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Abstract: In this work, we propose a Markovian jump model of the power generation system of a wind turbine and we present a
closed-loop model-based observer to estimate the faults related to energy losses. The observer is designed through anH∞-based
optimization problem that optimally fixes the trade-off between the observer fault sensitivity and robustness. The fault estimates
are then used in data-based decision mechanisms for achieving fault detection and isolation. The performance of the strategy is
then ameliorated in a wind farm level scheme that uses a bank of the aforementioned observers and decision mechanisms. Finally,
the proposed approach is tested using a well-known benchmark in the context of wind farm fault diagnosis.

1 Introduction

Wind energy is considered as a powerful source of sustainable en-
ergy. However, wind turbines (WTs) are expensive systems and their
maintainability and reliability must be high. Fouling of the rotor
blades with ice or insects, as well as erosion, is an important root
cause of faults and it is expected to increase in significance as more
WTs are situated in locations with higher wind speeds (WSs) [1].
As stated in [2], the major problem related to debris build-up and
erosion is the reduction of the overall WT aerodynamic efficiency
leading to unpredicted reductions in power production. Besides pos-
sible human safety risks, debris build-up may also cause mass and
aerodynamic imbalances, damaging all WT components.

As discussed in [3], the diagnosis of debris build-up can be done
using direct or indirect measurements. Direct methods are based
on the detection of some change of physical properties such as
mass, electrical or thermal properties. Hence, they often require ex-
tra equipment, which augment the installation and maintenance costs
and the weight and space requirements. For its part, indirect meth-
ods are mainly based on detecting the reduction in power production.
These methods do not require extra hardware because they use WT
control measurements. They require, however, the WTs to be in oper-
ation. Their main disadvantage is that energy losses may be also the
consequence of other phenomena which are, nonetheless, generally
easily distinguishable from debris build-up. For instance, consider
the occurrence of an electric fault in the WT generator. In this case,
the deviation of the generator torque from its reference, which can
be deduced from the generator torque measurement, provides an im-
mediate and accurate diagnosis of the electric fault leading to its
straightforward isolation from debris build-up or erosion [4].

The indirect fault diagnosis (FD) of decreased power generation
due to debris build-up or erosion is one of the objectives of the realis-
tic and widely accepted wind farm (WF) benchmark presented in [5].
The benchmark includes the WF power generation model which is
based on the well-known power curve of a WT. Basically, two kinds
of residuals are used in the bibliography [6–10] to diagnose power
reductions in the benchmark. At a WT level, temporal residuals
represent the inconsistencies between the power generation model
output and the generated power measurement of a single WT. At
a WF level, spatial residuals represent the inconsistencies between
the generated power measurements of different WTs. Borcehrsen et
al. [6] utilize open-loop temporal residuals in dynamical cumulative
sums. Alternatively, Duviella et al. [7] present a FD approach based
on spatial residuals and Blesa et al. [8] compute both spatial and

open-loop temporal residuals via nonlinear parameter varying parity
equations. For its part, Badihi et al. [9] merge both approaches. The
authors use the generation model of the WTs to compute the power
differences among the WF; then, they compare them to the measured
power differences. They also present an approach which replaces the
generation model by fuzzy inference mechanisms. Similarly, Simani
et al. [10] present fuzzy and neural networks techniques.

The power generation model of a WT is affected by various non-
negligible disturbances: mean WS estimation errors, turbulences,
vibrations and measurement noises [5]. Hence, the WT level open-
loop temporal residuals in [6, 8] may be significantly disturbed. The
spatial residuals in [7–9] are not affected by mean WS estimation
errors because they compare WTs working under the same wind con-
ditions. For instance, the methods in [9] require that all the WTs in
the WF operate under the same wind conditions. However, in most
cases, the WTs operate in different conditions and WS estimation er-
rors still affect the spatial residuals. In all, it is of interest to develop
closed-loop strategies with a better performance w.r.t. disturbances
at a WT level and at a WF level for groups of WTs affected not
only by identical but also by similar wind conditions. Specially, if
the FD objectives require not only the information about the appear-
ance and the location of a fault (fault detection and isolation or FDI)
but also about its size and shape (fault estimation or FE). FE is of
paramount importance for both real-time decisions and active fault
tolerant control (AFTC) [11] such as power demand redistribution
among the WF.

The closed-loop power generation system of a WT is a para-
metric loop because the WT operates in different WS zones and
under different WT operating modes [12]. Moreover, the stochas-
tic characteristic of the wind brings further difficulty to the design
of closed-loop FE strategies. In the literature, many authors con-
clude that the WS behaviour can be explained as a Markovian
process [13, 14]. This behaviour has been exploited in recent WT
control schemes as the ones in [15–17]; however, up to date, there
has been no work taking advantage of the Markovian behaviour of
the wind to design FE strategies.

Motivated by the above background, in this work, we develop a
Markovian jump system approach for closed-loop FE of decreased
power generation in a WF. First, we develop a WT level approach;
then, we extend it to the WF level for groups of nearby WTs working
under similar wind conditions. FE techniques must be simultane-
ously robust against uncertainties and noises [18] and sensitive to
faults through the accomplishment of certain trade-off between these
properties [19]. In this paper, we use the H∞ performance of the
proposed model-based observer to characterize these properties and
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Fig. 1: Layout of the WF benchmark (l0 = 1150 m and l1 = l2 =
1138.44 m).→: Wind direction,©: Wind turbine, �: Wind mast.

to set up an optimal observer design strategy based on linear ma-
trix inequalities (LMIs). Providing a systematic performance-based
optimal approach for tuning the FE observer is an advantage when
compared to other algorithm designs, where some user expertise is
necessary. For instance, numerical extensive simulations and trial
and error procedures are necessary to tune the algorithms in [10].

To achieve FDI, we feed the fault estimates provided by the
proposed observer into decision mechanisms based on thresholds.
Model-based thresholding usually leads to too conservative results
which are characterized by poor fault detectability and isolabil-
ity [20], notably in the cases of Markovian jump systems [21].
Therefore, we utilize a data-driven FDI approach based on adaptive
thresholds for evaluating the FE output provided by the model-based
observer. The proposed adaptive mechanism enhances a tight FDI
adjustment in the different WS zones and WT operating modes when
compared to the constant thresholds in [6, 9, 10].

1.1 Challenges

The proposed Markovian jump system approach for FE and adaptive
FDI entails the following challenges.
1. Obtaining a linear parameter varying state-space model of the
power generation system of a WT, which is based on nonlinear
power curves and consists of two operation modes. To do so, we
define a parameter vector containing the WS acting on a WT and the
difference between the demanded and the generated power. In this
work, the power curves in the WF benchmark [5] are utilized. In re-
ality, these curves can be obtained through different methods such
as random forest, method of bins, k-nearest neighbours or support
vector regression [22].
2. Modelling the stochastic behaviour of the parameters as Marko-
vian processes. Obtaining a suitable partition of the parameter set
taking its discontinuities into account. Computing the transition
probabilities between subsets.
3. Building an augmented model-based observer for FE of decreased
power generation in a WT. Designing the observer through a mul-
tiobjective optimization problem that guarantees certain optimal
trade-off between the robustness against disturbances/uncertainties
and the sensitivity to faults. To do so, we use the H∞ performance
of the observer, which we formulate using linear matrix inequalities
(LMIs) for Markovian processes and convex polytopic sets.
4. Building an adaptive threshold-based decision mechanism for FDI
of decreased power generation in a WT. Proposing an algorithm
for computing a tight adaptive threshold piecewise on the WT op-
eration mode. Tuning the algorithm with fault-free datasets using
data-driven techniques.
5. Extending the WT level model-based FE and data-driven FDI ap-
proach to the WF level. To do so, we group the WTs operating under
similar wind conditions and we use a bank of the previous observers
and decision mechanisms that automatically merges the information
provided by the temporal and spatial relations in the WF according
to the degree of shared uncertainty among the WTs.

1.2 Structure and notation

The reminder of this paper is organized as follows. Section 2 gives
the problem formulation and Section 3 presents a Markovian jump
modeling of the power generation system of a WT. In Section 4,
we develop a wind turbine level model-based FE strategy and, in
Section 5, the FE output is utilized in a data-based FDI algorithm.
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Fig. 2: Power curve P i,js (vi,j) and transfer coefficient curve
τs(v

i,j). Values borrowed from [5].

Then, in Section 6, these strategies are extended to the wind farm
level. Simulation results are reported in Section 8 followed by some
concluding remarks in Section 9.

