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Classical and Quantum Evaluation Codes at the
Trace Roots

Carlos Galindo, Fernando Hernando and Diego Ruano

Abstract

We introduce a new class of evaluation linear codes by evaluating polynomials at the roots of a suitable
trace function. We give conditions for self-orthogonality of these codes and their subfield-subcodes with respect to
the Hermitian inner product. They allow us to construct stabilizer quantum codes over several finite fields which
substantially improve the codes in the literature and that are records at [19] for the binary case. Moreover, we
obtain several classical linear codes over the field F4 which are records at [19].

Index Terms

Evaluation Codes, Trace, Subfield-subcodes, Hermitian duality, Quantum codes.

I. INTRODUCTION

A stabilizer (quantum) code C 6= {0} is the common eigenspace of a commutative subgroup of the
error group generated by a nice error basis on the space Cqn , where C denotes the complex numbers, q is
a positive power of a prime number and n is a positive integer [24]. The code C has minimum distance
d as long as errors with weight less than d can be detected or have no effect on C but some error with
weight d cannot be detected. Furthermore, if C has dimension qk as a C-vector space, then we say that
the code C has parameters [[n, k, d]]q.

The importance of quantum computation is beyond doubt after [32], where polynomial time algorithms
for prime factorization and discrete logarithms on quantum computers have been given. Quantum error-
correcting codes are essential for this type of computation since they protect quantum information from
decoherence and quantum noise. Quantum codes were first introduced for the binary case, some references
are [3], [4], [6], [7], [8], [18], [20], and, subsequently, for the general case (see for instance [2], [5], [12],
[21], [25], [29]). The interest on the general case continues to grow, especially after the realization that
these codes are useful for fault-tolerant computation.

Stabilizer codes can be constructed from self-orthogonal classical linear codes:

Theorem 1. [24], [1] Let C be a linear [n, k, d] error-correcting code over the field Fq2 such that
C⊥h ⊆ C. Then, there exists an [[n, 2k − n,≥ d]]q stabilizer code.

The symbol ⊥h means dual with respect to Hermitian inner product. An analogous result also holds for
Euclidean duality when C is defined over Fq, which gives rise to quantum codes obtained from the CSS
construction [8], [33]. In this paper, most of our codes will be derived from Theorem 1. Although quantum
codes were introduced recently, the literature on this topic is very large. Most papers have addressed the
study of quantum MDS, LDCP and BCH codes [31], [11], [1], [25], [27], [23], [35], [26], [22].

In this paper, we introduce a new family of classical linear codes, they are evaluation codes of
polynomials in one variable at the set of zeros of a suitable trace map (see Definition 2). The algebraic
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structure of the set of zeros of the trace map allows us to consider suitable subfield-subcodes, providing
a new family of subfield-subcodes different from BCH codes, extended BCH codes or J-affine variety
codes [14], [15], [16], [17]. For designing our codes, we will use consecutive cyclotomic cosets, the
size and number of these cosets will determine a designed minimum distance and a lower bound for the
dimension.

Although we are mainly interested in quantum codes, this new family of classical linear codes allows
us to obtain 52 linear code records at [19] (see Example 4 in Section V). We construct linear codes
with parameters [128, 85, 16]4, [128, 79, 20]4 and [128, 75, 22]4 improving those with the same length and
dimension in [19]. The remaining records are obtained by shortening the above three codes.

In Theorem 13, we study the dimension and minimum distance of the subfield-subcodes of this new
family of codes and in Theorem 15, we give conditions for their self-orthogonality with respect to
Hermitian inner product. In sum, from linear codes over Fp2r , p a prime number, we get linear codes over
Fp2s , s being a positive integer that divides r, which give quantum codes over Fps with good parameters,
improving those in the literature.

Apart from the introduction, this paper contains four sections. The definition of our classical codes,
which evaluate at the roots of a trace function, and conditions for their self-orthogonality with respect to
Hermitian inner product are given in Section II. Fundamental results on subfield-codes are presented in
Section III, we will follow the approach in [14], [15], [16], [17] for one-variable J-affine variety codes
and we will prove that, for some subfamilies of these codes, the operation of obtaining subfield-subcodes
commutes with respect to taking Euclidean dual. Namely it holds for the codes we are interested in, which
will be studied in Section IV. This section is the core of the paper, where we consider stabilizer codes
obtained from the classical codes defined in Section II. We consider codes defined by evaluating at the
non-roots of the trace function as well, we will refer to these codes as complementary codes. Finally,
Section V is devoted to providing good examples of our codes. Apart from the above mentioned classical
linear code records, we also give several examples of binary stabilizer quantum codes improving the
records at [19]. In addition, we give tables containing stabilizer codes over F4,F5 and F7. For comparing
our codes, we consider the codes in [25] and show that our codes largely improve them. We also provide
new codes with a length that did not exist in the literature and, almost all of them, exceed the quantum
Gilbert-Varshamov bounds [30], [13], [24].

II. EVALUATION CODES AT THE TRACE ROOTS

We devote this section to introduce a new class of evaluation linear codes and study their behavior
under Hermitian duality. We are mainly interested in quantum codes although it is worthwhile to mention
that their subfield-subcodes provide good classical codes as well. Their subfield-subcodes will be treated
in Section IV.

Throughout this paper, let p be a prime number and r and s positive integers such that s|r. Set r = s ·n
and q = ps. Our procedure to obtain stabilizer quantum codes over Fq = Fps , using Theorem 1, consists
of considering subfield-subcodes over Fp2s = Fq2 of classical linear codes over over Fp2r = Fq2n .

The trace polynomial over Fp2r = Fq2n with respect to Fps = Fq is defined as

trs2r(X) = X +Xq +Xq2 + · · ·+Xq2n−1

,

whose attached polynomial function (trace map) will be denoted by trs2r : Fq2n → Fq.
It is well-known that the trace map is a linear transformation over Fq and any linear transformation

Fq2n → Fq is defined by x 7→ trs2r(βx), for some β ∈ Fq2n . Another interesting property of the trace map
is that

card {α ∈ Fq2n|trs2r(α) = a}
equals q2n−1 for all a ∈ Fq, and therefore, when α runs over Fq2n , one has that trs2r(α) takes each value
of Fq exactly q2n−1 times. This fact gives rise to the decomposition

trs2r(X)− a =
∏

α∈Fq2n ,tr
s
2r(α)=a

(X − α)
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and, as a consequence,
Xq2n −X =

∏
a∈Fq

(trs2r(X)− a) .

