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Abstract

We introduce a new class of evaluation linear codes by evaluating polynomials at the roots of a suitable
trace function. We give conditions for self-orthogonality of these codes and their subfield-subcodes with respect to
the Hermitian inner product. They allow us to construct stabilizer quantum codes over several finite fields which
substantially improve the codes in the literature and that are records at [19] for the binary case. Moreover, we
obtain several classical linear codes over the field IF, which are records at [19].
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I. INTRODUCTION

A stabilizer (quantum) code C # {0} is the common eigenspace of a commutative subgroup of the
error group generated by a nice error basis on the space C?", where C denotes the complex numbers, ¢ is
a positive power of a prime number and n is a positive integer [24]. The code C has minimum distance
d as long as errors with weight less than d can be detected or have no effect on C but some error with
weight d cannot be detected. Furthermore, if C has dimension ¢* as a C-vector space, then we say that
the code C has parameters [[n, k, d]],.

The importance of quantum computation is beyond doubt after [32], where polynomial time algorithms
for prime factorization and discrete logarithms on quantum computers have been given. Quantum error-
correcting codes are essential for this type of computation since they protect quantum information from
decoherence and quantum noise. Quantum codes were first introduced for the binary case, some references
are [3], [4], [6], [7], [8], [18], [20], and, subsequently, for the general case (see for instance [2], [5], [12],
[21], [25], [29]). The interest on the general case continues to grow, especially after the realization that
these codes are useful for fault-tolerant computation.

Stabilizer codes can be constructed from self-orthogonal classical linear codes:

Theorem 1. [24], [1] Let C be a linear n,k,d| error-correcting code over the field F. such that
C*n C C. Then, there exists an [[n,2k — n,> d]], stabilizer code.

The symbol L, means dual with respect to Hermitian inner product. An analogous result also holds for
Euclidean duality when C' is defined over [F,, which gives rise to quantum codes obtained from the CSS
construction [8], [33]. In this paper, most of our codes will be derived from Theorem 1. Although quantum
codes were introduced recently, the literature on this topic is very large. Most papers have addressed the
study of quantum MDS, LDCP and BCH codes [31], [11], [1], [25], [27], [23], [35], [26], [22].

In this paper, we introduce a new family of classical linear codes, they are evaluation codes of
polynomials in one variable at the set of zeros of a suitable trace map (see Definition 2). The algebraic
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structure of the set of zeros of the trace map allows us to consider suitable subfield-subcodes, providing
a new family of subfield-subcodes different from BCH codes, extended BCH codes or J-affine variety
codes [14], [15], [16], [17]. For designing our codes, we will use consecutive cyclotomic cosets, the
size and number of these cosets will determine a designed minimum distance and a lower bound for the
dimension.

Although we are mainly interested in quantum codes, this new family of classical linear codes allows
us to obtain 52 linear code records at [19] (see Example 4 in Section V). We construct linear codes
with parameters [128, 85, 16]4, [128,79,20], and [128,75, 22|, improving those with the same length and
dimension in [19]. The remaining records are obtained by shortening the above three codes.

In Theorem 13, we study the dimension and minimum distance of the subfield-subcodes of this new
family of codes and in Theorem 15, we give conditions for their self-orthogonality with respect to
Hermitian inner product. In sum, from linear codes over F,2-, p a prime number, we get linear codes over
F,2s, s being a positive integer that divides r, which give quantum codes over [Fs with good parameters,
improving those in the literature.

Apart from the introduction, this paper contains four sections. The definition of our classical codes,
which evaluate at the roots of a trace function, and conditions for their self-orthogonality with respect to
Hermitian inner product are given in Section II. Fundamental results on subfield-codes are presented in
Section III, we will follow the approach in [14], [15], [16], [17] for one-variable J-affine variety codes
and we will prove that, for some subfamilies of these codes, the operation of obtaining subfield-subcodes
commutes with respect to taking Euclidean dual. Namely it holds for the codes we are interested in, which
will be studied in Section IV. This section is the core of the paper, where we consider stabilizer codes
obtained from the classical codes defined in Section II. We consider codes defined by evaluating at the
non-roots of the trace function as well, we will refer to these codes as complementary codes. Finally,
Section V is devoted to providing good examples of our codes. Apart from the above mentioned classical
linear code records, we also give several examples of binary stabilizer quantum codes improving the
records at [19]. In addition, we give tables containing stabilizer codes over F4, F5 and [F;. For comparing
our codes, we consider the codes in [25] and show that our codes largely improve them. We also provide
new codes with a length that did not exist in the literature and, almost all of them, exceed the quantum
Gilbert-Varshamov bounds [30], [13], [24].

II. EVALUATION CODES AT THE TRACE ROOTS

We devote this section to introduce a new class of evaluation linear codes and study their behavior
under Hermitian duality. We are mainly interested in quantum codes although it is worthwhile to mention
that their subfield-subcodes provide good classical codes as well. Their subfield-subcodes will be treated
in Section IV.

Throughout this paper, let p be a prime number and r and s positive integers such that s|r. Set r = s-n
and ¢ = p°. Our procedure to obtain stabilizer quantum codes over I, = s, using Theorem 1, consists
of considering subfield-subcodes over IF,2s = [F2 of classical linear codes over over Fp2r = [Fj2n.

The trace polynomial over IF,2r = F 2n with respect to s = I, is defined as

s (X) =X + X9+ X7 4.4 X
whose attached polynomial function (trace map) will be denoted by tr3, : Fpon — F,.