Let a be some vector and A and B be some matrix. The size of
a is denoted as na and a[i] denotes the i-th element in a. A � 0
means that A is negative semidefinite and similar applies to �. The
direct sum is represented as ⊕ and the Kronecker product is rep-
resented as ⊗. In is the identity matrix of size n× n, 1n×m is a
matrix of ones of size n×m and 0n×m is the zero matrix of size
n×m (all of these matrices being of appropriate dimensions when
the subindex is omitted). Expected value and absolute value are de-
noted by E{·} and | · |. Let xk be a vector of stochastic signals at
a sample k. We write ‖xk‖∞ , maxi |xk[i]| for the max norm of
vector xk. We write ‖x‖∞ , maxk maxi |xk[i]| for the l∞ norm
of signal x, ‖x‖22 , limK→∞

∑K
k=1 x

T
k xk for its l2 norm and

‖x‖2RMS = limK→∞ 1
K

∑K
k=1 x

T
k xk for its RMS norm.

2 Problem Statement

2.1 Wind Farm Benchmark Description

Consider the WF benchmark [5] with 9 WTs of 4.8 MW and the
layout shown in Fig. 1. We name the WTs according to the existing
wind direction (see the example in Fig. 1) and we consider that the
wind is perpendicular to the rows of WTs (which are numbered as
i = 1, . . . , Y and Y is the number of rows for the considered wind
direction) and parallel to the columns of WTs (which are numbered
as j = 1, . . . , Z and Z is the number of columns for the consid-
ered wind direction). We denote the distance between two rows i and
i+ 1 as li. There is a wind mast that measures the WS at row i = 0
(i.e., v0 = v̂0 + ṽ0, with v0 being the WS at the wind mast, v̂0 be-
ing its measurement and ṽ0 being the corresponding sensor noise).
The WS acting on the WT (i, j), denoted as vi,j , can be modelled
as vi,j = vi + ṽi,jt , where vi is the mean WS acting on the WTs in
the i-th row and ṽi,jt is a zero-mean turbulence component of known
variance (σ2

t = 0.2 m2/s2).
The static available power in the WT (i, j), denoted as P i,js ,

represents the theoretical maximal generated power in the WT and
it depends on vi,j as shown in Fig.2. This power curve is exten-
sively used in monitoring of wind farms (e.g., [23]) and it consists of
four zones delimited by three different WSs: the cut-in (vcut−in =4
m/s), the rated (vrated =12.5 m/s) and the cut-out (vcut−out =25
m/s) WS [12]:
• Zone I with vi,j < vcut−in. In this zone, the aerodynamic torque
is not sufficient to overcome the WT inertia and P i,js = 0.
• Zone II or partial load region with vcut−in ≤ vi,j < vrated.
Maximum power point tracking (MPPT) techniques are performed
in this region. For MPPT, the pitch angle is held at zero degrees and
the generator moment is adjusted to keep the power coefficient at a
maximum value. Hence, P i,js becomes a nonlinear function of vi,j .
• Zone III or full load region with vrated ≤ vi,j < vcut−out. In
this zone, the pitch angle is controlled to keep the static available
power not higher than the WT nominal power (i.e., P i,js = Pnom).
• Zone IV with vi,j ≥ vcut−out. The turbine is pitched out to stop
the rotation due to security reasons and P i,js = 0.
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Fig. 3: Structure of the WF benchmark. The signals which are available for FE and FDI are depicted in red.

According to [5], changes in the generated power will be instan-
taneous; thus, the static available power in the WT (i, j), denoted as
P i,js , is filtered by a first-order transfer function. This transfer func-
tion is characterized by the wind-dependent transfer coefficient τs
in Fig.2. In all, the dynamic available power in a WT, named after
P i,ja , is modelled as

Ṗ i,ja = τs(v
i,j) (P i,js (vi,j)− P i,ja ). (1)

The WF controller feeds each turbine with the WT static power
reference, denoted as Pt. The WT also behaves as a low-pass filter to
changes in the power reference; thus, the dynamic power reference
of a turbine, P r , fulfils

Ṗr = τr (Pt − Pr), (2)

where τr is a known transfer function coefficient (τr = 1.2 rad/s).
Depending on the values of the dynamic available power P i,ja

and the dynamic power reference Pr , each WT operates in one of
the following two main working modes:
• If P i,ja < Pr , the control objective is to maximise the amount of
power harvested from the wind and, thus, the generated power equals
the dynamic available power in the WT.
• If P i,ja ≥ Pr , the control objective is to maintain the generated
electrical power equal to the reference.

This behaviour can be modelled as

Pi,j =

{
P i,ja − f i,j + si,j if P i,ja < Pr
Pr − f i,j + si,j otherwise

, (3)

where Pi,j is the power generated by the turbine (i, j) and si,j is
a disturbance modelling the drive train oscillations that influence
the electrical power generation (i.e., si,j = γp sin(σp 2π t) with
γp = 1000 W and σp = 10 Hz). The additive element f i,j is the
fault representing a decreased power generation and it is caused by
changes in the aerodynamics of the WT due to phenomena such as
debris build-up or blade erosion.

The powerPi,j is measured by a sensor whose noise,wi,j , can be
realistically described by a zero-mean Gaussian noise with variance
σ2
w = 2.5 · 105 W2. Denoting the generated power measurement as
yi,j , we have

yi,j = Pi,j + wi,j . (4)

2.2 FE and FDI Signals

The objective of this work is to detect, isolate and estimate the
faults representing a decreased power generation in the WTs of
the WF. The generated power measurements yi,j (i = 1, . . . , Y ,
j = 1, . . . , Z), the dynamic power reference P r and the WS mea-
surement at the wind mast v̂0 , are available for FE and FDI (see
Fig.3). We assume that the WS at the WTs is not measured and,
thus, vi,j must be estimated. As detailed in Appendix 12.1, the mea-
surements v̂0 can be used to estimate the mean WS vi through some

propagation strategy. Denoting the propagated mean WS as v̂i, it
yields

vi,j = v̂i + ṽip + ṽi,jt , (5)

where ṽip is the propagation error (i.e., ṽip = vi − v̂i), which de-
rives from both the propagation model mismatch and the use of the
noisy measurement v̂0 in the propagation scheme. Note that the total
WS estimation error verifies ṽi,j = ṽip + ṽi,jt , where the propaga-
tion error ṽip is common for all the turbines in the i-th row while the
turbulence ṽi,jt is different for each turbine (i, j).

It is well known that most continuous-time control systems are
implemented digitally [24]. Thus, we present a discrete-time FE and
FDI algorithm. The following assumption on the fault f i,j is made.

Assumption 1. The variation δi,j of the fault f i,j (i.e., δi,jk =

f i,jk+1 − f
i,j
k ) belongs to l2[0,∞).

Remark 1. Assumption 1 is common in FE and it considers faults
whose variations are slow with respect to the dynamics of the system
and it can cover the typical faults in engineering systems such as
abrupt faults and incipient faults [24]. In any case, the strategies
developed in this work can be easily extended to faults with more
complex dynamics (cf. [25]).

3 Markovian Jump State-Space Modeling

3.1 Parameter Varying Discrete State-Space Modeling

In this section, we develop the discrete state-space model of the
power generation system described in Section 2. Let us first define

a(vi,j) = e−τs(v
i,j)Ts , b(vi,j) = 1− a(vi,j), (6)

with Ts being the sampling time that we fix to 1 s. Introducing the
state xi,j = P i,ja and the inputs u(vi,j) = P i,js (vi,j) and r = Pr;
it yields,

xi,jk+1 = a(vi,jk )xi,jk + b(vi,j)u(vi,jk ), (7a)

yi,jk = c(∆i,j
k )xi,jk + d(∆i,j

k ) rk − f i,jk + si,jk + wi,jk , (7b)

with ∆i,j being the power difference defined as

∆i,j = P i,ja − Pr = xi,j − r, (8)

c(∆i,j) =

{
1 if ∆i,j < 0
0 otherwise

d(∆i,j) =

{
0 if ∆i,j < 0
1 otherwise

.

(9)
The faults verifying Assumption 1 can be modeled through

f i,jk+1 = f i,jk + δi,jk , (10)

where δi,j is the fault variation. Defining the parameter vec-
tor θi,j =

[
vi,j ∆i,j

]T
and the extended state vector zi,j =
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[
xi,j f i,j

]T
, we augment the system (7) into

zi,jk+1 =

[
a(vi,jk ) 0

0 1

]
︸ ︷︷ ︸

A(θi,jk )

zi,jk +

[
b(vi,jk )

0

]
︸ ︷︷ ︸
B(θi,jk )

u(vi,jk )︸ ︷︷ ︸
u(θi,jk )

+

[
0
1

]
︸︷︷︸
E

δi,jk , (11a)

yi,jk =
[
c(∆i,j

k ) −1
]

︸ ︷︷ ︸
C(θi,jk )

zi,jk + d(∆i,j
k )︸ ︷︷ ︸

D(θi,jk )

rk + si,jk + wi,jk , (11b)

f i,jk =
[
0 1

]︸ ︷︷ ︸
F

zi,jk . (11c)

For ease of readability, let us omit hereafter the dependence of
the variables on the number of turbine (i, j) (e.g. zk stands for zi,jk ).
The extended system model (11) results in

zk+1 = A(θk) zk +B(θk)u(θk) + E δk, (12a)

yk = C(θk) zk +D(θk) rk + sk + wk, (12b)

fk = F zk. (12c)

The system dynamics (12) depends on the system matrices A(θk),
B(θk), C(θk) and D(θk). According to (6) and (11), the behaviour
of A(θk) and B(θk) switches between the estimated WS zones as
shown in Fig.2. According to (9) and (11), C(θk) and D(θk) are
switching matrices whose value depends on the WT working mode
determined by the sign of the parameter ∆k.