Consider now the ideal of the polynomial ring Fq2n [X] generated by trs2r(X), which, by the previous
discussion, can also be regarded as the ideal generated by both polynomials Xq2n − X and trs2r(X).
Consider also

Z = {α ∈ Fq2n|trs2r(α) = 0} = {α1, α2, . . . , αN} ,

where N = q2n−1.
Next, we define the evaluation map that supports our codes:

evtrs2r
: Fq2n [X]/〈trs2r(X)〉 −→ FNq2n
f 7−→ (f(α1), f(α2), . . . , f(αN)),

(1)

where f denotes both the class in Fq2n [X]/〈trs2r(X)〉 and a polynomial in Fq2n [X] representing that class.
Notice that we have proved that the map evtrs2r

is well-defined.
Our codes will take advantage from the existing relations in the ring Fq2n [X]/〈trs2r(X)〉 (see Remark

14) and we will only need to evaluate monomials of degree less than q2n−1.

Definition 2. Let H = {0, 1, . . . , q2n−2} and for any non-empty subset ∆ ⊆ H, we define the evaluation
code E∆,trs2r

in FNq2n , as the linear code generated by the set of vectors {evtrs2r
(Xa)|a ∈ ∆}.

We have considered such a set H because we will evaluate classes of polynomials of degree less than
q2n − 1 in our Theorems 8 and 15 when we consider the Hermitian inner product.

Proposition 3. Assume that ∆ ⊆ {0, 1, . . . , q2n−1− 1}. Then the dimension of the code E∆,trs2r
coincides

with the cardinality of the set ∆.

Proof. A generator matrix of the code consists of some rows of a Vandermonde matrix over the field Fq2n .
These rows are linearly independent because q2n−1 is the degree of the polynomial trs2r(X) and q2n−1− 1
is the maximum degree of the involved monomials.

Stabilizer quantum codes can be constructed from classical self-orthogonal codes with respect to the
Hermitian inner product. Since, in this section, we are getting quantum codes over Fqn from linear
codes over Fq2n , we will consider the Hermitian inner product of two vectors a = (a1, a2, . . . aN) and
b = (b1, b2, . . . bN) in FNq2n defined as

a ·h b :=
N∑
j=1

ajb
qn

j .

Hence, we will look for self-orthogonal codes E∆,trs2r
with respect to this inner product, that is codes

which satisfy
E∆,trs2r

⊆
(
E∆,trs2r

)⊥h ,
where (E∆,trs2r

)⊥h = {b ∈ FNq2n|a ·h b = 0, ∀ a ∈ E∆,trs2r
}.

The Euclidean inner product will be used in our development as well. For a and b in FNq2n , it is
defined as a ·b :=

∑N
j=1 ajbj . We start with a lemma which will allow us to derive the first result on the

orthogonality of the generators of our codes.

Lemma 4. Let f be a polynomial in Fq2n [X] of degree m, f =
∑m

j=1 ajX
j with am = 1. Assume that f

has m roots {x1, x2, . . . , xm} in Fq2n . Denote by sk, 1 ≤ k ≤ m, the power sum sk =
∑m

j=1 x
k
j . Then(

i−1∑
j=0

am−jsi−j

)
+ iam−i = 0, (2)
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when i ≤ m. Otherwise (i > m), it holds
m−1∑
j=0

am−jsi−j = 0.

Proof. It suffices to consider that the elementary symmetric elements σk, 1 ≤ k ≤ m:

σk =
∑

i1<i2<···<ik

xi1xi2 · · ·xik

and the Newton identities [9, proof of Theorem 8 in Chapter 7, Section 1] prove that

sk +
k−1∑
i=1

(−1)iσisk−i + (−1)kkσk = 0,

when 1 ≤ k ≤ m. Moreover, for k > m,

sk +
m∑
i=1

(−1)iσisk−i = 0.

Finally, the result holds since aj = (−1)m−jσm−j [9, Problem 4 in Chapter 7, Section 1].

We desire to study the metric structure of our codes. As we will see in Theorem 8, to characterize when
the inner product of the evaluation of two monomials vanishes, it is sufficient to study the product of the
evaluation of one monomial and the all ones vector. Thus, we consider the following two propositions.
The first one for the classes of monomials in Fq2n [X]/〈trs2r(X)〉, and the second one, for those that arise
when one considers the Hermitian inner product.

Proposition 5. With the above notations, recall that p2r = q2n, one has that the map in (1) satisfies

evtrs2r
(Xk) · evtrs2r

(X0) = 0,

for 1 ≤ k < q2n−1 − 1 and
evtrs2r

(Xq2n−1−1) · evtrs2r
(X0) 6= 0.

Proof. This result is a consequence of Lemma 4. Namely, notice that, with the notation as in Lemma 4,
evtrs2r

(Xk) · evtrs2r
(X0) = sk, where one will consider the polynomial evtrs2r

instead of f and N instead
of m. In addition, all the coefficients aj are equal to zero, but a1, aq, aq2 , . . . , aq2n−1 which are equal to 1.
Now Formula (2) with i = 1 proves that s1 = −aN−1 = 0; with i = 2, s2 = −2aN−2 = 0, and iterating
the same argument for consecutive values, one has that sk = 0 for indices 1 ≤ k < q2n−1 − q2n−2. Again
Formula (2), for i = q2n−1−q2n−2, proves that sq2n−1−q2n−2 = 0 since we work over a field of characteristic
p. It is clear that the same procedure proves that sk = 0 for 1 ≤ k < q2n−1 − 1.