It is well-known that the trace map is a linear transformation over I, and any linear transformation
Fn — Fy is defined by = — tr5 (Bz), for some € F2n. Another interesting property of the trace map
is that

card {a € Fpnltrs, (o) = a}
equals ¢*"~! for all a € F,, and therefore, when « runs over F 2., one has that trj, («) takes each value
of F, exactly ¢**~! times. This fact gives rise to the decomposition

tr5,.(X) —a = H (X —a)

a€F on,tr5 (a)=a



and, as a consequence,
X7 — X =[] (tr3,.(X) —a).

a€lFy

Consider now the ideal of the polynomial ring F,2.[X] generated by trj (X)), which, by the previous
discussion, can also be regarded as the ideal generated by both polynomials X" — X and tr5,(X).
Consider also

Z ={a € Fpnltr;, (o) =0} = {a1,a0,...,an},

where N = ¢*" 1.
Next, we define the evaluation map that supports our codes:

thr;‘T o Foon [X]/<tr§7"(X)> — F]q\én

q

[ (flar), f(a2),.., flaw)),

where f denotes both the class in F 2. [X]/(tr3, (X)) and a polynomial in F . [X] representing that class.
Notice that we have proved that the map evy; 1s well-defined.

Our codes will take advantage from the existing relations in the ring F 2. [X]/(tr5, (X)) (see Remark
14) and we will only need to evaluate monomials of degree less than ¢*" .

o))

Definition 2. Let # = {0, 1,...,¢** —2} and for any non-empty subset A C H, we define the evaluation
code Fa 4y in Fé\én, as the linear code generated by the set of vectors {evy; (X?)|a € A}.

We have considered such a set H because we will evaluate classes of polynomials of degree less than
¢*" — 1 in our Theorems 8 and 15 when we consider the Hermitian inner product.

Proposition 3. Assume that A C {0,1,...,¢*"" ' — 1}. Then the dimension of the code En 45, coincides

with the cardinality of the set A.

Proof. A generator matrix of the code consists of some rows of a Vandermonde matrix over the field F2n.
These rows are linearly independent because ¢**~! is the degree of the polynomial tr5 (X) and ¢**~1 —1
is the maximum degree of the involved monomials. 0

Stabilizer quantum codes can be constructed from classical self-orthogonal codes with respect to the
Hermitian inner product. Since, in this section, we are getting quantum codes over F,» from linear
codes over Fn, we will consider the Hermitian inner product of two vectors a = (a1, as,...ay) and
b = (by,bs,...by) in Iﬁ‘é\én defined as

N

a, b= Zajb?n.

Hence, we will look for self-orthogonal codes EA,trSr with respect to this inner product, that is codes
which satisfy

i
EA,trST g (EA,trgr) h7
where (EAM;T)Lh ={be ]Fé\én|a 2 b=0,VaeExgus }.

The Euclidean inner product will be used in our development as well. For a and b in Fé\én, it is
defined as a-b := Z;VZI a;b;. We start with a lemma which will allow us to derive the first result on the
orthogonality of the generators of our codes.

Lemma 4. Let f be a polynomial in F 2n[X] of degree m, [ = Z;nzl a; X7 with a,, = 1. Assume that f

has m roots {x1, %, ..., 2} in Fpen. Denote by s, 1 < k < m, the power sum s, = Z;nzl x? Then

i—1
(Z am_jsi_j) + iam_i == O, (2)

J=0



when 1 < m. Otherwise (1 > m), it holds

m—1
Z Am—jSi—j = 0
j=0
Proof. 1t suffices to consider that the elementary symmetric elements oy, 1 < k < m
O — Z iy Lig *+ - Ty,
11 <t <---<ip

and the Newton identities [9, proof of Theorem 8 in Chapter 7, Section 1] prove that

Sk + Z Yioisp—i + (—1)*koy, = 0,

when 1 < k < m. Moreover, for k£ > m,

Sk + Z(_l)igisk—i =0.
i=1

Finally, the result holds since a; = (—1)m_j Om—; [9, Problem 4 in Chapter 7, Section 1]. O

We desire to study the metric structure of our codes. As we will see in Theorem 8, to characterize when
the inner product of the evaluation of two monomials vanishes, it is sufficient to study the product of the
evaluation of one monomial and the all ones vector. Thus, we consider the following two propositions.
The first one for the classes of monomials in F 2. [X]/(tr5, (X)), and the second one, for those that arise
when one considers the Hermitian inner product.

Proposition 5. With the above notations, recall that p*" = ¢*", one has that the map in (1) satisfies
thrsr (Xk) . thrgr (XO) = 0,

for 1 <k<q¢*™'!'—1and -
thrST (X(] " —1) : thrST (XO) ;é 0.

Proof. This result is a consequence of Lemma 4. Namely, notice that, with the notation as in Lemma 4,
eviy (X¥) - evyg (X?) = si,, where one will consider the polynomial evy,s instead of f and N instead
of m. In addition, all the coefficients a; are equal to zero, but a, aq, az, ..., a,2n—1 which are equal to 1.
Now Formula (2) with ¢ = 1 proves that s; = —ay_; = 0; with ©: = 2, s9 = —2axy_o = 0, and iterating
the same argument for consecutive values, one has that s, = 0 for indices 1 < k < ¢! — ¢*>"~2. Again
Formula (2), for i = ¢*"~!'—¢*"~2, proves that s,2n-1_,2n—2 = 0 since we work over a field of characteristic
p. It is clear that the same procedure proves that s, = 0 for 1 < k < ¢®»~! — 1.

