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L. BERNAL-GONZÁLEZ, J.A. CONEJERO, M. MURILLO-ARCILA,

AND J.B. SEOANE-SEPÚLVEDA

Abstract. In this paper, the notion of [S]-lineability (originally coined
by Vladimir I. Gurariy) is introduced and developed in a general abstract
setting. This new notion is, then, applied to specific situations, as for
instance, classes of differentiable nowhere monotone functions as well
as families of vectors having dense orbit with respect to an operator.
Large convex structures are also shown to exist inside the family of
topologically mixing continuous selfmaps of a real compact interval.

1. Preliminaries and notation

Throughout this manuscript, we will be concerned with the search for
large algebraic structures inside subsets of certain topological vector spaces
satisfying special properties. This enters the modern theory of lineability,
whose basic concepts and results can be found in the book [2] (see, also,
[3,6,7,13,14,16,17,23,36,39]). The one result that, most likely, inspired the
introduction of this theory was perhaps that of Levine and Milman [30] from
1940 (and that we shall mention later on in this manuscript) that states that
the subset of C[0, 1] of all functions of bounded variation does not contain
an infinite dimensional closed subspace. Later, in 1966, Gurariy showed
an analogue of this previous result ([27]), namely he showed that the set
of everywhere differentiable functions on [0, 1] does not contain, either, an
infinite dimensional closed subspace. This battery of negative results, among
others, motivated the introduction of the notion of lineability in 2005 [5].

In this paper, we shall develop –mainly in the context of function spaces–
two new notions, namely, [S]-lineability and convex lineability, see below.

The following terminology of lineable and spaceable was first introduced
by V.I. Gurariy in [5] and, later, in [22, 28]. To avoid trivial or undesirable
situations, we shall assume along this paper that a vector space X never
collapses to {0} and that a topological vector space is always Hausdorff. A
subset M of a vector space X is said to be lineable if M ∪ {0} contains
an infinite dimensional vector space. If X is, in addition, a topological
vector space, then M is called spaceable if M∪{0} contains a closed infinite
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dimensional vector subspace. As introduced in [4], M is called dense-lineable
if M ∪ {0} contains a dense vector subspace. Trivially, spaceability implies
lineability and, if X is infinite-dimensional, then dense-lineability implies
lineability too.

Gurariy also coined the concept contained in the next definition. As usual,
we will denote by N, N0, R, C, C(R), ω, respectively, the set of natural
numbers, the set N ∪ {0}, the real line, the complex plane, the space of
continuous functions R → R, and the space of scalar sequences KN, where
K = R or C.

Definition 1.1. (V.I. Gurariy, 2004)
Assume that X is a topological vector space, M is a subset of X, S is a
vector subspace of ω, and (un)n is a linearly independent sequence in X.
Then we say that M is:

• [(un)n,S]-lineable if, for every sequence (cn)n ∈ S, the series∑∞
n=1 cnun converges in X to a vector of M ∪ {0}.

• [S]-lineable in X if it is [(un)n,S]-lineable for some linearly indepen-
dent sequence {un}n∈N ⊂ X.

As far as we know, the notion of [S]-lineability was never developed in the
related literature. This work would be the first time in which it appears.

As usual, we denote by conv(A) the convex hull of a subset A of a vector
space X, that is,

conv(A) =

{
n∑
i=1

λixi : xi’s ∈ A, λi’s ∈ [0, 1],
n∑
i=1

λi = 1, n ∈ N

}
.

We introduce here the following concept.

Definition 1.2. Let M be a subset of a vector space X. Then M is said
to be convex lineable if there exists an infinite linearly independent subset
A ⊂ X such that conv(A) ⊂M .

Note that demanding conv(A) ⊂ M ∪ {0} instead of conv(A) ⊂ M in
the last definition would be superfluous, because 0 is never a convex line-
ar combination of linearly independent vectors. Plainly, lineability implies
convex lineability, but the converse is false. For instance, consider the basic
sequence {en}n∈N in ω, where en = (0, 0, . . . , 0, 1, 0, 0, . . . ) (with the 1 at
the nth place). Trivially, the set M := conv({en}n∈N) is convex lineable
but not lineable.

The aim of this paper is threefold. Specifically, in Section 2 the concept
of [S]-lineability will be developed into a general context, mainly in the line
of its relationship with other kinds of lineability. As concrete examples, in
Sections 3 and 4 we intend to study the existence of [S]-lineability in two
concrete families of vectors of certain topological vector spaces: the set of
hypercyclic vectors for an operator and the set of differentiable nowhere
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monotone real functions, respectively. Finally, in Section 5, convex lineabi-
lity will be analyzed inside the set of topologically mixing continuous maps
on a compact interval.

2. Properties of [S]-lineability

Unless otherwise specified, throughout this section X will represent a
given topological vector space.

We start with the following trivial assertions, in which the notation of
Definition 1.1 is used:

• If M ⊂ X is [S1]-lineable in X and S1 ⊃ S2, then M is [S2]-lineable.
In particular, if M is ω-lineable in X then it is also [S]-lineable for
any vector space S of scalar sequences.
• A subset M of X is lineable if and only if it is [c00]-lineable, where
c00 stands for the space of all eventually zero sequences.

An initial natural question is whether in Definition 1.1 the linearly inde-
pendent sequence {un}n∈N can be found in the set M itself. An elementary
answer is given by the following proposition.

Proposition 2.1. Let S be a vector subspace of ω such that S ⊃ c00.
Assume that M is an [S]-lineable subset of X. Then there is a linearly
independent sequence {un}n∈N ⊂ M such that, for every sequence (cn)n ∈
S, the series

∑∞
n=1 cnun converges in X to a vector of M ∪ {0}.