Finally sq2n−1−1 6= 0, because Formula (2) for i = q2n−1 − 1 shows that

sq2n−1−1 + aq2n−1−1sq2n−1−2 + · · ·+ a1(q2n−1 − 1) = 0,

and then sq2n−1−1 = −(q2n−1 − 1) = 1 6= 0, which concludes the proof.

The map evtrs2r
is defined for elements in Fq2n [X]/〈trs2r(X)〉 which have as class representatives,

polynomials of degree lower than q2n−1. Proposition 5 shows that the evaluation by evtrs2r
of a (class of a)

polynomial f in Fq2n [X] is Euclidean orthogonal to evtrs2r
(X0) if and only if the mentioned representative

does not contain the monomial Xq2n−1−1. This proves the following result which complements Proposition
5.

Proposition 6. With the above notation, for k ∈ H, the Euclidean inner product

evtrs2r
(Xk) · evtrs2r

(X0) = 0
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if and only if the polynomial of degree less than q2n−1 representing the class Xk + 〈trs2r(X)〉 does not
contain the monomial Xq2n−1−1.

Next, we give a condition, whose proof can be found in Appendix A, implying that some classes as
above do not contain Xq2n−1−1 in their representatives.

Proposition 7. With the above notation, let i, j be integers such that (i, j) 6= (0, 0) and

0 ≤ i, j < qn −
⌊

(q − 1)

2

⌋
qn−1 − · · · −

⌊
(q − 1)

2

⌋
q − 1.

Then, for 0 < m ≤ n, the representative of the class X i+jqm + 〈trs2r(X)〉 of degree less than q2n−1 does
not contain the monomial Xq2n−1−1.

We conclude this section with a result which gives the parameters of the quantum codes constructed
from Hermitian duals of certain codes E∆,trs2r

. These codes are MDS quantum codes and they were also
found in [28], [31].

Theorem 8. Let p be a prime number, r and s positive integers such that r = s ·n, n ≥ 1 and set q = ps.
Let t be a nonnegative integer such that

t < qn −
⌊

(q − 1)

2

⌋
qn−1 − · · · −

⌊
(q − 1)

2

⌋
q − 1

and write ∆(t) = {a ∈ Z | 0 ≤ a ≤ t}. Then, the following inclusion holds:

E∆(t),trs2r
⊆
(
E∆(t),trs2r

)⊥h .
As a consequence, we are able to construct a stabilizer (quantum) MDS code with parameters [[N,N−

2t− 2, t+ 2]]qn .

Proof. Propositions 6 and 7 for m = n show that

evtrs2r
(X i) ·h evtrs2r

(Xj) = evtrs2r
(X i+jqn) · evtrs2r

(X0) = 0,

where the monomials X i and Xj are representatives of classes in Fq2n [X]/〈trs2r(X)〉 and i, j ∈ ∆(t).
This proves the codes’ inclusion. The dimension of the stabilizer code is clear from Proposition 3 and
Theorem 1. Finally, we use Theorem 1 again for bounding the distance of the stabilizer code. Indeed, by
Proposition 5 the code

(
E∆(t),trs2r

)⊥ contains the image by evtrs2r
of consecutive monomials Xj , 0 ≤ j ≤

(N − 1)− (t+ 1), because E∆(t),trs2r
is the code generated by evtrs2r

(X i), 0 ≤ i ≤ t. Thus, the minimum
distance of the code is at least t+ 2 but it cannot be larger than the Singleton bound. This concludes the
proof after noticing that Hermitian and Euclidean dual codes are isometric, which can be deduced from
the fact that, in our case, the Euclidean dual of a code coincides with the qnth power of its Hermitian
dual.

III. SUBFIELD-SUBCODES OF EVALUATION CODES

In this section, we will consider subfield subcodes of one-variable J-affine variety codes with J = ∅.
J-affine variety codes have been introduced and used in [14], [15], [16], [17] to provide quantum codes.
We refer the reader to these references for further details.

We recall that p is a prime number, r and s are positive integers such that s|r, r = s · n and q = ps.
Let M = p2r = q2n and consider the map

ev′ : Fq2n [X]/〈XM −X〉 −→ FMq2n

defined by
ev′(f) = (f(α1), f(α2), . . . , f(αM)),
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where {α1, α2, . . . , αM} is the set of zeros of the polynomial XM −X in Fq2n . Note that Z ⊂ Fq2n by
Section II. Let ∆ ⊆ {0, 1, . . . ,M − 1}, we define the evaluation code D∆ ⊆ FMq2n as the linear space
generated by the vectors {ev′(Xa) | a ∈ ∆}. For ∆ = {0, 1, . . . , k − 1} we have a Reed-Solomon code
with length q2n and dimension k. In general, the dimension of D∆ is equal to the cardinality of the set
∆.

Let HT = {0} ∪ {1, 2, . . . ,M − 1}, where {1, 2, . . . ,M − 1} is regarded as a set of representatives of
the congruence ring ZM−1 = Z/(M − 1)Z, and consider cyclotomic cosets with respect to q2 defined as
subsets I ⊆ HT such that q2a ∈ I for all a ∈ I. A cyclotomic coset I as above is said to be minimal
whenever its elements are those that can be expressed as aq2i, for some nonnegative integer i and some
fixed element a ∈ I. We represent each minimal cyclotomic coset I by that element a in HT which is
the minimum in I and then we write I = Ia. This set of representatives will be denoted by A and so
{Ia}a∈A is the family of minimal cyclotomic cosets in HT .

Next, we consider a different trace map,

tr2s
2r : Fp2r(:= Fq2n) −→ Fp2s(:= Fq2),

defined as
tr2s

2r(x) = x+ xq
2

+ · · ·+ xq
2(n−1)

,

and let
T : Fq2n [X]/〈XM −X〉 → Fq2n [X]/〈XM −X〉

be the map given by T (f) = f + f q
2

+ · · ·+ f q
2(n−1) . This last map satisfies the following result whose

proof is identical to that of [14, Proposition 5].

Proposition 9. Let f be an element in Fq2n [X]/〈XM−X〉. Then, the following conditions are equivalent:
1) f = T (h) for some h ∈ Fq2n [X]/〈XM −X〉.
2) f q

2
= f .