Finally s,2.-1_; # 0, because Formula (2) for ¢ = ¢~ — 1 shows that
Sqzn—1_1 + Qg2n—1_1Sg2n-1_o + + -+ + a3 (q2n_1 — 1) =0,
and then s,2n-1_y = —(¢*"* — 1) = 1 # 0, which concludes the proof. O

The map evy; is defined for elements in Fgn[X]/(tr3.(X)) which have as class representatives,
polynomials of degree lower than ¢**~! Proposmon 5 shows that the evaluation by evy,; of a (class of a)
polynomial f in F2.[X] is Euchdean orthogonal to evy,s (X %) if and only if the mentloned representative

does not contain the monomial X" ' ~!. This proves the following result which complements Proposition
5.

Proposition 6. With the above notation, for k € H, the Euclidean inner product

eVirs (XY v (X%) =0



if and only if the polynomial of degree less than q*"~' representing the class X* + (tr5.(X)) does not
contain the monomial X7 1,

Next, we give a condition, whose proof can be found in Appendix A, implying that some classes as
. 2n—1 " " .
above do not contain X9 ! in their representatives.

Proposition 7. With the above notation, let i,j be integers such that (i,j) # (0,0) and

0<4,j<q"— {QJ = - LQJCI—L

Then, for 0 < m < n, the representative of the class X 34" 4 (tr, (X)) of degree less than ¢*"~' does
not contain the monomial X7 " 71,

We conclude this section with a result which gives the parameters of the quantum codes constructed
from Hermitian duals of certain codes Ea 43 . These codes are MDS quantum codes and they were also
found in [28], [31].

Theorem 8. Let p be a prime number, r and s positive integers such that r = s-n, n > 1 and set ¢ = p°.
Let t be a nonnegative integer such that

t<q"— Vq%l)anl_m_Vq_TDJq_l

and write A(t) = {a € Z | 0 < a < t}. Then, the following inclusion holds:

En)u, © (EA(t)vtrST)Lh'

As a consequence, we are able to construct a stabilizer (quantum) MDS code with parameters [[N, N —
2t — 2,t + 2)]gn.

Proof. Propositions 6 and 7 for m = n show that
thrgr (XZ> ‘h thrgr (Xj) = thrgr (XiJrjqn) . thr§7~ (XO) = O,

where the monomials X* and X7 are representatives of classes in F2.[X]/(tr5 (X)) and i,j € A(2).
This proves the codes’ inclusion. The dimension of the stabilizer code is clear from Proposition 3 and
Theorem 1. Finally, we use Theorem 1 again for bounding the distance of the stabilizer code. Indeed, by
Proposition 5 the code (EA(t),trgT)L contains the image by eVirs of consecutive monomials X7, 0 < j <
(N—1)—(t+1), because EA@t),irg, 1s the code generated by evyy (X'), 0 <@ < t. Thus, the minimum
distance of the code is at least ¢ + 2 but it cannot be larger than the Singleton bound. This concludes the
proof after noticing that Hermitian and Euclidean dual codes are isometric, which can be deduced from
the fact that, in our case, the Euclidean dual of a code coincides with the ¢"th power of its Hermitian
dual. [

III. SUBFIELD-SUBCODES OF EVALUATION CODES
In this section, we will consider subfield subcodes of one-variable .J-affine variety codes with J = ().
J-affine variety codes have been introduced and used in [14], [15], [16], [17] to provide quantum codes.
We refer the reader to these references for further details.
We recall that p is a prime number, r and s are positive integers such that s|r, r = s-n and ¢ = p®.
Let M = p* = ¢*" and consider the map

ev': Fou [X] /(XY — X) — FL.

defined by
ev'(f) = (f(on), flaz), ..., fla)),



where {1, s, ..., ap} is the set of zeros of the polynomial X — X in F2.. Note that Z C F 2. by
Section II. Let A C {0,1,..., M — 1}, we define the evaluation code Dx C Fé\gn as the linear space
generated by the vectors {ev/(X?) | a € A}. For A = {0,1,...,k — 1} we have a Reed-Solomon code
with length ¢°" and dimension k. In general, the dimension of Dy is equal to the cardinality of the set
A.

Let HT = {0} U {1,2,...,M — 1}, where {1,2,..., M — 1} is regarded as a set of representatives of
the congruence ring Zy; 1 = Z/(M — 1)Z, and consider cyclotomic cosets with respect to ¢* defined as
subsets J C HT such that ¢?a € J for all @ € J. A cyclotomic coset J as above is said to be minimal
whenever its elements are those that can be expressed as ag®, for some nonnegative integer ¢ and some
fixed element a € J. We represent each minimal cyclotomic coset J by that element a in H? which is
the minimum in J and then we write J = J,. This set of representatives will be denoted by A and so
{J4}aeq is the family of minimal cyclotomic cosets in H7.

Next, we consider a different trace map,

tr%i N FPZT(:: Fan) — IFPQS(:: Fq2),
defined as

r2(z) =a +a? 4 a2
and let
T Fen[X] /(XM — X) — Fea [ X] /(XM — X)

be the map given by T(f) = f + f© +--- + fo*
proof is identical to that of [14, Proposition 5].

""" This last map satisfies the following result whose

Proposition 9. Let f be an element in F 2. [X| /(XM — X). Then, the following conditions are equivalent:
1) f=T(h) for some h € Fpza[X]/(XM — X).
2) f=f.

3) f evaluates to Fp, that is ev'(f) € (Fpz2)™.

The above result shows that one can get codes of length M over F, from the images ev/'(7(h)) of
classes of polynomials i € F2n[X].