3.2 Markovian Jump Discrete State-space Modeling

The parameters v and ∆ can be considered to be bounded by the sets

v ∈ Ωv, Ωv := {v
¯
< v < v̄}, (13a)

∆ ∈ Ω∆, Ω∆ := {∆
¯
< ∆ < ∆̄}, (13b)

where v
¯
, v̄, ∆

¯
and ∆̄ are the minimum and maximum possible values

of these parameters (which we fix to v
¯

= 0 m/s, v̄ = 30 m/s, ∆
¯

=

−4.8 MW and ∆̄ = 4.8 MW). The parameter vector θ =

[
v
∆

]
lies

then in Θ = Ωv × Ω∆. Let us partition the parameter set Θ into N
subsets Θ(p) (i.e., Θ = {Θ(p)}p∈{1,...,N}) by dividing Ωv into Nv
intervals Ω

(pv)
v (i.e., Ωv = {Ω(pv)

v }pv∈{1,...,Nv}) and Ω∆ intoN∆

intervals Ω
(p∆)
∆ (i.e., Ω∆ = {Ω(p∆)

∆ }p∆∈{1,...,N∆}), i.e.,

Θ ={(Ω(1)
v ,Ω

(1)
∆ ), . . . , (Ω

(1)
v ,Ω

(p∆)
∆ ), . . .

. . . , (Ω
(pv)
v ,Ω

(1)
∆ ), . . . , (Ω

(pv)
v ,Ω

(p∆)
∆ )}

(14)

with N = Nv ·N∆ (see Fig.4). The partition is one such that each
interval Ω

(pv)
v lies in a single WS zone and each interval Ω

(p∆)
∆ lies

in a single WT working mode (see Table 1).

Table 1 Partition of the parameter sets Ωv and Ω∆

pv Wind speed boundaries Wind zone

1 v
¯
≤ v < v1 Zone I

2 v1 ≤ v < v2 Zone I
...

...
...

n1 vn1−1 ≤ v < vcut−in Zone I
n1 + 1 vcut−in ≤ v < vn1+1 Zone II

...
...

...

n2 vn2−1 ≤ v < vrated Zone II
n2 + 1 vrated ≤ v < vn2+1 Zone III

...
...

...

n3 vn3−1 ≤ v < vcut−out Zone III
n3 + 1 vcut−out ≤ v < vn3+1 Zone IV

...
...

...

Nv vNv−1 ≤ v < v̄ Zone IV

p∆ Power difference boundaries Working mode

1 ∆
¯
≤ ∆ < ∆1 Pa < Pr

2 ∆1 ≤ ∆ < ∆2 Pa < Pr
...

...
...

n′1 ∆n′1−1 ≤ ∆ < 0 Pa < Pr

n′1 + 1 0 ≤ ∆ < ∆n′1+1 Pa ≥ Pr
...

...
...

N∆ ∆N∆−1 ≤ ∆ < ∆̄ Pa ≥ Pr

For such partition, the system state-space matrices C(θk) and
D(θk) associated with θk ∈ Θ(p) are constant and they can be
expressed as

C(θk) = Cp, D(θk) = Dp. (15)

The system state-space matrices A(θk) and B(θk) associated with
θk ∈ Θ(p) are constant if the interval Ω

(pv)
v defining Θ(p) (i.e.,

Θ(p) = (Ω
(pv)
v ,Ω

(p∆)
∆ )) lies in the WS zones I, III or IV (i.e.,

Ω
(pv)
v ∈ [v

¯
, vcut−in) ∪ [vrated, v̄)) because the discrete transfer

coefficient a(v) is constant in these zones. If the interval Ω
(pv)
v

lies in the zone II (i.e., Ω
(pv)
v ∈ [vcut−in, vrated)), these matri-

ces are not constant because the discrete transfer coefficient a(v)
is described by the function in Fig.2. In all, we express the matrices
A(θk) and B(θk) associated with θk ∈ Θ(p) as

A(θk) =

M∑
m=1

αmp (θk)Amp , B(θk) =

M∑
m=1

αmp (θk)Bmp , (16)

with
∑M
m=1 α

m
p (θk) = 1 and 0 ≤ αmp (θk) ≤ 1 form = 1, . . . ,M .

The matrix Amp denotes the m-th vertex of the convex polytope in
which A(θk) lies whenever θk ∈ Θ(p). Note that in the WS zones
I, III and IV, we haveAmp = Ap and αmp = 1/M for l = 1, . . . ,M .
Similar applies to B(θk).

Define the membership signal ξv whose value at a sample k

equals the number pv of the interval Ω
(pv)
v in which the WS v lies at

the sample k; similar applies to ξ∆ w.r.t. ∆ and to ξ w.r.t. θ:

ξvk = pv if vk ∈ Ω
(pv)
v , (17a)

ξ∆
k = p∆ if ∆k ∈ Ω

(p∆)
∆ , (17b)

ξk = p if θk ∈ Θ(p). (17c)

Research has shown that the stochastic behaviour of the mean WS
can be represented as a Markovian process [13, 14]. This behaviour
has been exploited in recent WT control strategies as the ones in
[15–17]. Motivated by this research, we assume that that {ξvk} is a
discrete homogenous Markov chain taking values in the finite set
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{1, . . . , Nv}. Since the mean WS affects the WT working mode,
we also assume that {ξ∆

k } is a discrete homogenous Markov chain
taking values in the finite set {1, . . . , N∆}. Both assumptions are
considered in the following assumption over {ξk}.

Assumption 2. The membership {ξk} is governed by a dis-
crete homogenous Markov chain whose states are in the finite set
S = {1, . . . , N} with the transition probability matrix

Π =

[
π11 ··· π1N

...
...

...
πN1 ··· πNN

]
∈ RN×N (18)

and πpq being the transition probability defined as

πpq = Pr{ξk+1 = q|ξk = p}, (19)

where
∑N
q=1 πpq = 1 for any p ∈ S.

Remark 2. ([26]) Provided (14), we have that Π = Πv ⊗Π∆, with
Πv= [πvpvqv ]pv,qv∈{1,...,Nv} and Π∆= [π∆

p∆q∆ ]p∆,q∆∈{1,...,N∆};
πvpvqv and π∆

p∆q∆ being defined in analogy to (19) w.r.t. ξv and ξ∆.

Remark 3. ([27]) The probabilities πpq can be obtained through
numerical simulations by sampling the data in the separate subsets
Θ(p) and computing πpq = observed transitions from state p to q

observed occurrences of state p . Similar
applies to πpvqv and πp∆q∆.

4 FE at a Wind Turbine Level

4.1 FE Architecture

To achieve FE, we build the following model-based observer for the
extended system (12):

ẑk+1 =A(θ̂k) ẑk +B(θ̂k)u(θ̂k)+

L(θ̂k) (yk − C(θ̂k) ẑk −D(θ̂k) rk),
(20a)

f̂k =F ẑk +K(θ̂k) (yk − C(θ̂k) ẑk −D(θ̂k) rk), (20b)

where θ̂ =
[
v̂ ∆̂

]T
is the estimated parameter vector in which v̂

is the open-loop propagated WS (see (5)) and ∆̂ is the closed-loop
estimated power difference computed as ∆̂ = P r − x̂ (with x̂ be-
ing the first state of ẑ) . The estimated parameter vector θ̂ does also
lie in the set Θ, partitioned into the subsets {Θ(p)}p∈{1,...,N} as
explained in Section 3.2.

The matrices L(θ̂k) ∈ R2×1 andK(θ̂k) ∈ R1 are the parameter-
dependent design gain matrices of appropriate dimensions. Provided
the switching behaviour of the system state-space matrices in (15)-
(16), we fix L(θ̂k) ∈ R2×1 and K(θ̂k) ∈ R1 as

L(θ̂k) = Lp if θ̂k ∈ Θ(p), (21a)

K(θ̂k) = Kp if θ̂k ∈ Θ(p), (21b)

whereLp andKp are constant matrices associated to θ̂k ∈ Θ(p) and
must be designed. Given (17), these matrices can be also expressed
as L(θ̂k) = Lp if ξ̂k = p and K(θ̂k) = Kp if ξ̂k = p.