Proof. From the assumption, there is a linearly independent sequence
{un}n∈N ⊂ X satisfying the property in the conclusion. Fix N ∈ N and
consider the Nth basic vector (cn)n = eN , that belongs to c00, so to S.
It follows that

∑∞
n=1 cnun converges in X to a vector of M ∪ {0}. But∑∞

n=1 cnun = uN and uN 6= 0, so uN ∈M . Since this holds for all N ∈ N,
the conclusion follows. �

Remark 2.2. With a similar argument it can be proved that the conclusion
of the last proposition holds just by demanding S ⊃ c00k for some k ∈ N,
where c00k = {x = (xn)n ∈ c00 : x1 = · · · = xk = 0}. Moreover, we have
in fact that a subset M ⊂ X is lineable if and only if it is [c00k]-lineable
for some k ∈ N. However, it is not at all apparent that a subset is lineable
as soon as it is [S]-lineable for some infinite dimensional space S ⊂ ω. The
next elementary proposition furnishes a sufficient condition in that line.

Recall that a sequence (un)n of a metrizable topological vector space X
is said to be basic whenever every u ∈ span{un : n ∈ N}, the closed linear
span of the un’s, can be uniquely represented as a convergent series u =∑∞

n=1 cnun. It is easy to see that a basic sequence is a linearly independent
set.

Proposition 2.3. Assume that (un)n is a basic sequence in X, where X
is metrizable, and that M is a [(un)n,S]-lineable subset of X, where S is
an infinite dimensional vector subspace of ω. Then M is lineable.
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Proof. Since (un)n is a basic sequence, S is infinite dimensional and the
mapping

Φ : (cn)n ∈ S 7−→
∞∑
n=1

cnun ∈ X

is linear and one-to-one. Therefore dim(Φ(S)) = dim(S) =∞. But Φ(S) ⊂
M ∪ {0}, so M is lineable. �

Trivially, the space X := ω (endowed with the product topology) is ω-
lineable in itself, so [S]-lineable for all S. It is well known that ω does not
support a continuous norm. The following proposition shows that the last
maximality property “[S]-lineable for all S ” does not hold if X supports a
continuous norm.

Proposition 2.4. Suppose that X supports a continuous norm and that
M ⊂ X. Then M is not ω-lineable in X. In particular, no normable space
is ω-lineable in itself.

Proof. It is enough to prove that X cannot be ω-lineable in itself. For this, it
suffices to exhibit, for a prescribed linear independent sequence {un}n∈N ⊂
X, a vector (cn)n ∈ ω such that the series

∑∞
n=1 cnun does not converge in

X. Let ‖ · ‖ be a continuous norm on X. Since un 6= 0, we get ‖un‖ > 0
for all n ∈ N. Define cn := ‖un‖−1. Then

∑∞
n=1 cnun does not converge

in X because, otherwise, it would converge in ‖ · ‖, and so ‖cnun‖ → 0 as
n→∞, which is absurd because ‖cnun‖ = 1 for all n ∈ N. �

We remark that the last proposition provides us with examples of sets
that are dense-lineable or spaceable but not ω-lineable.

If G is a domain of the complex plane, that is, a nonempty connected open
subset of C, then H(G) will denote, as usual, the space of all holomorphic
functions G → C, endowed with the topology of uniform convergence on
compacta (in the special case G = C, we obtain the space H(C) of entire
functions). Under this topology, H(G) becomes a Fréchet space, that is, a
complete metrizable locally convex topological vector space. Also the spaces
of differentiable functions Ck(R) up to order k (k ∈ N0 ∪ {∞}) are Fréchet
spaces under the topology of uniform convergence on compacta in R for
functions and their derivatives up to order k. The space H(G) supports
a continuous norm (indeed, take ‖f‖ := supK |f |, where K ⊂ G is any
compact set with nonempty interior). Hence H(G) is not ω-lineable in itself
by Proposition 2.4. However, no space Ck(R) (as ω) supports a continuous
norm. Nevertheless, every Ck(R) contains a topologically isomorphic copy
of ω; indeed, fix a sequence of nonzero functions {ϕn}n∈N ⊂ C∞(R) such
that the support of each ϕn is contained in [n, n + 1]; then, for all k, the
mapping

(cn)n ∈ ω 7−→
∞∑
n=1

cnϕn ∈ Ck(R)
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is well-defined, linear, one-to-one and continuous. Thus, every Ck(R) is
ω-lineable.

An important class of vector subspaces of ω is that of Köthe echelon
spaces (see, e.g., [33, Chapter 27]). Let A = (aj,k)j,k≥1 be an infinite matrix
such that, for any j, k ≥ 1, we have 0 < aj,k ≤ aj+1,k. The Köthe echelon
spaces λp(A) with 1 ≤ p <∞ and c0(A) are defined by

λp(A) =
{

(ck)k ∈ ω :

∞∑
k=1

|ckaj,k|p <∞ for all j ∈ N
}
,

c0(A) =
{

(ck)k ∈ ω : lim
k→∞

ckaj,k = 0 for all j ∈ N
}
.

For instance, the sequence spaces `p := {(ck)k ∈ ω :
∑∞

k=1 |ck|p < ∞},
c0 = {(ck)k ∈ ω : limk→∞ ck = 0} are, respectively, λp(A) and c0(A) with
aj,k = 1 for all j, k. Moreover, the space H(C) of entire functions can

be seen as λ1(A) with aj,k = jk, while the space s of rapidly decreasing
sequences may be identified with λ1(A), where aj,k = kj .

The following theorem links spaceability to [S]-lineability when S is a
Köthe space.

Theorem 2.5. Assume that M ⊂ X. We have:

(a) If M is [S0]-lineable in X for some Köthe echelon space S0, then it
is [S]-lineable in X for every Köthe space S.

(b) If X is a Fréchet space supporting a continuous norm and M is
spaceable in X, then it is [S]-lineable in X for every Köthe echelon
space S.

Proof. (a) We are assuming that M is [S0]-lineable in X for some Köthe
space S0 = λp(A) or c0(A), where p ∈ [1,∞). Our aim is to prove that M
is also [S]-lineable in X for any other Köthe space S = λp(B) or c0(B).
Since λp(C) ⊂ c0(C) for every Köthe matrix C and every p ∈ [1,∞), we
can assume without loss of generality that S0 = λp(A) and S = c0(B).
Let A = (aj,k)j,k≥1 and B = (bj,k)j,k≥1. From the hypothesis, there is a
linearly independent sequence {un}n∈N ⊂ X such that, for every sequence
(cn)n ∈ ω satisfying

∞∑
k=1

|ckaj,k|p <∞ for all j = 1, 2, . . . , (1)

the series
∑∞

n=1 cnun converges in X to some point of M .