3) f evaluates to Fq2 , that is ev′(f) ∈ (Fq2)M .

The above result shows that one can get codes of length M over Fq2 from the images ev′(T (h)) of
classes of polynomials h ∈ Fq2n [X].

Now, we are going to consider subfield-subcodes Eσ over the field Fq2 of evaluation codes E of certain
length N over Fq2n . Recall that Eσ is the set of elements in E whose coordinates belong to Fq2 , that is
Eσ = E ∩ (Fq2)N . Our first result holds for any linear code E as above.

Lemma 10. Let E be a linear code over Fq2n and Eσ its subfield-subcode over Fq2 . Then (Eσ)⊥ =
(
E⊥
)σ

if and only if, E has a basis whose vectors have coordinates in Fq2 .

Proof. Assume first that E has a basis whose coordinates are in Fq2 . By [34, Lemma 1], this fact is
equivalent to the invariance of E by the action of the Galois group of Fq2n over Fq2 and, also, to the
invariance of the dual code E⊥ by the action of the same group. Delsarte Theorem [10] proves that

(Eσ)⊥ = tr2s
2r

(
E⊥
)
,

where tr2s
2r consists of applying tr2s

2r componentwise. It is clear that tr2s
2r

(
E⊥
)
⊇
(
E⊥
)σ. Hence, it

remains to prove the opposite inclusion. As we have said, we can pick a basis {a1, a2, . . . , ak} of E⊥

whose coordinates are in Fq2 . Let a ∈ E⊥, then a =
∑k

i=1 αiai with αi ∈ Fq2n and

tr2s
2r(a) =

k∑
i=1

tr2s
2r(αi)ai,

which holds because the trace is additive and linear over Fq2 . This concludes the proof because tr2s
2r(αi) ∈

Fq2 and the coordinates of each vector ai, 1 ≤ i ≤ k, are also in Fq2 .
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For the converse, suppose that (Eσ)⊥ =
(
E⊥
)σ, which means by Delsarte Theorem that

tr2s
2r

(
E⊥
)

=
(
E⊥
)σ ⊆ E⊥.

Now dim tr2s
2r

(
E⊥
)

= dimE⊥. Indeed, it suffices to prove that dim tr2s
2r

(
E⊥
)
≥ dimE⊥ and to do it,

consider α ∈ Fq2n such that tr2s
2r(α) = 1 and a basis B of E⊥ obtained by considering α times each

vector of a standard basis of E⊥. Then applying tr2s
2r to each vector in B one obtains a set of linearly

independent vectors in tr2s
2r

(
E⊥
)
. As a consequence, we get a basis of tr2s

2r

(
E⊥
)

which is also a basis
of E⊥ and, thus, has coordinates in Fq2 . This concludes the proof because the same holds for E by [34,
Lemma 1].

The classical codes we will use in this paper satisfy the conditions in the above lemma. For a start we
need the following notation: ia denotes the cardinality of the minimal cyclotomic coset Ia and, since ia
divides n, the mapping for polynomials f with support on a cyclotomic coset Ia

Ta(f) = f + f q
2

+ · · ·+ f q
2(ia−1)

,

evaluates to Fq2 .
Let Dσ

∆ be the subfield subcode of D∆ over Fq2 , i.e.

Dσ
∆ := D∆ ∩ (Fq2)M .

Let A = {a0 = 0 < a1 < a2 · · · < az} the above mentioned set of representatives of minimal cyclotomic
sets of HT with respect to q2. For t ≤ z, define

∆σ(t) := Ia0 ∪ Ia1 ∪ · · · ∪ Iat .

Then,

Proposition 11. With the above notations, one has that(
Dσ

∆σ(t)

)⊥
=
(
D⊥∆σ(t)

)σ
.

Proof. By Lemma 10, it suffices to prove that D∆σ(t) has a basis with coordinates in Fq2 . Recall that
D∆σ(t) is generated, as a Fq2n vector space, by ev′(A), where A is the following set of monomials

A =
t⋃
i=0

{
Xai , Xaiq

2

, . . . , Xaiq
2(iai−1)

}
.

We are going to give another set of polynomials B, with the same cardinality as A, that are linearly
independent over the field Fq2 which, by Proposition 9, will evaluate to Fq2 . As a consequence, we get a
basis of D∆σ(t) whose vectors are in (Fq2)M and the proof is concluded.

Consider defining elements βi, 0 ≤ i ≤ t, of the field Fq2iai over Fq2 (i.e., elements such that
{1, βi, . . . , β

iai−1

i } is a basis of Fq2iai over Fq2) and set

B =
t⋃
i=0

{
Tai(Xai), Tai(βiXai), . . . , Tai(β

iai−1

i Xai)
}
.

To prove the independence over Fq2 of the vectors in B, it suffices to check it for each subset attached to an
index i. Now, set, for simplicity, ai = a and βi = β, and, by contradiction, suppose

∑ia−1
`=0 α`Ta(β`Xa) = 0

for some elements α` ∈ Fq2 which are not all zero. Then the term corresponding to the monomial Xa

has α0 +α1β + · · ·+αia−1β
ia−1 as a coefficient and then β is a root of a polynomial with coefficients in

Fq2 of degree ia − 1, which is a contradiction because the minimal polynomial of β has degree ia.

Notice that as a consequence of Proposition 11, the minimum distance of the dual code of Dσ
∆σ(t), is

greater than or equal to at+1 + 1 (BCH bound).
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Example 1. Let p = 2, s = 1 and r = 4. Hence, we will consider codes over F28 and subfield-
subcodes over F22 with length M = 256. The first eight minimal cyclotomic cosets are I0 = {0},
I1 = {1, 4, 16, 64}, I2 = {2, 8, 32, 128}, I3 = {3, 12, 48, 192}, I5 = {5, 20, 65, 80}, I6 = {6, 24, 12, 129},
I7 = {7, 28, 112, 193} and I9 = {9, 36, 66, 144}. Hence we have that a0 = 0, a1 = 1, a2 = 2, a3 = 3,
a4 = 5, a5 = 6, a6 = 7, a7 = 9.