Now, we are going to consider subfield-subcodes L° over the field F 2 of evaluation codes E of certain
length N over F .. Recall that E7 is the set of elements in E' whose coordinates belong to F ., that is
E° =EnN (qu)/‘? . Our first result holds for any linear code £ as above.

Lemma 10. Let E be a linear code over F 2n and E° its subfield-subcode over F 2. Then (E“)L = (EL)U
if and only if, E has a basis whose vectors have coordinates in Fp.

Proof. Assume first that £ has a basis whose coordinates are in F,. By [34, Lemma 1], this fact is
equivalent to the invariance of F by the action of the Galois group of F . over F,. and, also, to the
invariance of the dual code E* by the action of the same group. Delsarte Theorem [10] proves that

(E7)" =tr3s (BY),

where tr3: consists of applying tr3% componentwise. It is clear that tr3 (E+) 2 (E*)°. Hence, it
remains to prove the opposite inclusion. As we have said, we can pick a basis {aj,ay,...,a,} of B+
whose coordinates are in F 2. Let a € E*, then a = Zle a;a; with o; € Fj2n and

k
tr3(a) = > trj(as)ay,
=1

which holds because the trace is additive and linear over F 2. This concludes the proof because tr3s(«;) €
F,2 and the coordinates of each vector a;, 1 <1 < k, are also in F 2.



For the converse, suppose that (E")L = (EL)U, which means by Delsarte Theorem that
trss (B1) = (EH)” C E*.

Now dimtr3s (E+) = dim E*. Indeed, it suffices to prove that dim tr3® (E+) > dim £+ and to do it,
consider @ € F 2 such that tr35(a) = 1 and a basis B of E* obtained by considering « times each
vector of a standard basis of E+. Then applying tr2 to each vector in B one obtains a set of linearly
independent vectors in tr3: (E+). As a consequence we get a basis of tr3: (E+) which is also a basis
of E+ and, thus, has coordinates in Fs2. This concludes the proof because the same holds for £ by [34,
Lemma 1]. U]

The classical codes we will use in this paper satisfy the conditions in the above lemma. For a start we
need the following notation: i, denotes the cardinality of the minimal cyclotomic coset J, and, since 7,
divides n, the mapping for polynomials f with support on a cyclotomic coset J,,

Tolf) = fF+ €4+

2(ig—1)

evaluates to [F 2.
Let D} be the subfield subcode of D over Fg, i.e.

D% = Dan (Fp)™.
Let A={ay=0<a; <ay---<a,} the above mentioned set of representatives of minimal cyclotomic
sets of HT with respect to ¢2. For t < z, define
A%(t) := Ty UTg, U---UT,,.
Then,

Proposition 11. With the above notations, one has that

o 1 o 1 o
(Die)” = (Dacw)
Proof. By Lemma 10, it suffices to prove that Da-(;) has a basis with coordinates in F,2. Recall that
Doy is generated, as a Fj2n vector space, by ev’(.A), where A is the following set of monomials

t
A= e xe, L xe e
=0

We are going to give another set of polynomials B, with the same cardinality as .4, that are linearly
independent over the field F > which, by Proposition 9, will evaluate to [F2. As a consequence, we get a
basis of Da-(;) whose vectors are in (qu)M and the proof is concluded.

Consider deﬁning elements 5;, 0 < ¢ < t, of the field Fquai over 2 (i.e., elements such that

{1,B:i,...,5 Z“l } is a basis of F 2., over F,2) and set

B = U{ 0 (X"), Ta, (BiIX™), . .. 7;(/35“”1)(“1)}

To prove the independence over F . of the vectors in B, it suffices to check it for each subset attached to an
index i. Now, set, for simplicity, a; = a and [3; = (3, and, by contradiction, suppose Z 0 aﬂ'(/BEX “) =0
for some elements o, € = which are not all zero. Then the term corresponding to the monomial X*
has o+ a8+ -+ -+ a;, 13! as a coefficient and then f3 is a root of a polynomial with coefficients in
F,2 of degree i, — 1, which is a contradiction because the minimal polynomial of 5 has degree i,. [

Notice that as a consequence of Proposition 11, the minimum distance of the dual code of D"g(t), 1S
greater than or equal to a;.1 + 1 (BCH bound).



Example 1. Let p = 2, s = 1 and » = 4. Hence, we will consider codes over [Fos and subfield-
subcodes over Fy: with length M = 256. The first eight minimal cyclotomic cosets are J, = {0},
31 ={1,4,16,64}, J, = {2,8,32,128}, J3 = {3,12,48,192}, J5 = {5, 20,65,80}, Js = {6, 24, 12,129},
J; = {7,28,112,193} and Jy9 = {9, 36,66, 144}. Hence we have that ag = 0, a; = 1, as = 2, a3 = 3,
as=095,a5=6,a6=7, a7y =9.
Consider A?(6) = TJqy UJq, U+ U Ty, . Then, the dual code of D3, has parameters
6
M, M =) g, >a7+1| = [256,256 — 25,> 10],
=0 4
= [256,231,> 10],.

IV. STABILIZER CODES OBTAINED FROM SUBFIELD-SUBCODES OF EVALUATION CODES AT THE
TRACE ROOTS

The aim of this section is to study subfield-subcodes over Fj: of some codes introduced in Section II
and determine the parameters for their attached stabilizer quantum codes over IF,. Keep the notation as
in that section.

Definition 12. Let ) # A C H, the subfield-subcode over F,2 of the code EA iy 1s defined as
EZ w5, = Eary, NFS.