Our goal is to exhibit a linearly independent sequence {vn}n∈N ⊂ X such
that, for every sequence (dn)n ∈ ω satisfying

lim
k→∞

dkbj,k = 0 for all j = 1, 2, . . . ,
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the series
∑∞

n=1 dnvn converges in X to some point of M . For this, we
define for all n ∈ N the following scalars and vectors:

γn :=
1

n2(a1,n + a2,n + · · ·+ an,n)(b−11,n + b−12,n + · · ·+ b−1n,n)
,

vn := γn un.

Note that the vn’s are still linearly independent. Fix a sequence (dn)n as
above and let

cn := γn dn (n ∈ N).

It follows that dnvn = cnun, and so we would have proved that the series∑∞
n=1 dnvn converges to a point of M as soon as we verify that (cn)n

satisfies (1). With this aim, fix j ∈ N. Since dkbj,k → 0 as k → ∞,
this sequence is bounded. Therefore we can find K ∈ (0,+∞) such that
|dk| ≤ K b−1j,k for all k ∈ N. Now, by the definition of cn, we have for all

k ≥ j that

|ck aj,k|p ≤
Kp

k2p
.

Since 2p ≥ 2 > 1, the comparison test yields the desired convergence.

(b) On the one hand, since X is metrizable and locally convex, its topology
is defined by an increasing sequence of seminorms p1 ≤ p2 ≤ · · · ≤ pn ≤ · · ·
(see, e.g., [38, Chapter 4]). By assumption, there exists a continuous norm
‖ · ‖ on X. It follows that the topology of X is also generated by the
increasing sequence of norms ‖ · ‖1 ≤ ‖ · ‖2 ≤ · · · ≤ ‖ · ‖n ≤ · · · , where
‖·‖n := ‖·‖+pn. On the other hand, due to the completeness, every Cauchy
sequence for each translation-invariant distance defining the topology of X
is convergent. Moreover, a sequence in X is Cauchy if and only if it is ‖ ·‖n-
Cauchy for every n ∈ N. When one applies this to a series

∑
nwn with

{wn}n∈N ⊂ X, one obtains that
∑

nwn converges if all series
∑

n ‖wn‖N
(N ∈ N) do.

Now, assume that M is a spaceable subset in X. Since finite dimensional
subspaces are always closed, we can find a linearly independent sequence
{un}n∈N ⊂ X such that span{un}n∈N ⊂ M ∪ {0}. Since each ‖ · ‖ is a
norm, we can define

vn :=
un
‖un‖n

(n ∈ N).

Trivially, span{vn}n = span{un}n, and so span{vn}n∈N ⊂ M ∪ {0}. Ac-
cording to part (a), it suffices to prove that M is [`1]-lineable. To this
end, fix a sequence (cn)n ∈ `1 as well as an N ∈ N. We have on the one
hand that Sn :=

∑n
j=1 cjvj ∈ span{vn}n∈N for all n ∈ N. On the other

hand, ‖cnvn‖N = |cn| ‖un‖N‖un‖n ≤ |cn| for any n ≥ N . Since
∑

n |cn| < ∞,

the comparison test yields the convergence of
∑

n ‖cnvn‖N . It follows that∑∞
n=1 cnvn converges to some vector of X, say w0. In other words, Sn → w0

as n→∞. Consequently, w0 ∈ span{vn}n∈N and, thus, w0 ∈M∪{0}. This
had to be shown. �
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Remark 2.6. The assertion contained in Theorem 2.5(b) cannot be re-
versed, as we are going to prove by means of the following example (more
examples will be provided in Sections 3–4). Levine and Milman [30] publi-
shed in 1940 what was probably the first result on non-spaceability, namely,
the set BC of continuous functions [0, 1] → R having bounded variation
is not spaceable in the Banach space C[0, 1] of continuous functions en-
dowed with the maximum norm. Nevertheless, it is [`∞]-lineable (hence
[c0]-lineable, and so [S]-lineable for every Köthe space S, due to Theo-
rem 2.5(a)). Indeed, let us fix a sequence (cn)n ∈ `∞, that is, there is
K ∈ (0,∞) such that |cn| ≤ K for all n ∈ N. The sequence fn(x) := xn

n3

(n ≥ 1) is linearly independent, consists of C1-functions and satisfies that
the series

∑∞
n=1(cn fn)′ converges uniformly on [0, 1], which in turn follows

from the Weierstrass M-test, the convergence of
∑∞

n=1
1
n2 and the inequal-

ity |cn f ′n(x)| ≤ K
n2 . Moreover, trivially, the series

∑∞
n=1 fn(0) converges.

Then a well-known convergence criterion yields that
∑∞

n=1 cn fn converges
in C([0, 1]) to a C1-function h. But any C1-function on a compact interval
is of bounded variation, and so h ∈ BC.

The next and final assertion of this section provides nontrivial spaces S
(that is, S is essentially different from ω) showing that neither lineability
nor dense-lineability imply [S]-lineability.

Theorem 2.7. Let X be an infinite dimensional Banach space. Then the
following holds:

(a) There is a lineable subset M ⊂ X such that, for every Köthe echelon
space S, the set M is not [S]-lineable.

(b) If X possesses a Schauder basis, then there exists a dense-lineable
subset M ⊂ X such that, for every Köthe echelon space S, the set
M is not [S]-lineable.

Proof. According to a theorem due to Mazur (see, e.g., [20]), there exists a
basic sequence {en}n≥1 in X. Observe that we can suppose that {en}n≥1
is normalized, that is, ‖en‖ = 1 for all n ∈ N. Define the set

M := span({en}n≥1).
Since a basic sequence is linearly independent, we have that M is lineable.
Suppose that we have already proved that M is not [`1]-lineable. Then,
thanks to Theorem 2.5(a), it cannot be [S]-lineable for any Köthe space S.
Moreover, if {en}n≥1 were a Schauder basis for X, then M would be dense
in X, so dense-lineable because M is itself a vector space. Consequently,
it is enough to show that M is not [`1]-lineable.