Consider ∆σ(6) = Ia0 ∪ Ia1 ∪ · · · ∪ Ia6 . Then, the dual code of Dσ
∆σ(t) has parameters[

M,M −
6∑
l=0

ial ,≥ a7 + 1

]
4

= [256, 256− 25,≥ 10]4

= [256, 231,≥ 10]4.

IV. STABILIZER CODES OBTAINED FROM SUBFIELD-SUBCODES OF EVALUATION CODES AT THE
TRACE ROOTS

The aim of this section is to study subfield-subcodes over Fq2 of some codes introduced in Section II
and determine the parameters for their attached stabilizer quantum codes over Fq. Keep the notation as
in that section.

Definition 12. Let ∅ 6= ∆ ⊆ H, the subfield-subcode over Fq2 of the code E∆,trs2r
is defined as

Eσ
∆,trs2r

:= E∆,trs2r
∩ FNq2 .

The same reasoning that proves Proposition 9 shows that the map evtrs2r
applied to classes of polynomials

T (f) (and Ta(f)) evaluates to Fq2 , where N = q2n−1 = p2r−s. Moreover, considering subfield subcodes
of codes defined by the above sets ∆σ(t), we can bound their parameters. Recall that A = {a0 = 0 <
a1 < a2 · · · < az} and, for t ≤ z,

∆σ(t) := Ia0 ∪ Ia1 ∪ · · · ∪ Iat .

Then,

Theorem 13. The dimension of Eσ
∆σ(t),trs2r

and the minimum distance of its Hermitian dual code satisfy
the following bounds:

dim
(
Eσ

∆σ(t),trs2r

)
≤

t∑
l=0

ial ,

d
(
Eσ

∆σ(t),trs2r

)⊥h
≥ at+1 + 1.

Proof. By the proof of Proposition 11, we have that dim
(
Dσ

∆σ(t)

)
=
∑t

l=0 ial . Since we only evaluate at
the zeros of the polynomial trs2r(X) (Z ⊂ FM ), the first inequality holds.

With respect to the last inequality, setting A = {0, 1, . . . , at+1 − 1}, it holds that A ⊆ ∆σ(t) and then
one gets the inclusion of codes in Fq2n: EA,trs2r ⊆ E∆σ(t),trs2r

. Thus, the Euclidean dual of both codes
satisfy

(E∆σ(t),trs2r
)⊥ ⊆ (EA,trs2r)

⊥.

Therefore,
d
(
(E∆σ(t),trs2r

)⊥
)
≥ d

(
E⊥A,trs2r

)
≥ at+1 + 1,

because the parity check matrix of E⊥A,trs2r corresponds with the generator matrix of EA,trs2r , which is
a Vandermonde matrix. Considering subfield-subcodes over Fq2 and by Lemma 10 and the proof of
Proposition 11, we have that (

Eσ
∆σ(t),trs2r

)⊥
=
(
E⊥∆σ(t),trs2r

)σ
⊆
(
E⊥A,trs2r

)σ
.
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Then,

d
(
Eσ

∆σ(t),trs2r

)⊥
= d

(
E⊥∆σ(t),trs2r

)σ
≥ d

(
E⊥A,trs2r

)σ
≥ at+1 + 1.

This concludes the proof because the Euclidean and Hermitian dual of our codes are isometric.

Example 2. Let p = 2, s = 1 and r = 4, that is q = 2 and n = 4. We will consider a code over F28

and a subfield-subcode over F22 as in Example 1. We have that N = 128 and consider again ∆σ(6) =

Ia0 ∪ Ia1 ∪ · · · ∪ Ia6 . The code
(
Eσ

∆σ(6),trs2r

)⊥h
has parameters[

N,≥ N −
6∑
l=0

ial ,≥ a7 + 1

]
4

= [128,≥ 128− 25,≥ 10]4

= [128,≥ 103,≥ 10]4.

Moreover, we know that the dimension is strictly greater than 103 since T1(X) and T2(X) are equal
modulo tr1

8(X), because T1(X) = X +X4 +X16 +X64, T2(X) = X2 +X8 +X32 +X128, and tr1
8(X) =

X + X2 + X4 + X8 + X16 + X32 + X64 + X128. Actually one can prove that the code
(
Eσ

∆σ(6),trs2r

)⊥h
has parameters [128, 104, 10]4.

Remark 14. Examples 1 and 2 help to illustrate how to compare the codes obtained in the previous
section –extended BCH codes (or subfield-subcodes of J-affine variety codes with J = ∅)– with subfield-
subcodes of evaluation codes at the trace roots. When considering dual codes, the advantage of the last
code can be observed from the difference between the length and dimension since both codes have the
same designed minimum distance. First observe that such a difference is equal to

∑t
l=0 ial in both cases

(25 in our examples), however for the evaluation codes at the trace roots we have an advantage: their
dimension may be strictly greater than the designed dimension N −

∑t
l=0 ial , as the previous example

shows. This will allow us to get classical and quantum codes with excellent parameters. In general, there
may be several relations modulo trs2r(X) among the polynomials in the set B in the proof of Proposition

11, which increase the dimension of
(
Eσ

∆σ(t),trs2r

)⊥h
.

We conclude this section with our main result that shows how to construct stabilizer codes from
subfield-subcodes over Fp2s . Recall that Fq2 = Fp2s .

Theorem 15. Let N = q2n−1 the degree of the polynomial trs2r(X), M = q2n and A = {a0 = 0 < a1 <
a2 · · · < az} the set of representatives of the minimal cyclotomic sets Iai , 0 ≤ i ≤ z, of HT with respect
to q2. Let t ≤ z be an index such that

at < qn −
⌊

(q − 1)

2

⌋
qn−1 − · · · −

⌊
(q − 1)

2

⌋
q − 1.