The same reasoning that proves Proposition 9 shows that the map evy,; applied to classes of polynomials
T(f) (and T,(f)) evaluates to F,2, where N = ¢**~! = p?" 5. Moreover, considering subfield subcodes
of codes defined by the above sets A?(t), we can bound their parameters. Recall that A = {ag = 0 <
a; < as--- <a,} and, for t < z,

A%(t) :=Too UTJg, U+ UT,,.
Then,

Theorem 13. The dimension of E"(,(tL
the following bounds:

s and the minimum distance of its Hermitian dual code satisfy

t

dim (Ega(t),trgr) < Z ian

1=0
Lh
d <Eg‘7(t),trgr> > gy + 1

Proof. By the proof of Proposition 11, we have that dim (DZ(,( t)> = ZLO lq,- Since we only evaluate at
the zeros of the polynomial tr5, (X) (Z C Fyy), the first inequality holds.

With respect to the last inequality, setting A = {0,1,...,a;41 — 1}, it holds that A C A“(¢) and then
one gets the inclusion of codes in Fpzn: Eays C Eaog)us . Thus, the Euclidean dual of both codes
satisfy

(EA"(t),trgr)J_ g (EA,trgr)L-
Therefore,

A (Bt ) = d (Brug, ) =t + 1,

because the parity check matrix of Ej?trs‘ corresponds with the generator matrix of Ej, ¢ , which is
a Vandermonde matrix. Considering subfield-subcodes over F 2 and by Lemma 10 and the proof of
Proposition 11, we have that

1 o o
o 1L L
<EA°'(t),tr§T> = <EA°(t),tr§T> C <EA,tr§T)



Then,

1L o
o 1
d <EA‘7(t),tr§T) = d (EAU(t),tr§T>
> d (Ei_,trg ) 2 gy + L.
This concludes the proof because the Euclidean and Hermitian dual of our codes are isometric. [

Example 2. Let p = 2, s = 1 and r = 4, that is ¢ = 2 and n = 4. We will consider a code over Fos

and a subfield-subcode over Fy: as in Example 1. We have that N = 128 and consider again A7(6) =
i
Joo UTJg, U---U7T,. The code (EZU(G),trg ) " has parameters

6
[N,Z N = ig,>ar+1| =[128,> 128 — 25> 10,

=0

4
= [128,> 103, > 10],.

Moreover, we know that the dimension is strictly greater than 103 since 7;(X) and 73(X) are equal
modulo tri(X), because 7;(X) = X + X+ X0+ X0 T5(X) = X2+ X84+ X3 + X128 and trl(X) =

L
X+ X2+ X4+ X8+ X164 X321 X641 X128 Actually one can prove that the code (EZU(G)M% ) '
has parameters [128, 104, 10],.

Remark 14. Examples 1 and 2 help to illustrate how to compare the codes obtained in the previous
section —extended BCH codes (or subfield-subcodes of J-affine variety codes with J = ())— with subfield-
subcodes of evaluation codes at the trace roots. When considering dual codes, the advantage of the last
code can be observed from the difference between the length and dimension since both codes have the
same designed minimum distance. First observe that such a difference is equal to ZLO 14, 1n both cases
(25 in our examples), however for the evaluation codes at the trace roots we have an advantage: their
dimension may be strictly greater than the designed dimension N — Zf:o iq,» as the previous example
shows. This will allow us to get classical and quantum codes with excellent parameters. In general, there

may be several relations modulo trj.(X) among the polynomials in the set B in the proof of Proposition
L
11, which increase the dimension of (Egg(t) s ) "

We conclude this section with our main result that shows how to construct stabilizer codes from
subfield-subcodes over [F 2. Recall that Fpo = IF,0s.

Theorem 15. Let N = ¢°"~! the degree of the polynomial tr5,(X), M = ¢*" and A = {ag =0 < a; <
as--- < a,} the set of representatives of the minimal cyclotomic sets J,,, 0 < i < z, of HT with respect
to ¢>. Let t < z be an index such that

ap < q" — {QJ i — {@Jq_l_

Then, with the notation as above, the following inclusion holds

Ly
Ega (t)’trST‘ g (Ego(t%tri”.) 9 (3)

where A% (t) = J,, U Ty, U---U7T,,.
As a consequence, we are able to construct a stabilizer code with parameters

t
”N,zN—2Zia,zaM+1

a=0

q
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Proof. By Theorem 13, it suffices to prove the inclusion in (3). We shall show that
evius, (To, (B X)) evy, (7o, (87 X)) =0, @)

for j3; (respectively, [5;) a defining element of IF 2., (respectively, in ]Fqua ;)over Foo, for 0 < k; <o, —1
(respectively, 0 < k; <4, — 1) and 4,5 € {0,1,...,¢}. This will conclude the proof by Proposition 11.

Our codes are over F,. and in this case a -, b = Zf\; a;b]. Then, the left hand side in (4) is a
summation, up to constants that depend on §3; and §3;, of Euclidean products of the form

Vs, (Xaq%qq’“) cevis (X)), 5)

where, for simplicity’s sake, we write a, b for the corresponding representatives in A. By hypothesis,

n q— 1 n—
and from the definition of 7, and 7y, [,m € {0,1,...,2n — 1}.
We claim that each product of the form given in (5) equals zero, which proves Equality (4). Indeed,
without loss of generality, we may assume that m > [ and divide the proof in two parts.