With this aim, assume, by way of contradiction, that M is [`1]-lineable.
Then we can find a linearly independent sequence {un}n≥1 ⊂ X satisfying
that, for every (cn)n ∈ `1, the series

∑∞
n=1 cnun converges in X to an

element of M∪{0} = M . Notice that, according to Proposition 2.1 and since
`1 ⊃ c00, we may assume {un}n≥1 ⊂ M . Therefore, we can find, for every
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n ∈ N, a finite nonempty subset Fn ⊂ N as well as scalars λn,j ∈ K \ {0}
(j ∈ Fn) satisfying

un =
∑
j∈Fn

λn,jej . (2)

For the sake of completeness, we set λn,j := 0 whenever j ∈ N\Fn (n ∈ N).
Now, we define the following sequence of positive scalars:

γn = 1 +
∑
j∈Fn

|λn,j | (n ∈ N).

Consider the vector space `1((γn)) :=
{

(cn)n ∈ ω :
∑∞

n=1 |cn| γn < ∞
}

,
which becomes a Banach space under the norm ‖(cn)n‖γ :=

∑∞
n=1 |cn| γn.

On the one hand, observe that, since γn > 1 (n = 1, 2, . . . ), we have
`1((γn)) ⊂ `1. On the other hand, for every (cn)n ∈ `1((γn)), the series∑∞

n=1 cnun converges to some vector U = U((cn)) ∈ X because X is
complete and the series of norms

∑∞
n=1 ‖cnun‖ converges. Indeed, we have

for all n ∈ N that

‖cnun‖ =

∥∥∥∥∥cn ∑
j∈Fn

λn,jej

∥∥∥∥∥ ≤ |cn|∑
j∈Fn

|λn,j | ‖ej‖ ≤ |cn|γn,

and the comparison test does the job. Due to our assumption, we have that
U((cn)) ∈M .

Next, we consider the linear mappings

Λj : (cn) ∈ `1((γn)) 7−→
∞∑
n=1

λn,jcn ∈ K (j = 1, 2, . . . ).

It follows from the inequalities |λn,jcn| ≤ |cn| γn (j, n ≥ 1) that every Λj
is well defined and, thanks to the Closed Graph Theorem, it is continu-
ous. Note that, due to the convergence of each series

∑∞
n=1 λn,jcn and the

uniqueness of coefficients of the expansion associated to a Schauder basis,
we get

U((cn)) =
∞∑
j=1

Λj((cn)) ej . (3)

Assume that there exists N ∈ N such that Λj = 0 for all j > N . Then, by
taking successively

(cn)n = (1, 0, 0, 0, . . . ), (0, 1, 0, 0, . . . ), (0, 0, 1, 0, . . . ), . . .

and so on, and after computing Λj((cn)), we get λn,j = 0 for all j > N and
all n ∈ N. But, according to (2), this would entail that span ({un}n≥1) ⊂
span{e1, . . . , eN}, which contradicts the linear independence of {un}n≥1.
Therefore there is an infinite subset S ⊂ N such that Λj 6= 0 for all j ∈ S
and Λj = 0 for all j 6∈ S. Hence, for each j ∈ S, the kernel Λ−1j ({0}) of Λj
is a vector subspace of `1((γn)) that is closed (because Λj is continuous)

and of empty interior (because the inclusion Λ−1j ({0}) ⊂ `1((γn)) is strict).
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Due to the Baire category theorem, the countable union
⋃
j∈S Λ−1j ({0})

is of first category in X. Hence the set

A := `1((γn)) \
⋃
j∈S

Λ−1j ({0})

is not empty. Thus, we can select an element (cn)n ∈ A ⊂ `1((γn)) ⊂ `1. It
follows from (3) that for this element we have

U((cn)) =
∑
j∈S

Λj((cn)) ej .

Finally, due to the uniqueness of the expansion in the basis {ej}j∈N and
to the fact that Λj((cn)) 6= 0 for infinitely many j, we arrive to U((cn)) 6∈
span({en}n∈N) = M . This is the sought-after contradiction. �

3. [S]-lineability and hypercyclic vectors

As said in the Introduction, in this section and the next one we will
focus our attention on two specific families, namely, the set of hypercyclic
vectors respect to a linear operator, and the class of differentiable functions
that are nowhere monotone on the real line. Just as a brief summary, let
us recall that the existence of these “differentiable monsters” (differentiable
nowhere monotone functions) dates back to the work by Katznelson and
Stromberg (1974, [29]), although several new constructions have been ap-
pearing since then (see, e.g., [18] for a recent expository work covering this
class of functions).

For background on hypercyclicity, the reader is referred to the mono-
graphs [9] and [26] (see, also, [8]). This topic has been widely investigated
during the last three decades. If X is a topological vector space, an oper-
ator on X is a continuous linear selfmap T : X → X. We say that T is
hypercyclic provided that there is a vector x0 ∈ X (called hypercyclic for
T ) whose T -orbit {Tnx0 : n ∈ N} is dense in X, where we have denoted
Tn = T ◦T ◦· · ·◦T (n times). If X supports some hypercyclic operator, then
X is infinite dimensional. The set of hypercyclic vectors for T is denoted
by HC(T ).

It is well-known that, if T is hypercyclic, then HC(T ) is dense (and
even residual if, in addition, X is completely metrizable). Other impor-
tant property is that, under hypercyclicity of T , the set HC(T ) contains,
except for zero, a dense T -invariant vector subspace of X (see [42]). In
particular, HC(T ) is always dense-lineable. We wonder whether HC(T ) is
[S]-lineable for “reasonable” subspaces S ⊂ ω (that is, subspaces containing
c00 strictly). According to Theorem 2.5, if X were a Fréchet space support-
ing a continuous norm and HC(T ) were spaceable, this set would be [S]-
lineable for every Köthe space S (see [31]). However, not every set HC(T )
is spaceable (for sufficient conditions for spaceability or non-spaceability of
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HC(T ), see [34] and the references contained in it). Nevertheless, the fol-
lowing result shows that the mentioned property of [S]-lineability always
holds, at least if the operators live in a Banach space.

Theorem 3.1. Assume that T is a hypercyclic operator on a Banach space
X. Then the set HC(T ) is [S]-lineable in X for every Köthe echelon space
S.