Then, with the notation as above, the following inclusion holds

Eσ
∆σ(t),trs2r

⊆
(
Eσ

∆σ(t),trs2r

)⊥h
, (3)

where ∆σ(t) = Ia0 ∪ Ia1 ∪ · · · ∪ Iat .
As a consequence, we are able to construct a stabilizer code with parameters[[

N,≥ N − 2
t∑

a=0

ia,≥ at+1 + 1

]]
q

.
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Proof. By Theorem 13, it suffices to prove the inclusion in (3). We shall show that

evtrs2r

(
Tai(β

ki
i X

ai)
)
·h evtrs2r

(
Taj(β

kj
j X

aj)
)

= 0, (4)

for βi (respectively, βj) a defining element of Fq2iai (respectively, in F
q
2iaj ) over Fq2 , for 0 ≤ ki ≤ iai − 1

(respectively, 0 ≤ kj ≤ iaj − 1) and i, j ∈ {0, 1, . . . , t}. This will conclude the proof by Proposition 11.
Our codes are over Fq2 and in this case a ·h b =

∑N
i=1 aib

q
i . Then, the left hand side in (4) is a

summation, up to constants that depend on βi and βj , of Euclidean products of the form

evtrs2r

(
Xaql+bqqm

)
· evtrs2r

(
X0
)
, (5)

where, for simplicity’s sake, we write a, b for the corresponding representatives in A. By hypothesis,

a, b < qn − b(q − 1)

2
cqn−1 − · · · − b(q − 1)

2
cq − 1

and from the definition of Ta and Tb, l,m ∈ {0, 1, . . . , 2n− 1}.
We claim that each product of the form given in (5) equals zero, which proves Equality (4). Indeed,

without loss of generality, we may assume that m ≥ l and divide the proof in two parts.
First, suppose that m− l ≤ n− 1. Then

evtrs2r

(
Xaql+bqqm

)
· evtrs2r

(
X0
)

=(
evtrs2r

(
Xa+bqm−l+1

)
· evtrs2r

(
X0
))ql

, (6)

because of the characteristic of the field. Now, Proposition 7 proves that the right hand side of Equality
(6) is equal to zero since m− l + 1 ≤ n, which concludes the first part.

Finally, assume that m− l ≥ n, then

l ≤ m− n ≤ (2n− 1)− n = n− 1

and m = n+ n1 ≤ 2n− 1, thus n1 < n. In addition, Formula (5) is equal to zero if and only if(
evtrs2r

(
Xaql+bqqn+n1

)
· evtrs2r

(
X0
))qn

is equal to zero. This last expression can also be written as

evtrs2r

(
Xaql+n+bq2n+n1+1

)
· evtrs2r

(
X0
)
.

Since we are evaluating elements in the field Fp2r = Fq2n , it suffices to prove

evtrs2r

(
Xaql+n+bqn1+2

)
· evtrs2r

(
X0
)

= 0, (7)

which holds whenever (
evtrs2r

(
Xaql+n−n1−2+b

)
· evtrs2r

(
X0
))qn1+2

is equal to zero. Note that this holds by Proposition 7 since l+n−n1−2 < n. In fact, n+n1−l > n > n−1
and then l − n1 − 1 < 0. This concludes the proof.

Example 3. Let p = 2, s = 1, r = 4, n = 4 and q = 2. Consider the classical subfield-subcode over F4,
Eσ

∆σ(6),trs2r
, given in Example 2. Since

a6 = 7 < 15 = 24 − 1

= qn −
⌊

(q − 1)

2

⌋
qn−1 − · · · −

⌊
(q − 1)

2

⌋
q − 1,
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we can apply Theorem 15 and therefore it is self-orthogonal with respect to the Hermitian inner product.
Its Hermitian dual has parameters [128, 104, 10]4, therefore, by Theorem 1, we obtain a stabilizer code
with parameters [[128, 2 · 104− 128, 10]]2 = [[128, 80, 10]]2. This code is a record at [19] as we will see
in Example 4 in Section V.

To end this section, we consider another construction of linear codes: we have shown that evtrs2r
evaluates

at the points in Z, which is a subset of the zero-set of Xq2n −X . By [16, Proposition 1], Proposition 6
also holds for the map ev′ defined at Section III when, as above,

k < qn −
⌊

(q − 1)

2

⌋
qn−1 − · · · −

⌊
(q − 1)

2

⌋
q − 1.

Since the set Z defined in Section II is included in Fq2n , considering the set Fq2n \Z = {γ1, γ2, . . . , γNC},
where NC = M −N , and the evaluation map

evC :
Fq2n [X]

〈(XM −X)/trs2r(X)〉
−→ FNC

q2n ,

given by evC(f) = f(γ1, γ2, . . . , γNC ), one gets that, with the same reasoning, our results hold for
these linear and stabilizer quantum codes as well. We will refer to these linear codes (respectively, their
subfield-subcodes and the corresponding stabilizer codes) as complementary codes (respectively, their
subfield-subcodes and the stabilizer codes obtained from them).

V. EXAMPLES

In this section we give the parameters of a number of stabilizer codes obtained or derived from our
development. First, we recall that Theorem 15 shows how to use subfield-subcodes for constructing
stabilizer codes over Fq with length N = q2n−1, for q = ps, where p is a prime number and s and n are
positive integers. The same reasoning gives rise to codes of length N − 1, simply by not evaluating at the
first element in the set Z in Section II (that is, at α1 = 0 or by not considering the coset I0).

In addition, we emphasize that Theorem 15 determines stabilizer quantum codes with designed distance,
and gives a lower bound for their dimension. In a large number of cases, the dimension of our codes is
strictly larger than the bound given in Theorem 15. Note that, in contrast with the minimum distance, the
computation of the dimension of a linear code is not computationally intense and can be easily performed.

In the first two examples, we will detail the different values of p, q, n and the considered length.
However, for the sake of brevity and since it is straightforward to deduce them from the parameters of
the codes, we do not give further details in the remaining examples. In Example 4, we obtain codes, both
classical and quantum, that are records in [19]. For the rest of the examples there is no table of codes
available to compare parameters (the previous table only contains binary stabilizer codes) and we indicate
which codes exceed the quantum Gilbert-Varshamov bounds (QGVB, for short) [30], [13], [24].