Remark 4. Note that certain degree of conservatism is introduced
when using switched observer gain matrices in the form of (21) for
the regions lying in the WS zone II, where the state-space matrices
A(θ̂k) and B(θ̂k) are not constant (see (16)). Even though switched
polytopic gain matrices could be used instead, the small variations
experienced by these matrices (see Fig.2) justify the choice in (21)
that reduces the observer complexity.

Define the extended state estimation error as z̃k = zk − ẑk and
the FE error as f̃k = fk − f̂k. It follows that

z̃k+1 = (A(θ̂k)−L(θ̂k)C(θ̂k)) z̃k + E δk + R̄ gk−
L(θ̂k) (Rhk+sk+wk),

(22a)

f̃k =(F−K(θ̂k)C(θ̂k)) z̃k −K(θ̂k) (Rhk+sk+wk), (22b)

with R̄ =
[
1 0

]T . The error depends then on the fault variation
δk, the oscillation sk, the noise wk and the disturbances gk =
gk(θ̂k, θk) and hk = hk(θ̂k, θk), which stem from using θ̂ instead
of θ in the estimation algorithm. As (22) refers to the turbine (i, j),
gk and hk refer in fact to gi,jk and hi,jk defined as

gi,jk =(a(vi,jk )− a(v̂ik))xi,jk +(ū(vi,jk )− ū(v̂ik)), (23a)

hi,jk =(c(∆i,j
k )− c(∆̂i,j

k ))xi,jk +(d(∆i,j
k )− (∆̂i,j

k ))rk, (23b)

with ū(vi,jk ) = b(vi,jk )u(vi,jk ). Specifically, gi,jk stands for the dis-
turbance derived from the open-loop wind propagation strategy and
hi,jk is the disturbance derived from the closed-loop dynamic avail-
able power estimation strategy. Note that hi,jk is in fact equal to 0 (if
the WT operating mode is correctly estimated) or to the difference
∆i,j (otherwise).

Provided (5), gi,jk , which is caused by the total WS estimation
error, can be expressed as

gi,jk = eik + εi,jk , (24)

where eik is caused by the wind propagation error and εi,jk is caused
by the wind turbulence, i.e.,

eik =(a(vik)− a(v̂ik))xi,jk + (ū(vik)− ū(v̂ik)), (25a)

εi,jk =(a(vi,jk )− a(vik))xi,jk + (ū(vi,jk )− ū(vik)). (25b)

In (25), the first summands are negligible w.r.t. to the second sum-
mands. Hence, we omit the dependence of the disturbance ei on the
column j. The following assumption on ei, εi,j and hi,j is made.

Assumption 3. The disturbances ei, εi,j and hi,j can be considered
to be bounded as

‖ei‖∞≤ ēp, ‖εi,j‖∞≤ ε̄p, ‖hi,j‖∞≤ h̄p, if θ∈Θ(p). (26)

Details on the computation of these bounds are included in Ap-
pendix 12.2. Note that it would have been possible to consider a
row-dependent bound of the disturbance caused by the propagation
error (i.e., |ei| ≤ ēip) because this error generally increases with
the distance to wind mast. For sake of simplicity, we introduce
some conservatism by neglecting this dependence. Hence, ēp verifies
ēp = maxi ē

i
p.

For brevity, we omit again the dependence on the number of row
i and on the number column j. Taking (24) and (26) into account,
the summands R̄ gk and hk in (22) can be expressed as

R̄ gk = G(θ̂k)λk +G(θ̂k)µk, hk = H(θ̂k)ϕk, (27)

with λk ∈ [−1, 1], µk ∈ [−1, 1] and ϕk ∈ [−1, 1] satisfying

λk = ek/ēp, µk = εk/ε̄p, ϕk = hk/h̄p, (28)

if θk ∈ Θ(p) and where G(θ̂k), G(θ̂k) and H(θ̂k) are defined as

G(θ̂k) =Gp if θ̂k ∈ Θ(p), Gp = R̄ ēp, (29a)

G(θ̂k) =Gp if θ̂k ∈ Θ(p), Gp = R̄ ε̄p, (29b)

H(θ̂k) =Hp if θ̂k ∈ Θ(p), Hp = h̄p. (29c)
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In all, we rewrite (22) as

z̃k+1 =A(θ̂k) z̃k + B(θ̂k)Wk + E δk, (30a)

f̃k =C(θ̂k) z̃k +D(θ̂k)Wk, (30b)

with

A(θ̂k) =A(θ̂k)− L(θ̂k)C(θ̂k),

C(θ̂k) =F −K(θ̂k)C(θ̂k),

B(θ̂k) =
[
G(θ̂k) G(θ̂k) −L(θ̂k)H(θ̂k) −L(θ̂k) −L(θ̂k)

]
,

D(θ̂k) =
[
0 0 −K(θ̂k)H(θ̂k) −K(θ̂k) −K(θ̂k)

]
,

Wk =
[
λk µk ϕk sk wk

]T
.

Note that Ap(θ̂k), Bp, Cp and Dp are defined using the cor-
responding matrices associated with θk ∈ Θ(p) (e.g., Ap(θ̂k) =∑M
m=1 α

m
p (θ̂k)(Amp − Lp Cp) and Cp = F −Kp Cp).

4.2 FE Design

The FE error caused by δ describes the fault sensitivity of the
observer and the error caused by W describes the robustness of
the observer against disturbances and noises. We characterize them
through the H∞ performance of the observer w.r.t. δ and W , re-
spectively. To that end, we use the formulation based on LMIs in
the following theorem. For the sake of generality, we denote the
size of the inputs in (30) as nδ , nλ, nµ, nϕ, ns and nw verifying
nδ = nλ = nµ = nϕ = ns = nw = 1 in this case of FE at a WT
level.

Theorem 1. Consider the observer (20) applied to the system (12).
If there exist positive scalars γλ, γµ, γϕ, γs, γw and γδ; full ma-
trices of appropriate dimensions Xp, Kp and Vp; and symmetric
matrices of appropriate dimensions Qp, for p, q = 1, . . . , N and
m = 1, . . .M fulfilling the LMIs

Ξmp =


Ωp Λ̄mT

p Φ̄Tp 0

Λ̄mp Qp 0 CTp
Φ̄p 0 Γ ΥTp
0 Cp Υp I

 � 0, (31)

with

Ωp =

N⊕
q=1

Vp + V Tp −Qq,

Λ̄mp =
[√
πp1 Λmp . . .

√
πpN Λmp

]
, Λmp = VpA

m
p −Xp Cp,

Φ̄p =
[√
πp1 Φp . . .

√
πpN Φp

]
,

Φp =
[
Vp Gp VpGp −XpHp −Xp −Xp VpE

]
,

Υp =
[
0 0 −KpHp −Kp −Kp 0

]
,

Cp =F −Kp Cp,
Γ =γλ Inλ ⊕ γµ Inµ ⊕ γϕ Inϕ ⊕ γs Ins ⊕ γw Inw ⊕ γδ Inδ ,

then defining Lp = V −1
p Xp, the following holds for all θ̂k ∈ Θ.

1.In the absence of disturbances, noises and faults (i.e., Wk = 0
and δk = 0), the extended state estimation error (30) converges
asymptotically to zero in average.

2.Under null initial conditions, the expected value of the FE error is
bounded as

E{‖f̃‖2RMS} < γλnλ‖λ‖2∞ + γµnµ‖µ‖2∞ + γϕnϕ‖ϕ‖2∞+

γs ‖s‖2RMS + γw ‖w‖2RMS + γδ nδ‖δ‖2∞, (32)

with E{‖f̃‖2RMS} = limK→∞ 1
K

∑K
k=1 E{f̃Tk f̃k|θ̂k−1 ∈ Θ(p)}.

Proof: If (31) holds for p, q = 1, . . . , N , we have that Qq � 0 and
that Vp is a nonsingular matrix because Vp + V Tp −Qq � 0. Hence,
we can state that (Qq − Vp)Q−1

q (Qq − Vp)T � 0 which implies
that

Vp + V Tp −Qq � VpQ−1
q V Tp .

Thus, the matrix inequalities which result from replacing Vp +
V Tp −Qq by VpQ−1

q V Tp in (31) are also positive definite. Let us
substitute Xp by Vp Lp and apply a congruence transformation by
(
⊕N
q=1 V

−1
p )⊕ I to the result. Multiplying the matrix inequality by

αmp (θ̂k), summing form = 1, . . . ,M , taking Schur’s complements,
pre-multiplying the result by

[
z̃Tk WT

k δTk
]

and post-multiplying
by its transpose lead to

N∑
q=1

πpq (Ap(θ̂k)z̃k + BpWk + Eδk)TQq (Ap(θ̂k)z̃k+

BpWk + E δk)−z̃Tk Qp z̃k+f̃Tk f̃k−γλ λTk λk−γµ µTk µk−
γϕ ϕ

T
k ϕk−γs sTk sk−γw wTk wk−γδ δTk δk < 0,

(33)

for all p = 1, . . . , N and where we have taken into account that∑M
m=1 α

m
p (θ̂k) = 1.

