simple, so we can apply Lemma 4.1(b) and get
G = 〈CG(A),

∏
t∈T Q

t〉 ≤ K, a contradiction. This proves the claim. Now, let L be a
representative of the other CG(A)-orbit of non-nilpotent maximal A-invariant subgroups
of G. From the hypotheses, the fact that the A-invariant Sylow 2-subgroups of G are the
only nilpotent maximal A-invariant subgroups and the above property, we deduce that for
every odd prime p, L must contain an A-invariant Sylow p-subgroup of G, or equivalently,
|G : L| is a power of 2. We consider the subgroup SL (which is not A-invariant) and we
have |S : S ∩ L| = |SL : L|, which divides |G : L|. As a consequence |S : S ∩ L| is a
power of 2. Moreover, |S : S ∩ L| > 1; otherwise, the fact that A acts transitively on
the Si implies that L = G, a contradiction. By applying Theorem 5.10 and according to
the above paragraph, we conclude that S ∼= PSL(2, q) with q a Mersenne prime, and also
|S : S∩L| = q+1 = 2a. Then |S∩L| = q(q−1)/2 is odd. Now, the maximal subgroups of
PSL(2, q) are well-known (see for instance a Theorem of Dickson in [8]), and there exists a

maximal (dihedral) subgroup D in S of order q− 1 (an even number). Put D̂ =
∏

t∈T D
t

which is A-invariant and consequently, lies in some maximal A-invariant subgroup of G.
Moreover, by order considerations, D̂ contains an A-invariant Sylow r-subgroup of G for
every odd prime r dividing q − 1. This implies that D̂ is not contained in K, so D̂ must
lie in some conjugate of L. Without loss, we may assume D̂ ≤ L. But then D ⊆ S ∩ L,
contradicting the fact that |S ∩ L| is odd.

b) Assume that B acts non-trivially on S. Since the alternating and the sporadic simple
groups do not admit non-trivial coprime action, we have by using the CFSG that S is
a simple group of Lie type, defined over some finite field F . Also, the action of B on
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S can be assumed to be faithful; otherwise B is replaced by B/CB(S). Moreover, by
replacing B by a conjugate in Aut(S), we can assume that B is induced by a group of
automorphisms of the defining field F of G. Write |B| = r. It follows that |F | = qr for
some prime power q and we write S = S(qr), that is, the simple group of Lie type “S”.
Then, it is known that CS(B) = S(q), where S(q) is the Lie group of the same type as S
defined over the field of q elements.

Let U ∈ SylB2 (S). We claim that U is a maximal B-invariant subgroup of S. Suppose
not and take W a maximal B-invariant subgroup of S such that U < W . As above we
construct U0 =

∏
t∈T U

t and W0 =
∏

t∈T W
t. It is clear that U0 ∈ SylA2 (G), that W0 is

A-invariant and certainly U0 < W0. This contradicts the maximality of M and proves the
claim. Furthermore, from the maximality of U we deduce that NS(U) = U . Therefore,
we can apply Lemma 5.8 to get that |S : CS(B)| is odd. Accordingly, there should be
some Sylow 2-subgroup of S lying entirely in CS(B). This contradicts the maximality of
U because CS(B) ∼= S(q) is not a Sylow 2-subgroup of S.

Case 2. Suppose that there exists a minimal A-invariant normal subgroup N < G. As
the hypotheses are inherited by factor groups, by minimality, we easily have that G/N is
solvable. Moreover, N is the only minimal A-invariant normal subgroup and N cannot
be solvable.

Now, let us take a maximal A-invariant subgroup T of G containing N , which is obvi-
ously non-nilpotent. By maximality of M , we have G = MN , so |G : N | and in particular
|G : T | are powers of 2. On the other hand, let p ∈ π(N) an odd prime and let P ∈
SylAp (G). By the Frattini argument NG(P )N = G. As P is not normal in G, there exists a
maximal A-invariant subgroup, say Lp, containing NG(P ). Certainly Lp does not contain
N , so it lies in a distinct CG(A)-orbit of maximal subgroups that of T . Likewise, Lp
cannot contain any Sylow 2-subgroup of G by the maximality of M . Therefore, the sub-
groups Lp when p runs in the set of odd primes of π(N) constitute a single CG(A)-orbit
of maximal A-invariant subgroups of G different from those of M and T . Also, all the
subgroups Lp must have index a power of 2. Thus, we have proved that all non-nilpotent
maximal A-invariant subgroups of G have 2-power indexes, and Theorem 5.2 provides the
final contradiction. �
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Appendix

Table 2. G = PSLn(q)

Row M N Remark
1 ĜLa(q

b).b P1, Pn−1 ab = n, b prime
2 PSpn(q).a P1, Pn−1 n ≥ 4 even, a = (2, q − 1)(n/2, q −

1)/(n, q − 1) is even

3 PSpn(q).a Stab(V1 ⊕ Vn−1) n ≥ 4 even, a = (2, q − 1)(n/2, q −
1)/(n, q − 1) is even

Table 3. G = PSp2m(q), m ≥ 2

Row M N Remark
1 PSp2a(q

b).b P1 ab = m, b prime
2 Sp2a(q

b).b O+
2m(q), O−2m(q) q even, ab = m, b prime

3 O−2m(q) Pm q even
4 O−2m(q) Spm(q) o S2 m even, q even
5 Sz(q) O+

4 (q) m = 2, q = 2f , f ≥ 3 odd, two

classes of factorizations

6 G2(q) O+
6 (q), O−6 (q), P1, N2 m = 3, q even

Table 4. G = PSUn(q), n ≥ 3

Row M N Remark
1 N1 Pm n = 2m
2 N1 PSp2m(q).a n = 2m, a = (2, q−1)(m, q+1)/(n, q+1)

3 19.3 P1 n = 3, q = 8

Table 5. G = Ω2m+1(q), m ≥ 3, q odd

Row M N Remark
1 N−1 Pm
2 G2(q) P1, N

+
1 , N

−
1 , N

−
2 m = 3

3 G2(q) N+
2 m = 3, q > 3

4 PSp6(q).a N−1 m = 6, q = 3f , a ≤ 2
5 F4(q) N−1 m = 12, q = 3f

Table 6. G = PΩ−2m(q), m ≥ 4

Row M N Remark
1 P1 ĜUm(q) m odd
2 N1 ĜUm(q) m even
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Table 7. G = PΩ+
2m(q), m ≥ 5

Row M N Remark
1 N1 Pm, Pm−1
2 N1 ĜUm(q).2 m even
3 N1 (PSp2(q) ⊗

PSpm(q)).a
m even, q > 2, a = gcd(2,m/2, q−1)

4 N−2 Pm, Pm−1
5 P1 ˆGUm(q).2 m even
6 N1 ˆGUm(q).2 if m odd
7 Ω9(q).a N1 m = 8, a ≤ 2
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