Example 4. We consider the same setting as in examples 1, 2 and 3. Let p = 2, s = 1, n = 4. We obtain
codes with length q2n−1 = 27 = 128 over q2s = 4. As a consequence, we are able to get 52 linear codes
over F4 improving the parameters in [19]. In fact, we obtain two linear codes with parameters [128, 79, 20]4
and [128, 75, 22]4 improving the previous best known linear codes [128, 79, 19]4 and [128, 75, 21]4. We are
also able to construct a [128, 85, 16]4 code (no construction was known for such parameters in [19]). Then,
by shortening the above codes, we obtain 49 additional linear codes over F4 which are records at [19].
Their parameters can be found in Table I. For the sake of brevity we only display some of them because
their parameters are clear from their construction.

By Theorem 1 these linear codes give rise to stabilizer quantum codes over F2, which are also
records in the table [19]. We get stabilizer codes with parameters [[128, 80, 10]]2 improving [[128, 80, 9]]2;
[[128, 72, 11]]2 improving [[128, 72, 10]]2; [[128, 66, 12]]2 improving [[128, 66, 11]]2 and [[128, 58, 14]]2 im-
proving [[128, 58, 12]]2. Either puncturing or taking subcodes of the previous codes, we obtain binary
stabilizer codes with parameters as in Table II.
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n k d n k d n k d

127 78 20 126 77 20 125 76 20
124 75 20 · · · · · · · · · 105 56 20
127 74 22 126 73 22 125 72 22
124 71 22 · · · · · · · · · 108 55 22
127 84 16 126 83 16 125 82 16
124 81 16 123 80 16 122 79 16

TABLE I
LINEAR CODES OVER F4 , OBTAINED BY SHORTENING, WHICH ARE RECORDS

n k d n k d n k d

128 79 10 127 80 9 128 71 11
128 65 12 128 64 12 128 63 12
128 57 14 128 56 14 128 55 14
127 58 13 127 57 13 127 56 13

TABLE II
QUANTUM CODES OVER F2 WHICH ARE RECORDS

Example 5. In this example, let p = s = n = 2. We get stabilizer (quantum) codes over F4. Some of these
stabilizer codes with length N = 64, all of them with parameters that exceed the QGVB, are displayed
in Table III.

n k d n k d n k d n k d

64 58 3 64 54 4 64 50 5 64 48 6
64 44 7 64 40 8 64 36 9 64 34 10
64 30 11 64 26 12 64 22 13 64 20 14

TABLE III
STABILIZER CODES OVER F4 OF LENGTH 64

In the case where we do not evaluate at zero, their length is 63 and we get stabilizer codes over F4

with parameters as in Table IV. Again, all the parameters of the presented codes exceed the QGVB.

n k d n k d n k d n k d

63 59 3 63 55 4 63 51 5 63 49 6
63 45 7 63 41 8 63 37 9 63 35 10
63 31 11 63 27 12 63 23 13 63 21 14

TABLE IV
STABILIZER CODES OVER F4 OF LENGTH 63

Notice that we get a large improvement with respect to the codes in [25, Table III], and larger minimum
distances (10 is the largest minimum distance in [25, Table III]).

We may consider quantum codes coming from complementary codes as well. Their length is NC =
M − N = q2n − q2n−1 = 256 − 64 = 192. The parameters of some codes exceeding the QGVB are
displayed in Table V. We have not found better codes over F4 with this length in the literature.

Example 6. Table VI contains some stabilizer codes over F3 obtained with our procedure with length
242, 243 and 486. Our codes with length 242 and distance 5, 6, 10 and 11 exceed the the QGVB. Every
code we give with length 243, but those with distance 15, 16 or 17, exceed the QGVB. Finally all codes
with length 486 exceed that bound.

Example 7. Some stabilizer codes over F5 obtained with our procedure with length 124, 125 and 500
can be found in Table VII. Our codes exceed the QGVB, excepting those with length 124 and distance
5 or 15. Notice that, again, we obtain a great improvement with respect to the codes with length 124 in
[25, Table III]. In addition, the minimum distance of our codes can be much larger than in [25].
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n k d n k d n k d

192 186 3 192 182 4 192 178 5
192 174 6 192 170 7 192 166 8
192 162 9 192 158 10 192 154 11
192 150 12 192 146 13 192 121 14

TABLE V
STABILIZER CODES OVER F4 OF LENGTH 192

n k d n k d n k d

242 220 5 242 214 6 242 208 7
242 202 8 242 196 10 242 190 11
242 184 12 242 178 13 242 172 14
242 166 15 242 160 16 242 154 17
243 225 5 243 219 6 243 213 7
243 207 8 243 201 9 243 195 11
243 189 12 243 183 13 243 177 14
243 171 15 243 165 16 243 159 17
486 466 5 486 460 6 486 454 7
486 448 8 486 442 9 486 436 11
486 430 12 486 424 13 486 418 14
486 412 15 486 406 16 486 400 17

TABLE VI
STABILIZER CODES OVER F3 OF LENGTHS 242, 243 AND 486

Example 8. Finally, we display Table VIII containing stabilizer codes with length 342 and 2058 (from
complementary codes) over F7. All the codes exceed the QGVB. Moreover, those with length 342 provide
a great improvement with respect to the codes given in [25, Table III]. And as before, the minimum distance
of our codes can be much larger than in [25].

Remark 16. We have not performed an exhaustive search of good codes. We expect that more records
can be found following this construction. For instance, Markus Grassl, with the setting as in Example
4, has found record complementary codes with the following parameters: [127, 39, 44]4, [127, 40, 43]4,
[127, 41, 42]4, [128, 75, 22]4, [128, 79, 20]4, [128, 93, 14]4.

APPENDIX A
PROOF OF PROPOSITION 7

Proof. Write δ = q − b (q−1)
2
c and notice that δ = (q+1)

2
if q is odd and it equals (q+2)

2
otherwise. Thus,

the bound qn − b (q−1)
2
cqn−1 − · · · − b (q−1)

2
cq − 1 can be expressed as

δqn−1 −
⌊

(q − 1)

2

⌋
qn−2 − · · · −

⌊
(q − 1)

2

⌋
q − 1. (8)

Now, consider the q-adic expansion of i and j:

i =
n−1∑
k=0

akq
k, j =

n−1∑
k=0

bkq
k.