Now, let us define the Lyapunov function Vk = z̃Tk Q(θ̂k) z̃k
equal to Vk = z̃Tk Qp z̃k for θ̂k ∈ Θ(p) and p = 1, . . . , N .

1.In the absence of disturbances noises and faults (i.e., Wk = 0 and
δk = 0), expression (33) leads to

z̃Tk

( N∑
q=1

πpq Ap(θ̂k)Qq Ap(θ̂k)
)
z̃k − z̃Tk Qp z̃k < 0,

for all p = 1, . . . , N , which assures E{Vk+1|θ̂k ∈ Θ(p)} − Vk < 0
guaranteeing that the extended state estimation error (30) converges
asymptotically to zero in average for all θ̂k ∈ Θ.

2.For brevity, let us denote E{Vk+1|θ̂k ∈ Θ(p)} as E{Vk+1|θ̂k} and
let us not include in the next that the inequalities are fulfilled
for all θ̂k ∈ Θ. Taking conditional expectation given θ̂k−1 over
expression (33) leads to

E{Vk+1|θ̂k} − E{Vk|θ̂k−1}+ E{f̃Tk f̃k|θ̂k−1}−
γλ nλ‖λ‖2∞ − γµ nµ‖µ‖2∞ − γϕ , nϕ‖ϕ‖2∞−
γs ‖s‖2RMS − γw ‖w‖2RMS − γδ nδ‖δ‖2∞ < 0,

(34)

because E{Vk+1|θ̂k|θ̂k−1} = E{Vk+1|θ̂k} and the exogenous sig-
nals are independent of θ̂k−1. In (34), we have also taken into
account that λ is a deterministic signal and

E{λTk λk} = λTk λk ≤ nλ‖λ‖2∞

(similar applies to µ, ϕ and δ), and that E{sTk sk} = ‖s‖2RMS
because sk is zero-mean (similar applies to wk).
Under null initial conditions (V0 = 0), adding the aforementioned
expression from k = 0 to k = K − 1 leads to

K−1∑
k=0

E{f̃Tk f̃k|θ̂k−1} <
K−1∑
k=0

(γλ nλ‖λ‖2∞ + γµ nµ‖µ‖2∞+

γϕ nϕ‖ϕ‖2∞ + γs ‖s‖2RMS + γw ‖w‖2RMS + γδ nδ‖δ‖2∞),

because
∑K−1
k=0

(
E{Vk+1|θ̂k} − E{Vk|θ̂k−1}

)
= E{VK+1|θ̂K}

and E{VK+1|θ̂K} > 0. Dividing this expression by K and taking
the limit when K tends to infinity leads to (32).

�
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There exists thus a trade-off between ameliorating the fault track-
ing ability of the observer and its robustness [18]. From the practical
viewpoint, it is of considerable interest to achieve certain tracking
ability and to minimize the effect of the disturbances and noises on
the estimations [19]. Thus, we propose to design the observer gain
matrices through the following optimization problem:

minimize γλnλ‖λ‖2∞ + γµnµ‖µ‖2∞ + γϕnϕ‖ϕ‖2∞+

γs ‖s‖2RMS + γw ‖w‖2RMS

subject to γδ ≤ γ̄δ,
Ξmp � 0, ∀p,m

(35)

along the variables γλ, γµ, γϕ, γs, γw , γδ , Xp, Kp, Vp, Qp and Pp
(p = 1, . . . , N ) and with γ̄δ being the required H∞ performance
describing the fault tracking ability of the observer.

Remark 5. The use of the signals (28) in the design process allows
considering the differences in the bounds (26) among the different
subsets Θ(p). Effectively, we now have that the value of these bounds
is introduced through the matrices Gp, Gp and Hp and ‖λ‖2∞ =
‖µ‖2∞ = ‖ϕ‖2∞ = 1. If the signals e, ε and h were used instead,
the maximum value of the bounds (26) (e.g., maxp ēp) would be
the only information introduced in the design. Note also that if the
bounds (26) are not completely accurate, ‖λ‖2∞, ‖µ‖2∞ and ‖ϕ‖2∞
can be considered as tuning parameters regarding the bounding ac-
curacy. Similar applies to ‖s‖2RMS and ‖w‖2RMS that can be easily
derived from the known parameters γp and σw but whose values can
be increased with the uncertainty over these parameters.

Taking Remark 4 and Remark 5 into account, we deduce that
the conservatism is reduced when a lot of gridding intervals are
utilized for the partition of the set Θ. Hence, the density N of
the grid {Θ(p)}p∈{1,...,N} is to be determined from a trade-off
between having a few gridding intervals that ensure reduced com-
putational burden but introduce conservatism or having a lot of
gridding intervals causing heavy computational times but reduced
performance conservatism [28]. As specified in Appendix 12.2, we
choose Nv = 6 and N∆ = 4. This gridding is a posteriori validated
through the numerical simulations in Section 8.

5 FDI at a Wind Turbine Level

We set the following decision for FDI:{
if |f̂k| ≥ Jk Fault
otherwise No fault

, (36)

where J is an adaptive threshold covering the uncertainties affecting
the fault estimate in fault-free conditions. As recalled in [20], the
model-based setting of thresholds usually leads to too conservative
thresholds which result in poor fault diagnosability. It is the state of
the art in real applications to optimally set thresholds on the basis of
tests in the real application environment. In this context, we propose
to compute the threshold through a multivariate linear model over the

estimated parameters θ̂ and to obtain the coefficients of this model
using a set of fault-free training data as detailed hereafter.

Remark 6. Norm-based constant thresholding can be performed
using the RMS-norm bound of the FE error in (32) (with γδ = 0).
Assuming zero-mean disturbances, one can apply the Chebyshev’s
inequality and obtain an stochastic threshold for certain confidence
level. However, this approach ignores the real statistical distribution
of the error and leads to too loose bounds [29].

Provided the switching behaviour of the system, we use different
coefficients for each WT working mode. For this purpose, we define
η̂M (M = 1, 2, 3) as a signal indicating wether the WT is estimated
to be operating in mode M :

η̂1
k =

{
1 if ξ̂∆

k ∈ [1, n′1 − n′]
0 otherwise

, (37a)

η̂2
k =

{
1 if ξ̂∆

k ∈ (n′1 − n′, n′1 − n′]
0 otherwise

, (37b)

η̂3
k =

{
1 if ξ̂∆

k ∈ (n′1 − n′, N∆]
0 otherwise

, (37c)

with ξ̂∆
k being the estimated membership function of power differ-

ence (i.e., ξ̂∆
k = p∆ | ∆̂k ∈ Ω

(p∆)
∆ ) and n′ being a design parameter

that defines an uncertain intermediate mode. Effectively, modeM =
1 refers to the cases where ∆̂k < ∆n′1−n′ ≤ 0 and the generated
power equals the dynamic available power in the WT. Mode M = 3
refers to the cases where 0 ≤ ∆n′1−n′ ≤ ∆̂k and the generated
power equals the dynamic power reference (see Table 1). For its part,
mode M = 2 is the transition mode defined by n′ > 0 that takes
the working mode estimation error into account. In all, the proposed
multivariate linear model for computing the adaptive threshold is

Jk = Xk β, (38)

with Xk being the variable vector defined as

Xk=
[
η̂1
k η̂2

k η̂3
k η̂1

kv̂k η̂2
kv̂k η̂3

kv̂k η̂1
k∆̂k η̂2

k∆̂k η̂3
k∆̂k

]
and β ∈ R9×1 being the coefficient vector. Thus, in Mode M , the
threshold verifies Jk = β[M ] + v̂k β[M + 3] + ∆̂k β[M + 6].