First, suppose that m — [ < n — 1. Then

L@Jq—l

! m
aq'+b 0y _
eVirs (X o > €V (X ) =

ql

(evass, (X8 ) veviy (X0))" ©6)

because of the characteristic of the field. Now, Proposition 7 proves that the right hand side of Equality
(6) is equal to zero since m — [ 4+ 1 < n, which concludes the first part.
Finally, assume that m — [ > n, then

I<m-n<@2n—-1)—-n=n-1

and m =n+n; < 2n — 1, thus n; < n. In addition, Formula (5) is equal to zero if and only if

(evtrgr (X aql+bqqn+"1> " €Viys (X 0)>qn
is equal to zero. This last expression can also be written as
eVisg. <Xaqz+n+bq2n+n1+1> Vi, (XO) )
Since we are evaluating elements in the field F2r = [ 2n, it suffices to prove
Vs, <Xaqz+n+bqn1+2) cevis (X°) =0, 7)

which holds whenever
nq+2

a l+n—n1—2+b 0 q
(thrgr (X 4 . thrgr (X )

is equal to zero. Note that this holds by Proposition 7 since [+n—n; —2 < n. In fact, n+n;—1l >n > n—1
and then [ — ny — 1 < 0. This concludes the proof. [

Example 3. Let p =2, s =1, r =4, n =4 and ¢ = 2. Consider the classical subfield-subcode over [F,,
Egv(ﬁ),n«; , given in Example 2. Since

a = 7 < 15 = 20—-1

_ o {(q—l an_l_m_ {(q_l)Jq—l,

2 2
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we can apply Theorem 15 and therefore it is self-orthogonal with respect to the Hermitian inner product.
Its Hermitian dual has parameters [128, 104, 10],, therefore, by Theorem 1, we obtain a stabilizer code
with parameters [[128,2 - 104 — 128, 10]], = [[128, 80, 10]]o. This code is a record at [19] as we will see
in Example 4 in Section V.

To end this section, we consider another construction of linear codes: we have shown that evy,s evaluates
at the points in Z, which is a subset of the zero-set of X¢" — X. By [16, Proposition 1], Proposition 6
also holds for the map ev’ defined at Section IIT when, as above,

k<q"— LQJ L LQJ(]_L

Since the set Z defined in Section II is included in F2n, considering the set Fj2n \ Z = {71,72,...,7nc},
where N© = M — N, and the evaluation map

IF 2n [X] C
c q N
. — IF n
TR X) e, (X))
given by ev’(f) = f(v1,72,...,7nc), one gets that, with the same reasoning, our results hold for

these linear and stabilizer quantum codes as well. We will refer to these linear codes (respectively, their
subfield-subcodes and the corresponding stabilizer codes) as complementary codes (respectively, their
subfield-subcodes and the stabilizer codes obtained from them).

V. EXAMPLES

In this section we give the parameters of a number of stabilizer codes obtained or derived from our
development. First, we recall that Theorem 15 shows how to use subfield-subcodes for constructing
stabilizer codes over F, with length N = ¢*"~!, for ¢ = p®, where p is a prime number and s and n are
positive integers. The same reasoning gives rise to codes of length NV — 1, simply by not evaluating at the
first element in the set Z in Section II (that is, at a; = 0 or by not considering the coset Jy).

In addition, we emphasize that Theorem 15 determines stabilizer quantum codes with designed distance,
and gives a lower bound for their dimension. In a large number of cases, the dimension of our codes is
strictly larger than the bound given in Theorem 15. Note that, in contrast with the minimum distance, the
computation of the dimension of a linear code is not computationally intense and can be easily performed.

In the first two examples, we will detail the different values of p,q,n and the considered length.
However, for the sake of brevity and since it is straightforward to deduce them from the parameters of
the codes, we do not give further details in the remaining examples. In Example 4, we obtain codes, both
classical and quantum, that are records in [19]. For the rest of the examples there is no table of codes
available to compare parameters (the previous table only contains binary stabilizer codes) and we indicate
which codes exceed the quantum Gilbert-Varshamov bounds (QGVB, for short) [30], [13], [24].

Example 4. We consider the same setting as in examples 1, 2 and 3. Let p = 2, s = 1, n = 4. We obtain
codes with length ¢! = 27 = 128 over ¢** = 4. As a consequence, we are able to get 52 linear codes
over I, improving the parameters in [19]. In fact, we obtain two linear codes with parameters [128, 79, 20]4
and [128, 75, 22|, improving the previous best known linear codes [128,79, 19|, and [128, 75, 21]4. We are
also able to construct a [128, 85, 16], code (no construction was known for such parameters in [19]). Then,
by shortening the above codes, we obtain 49 additional linear codes over [, which are records at [19].
Their parameters can be found in Table I. For the sake of brevity we only display some of them because
their parameters are clear from their construction.

By Theorem 1 these linear codes give rise to stabilizer quantum codes over Fy, which are also
records in the table [19]. We get stabilizer codes with parameters [[128, 80, 10]]» improving [[128, 80, 9]];
[[128, 72, 11]], improving [[128,72,10]]2; [[128, 66, 12]]» improving [[128, 66, 11]], and [[128, 58, 14]]5 im-
proving [[128, 58, 12]]5. Either puncturing or taking subcodes of the previous codes, we obtain binary
stabilizer codes with parameters as in Table II.
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[ »n [k[d][n [k [d]n[k][d]
127 [ 78 [ 20 || 126 | 77 | 20 | 125 | 76 | 20

124 | 75 | 20 || -+ | --- | -+~ 105 | 56 | 20
127 | 74 | 22 || 126 | 73 | 22 125 | 72 | 22
124 | 71 | 22 108 | 55 | 22

127 | 84 | 16 || 126 | 83 | 16 || 125 | 82 | 16
124 | 81 | 16 || 123 | 80 | 16 || 122 | 79 | 16
TABLE T
LINEAR CODES OVER F4, OBTAINED BY SHORTENING, WHICH ARE RECORDS

[n [k][d] n [k[d]n [Fk]d]

28 [ 79 [ 10 || 127 [ 80 ] 9 || 128 | 71 | 1I

128 | 65 | 12 | 128 | 64 | 12 || 128 | 63 | 12

128 | 57 | 14 | 128 | 56 | 14 || 128 | 55 | 14

127 | 58 | 13 | 127 | 57| 13 || 127 | 56 | 13
TABLE IT

QUANTUM CODES OVER F2 WHICH ARE RECORDS

Example 5. In this example, let p = s = n = 2. We get stabilizer (quantum) codes over 4. Some of these

stabilizer codes with length N = 64, all of them with parameters that exceed the QGVB, are displayed
in Table III.