For i (and analogously for j), the expression in (8) shows that:
• When q is even, an−1 ≤ δ − 1 and when an−1 = δ − 1, then an−2 ≤ δ − 1, fact that we can iterate

and claim that a0 ≤ δ − 1, whenever a1 = a2 = · · · = an−1 = δ − 1. There exists an exception for
q = 2, in this case δ = 2 and a0 = 0, whenever a1 = a2 = · · · = an−1 = 1.

• Otherwise (q is odd), one also has that an−1 ≤ δ − 1. If an−1 = δ − 1, then an−2 ≤ δ − 1 and, as
above, this argument can be repeated and one gets that a0 ≤ δ, when a1 = a2 = · · · = an−1 = δ− 1.

We divide our reasoning in two cases:
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n k d n k d n k d

124 108 5 124 106 6 124 102 7
124 98 8 124 94 9 124 90 10
124 88 11 124 84 12 124 80 13
124 76 14 124 72 15 124 70 16
125 111 5 125 107 6 125 105 7
125 101 8 125 97 9 125 93 10
125 89 11 125 87 12 125 83 13
125 79 14 125 75 15 125 71 16
500 462 11 500 458 12 500 454 12
500 450 14 500 446 15 500 442 16
500 438 17 500 434 18 500 430 19
500 426 20 500 422 21 500 418 22

TABLE VII
STABILIZER CODES OVER F5 OF LENGTHS 124, 125 AND 500

n k d n k d n k d

342 326 5 342 322 6 342 318 7
342 316 8 342 312 9 342 308 10
342 304 11 342 300 12 342 296 13
342 292 14 342 290 15 342 286 16
342 282 17 342 278 18 342 274 19
342 270 20

2058 2020 11 2058 2016 12 2058 2012 12
2058 2008 14 2058 2004 15 2058 2000 16
2058 1996 17 2058 1992 18 2058 1988 19
2058 1984 20 2058 1980 21 2058 1976 22
2058 1972 23 2058 1968 24 2058 1964 25
2058 1960 26

TABLE VIII
STABILIZER CODES OVER F7 OF LENGTHS 324 AND 2058

Case 1, m < n: then n− 1 = m+m1, where m1 ≥ 0. Then

i+ jqm = a0 + a1q + · · ·+ (am + b0)qm

+ · · ·+ (an−1 + bm1)q
n−1 +

bm1+1q
n + · · ·+ bn−1q

n+m−1

≤ 2qn + bm1+1q
n + · · ·+ bn−1q

n+m−1

≤ (bn−1 + 1)qn+m−1

< q2n−1 − 1,

the last inequality holds because otherwise m = n− 1 (notice that m < n) and bn−1 + 1 = q and then

i+ jqm = a0 + · · ·+ (an−1 + b0)qn−1 + b1q
n + · · ·+ bn−1q

2n−2.

The last expression is equal to q2n−1 − 1 only when all the coefficients are exactly equal to q− 1, which
gives a contradiction because a0 ≤ δ as we indicated previously.

Case 2, m = n: then,

i+ jqm = i+ jqn

= a0 + a1q + · · ·+ an−1q
n−1 +

b0q
n + b1q

n+1 + · · ·+ bn−1q
2n−1.

This expression is the exponent of a term in X which can be written as

Xa0+a1q+···+bn−2q2n−2

(Xq2n−1

)bn−1 . (9)
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Since we are considering the class of the term in Fq2n [X]/〈trs2r(X)〉, we can replace the monomial Xq2n−1

with the polynomial −X −Xq− · · ·−Xq2n−2 . The multinomial theorem shows that the expression in (9)
can be expressed as a sum of terms where the exponents of the attached monomials are of the form

a0 + a1q + · · ·+ an−1q
n−1 + b0q

n + · · ·+ bn−2q
2n−2 +

2n−2∑
k=0

ckq
k.

Notice that
∑2n−2

k=0 ckq
k is the q-adic expansion of the exponent of some monomial in

(−X −Xq − · · · −Xq2n−2

)bn−1 (10)

and therefore
∑2n−2

k=0 ck = bn−1 ≤ δ − 1. As a consequence, we get terms whose exponents (of the
corresponding monomials) are

n−1∑
k=0

(ak + ck)q
k +

n−2∑
k=0

(bk + ck+n)qk+n. (11)

Consider first the case when q is odd. Then, for having a term whose monomial is Xq2n−1−1, every
coefficient in the q-adic expansion of (11) should be equal to q − 1. As bk and ck are lower than δ =
(q+ 1)/2, it holds that bk + ck+n ≤ q− 1. However, bn−2 + c2n−2 is the coefficient of q2n−2 and it equals
q − 1 only when bn−1 = (q − 1)/2 and uniquely for one monomial obtained from (10), but in this case
c2n−3 = 0, and thus not all coefficients in (11) are equal to q − 1.

Finally, when q is even, δ = (q+2)/2 = q/2+1 and then the sums ak+ck, 0 ≤ k ≤ n−1 and bk+ck+n,
0 ≤ k ≤ n−2, may reach the values q−1 or q. However, this is not the case for a0+c0 because c0 is either
0 or 1 depending on either bn−1 > 1 or bn−1 = 1. When either ak+ck, for 0 ≤ k ≤ n−1, or bk+ck+n, for
0 ≤ k ≤ n−2, is equal to q, the q-adic expansion of (11) is obtained by adding one unit to the next power
of q, and when bn−2 + c2n−2 = q, again one must use the fact that Xq2n−1

= −X −Xq − · · · −Xq2n−2 .
Taking into account that the power (Xq2n−1

)i with i = 1 can appear only once, we deduce that the q-adic
expansion

∑2n−2
k=0 dkq

k of the expression (11) satisfies dk < (δ− 1) + 1 = (q+ 2)/2 < q− 1 and not every
coefficient of the mentioned q-adic expansion is equal to q − 1.
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