Remark 7. Less conservative thresholds would be achievable by
taking account of all the switchings of θ̂k among the subsets
of the parameter vector. To do so, the alternative variable vec-
tor X̄k =

[
ˆ̄η1
k . . . ˆ̄ηNk

]
⊗
[
1 θ̂Tk

]
(with β̄ ∈ R3N×1) would be

used instead. Here, ˆ̄ηpk is equal to 1 if ξ̂k = p and it is equal to
0 otherwise. Similarly, it would be possible to take account of the
process dynamic behaviour by using the alternative variable vec-
tor X̄ ′k =

[
Xk . . . Xk−O

]
(with β̄′ ∈ R3O×1 and O being the

number of past considered samples). However, the simplified form
in (38) reduces the complexity of the threshold computation while it
has provided satisfactory results in the simulations in Section 8.

rk = Pr,k yi,jk

v̂0k v̂ikPropagation

∆̂i,j
k

θ̂i,jk
Θ(p)

v

∆ Θ(p)

Subset Selector Gain
Matrix
Selector

Lp,Kp
Observer

x̂i,j
k = P̂ i,j

a,k

f̂ i,j
k

Jk

Computation
Threshold

Design
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OfflineOffline

Observer
Design

Decision
Mechanism
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Fig. 5: FE and FDI strategy at a wind turbine level.
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To obtain β, we collect the fault-free training data ofNT samples,
we run the estimator (20) and we construct the matrices

X =
[
XT

1 . . . XT
NT

]T
, F̂ =

[
|f̂1| . . . |f̂NT |

]T
. (39)

Remark 8. To obtain a fault-free training dataset two approaches
are possible. If a realistic simulator of the WF is available, the de-
signer can excite it with all possible power demands and WS profiles
and collect the output data. Alternatively, the designer can collect
historical data covering all possible power demands and WS pro-
files. For newly-built systems, one can use either the corresponding
simulator or the historical data of its initial operation by assuming
that no faults affect the system during this initial period.

Then, we solve the following optimization problem

minimize
β, ε>0

σ (F̂ − X β)T (F̂ − X β) + (1− σ) εN2
T

subject to |f̂k| < Xk β < |f̂k|+ ε, k = 1, . . . , NT

(40)

with σ ∈ [0, 1] being a weighting factor. The optimization prob-
lem (40) guarantees that the collected fault estimates do not exceed
the threshold and it minimizes a weighted combination of the
quadratic accumulated difference and the maximum difference (de-
noted as ε) between the threshold and the simulated data. Note that
the multiplicand N2

T in (40) is used to regularize the minimized
terms. The proposed FE and FDI strategies are summarized in Fig.5.

Remark 9. The sampling False Alarm Rate (FAR) obtained
from (40) is equal to 0. If the resulting threshold is too conser-
vative, one can fix FAR= φ

T by performing φ iterations in which
the optimization problem (40) is solved and the most conservative
data (i.e.,|f̂k̄| and Xk̄ such that k̄ = argmink∈[1,N ] |f̂k| −Xk β)
is eliminated from F and X for the next iteration.

Remark 10. For brevity, we have omitted the dependence of the
variables on the number of row i and on the number of column j.
Hence, let us remark that the inequality in (36) stands in fact for
|f̂ i,jk | ≥ Jk. The threshold J does not depend on the number of WT
(i, j) because the disturbances and noises affecting the estimation
error f̃ i,j are equally bounded for all the WTs in the WF.

6 FE and FDI at a Wind Farm Level

The performance of the observer (20) and the diagnoser (36) may
be compromised if the bounds of the disturbances in Assumption 3
are too large. A solution to mitigate this effect is to totally decou-
ple the FE error from these signals instead of attenuating their effect
through the robust design in (35). However, a necessary condition
for achieving disturbance decoupling is that the faults and the distur-
bances have a totally decoupled effect on the measurements and this
is not possible from a WT level perspective because there is just one
measurement which is simultaneously affected by the faults and the
disturbances. At the WF level, we can consider altogether the WTs
in the same row because the disturbance caused by the wind prop-
agation error (i.e., the disturbance ei) is common to all these WTs.
As detailed hereafter, when all the WTs in a row are prone to the
power fault, ei does not verify disturbance decoupling conditions ei-
ther. However, in this case, it is possible to build a bank of observers
and diagnosers that allow to achieve the decoupling from ei at the
cost of some fault simultaneity restrictions (cf. [30]).

Remark 11. We have here considered that ei is caused by the wind
propagation error and that εi,j takes account of the uncertainties
caused by the individual turbulence. If for any wind direction or for
any other WF layouts there were no sufficient WTs per row in order
to build the bank of observers, we would consider groups i of close
WTs and divide the uncertainty caused by the wind propagation er-
ror into a common disturbance ei and a non-common disturbance
which would be considered together with the turbulence by εi,j .

To do so, let us first define the auxiliary vectors

f l(i) =
[
f i,1 . . . f i,l−1 f i,l+1 . . . f i,Z

]T ∈ RZ−1, (41a)

δl(i) =
[
δi,1 . . . δi,l−1 δi,l+1 . . . δi,Z

]T ∈ RZ−1, (41b)

whereZ denoted the number columns for the considered wind direc-
tion. The vector f l(i) considers all the faults of the WTs in the i-th
row but the fault of the WT in the l-th column f i,l. Similar applies
to δl(i) w.r.t. the fault variations in (10). The model of the power
generation systems of the i-th row of WTs including the dynamics
of f l(i) can be written as shown in (42) where zl(i) ∈ R2Z−1 is
the extended state vector, y(i) ∈ RZ is the measurement vector and
w(i) ∈ RZ and s(i) ∈ RZ are the disturbance vectors. For its part,
θ(i) stands for the parameter vector defined as

θ(i) =
[
θi,1 . . . θi,Z

]T ∈ R2Z . (43)

Assumption 4. The parameter vectors θi,j of all the turbines in the
i-th row belong to the same subset Θ(p) at each sample k (i.e., θi,jk ∈
Θ(p) for j = 1, . . . , Z). Hence, θ(i) lies in the ordered parameter
set Θ of N subsets Θ(p) (i.e., Θ = {Θ(1), . . . ,Θ(N)}) defined as
Θ(p) = (Θ(p), . . . ,Θ(p)).

Remark 12. Assumption 4 seeks reducing the computational burden
of the design and implementation of a switched observer based on
the model (42). However, in reality, it may in fact happen that not all
the parameter vectors θi,j of the i-th row belong to the same subset
Θ(p) at certain sample k. In such cases, we neglect these differences
and we consider that θk(i) belongs to the closest subset Θ(p). In
any case, if more precise results were required, Assumption 4 would
be omitted and the parameter set would be alternatively defined as
Θ′ = {Ωv × Ω∆ × . . .× Ωv × Ω∆}. The partition of Ω∆ and Ωv
as detailed in Section 3.2 would then lead to NZ subsets Θ′(p).

Omitting hereafter the dependence on the number of row i (e.g.,
zlk stands for zlk(i)), it yields

zlk+1 =A(θk)zlk +B(θk)u(θk) +E δlk, (44a)

yk =Cl(θk)zlk +D(θk) rk +U l f i,lk + sk +wk, (44b)

f lk =F zlk, (44c)

with F =
[
0 IZ−1

]
.

6.1 FE and FDI Architecture

In analogy to (20), the following model-based observer is built for
the extended system (44):

ẑlk+1 =A(θ̂k) ẑlk +B(θ̂k)u(θ̂k)+

Ll(θ̂k)(yk −Cl(θ̂k) ẑlk −D(θ̂k) rk),
(45a)

f̂ lk =F zlk +Kl(θ̂k)(yk −Cl(θ̂k) ẑlk −D(θ̂k) rk). (45b)

whereLl(θ̂) ∈ R(2Z−1)×Z andKl(θ̂) ∈ R(Z−1)×Z are the gain
matrices of the observer that we fix to

Ll(θ̂) = Llp if θ̂ ∈ Θ(p), (46a)

Kl(θ̂) = Kl
p if θ̂ ∈ Θ(p). (46b)

Define z̃lk = zlk − ẑlk and f̃ lk = f lk − f̂ lk. It follows that

z̃lk+1 =Al(θ̂k)z̃lk + Bl(θ̂k)Wk +E δlk −Ll(θ̂k)U lf i,lk , (47a)

f̃ lk =Cl(θ̂k) z̃lk + Dl(θ̂k)Wk −Kl(θ̂k)U lf i,lk , (47b)
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zlk+1(i) =


a(vi,1k ) 0 0 0

0
. . . 0 0

0 0 a(vi,Zk ) 0
0 0 0 IZ−1


︸ ︷︷ ︸

A(θk(i))


xi,1k

...
xi,Zk
f l(i)


︸ ︷︷ ︸
zl
k(i)

+


b(vi,1k ) 0 0

0
. . . 0

0 0 b(vi,Zk )
0 0 0


︸ ︷︷ ︸

B(θk(i))


u(vi,1k )

...
u(vi,Zk )


︸ ︷︷ ︸
u(θk(i))

+

[
0

IZ−1

]
︸ ︷︷ ︸

E

δlk(i), (42a)


yi,1k

...
yi,Zk


︸ ︷︷ ︸
yk(i)

=


c(∆i,1

k ) 0 0 −Il−1 0

0
. . . 0 0 0

0 0 c(∆i,Z
k ) 0 − IZ−l


︸ ︷︷ ︸

Cl(θk(i))

zlk(i) +


d(∆i,1

k )
...

d(∆i,Z
k )


︸ ︷︷ ︸
D(θk(i))

rk +

0(l−1)×1

1
0(Z−l)×1


︸ ︷︷ ︸

U l

f i,lk +


si,1k

...
si,Zk


︸ ︷︷ ︸
sk(i)

+


wi,1k

...
wi,Zk


︸ ︷︷ ︸
wk(i)

, (42b)

with

Al(θ̂k)=A(θ̂k)−Ll(θ̂k)Cl(θ̂k),

Cl(θ̂k)=F −Kl(θ̂k)Cl(θ̂k),

Bl(θ̂k)=
[
G(θ̂k) G(θ̂k) −Ll(θ̂k)H(θ̂k) −Ll(θ̂k) −Ll(θ̂k)

]
,

Dl(θ̂k)=
[
0 0 −Kl(θ̂k)H(θ̂k) −Kl(θ̂k) −Kl(θ̂k)

]
,

Wk =
[
λk µk ϕk sk wk

]T
.