[nlkld[n[k[d[n[k[d][n][k][d]

64 | 58 | 3 64 | 54 | 4 64 | 50 | 5 64 | 48 | 6

64 | 44 | 7 64 | 40 | 8 64 | 36 | 9 64 | 34 | 10

64 | 30 | 11 || 64 | 26 | 12 || 64 | 22 | 13 || 64 | 20 | 14
TABLE TIT

STABILIZER CODES OVER [F4 OF LENGTH 64

In the case where we do not evaluate at zero, their length is 63 and we get stabilizer codes over Iy
with parameters as in Table IV. Again, all the parameters of the presented codes exceed the QGVB.

[nlk[dln]k[d][n]k]d]n][k]d]

6359 3 [ 63[55] 463|515 [63]4]6

63| 45| 7 | 63|41 | 8| 63]37] 9| 63]35]10

63 | 31 6327126323 |13 63|21 14
TABLE IV

STABILIZER CODES OVER F4 OF LENGTH 63

—
—_

Notice that we get a large improvement with respect to the codes in [25, Table III], and larger minimum
distances (10 is the largest minimum distance in [25, Table III]).

We may consider quantum codes coming from complementary codes as well. Their length is N¢ =
M — N = ¢ — ¢® ! = 256 — 64 = 192. The parameters of some codes exceeding the QGVB are
displayed in Table V. We have not found better codes over I, with this length in the literature.

Example 6. Table VI contains some stabilizer codes over I3 obtained with our procedure with length
242, 243 and 486. Our codes with length 242 and distance 5, 6, 10 and 11 exceed the the QGVB. Every
code we give with length 243, but those with distance 15, 16 or 17, exceed the QGVB. Finally all codes
with length 486 exceed that bound.

Example 7. Some stabilizer codes over 5 obtained with our procedure with length 124, 125 and 500
can be found in Table VII. Our codes exceed the QGVB, excepting those with length 124 and distance
5 or 15. Notice that, again, we obtain a great improvement with respect to the codes with length 124 in
[25, Table III]. In addition, the minimum distance of our codes can be much larger than in [25].
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[ »n [k [d]n [k ]d]n]Fk][d]
102 [ 186 | 3 | 192|182 4 | 192 178 ] 5
192 | 174 | 6 || 192 [ 170 | 7 | 192 | 166 | 8
192 | 162 | 9 | 192 | 158 | 10 | 192 | 154 | 11
192 | 150 | 12 || 192 | 146 | 13 || 192 | 121 | 14

TABLE V
STABILIZER CODES OVER [F4 OF LENGTH 192

Ln ]k [d] n |k [d] n|k]d]
242 | 220 | 5 242 | 214 | 6 242 | 208 | 7
242 | 202 | 8 242 1 196 | 10 || 242 | 190 | 11
242 | 184 | 12 || 242 | 178 | 13 || 242 | 172 | 14
242 | 166 | 15 || 242 | 160 | 16 || 242 | 154 | 17
243 | 225 | 5 243 | 219 | 6 243 | 213 | 7
243 | 207 | 8 243 | 201 | 9 243 | 195 | 11
243 | 189 | 12 || 243 | 183 | 13 || 243 | 177 | 14
243 | 171 | 15 || 243 | 165 | 16 || 243 | 159 | 17
486 | 466 | 5 486 | 460 | 6 486 | 454 | 7
486 | 448 | 8 486 | 442 | 9 486 | 436 | 11
486 | 430 | 12 || 486 | 424 | 13 || 486 | 418 | 14
486 | 412 | 15 || 486 | 406 | 16 || 486 | 400 | 17
TABLE VI
STABILIZER CODES OVER 3 OF LENGTHS 242, 243 AND 486

Example 8. Finally, we display Table VIII containing stabilizer codes with length 342 and 2058 (from
complementary codes) over [;. All the codes exceed the QGVB. Moreover, those with length 342 provide
a great improvement with respect to the codes given in [25, Table III]. And as before, the minimum distance
of our codes can be much larger than in [25].

Remark 16. We have not performed an exhaustive search of good codes. We expect that more records
can be found following this construction. For instance, Markus Grassl, with the setting as in Example
4, has found record complementary codes with the following parameters: [127,39,44]4, [127,40,43]4,
[127,41,42),, [128,75,22]4, [128,79,20]4, [128,93, 14],.