Proof. According to Theorem 2.5(a), it is enough to prove that HC(T ) is
[c0]-lineable. Let x0 ∈ HC(T ). It is a well known fact (see, e.g., [26]) that
the T -orbit {Tx0, T 2x0, T

3x0, . . . } of x0 under T is linearly independent.
Then the vectors un := (n!)−1Tnx0 (n ∈ N) form a linearly independent
system too.

Fix a sequence (cn)n ∈ c0, so that cn → 0 and, in particular, (cn)n is

bounded. This implies that limn→∞ |cn/n!|1/n = 0 and, consequently, the
series Φ(z) :=

∑∞
n=1

cn
n! z

n defines an entire function K → K. Now, the
mapping

Φ(T ) : x ∈ X 7−→
∞∑
n=1

cn
n!
Tnx ∈ X

is a well defined operator on X (see, e.g., [21]). If Φ = 0 then, trivially,
Φ(T )x0 = 0 ∈ HC(T ) ∪ {0}. If Φ 6= 0 then, according to [10, Theorems
3 and 4], Φ(T )x0 ∈ HC(T ). To sum up, for any (cn)n ∈ c0, the series∑∞

n=1
cn
n! T

nx =
∑∞

n=1 cnun converges to a vector of HC(T ) ∪ {0}, as re-
quired. �

Now, let us briefly pay attention to special classes of hypercyclic ope-
rators. As an extension of the theorems by Birkhoff [15] and MacLane
[32] (who proved, respectively, the hypercyclicity of the translation ope-
rator f ∈ H(C) 7→ f(· + 1) ∈ H(C) and of the differentiation operator
D : f ∈ H(C) 7→ f ′ ∈ H(C)), Godefroy and Shapiro [25] established that
any convolution operator

T1 : H(C) −→ H(C)

(i.e., such that T1D = DT1) that is not scalar (i.e., T1 6= λI for all λ ∈ C) is
hypercyclic. It was not until recently (see [34,35,40]) when the set HC(T1)
was proved to be spaceable for such convolution operators T1. On the
other hand, it was shown in 1995 (see [11, 12]) that, if ϕ : G → G is an
automorphism of a domain G ⊂ C that is not conformally isomorphic to
C\{0} and ϕ is runaway (i.e., given a compact set K ⊂ G, there is N ∈ N
such that K ∩ ϕN (K) = ∅, where ϕN denotes the Nth-iterate of ϕ), then
the composition operator

T2 : f ∈ H(G) 7−→ f ◦ ϕ ∈ H(G)

is hypercyclic and the set HC(T2) is spaceable. Since H(Ω) is non-normable
for any domain Ω, Theorem 3.1 cannot be applied in order to prove the [S]-
lineability of HC(Ti) (i = 1, 2) for Köthe spaces S. Nevertheless, with some
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of our tools at hands, their [S]-lineability can be easily derived. Moreover,
such [S]-lineability can be performed through a rather “tamed” sequence of
holomorphic functions:

Proposition 3.2. Assume that S is a Köthe echelon space and that T is
one of the convolution operators T1 or one of the composition operators T2
described above. Let Ω = C, G according to T = T1, T2, respectively. Then
there exists a sequence {fn}n∈N ⊂ H(Ω) of entire functions satisfying the
following properties:

(a) The set {fn : n ∈ N} is linearly independent.
(b) The set {fn : n ∈ N} is relatively compact in H(Ω).
(c) The set HC(T ) is [(fn)n,S]-lineable in H(Ω).

Proof. Let A = (aj,k)j,k≥1 be an infinite matrix such that 0 < aj,k ≤ aj+1,k

(j, k ≥ 1). Since every Köthe echelon space λp(A) (1 ≤ p <∞) is contained
in c0(A), it is enough to prove the result for S = c0(A). For future purposes,
we set γn := n2(1+a−11,n+a−12,n+ · · ·+a−1n,n) for n ∈ N. As said before, H(Ω)
is a Fréchet space supporting a continuous norm. In fact, the topology of
H(Ω) is generated by the sequence of norms ‖f‖n := supKn |f | (n ∈ N),
where (Kn) is a sequence of of compacta satisfying Ω =

⋃
n≥1Kn and

Kn ⊂ K◦n+1 (n ≥ 1) (see, e.g., [19]). It follows from Theorem 2.5(b) and its
proof that there is a linearly independent sequence (gn)n ⊂ H(Ω) satisfying
that, for every (dn) ∈ `1, the series

∑∞
n=1 dngn converges to some vector

of HC(T ) ∪ {0}. In fact, the series
∑∞

n=1 ‖dngn‖N converges for every
N ∈ N. Recall that the gn’s can be extracted from a closed vector space
Y ⊂ HC(T ) ∪ {0}, so that each series

∑∞
n=1 dngn as above converges to

some element of Y .

Define the sequence (fn)n by fn := gn
γn (1+‖gn‖n) . Observe that this se-

quence is still linearly independent. Now, given a compact set K ⊂ Ω, there
is m ∈ N such that K ⊂ Km. Then, for every n ≥ m and every z ∈ K,
we get

|fn(z)| ≤ |gn(z)|
1 + ‖gn‖n

≤ |gn(z)|
1 + supK |gn‖

≤ 1,

because γn > 1 for all n ≥ 1. This implies that

|fn(z)| ≤ max{1, sup
K
|f1|, . . . , sup

K
|fm−1|} (z ∈ K, n ∈ N),

that is, (fn)n is uniformly bounded on every compact set. It follows from
Montel’s Theorem (see, e.g., [1]) that (fn)n is relatively compact in H(Ω).