We have that λk, µk and ϕk stand in fact for λk(i), µk(i) and
ϕk(i) which are defined in analogy to (28) as

λk(i) = eik/ēp, µk(i) =

εk
i,1/ε̄p

...

εk
i,Z/ε̄p

, ϕk(i) =

hk
i,1/h̄p

...

hk
i,Z/h̄p

,
if θk ∈ Θ(p). For its part, G(θ̂k),G(θ̂k) andH(θ̂k) satisfy

G(θ̂k) =Gp if θ̂k ∈ Θ(p), Gp = R̄0 ēp, (48a)

G(θ̂) =Gp if θ̂k ∈ Θ(p), Gp = R̄ ε̄p, (48b)

H(θ̂k) =Hp if θ̂k ∈ Θ(p), Hp = R h̄p, (48c)

with R̄0 =

[
1Z×1

0(Z−1)×1

]
, R̄ =

[
IZ

0(Z−1)×1

]
and R = IZ . As pre-

viously specified, λk(i) is a single disturbance modelling the wind
propagation error and it affects all the turbines simultaneously.

In all, the signals affecting the l-th observer are the fault gener-
ators δl (with nδ = Z − 1), the disturbances in W (with nλ = 1
and nµ = nϕ = ns = nw = Z) and the fault f i,l which can be
now considered as a new “disturbance”. Following the approaches
in [30], one can verify that it is now possible to decouple f l from
λ if the new “disturbance” f i,l is ignored. Note that if f i,l was not
ignored and its dynamics was considered together with the dynamics
of f l, λ would not verify disturbance decoupling conditions be-
cause it would not be possible to distinguish this disturbance from
the occurrence of simultaneous faults in all the turbines in the row.

Hence, we propose to ignore the presence of the fault f i,l and to
design the observer (45) through the optimization problem

minimize γµnµ‖µ‖2∞ + γϕnϕ‖ϕ‖2∞ + γs‖s‖2RMS +

γw‖w‖2RMS

subject to γλ = 0, γδ ≤ γ̄δ,
Ξmp � 0, ∀p,m

(49)

with Ξmp built in analogy to Ξmp with the matrices in (47) replacing
the matrices in (30). The new constraint γλ = 0 ensures now the
decoupling from λ.

In the absence of the ignored fault f i,l, we can thus set the
following decisions (j = 1, . . . , l − 1, l + 1, . . . , Z):

{
if |f̂ lk[j]| ≥ Jk Fault f l[j]
otherwise No fault f l[j]

. (50)

The adaptive threshold J does not depend on the number of turbine
(i, j) nor on the number of ignored fault l (see Remark 10) and it is
designed following the strategy in Section 5. The decoupling from λ
enhances FDI because J in (50) is now smaller than J in (36).

However, if the fault f i,l is present in the system, the decision
mechanisms (50) are no longer reliable. Hence, we build a bank
of l = 1, . . . Z observers, each of them taking account of the fault
f l and ignoring the fault f i,l. An observer l and the corresponding
decision mechanisms are reliable if the absence of the fault f i,l is
diagnosed by the decision mechanisms of at least another reliable
observer l′ (l′ 6= l). In turn, the reliability of l′ implies that the de-
cision mechanisms of the l-th observer diagnose the absence of the
fault f i,l

′
. In all, the proposed bank of observer and decision mech-

anisms enables FE and FDI whenever 2 of the faults in a row i are
not present in the system (i.e., there are no more than Z − 2 simul-
taneous faults in a row). FE and FDI are then achieved with any of
the reliable observers and decision mechanisms of the bank.

7 Benefits and practical considerations of the
proposed approach

Compared to the relevant existing literature, the benefits of the
proposed approach are the following.
• As detailed in Section 2.2, the proposed approach utilizes a re-
duced number of measurements: the power reference, the generated
power and the WS at the wind mast. This reduces the information
needs w.r.t. other techniques such as the one in [6] (requiring the
rotor speed measurement) or in [10] (requiring the collective pitch
angle measurement). It does not either require the information about
the presumed fault size as it is in [6].
• The residual-based techniques in [6–8] are focused on FDI
tasks. Contrariwise, the proposed approach is focused on both
FE (Section 4) and FDI (Section 5), being more suitable for the
development of AFTC strategies.
• The proposed closed-loop approach is more actively robust against
disturbances and uncertainties than the open-loop methods in [6–9].
• The Markovian jump system approach is a non-conservative pro-
cedure to handle the nonlinearities in the power generation model.
It facilitates the adaptation to the different levels of uncertainties
and disturbances along the parameter set, leading to a less restrictive
compromise between fault sensitivity and robustness.
• The proposed observer design in Section 4.2 guarantees certain
fault sensitivity with optimal disturbance rejection. This perfor-
mance is not guaranteed in [6–9]. where more ad-hoc and user
knowledge-based tuning procedures are utilized to set this trade-off.
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Fig. 6: Rows/groups of WTs in the WF benchmark depending on
the wind direction (→).©: Wind turbine, �: Wind mast.
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Fig. 7: Case A. Description and subsets. Turbine (i = 1, j = 1).

• In contrast to the constant thresholds in [6, 9, 10], the adaptive
FDI mechanisms presented in Section 5 allow the adjustment of the
thresholds to the different WS zones and WT operating modes. The
proposed data-driven design of the FDI thresholds provides tight
bounds for the fault estimates obtained via Markovian observers.
This allows a more rapid detection and isolation of small faults
w.r.t. model-based adaptive thresholds as the ones used in [8], which
moreover require precise bounds of the uncertainties.
• The WF level scheme proposed in Section 6 is based on a system-
atic multi-input multi-output (MIMO) observer that automatically
merges the information acquired from temporal and spatial incon-
sistencies depending on the level of shared uncertainties among the
group of considered WTs. Hence, it is more easily extensible to dif-
ferent WF layouts and wind direction than the residuals in [7–10],
which assume identical wind conditions among groups of WTs.

For its part, practitioners should pay attention to the following
considerations when applying the proposed FE and FDI approach.
• The FE observer (20) is based on the model in Section 3. Al-
though this observer is robust against uncertainties (see Section 4.2),
a minimum fitting of the model parameters (e.g., τr) is necessary.
• Practitioners must take into account the variations of the uncertain-
ties along the parameter set in order to suitably grid it. See Appendix
12.2 including an appropriate gridding for the WF benchmark.
• In practice, the transition probabilities among the subsets of the
parameter set can be computed as detailed in Remark 3.
• The design of the FE observer (20) is based on the convex opti-
mization problem (35), which can be addressed using semidefinite
programming solvers (e.g., YALMIP [31]).
• The data-driven design of the FDI decision mechanism (36) re-
quires a fault-free training dataset. See Remark 8 for practical details
on the obtention of this dataset.
• The WT level approach is independent of the wind direction (WD);
however, the WF level approach depends on the WD. Hence, differ-
ent designs must be performed for different WDs. We propose to
group these WDs (e.g., [0-45]◦ and (45-90]◦) and perform a design
for each of these groups (considering the worst-case WD). The num-
ber of considered WD groups depends on the performance sought
by the user. As the number of groups increases, the performance
ameliorates at the cost of more offline design computations.

Remark 13. The proposed FE and FDI strategy consists on a di-
agnostic tool which processes the available control measurements to
diagnose power faults (Fig. 5). This diagnostic tool does not affect
the system. Remedial actions based on the fault information provided
by the tool will be considered in future works.

Table 2 FE and FDI in the fault-free WT. Turbine (i = 1, j = 1).
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8 Simulation Results

In this section, the proposed strategies are numerically validated us-
ing the WF benchmark simulator [5]. The benchmark is used as
a reference in the literature because it contains a realistic number
of nonlinearities, uncertainties and disturbances. The simulator in-
cludes a WS profile of 4400 s that covers the whole WS range with
challenging WS variations (detailed in Fig.10 of Appendix 12.1) and
it considers the wind directions in Fig. 6.

The proposed WT level strategy is independent of the WF layout
and of the wind direction. The WF level approach requires to group
the nearby turbines and to bound the shared uncertainties caused by
the wind (see Remark 11). In the first wind direction, we simply
group the turbines by rows. In the second wind direction, we group
the WTs as shown in Fig. 6. Due to space constraints, in the follow-
ing, we just include the simulation results for the first wind direction.
Similar WF level results are obtained for the other wind direction.

First, we create a fault-free training dataset by considering 10 dif-
ferent dynamic power reference cases (e.g., Case A in Fig.7). Note
that it is not possible to consider different WS scenarios because only
one WS profile is available in the benchmark; however, this WS pro-
file is complex and considers a wide range of complex variations.
The transitions experienced by the training dataset (e.g., Case A in
Fig.7) are utilized for computing the transition probability matrix of
the Markovian process. These probabilities are computed with the
open-loop estimated power difference because the closed-loop esti-
mates are not yet available. Then, we perform the design of the WT
level observer (20) through the optimization problem (35) and of the
WF level observer (45) through the optimization problem (49). For
both designs, we fix the required H∞ performance describing the
observer fault sensitivity to γ̄δ = 1. The values included in the de-
signs are specified in Table 3 and Table 4 of Appendix 12.2. The
fault-free training dataset is subsequently utilized to obtain the adap-
tive threshold algorithms of the data-based decision mechanisms.
For each training case, we run the designed estimator ((20) for the
WT level and (45) for the WF level). Then, we construct the matri-
ces (39) with all the estimated data and we solve the optimization
problem. All the designs are set up in YALMIP. For simplification,
we omit the numerical results.

Table 2 shows the simulation results for three validation cases
(Cases 1-3 with 103 validation samples). The estimates are in black
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Fig. 8: FE and FDI in the WT (i = 1, j = 1). Case 1 with 40% power degradation during T1 and 3% power degradation during T2.

and the thresholds are in red. For ease of comprehension, we include
both the figures comparing the real estimates in MW with the real
thresholds and the figures comparing normalized FE variables with
unitary thresholds. First, we deduce that more accurate fault esti-
mates are obtained when the WT is able to generate the amount of
requested power. Effectively, in this WT working mode, the uncer-
tainties derived from the WS estimation error disappear. Second, we
verify that the WF level approach enhances fault diagnosability w.r.t.
the WT level approach: the minimum diagnosable faults are ∼ 0.2
MW at the WF level and ∼ 0.8 MW at the WT level. Let us remark
that the norm-based constant thresholds in Remark 6 are∼ 102 MW
(WF level) and∼ 103 MW (WT level), being not applicable in prac-
tice without any further assumption on the statistical distributions of
the disturbances.

Now, let us consider Case 1 and suppose that the turbine (i = 1,
j = 1) is affected by a 40% power degradation during the period T1
(defined as [1000, 1100] s) and by a 3% power degradation during
the period T2 (defined as [3200, 3300] s). The WT level and WF
level FE and FDI results are depicted in Fig.8. The first fault is only
diagnosed at the WF level and the second fault is diagnosed at both
levels (although being more clearly distinguishable at the WF level).
Effectively, relative power degradations are more difficult to diag-
nose during T1 than T2 because the amount of generated power is
smaller and the level of uncertainties is bigger.

Finally, we consider the whole WF and the Case 2 in Table 2.
We assume that the turbine (i = 1 ,j = 3) is affected by a relative
power degradation of 50% during T1 and that the turbine (i = 2
,j = 1) is affected by a relative power degradation of 20% during
T2. Fig.9 shows the WF level simulation results for all the WTs in
the WF. These 4 · 104 samples prove that the proposed approach
allows FE and FDI in the WF. Moreover, the proposed approach
allows simultaneous faults in the farm: if the WT level approach is
utilized, no simultaneity restrictions apply; if the WF level approach
is utilized, the only restriction for achieving FE is that there should
be two simultaneous fault-free turbines per row (i.e., only a faulty
turbine per row in this case).

9 Conclusion

This paper proposed a novel closed-loop scheme for the estimation
of decreased power generation in WTs due to blade erosion and de-
bris build-up. The model-based strategy is based on the Markovian
jump system model of the power generation system of a WT and
it thus covers all the WS zones and WT operating modes. The FE
output is also utilized for FDI in tighten data-based adaptive de-
cision mechanisms. The approach is first applied to a single WT
and then generalized from a WF perspective. The WF approach has
the advantage of being easily applicable to different wind directions
and layouts by simply adjusting the level of shared uncertainty by
the considered groups of nearby turbines. The proposed strategies
are tested in a realistic numerical simulator in the context of FD in
WFs. Future work includes their application to a small-scale physi-
cal simulator. Also, the extension of the proposed approach to other
WT systems and the use of the fault estimates in AFTC strategies
highlight as immediate future work.
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12 Appendices

12.1 Wind Speed Estimation

From v̂0, it is possible to estimate the mean WS acting on the WTs
in the i-th row through different propagation models available in
the literature, see [32] and the references therein. Provided the wind
and wake model of the benchmark in [5], we compute the estimated
mean WS using the following propagation model:

v̂i(t) =
1

Ki
v̂i−1(t− tip(t)), tip(t) =

li
v̂0
f (t)/(Ki)i−1

,

where Ki is a wake factor and satisfies Ki = 1 for i = 1 and Ki =
0.9 for i = 2, . . . , Y − 1. The term tip(t) represents the propagation
time between two consecutive rows and v̂0

f results from filtering v̂0

using the low-pass filter Gf (s) = 1/(s+ 1).
The WF benchmark provides the real signals vi,j for numeri-

cal validations of the wind propagation schemes. Fig.10 shows the
WS estimation results for the row i = 1 in Fig. 1. Recall that the
estimates are common to all the turbines in a row i.

Table 3 Partition of the set Ωv .

pv Boundaries A1
p A2

p ēp [m/s] ε̄p [m/s]

1 0 ≤ v < 4 0.973 ⊕-1 0.973 ⊕-1 0.55 0.13
2 4 ≤ v < 7 0.973 ⊕-1 0.934 ⊕-1 1.95 0.66
3 7 ≤ v < 11.25 0.934 ⊕-1 0.895 ⊕-1 3.25 1.78
4 11.25 ≤ v < 12.5 0.895 ⊕-1 0.891 ⊕-1 1.44 1.34
5 12.5 ≤ v < 25 0.891 ⊕-1 0.891 ⊕-1 0.82 0.07
6 25 ≤ v < 30 0.973 ⊕-1 0.973 ⊕-1 0.55 0.07

Table 4 Partition of the set Ω∆.

p∆ Boundaries Cp Dp h̄p [MW]

1 -4.8 ≤ ∆ < -0.48 [1 -1] 0 0
2 -0.48≤ ∆ < 0 [1 -1] 0 0.48
3 0≤ ∆ < 0.48 [0 -1] 1 0.48
4 0.48≤ ∆ < 4.8 [0 -1] 1 0
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Fig. 10: Wind estimation for the WTs in the row i = 1 [m/s]. Black:
Real (j = 1), Blue: Estimation. Dashed black: Wind zones.
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Fig. 11: Bounds ēp of the disturbance ei (ρ = 4 m/s).

12.2 Uncertainties and Partition of the Parameter Set

Let us first bound the WS estimation error. Since vi is not available
for numerical validations, we cannot separately compute the prop-
agation error and the turbulence. Hence, we bound the turbulence
error as |ṽi,jt | ≤ 3σt and we conservatively bound the wind propa-
gation error as |ṽip| ≤ ρ with ρ being the 99-th percentile of the total
error ṽi,j .

Then, we compute the bounds of the uncertainties ei and εi,j ,
which are caused by these wind estimation errors. Define Ψ(vi,j) =
a(vi,j)x̄+ ū(vi,j) with x̄ = 4.8 MW. The bounds of ei and εi,j for
a certain WS vi,j verify

ei(vi,j) =max
{
|Ψ(vi,j)−Ψ(vi,j ± ρ)|

}
,

εi,j(vi,j) =max

{
|Ψ(vi,j + ρ)−Ψ(vi,j + ρ± 3σt)|
|Ψ(vi,j − ρ)−Ψ(vi,j − ρ± 3σt)|

}
.

Fig.11 shows the results regarding ei. Smaller bounds are obtained
for εi,j (not included here due to space constraints). Provided these
results and given the form of a(vi,j), we divide Ωv into Nv = 6
subsets as shown in Table 3. The table includes the value of the
matrices in (16) (Bmp is deduced from Amp ) and the bounds of the
uncertainties related to the WS estimation in Fig.10.

Provided the definition of the uncertainties hi,j and given the
binary functions c(∆i,j) and d(∆i,j), we divide the set Ω∆ into
N∆ = 4 subsets as detailed in Table 4. We have here considered
that no WT operating mode estimation error appears above the 10%
of the nominal power (i.e., 0.48 MW).
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