It remains to prove that the set HC(T ) is [(fn)n, c0(A)]-lineable. For this,
take a sequence (cn)n ∈ c0(A). It follows easily that cn

a−1
1,n+···+a

−1
n,n
→ 0 as

n→∞, and so this sequence is bounded. This, in turn, implies (dn)n ∈ `1,
where dn := cn/γn. Hence, for every N ∈ N, the series

∑∞
n=1 ‖dngn‖N

converges. Now, cnfn = dn αn gn, where αn := (1 + ‖gn‖n)−1 ∈ (0, 1). By
the comparison test, the series

∑∞
n=1 ‖cnfn‖N converges for every N ∈ N.
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Consequently, the series
∑∞

n=1 cnfn converges to some h ∈ H(Ω). But,
since cnfn = dn αn gn ∈ Y and Y is a closed vector space, we get h ∈ Y ,
and so h ∈ HC(T ) ∪ {0}, as required. �

4. [S]-lineability and nowhere monotone functions

We will analyze here an interesting family of functions that, being not
spaceable, is nevertheless [S]-lineable for Köthe spaces S.

Definition 4.1. A function f : R −→ R is said to be nowhere monotone
whenever f is not monotone on any open interval J ⊂ R.

The set of all everywhere differentiable functions on R that are nowhere
monotone on R will be denoted by DNM from now on.

It was shown in [24, Theorem 4.1] that DNM is a c-lineable set, meaning
that the existing subspace M ⊂ DNM ∪ {0} can even be found satisfying
dim(M) = c, the cardinality of the continuum. However, DNM is not
spaceable in C(R), which follows from a celebrated result due to Gurariy
[27] asserting that the set of differentiable functions on any compact non-
degenerate interval is not spaceable. We shall modify the proof of [24, Theo-
rem 4.1] in order to show the desired [S]-lineability (see Theorem 4.3 below).
In the mentioned proof, properties of the so-called approximately continuous
functions were used. However, we will not need them at all.

Prior to establish our result, we state the following elementary lemma.

Lemma 4.2. Let Λ : R→ R \ {0} be a function. Then the set of functions

{x 7→ Λ(α)eαx
2

: α ∈ R} is linearly independent.

Proof. Clearly, it suffices to show the linear independence of the functions

eαx
2

(α ∈ R). Assume, by way of contradiction, that they are linearly
dependent. Then there are p ∈ N with p ≥ 2, real numbers α1 < α2 <

· · · < αp and scalars λ1, . . . , λp with λp 6= 0 such that
∑p

j=1 λje
αjx

2
= 0

for all x ∈ R. Therefore

p−1∑
j=1

λj
λp
e(αj−αp)x

2
+ 1 = 0 and, letting x → +∞,

we get 0 + 1 = 0, which is absurd. �

Theorem 4.3. The set DNM is [S]-lineable in C(R) for every Köthe
echelon space S.

Proof. According to Theorem 2.5(a), it suffices to show that DNM is [`1]-
lineable. As we mentioned earlier, in 1974, Katznelson and Stromberg [29]
(see also [41, pp. 80–83]) were able to construct a differentiable function
L : R → R such that |L′(x)| ≤ 1 for all x ∈ R and both sets {x ∈
R : L′(x) > 0} and {x ∈ R : L′(x) < 0} are dense in R (in particular,
L ∈ DNM). By replacing, if necessary, L(x) by L(x)−L(0), we can assume
that L(0) = 0. For each n ∈ N, we define the function

fn : x ∈ R 7−→ e−n(1+x
2) · L(x) + 2n e−n ·

∫ x

0
t e−nt

2
L(t) dt ∈ R.
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Notice that fn(0) = 0 for all n ∈ N. By the Fundamental Theorem of
Calculus, fn is differentiable on R and

f ′n(x) = −2nx e−n(1+x
2)L(x) + e−n(1+x

2) · L′(x) + 2nx e−n e−nx
2
L(x)

= e−n(1+x
2) · L′(x) =: gn(x) for all x ∈ R.

On the one hand, the sequence (fn)n is linearly independent because, other-
wise, thanks to the linearity of the differentiation, the sequence of deriva-
tives (gn)n would be linearly independent too. This entails the existen-
ce of natural numbers n1 < n2 < · · · < np (p ≥ 2) and of a p-tuple
(λ1, . . . , λp) ∈ Rp \ {(0, 0, . . . , 0)} satisfying(

λ1e
−n1(1+x2) + · · ·+ λpe

−np(1+x2)) · L′(x) = 0 for all x ∈ R.

Now, due to the fact that L′(x) 6= 0 on a dense set D ⊂ R, we conclude

that λ1e
−n1(1+x2) + · · ·+λpe

−np(1+x2) = 0 on D and, by continuity, on the
whole R, which contradicts Lemma 4.2 just by taking Λ(α) := eα (α ∈ R).

It remains only to prove that, for every sequence (cn)n ∈ `1, the series∑∞
n=1 cnfn converges uniformly on compacta of R to a function belonging

to DNM ∪{0}. Taking first x0 = 0, we get that the series
∑∞

n=1 cnfn(0) =∑∞
n=1 0 converges trivially. Secondly, the series

∑∞
n=1 cnf

′
n =

∑∞
n=1 cngn

converges uniformly on compacta in R because, in fact, it converges uni-
formly on R: indeed, for each n ∈ N and each x ∈ R, we have |gn(x)| ≤ cn
(we have used |L′| ≤ 1 here), and the Weierstrass M-test does the job. Then
a well-known result from real analysis tells us that

∑∞
n=1 cnfn converges uni-

formly on compacta to a differentiable function f : R → R satisfying, in
addition, that

f ′(x) =
∞∑
n=1

cn gn(x) = L′(x) ·
∞∑
n=1

cn e
−n(1+x2) for all x ∈ R. (4)

Now, consider the open strip in the complex plane C defined as

Ω = {z = x+ iy : −1 < y < 1}.

Each complex function cn e
−n(1+z2) is holomorphic in Ω and the series∑∞

n=1 cn e
−n(1+z2) converges uniformly on Ω. Indeed, we have

|cn e−n(1+z
2)| = |cn| · e−n · e−nx

2 · eny2 · |e−i2nxy| ≤ |cn| (z ∈ Ω, n ∈ N),

and again the Weierstrass M-test comes in our help. In particular, the con-
vergence is uniform on compacta in Ω. Thus, by the Weierstrass convergence

theorem (see, e.g., [1]), the sum h(z) of the series
∑∞

n=1 cn e
−n(1+z2) is a

holomorphic function on Ω. Since R ⊂ Ω, its restriction h(x) to R is an
analytic function. By the Identity Principle, the set Z := {x ∈ R : h(x) =
0} is either a discrete set or it matches the whole R. Note that, from (4),
we get

f ′(x) = L′(x) · h(x) (x ∈ R).
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If Z = R then f ′ = 0, and so f is constant; in fact, we have f(x) =
f(0) = 0 because L(0) = 0. Then f ∈ DNM ∪ {0} in this case. Finally,
assume that Z is discrete, that is, it lacks accumulation points in R. Fix
an interval (a, b) ⊂ R. Take any x0 from the nonempty open set (a, b) \Z.
Then h(x0) 6= 0 and, by continuity, there is an open interval J such that
x0 ∈ J ⊂ (a, b), h lacks zeros in J and sign(h(x)) = sign(h(x0)) on J .
But, by density, J ∩ {x ∈ R : L′(x) > 0} 6= ∅ 6= J ∩ {x ∈ R : L′(x) < 0}.
Hence there are points x1, x2 ∈ J with f ′(x1) = L′(x1) · h(x1) < 0 <
L′(x2) · h(x2) = f ′(x2). We derive that f is not monotone on (a, b). In
other words, f ∈ DNM ⊂ DNM ∪ {0}, as required. �

Remark 4.4. By proceeding analogously to the first part of the last proof,
we can obtain a shorter, more elementary proof of the c-lineability of the set
DNM established in [24, Theorem 4.1]. Just consider the vector subspace
M spanned by the functions

fα : x ∈ R 7−→ eαx
2 · L(x)− 2α ·

∫ x

0
t eα t

2
L(t) dt ∈ R (α > 0)

and prove that M ⊂ DNM ∪ {0}. The details are left to the interested
reader.

5. Convex lineability and dynamical systems

In this section we study convex lineability in the setting of continuous
selfmaps of a compact interval [a, b] ⊂ R exhibiting a special dynamical
behavior. With no loss of generality, we can assume [a, b] = [0, 1]. Here,
the natural vector space to which convex lineability is linked is the space of
all continuous functions [0, 1]→ R. Since the family of continuous selfmaps
[0, 1] → [0, 1] is a convex subset of it, it is natural to ask for the convex
lineability of subsets of that family.

We need to define the following family of “tent” functions.

Definition 5.1. For each p ∈ N with p ≥ 2, we define the function Tp :
[0, 1]→ [0, 1] (see Figure 1) as

Tp(x) =

{
p
(
x− 2k

p

)
if x ∈

[
2k
p ,

2k+1
p

]
, k ∈ N, 0 ≤ k ≤

[p−1
2

]
,

−p
(
x− 2k+2

p

)
if x ∈

[
2k+1
p , 2k+2

p

]
, k ∈ N, 0 ≤ k ≤

[p−2
2

]
,

where [α] denotes the integer part of α.

We also need to introduce the following definitions (see, e.g., [26]). Recall
that a topological dynamical system is a pair (X, f) where X is a topolog-
ical space and f : X → X is a continuous selfmap. For each N ∈ N, we
denote fN = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

N times

.

Definition 5.2. Let (X, f) be a topological dynamical system. Then f is
called:
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• transitive if, for every pair of nonempty open subsets U, V in X,
there exists N ∈ N such that

fN (U) ∩ V 6= ∅.

• totally transitive if fn is transitive for all n ∈ N.
• topologically mixing if, for every pair of nonempty open subsets
U, V in X, there exists N ∈ N such that

fn(U) ∩ V 6= ∅ for all n ≥ N.

Observe that, according to the Birkhoff transitivity theorem (see, e.g.,
[26]), if X is a completely metrizable space (in particular, if X = [0, 1])
then transitivity is equivalent to the existence of a residual subset of points
x0 ∈ X having dense f -orbit {fn(x0) : n ∈ N}.

We recall the following result stated in [37], that establishes the equiva-
lence between the properties of being topologically mixing and being totally
transitive for continuous interval maps.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1. Left to right: T3, T9 = T 2
3 and T27 = T 3

3 .

Theorem 5.3. Let f : [0, 1] → [0, 1] be a continuous selfmap. Then the
following are equivalent:

(i) f is transitive and has a periodic point of odd period different from
1.

(ii) f2 is transitive.
(iii) f is totally transitive.
(iv) f is topologically mixing.
(v) For every ε ∈ (0, 1/2) and every non-degenerate interval J ⊂ [0, 1],

there exists N ∈ N such that fn(J) ⊃ [ε, 1− ε] for all n ≥ N .

It is a well known result that every Tp is topologically mixing as it was
stated in [37, Example 2.13]. Our main result in this section (Theorem 5.4
below) shows that one can, in fact, achieve to preserve some properties linked
to chaotic behavior under both composition and convex combinations. It is
easy to see that Tmp = Tpm for all m ∈ N, where, as said before, we have
denoted Tnp = Tp ◦ · · · ◦ Tp︸ ︷︷ ︸

n times

.
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If A is a subset of a vector space, we denote by conv∗(A) the strict
convex hull of A, that is,

conv∗(A) =

{
n∑
i=1

λixi : xi’s ∈ A, λi’s ∈ (0, 1),
n∑
i=1

λi = 1, n ∈ N

}
.

Theorem 5.4. (a) Let p ∈ N be an odd number with p ≥ 3. Then each
member of the set conv({Tnp : n ∈ N}) is topologically mixing.

(b) The set{
f : [0, 1] −→ [0, 1] : f is topologically mixing

}
is convex lineable.

Proof. (a) Assume that p is an odd positive integer with p ≥ 3. Let us
define fn : [0, 1]→ [0, 1] by

fn := Tnp = Tpn (n ∈ N).

We obviously have fn ◦ fm = fn+m for any n,m ∈ N. As f1 = Tp is
totally transitive, so is every fn and therefore any composition of finitely
many elements in {fn}n∈N is totally transitive or, equivalently, topologically
mixing (Theorem 5.3).

We aim to show that any finite convex combination of functions in {fn}n∈N
is topologically mixing. In fact, since each fn is itself topologically mixing,
it suffices to consider strict convex combination of such functions. First,
note that since we picked p ∈ N odd, both 0 and 1 are fixed points for
every function in {fn}n∈N. This ensures the necessary condition that any
convex combination of these functions maps [0, 1] onto [0, 1] and not on some
strictly smaller interval.

Let us pick g ∈ conv∗({fn}n∈N), so that there are finitely many reals
λ1, . . . , λm ∈ (0, 1) as well as natural numbers n1 < n2 < · · · < nm such
that

m∑
i=1

λi = 1

and

g =

m∑
i=1

λifni .

Set ν := n1. It follows from the construction that, for any interval Ikpν of
the form

Ikpν =

[
k

pν
,
k + 1

pν

]
(k ∈ {0, . . . , pν − 1}),

we have

fm(Ikpν ) = [0, 1] for all m ≥ ν.
Specifically, either fm

(
k
pν

)
= 0 and fm

(
k+1
pν

)
= 1 for all m ≥ ν (as both 0

and 1 are fixed points of f1) or vice versa. Then g
(
k
pν

)
= 0 and g

(
k+1
pν

)
= 1
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or vice versa. In any case, g(Ikpν ) = [0, 1] for every k ∈ {0, . . . , pν − 1}.
Applying the same argument to gN = g ◦ g ◦ · · · ◦ g (N times), we get that

gN (IkpNν ) = [0, 1]

for every k ∈ {0, . . . , pN ν − 1}. Now, given a non-degenerate interval J ⊂
[0, 1], we can find N ∈ N and k ∈ {0, . . . , pNν−1} such that Ik

pNν
⊂ J and

therefore we have

gn(J) ⊃ gn(IkpNν ) ⊃ gN (IkpNν ) = [0, 1]

for every n ≥ N . This implies, trivially, that gn(J) ⊃ [ε, 1− ε] for all ε ∈
(0, 1/2) and all n ≥ N . Consequently, g is topologically mixing according
to Theorem 5.3.

(b) According to part (a), we have

conv({Tn3 : n ∈ N}) ⊂
{
f : [0, 1]→ [0, 1] : f is topologically mixing

}
.

Thus, it is enough to show that the functions Tn3 (n = 1, 2, . . . ) are linearly
independent. Assume, by way of contradiction, that this system {Tn3 =
T3n}n≥1 is linearly dependent. Then there are n ∈ N and c1, . . . , cn ∈ R
satisfying T3n+1 =

∑n
i=1 ciT3i . For each i ∈ {1, 2, . . . , n + 1}, consider the

set Ni := {x ∈ (0, 1) : T3i is not differentiable}, that is, Ni = {k/3i : k =
1, 2, . . . , 3i − 1}, whose cardinality is 3i − 1. But N1 ⊂ N2 ⊂ · · · ⊂ Nn. By
the linearity of differentiability, there are at most 3n− 1 points of (0, 1) in
which

∑n
i=1 ciT3i (= T3n+1) is not differentiable. This is absurd, because

3n − 1 < 3n+1 − 1 = card(Nn+1). This concludes the proof. �

However, the property of being topologically mixing does not hold when
considering convex combinations of different maps Tpi with pi prime. This
will be the content of our final result (Theorem 5.6). We first need the
following auxiliary result, whose proof can be seen in [37, Proposition 2.34].

Lemma 5.5. Let f : [0, 1] → [0, 1] be a topologically mixing continuous
selfmap. If f is piecewise monotone or C1 then f is locally eventually
onto, that is, given ε > 0, there is N = N(ε) ∈ N such that, for any
open subinterval J ⊂ [0, 1] with diam(J) ≥ ε and any n ≥ N , we have
fn(J) = [0, 1].

Theorem 5.6. There are no topologically mixing maps in the set
conv∗({Tp : p is prime}).

Proof. Let g ∈ conv∗({Tp : p is prime}). Then there are finitely many prime
numbers p1 < p2 < · · · < pN as well as scalars α1, . . . , αN ∈ (0, 1) such

that
∑N

i=1 αi = 1 and g =
∑n

i=1 αiTpi . Note that N ≥ 2. It is then clear
that g is a piecewise monotone map. According to Lemma 5.5, in order to
prove that g cannot be topologically mixing it is enough to show that g is
not locally eventually onto.
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Let us prove first that neither 0 nor 1 are in the image of (0, 1) under
g. Proceeding by way of contradiction, assume the existence of a point
x0 ∈ (0, 1) such that g(x0) = 0, that is,

α1Tp1(x0) + · · ·+ αNTpN (x0) = 0.

Since αi > 0 and Tpi ≥ 0 for all i, the last equality is possible only if
Tpi(x0) = 0 for all i. This is absurd because, the pi’s being prime, the
subsets of (0, 1) where the Tpi ’s vanish are mutually disjoint. A similar
reasoning (using αi < 1 and Tpi ≤ 1 this time) shows that a point x0 ∈
(0, 1) satisfying g(x0) = 1 cannot exist. Thus, g((0, 1)) ⊂ (0, 1). Since
g is continuous, we obtain that if J is a closed interval contained in (0, 1)
then g(J) is also a closed interval contained in (0, 1). But g2(J) = g(g(J)),
so that g2(J) is also a closed interval contained in (0, 1). This procedure
can be recursively continued, so as to show that, for every closed interval
J ⊂ (0, 1) and every n ∈ N, we have gn(J) ⊂ (0, 1) and, in particular,
gn(J) 6= [0, 1]. Thus, g is not locally eventually onto, as required. �

Remark 5.7. With the same proof, we obtain in fact the following more
general result: If A ⊂ N is a set with card(A) ≥ 2 consisting of mutually
coprime numbers, then there are no topologically mixing maps in the set
conv∗({Tp : p ∈ A}).
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[27] V. I. Gurarĭı, Subspaces and bases in spaces of continuous functions, Dokl. Akad.

Nauk SSSR 167 (1966), 971–973 (Russian).
[28] V. I. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math.

Anal. Appl. 294 (2004), no. 1, 62–72.
[29] Y. Katznelson and K. Stromberg, Everywhere differentiable, nowhere monotone, func-

tions, Amer. Math. Monthly 81 (1974), no. 4, 349–354.
[30] B. Levine and D. Milman, On linear sets in space C consisting of functions of bounded

variation, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4)
16 (1940), 102–105 (Russian).
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