APPENDIX A
PROOF OF PROPOSITION 7

Proof. Write § = q — L@J and notice that § = @ if ¢ is odd and it equals @ otherwise. Thus,
the bound ¢" — | Y= |qnt — ... — L(qg—l)Jq — 1 can be expressed as

2 s — {(q—l)J I {(q—l)J il ®

2 2

Now, consider the g-adic expansion of ¢ and j:

n—1 n—1
k=0 k=0

For 7 (and analogously for j), the expression in (8) shows that:
o When q is even, a,_1 < 6 — 1 and when a,,_; = 6 — 1, then a,,_» < § — 1, fact that we can iterate

and claim that ag < 6 — 1, whenever a; = a; = --- = a,_1 = 0 — 1. There exists an exception for
q = 2, in this case 0 = 2 and a¢g = 0, whenever a1 = ay, = --- = a,_1 = 1.

o Otherwise (q is odd), one also has that a,,_; <0 —1.If a,_1 =0 — 1, then a,_» < § — 1 and, as
above, this argument can be repeated and one gets that ayp < J, when a; =a, =---=a, 1 =0 —1.

We divide our reasoning in two cases:



[ »n [k [d]n [k ]d]n]Fk][d]
24 [ 108 | 5 | 124 [ 106 | 6 || 124 | 102 ] 7
124 | 98 | 8 || 124 | 94 | 9 | 124 | 90 | 10
124 | 88 |11 || 124 | 84 | 12| 124 | 80 | 13
124 | 76 |14 || 124 | 72 |15 | 124 | 70 | 16
125 [ 111 [ 5 || 125 | 107 | 6 || 125 | 105 | 7
125 | 101 | 8 || 125 97 | 9 | 125 | 93 | 10
125 | 89 |11 | 125 | 87 |12 | 125 | 83 | 13
125 | 79 |14 | 125 | 75 |15 | 125 | 71 | 16
500 | 462 | 11 || 500 | 458 | 12 || 500 | 454 | 12
500 | 450 | 14 || 500 | 446 | 15 || 500 | 442 | 16
500 | 438 | 17 | 500 | 434 | 18 || 500 | 430 | 19
500 | 426 | 20 || 500 | 422 | 21 || 500 | 418 | 22

TABLE VII

STABILIZER CODES OVER F5 OF LENGTHS 124, 125 AND 500

Ln [k [d] »n |k [d] n [k [d]
342 326 5 342 322 6 342 318 7
342 316 8 342 312 | 9 342 308 | 10
342 304 | 11 342 300 | 12 || 342 296 | 13
342 | 292 | 14 || 342 290 | 15 342 286 | 16
342 282 | 17 342 278 | 18 342 | 274 | 19
342 270 | 20
2058 | 2020 | 11 || 2058 | 2016 | 12 || 2058 | 2012 | 12
2058 | 2008 | 14 || 2058 | 2004 | 15 | 2058 | 2000 | 16
2058 | 1996 | 17 || 2058 | 1992 | 18 | 2058 | 1988 | 19
2058 | 1984 | 20 || 2058 | 1980 | 21 || 2058 | 1976 | 22
2058 | 1972 | 23 || 2058 | 1968 | 24 || 2058 | 1964 | 25
2058 | 1960 | 26

TABLE VIII

STABILIZER CODES OVER 7 OF LENGTHS 324 AND 2058

Case 1, m <n: then n — 1 = m + my, where m; > 0. Then

gt =

<
<

<

ap+ arq+ -+ (am + bo)g™
+o o (@t + by )"
bm1+1qn + -+ bnflqn+m71

2¢" + by 11q" + -+ by g™

(bacs + 1)g

q

2n—1 1

Y

14

the last inequality holds because otherwise m = n — 1 (notice that m < n) and b,_; + 1 = ¢ and then

i+ g™ =ap+ -+ (@n_1 +b0)g" T+ big" 4+ by g

The last expression is equal to ¢>*~! — 1 only when all the coefficients are exactly equal to ¢ — 1, which
gives a contradiction because ay < 0 as we indicated previously.

Case 2, m = n: then,

1+ 9"

1+ 79"

(o) -+ a1 q + -+ anflqnil +
boq" + big" ™t by P

This expression is the exponent of a term in X which can be written as

(Xan—l )bnfl .

Xa0+a1q+"'+bn72q

2n—2

€))



15

Since we are considering the class of the term in F 2. [X]/(tr5, (X)), we can replace the monomial X ¢
with the polynomial — X — X9 —-.. - X ¢"~* The multinomial theorem shows that the expression in (9)
can be expressed as a sum of terms where the exponents of the attached monomials are of the form
2n—2
@+ a1q+-+an1q" g+ + baag® Y e
k=0

Notice that 221_02 cxq" is the g-adic expansion of the exponent of some monomial in

2n—2

(X = XT— o = XT )b (10)

and therefore Ziﬁf ¢ = b,y < 6 — 1. As a consequence, we get terms whose exponents (of the
corresponding monomials) are

n—1 n—2
(ar + ci)g" + D (e + crpn) g™ (1)
k=0 k=0

Consider first the case when ¢ is odd. Then, for having a term whose monomial is X ‘12%1*1, every

coefficient in the g-adic expansion of (11) should be equal to ¢ — 1. As by and ¢, are lower than § =
(g +1)/2, it holds that by, + cxy,, < g — 1. However, b, s + ca,,_» is the coefficient of ¢*"~2 and it equals
g — 1 only when b, 1 = (¢ — 1)/2 and uniquely for one monomial obtained from (10), but in this case
con—3 = 0, and thus not all coefficients in (11) are equal to ¢ — 1.

Finally, when ¢ is even, § = (¢+2)/2 = ¢/2+1 and then the sums a,+c, 0 < k < n—1 and by + ¢ yp,
0 < k < n—2, may reach the values ¢—1 or q. However, this is not the case for ay+cy because ¢y is either
0 or 1 depending on either b,,_; > 1 or b,_; = 1. When either a; + ¢, for 0 < k < n—1, or by + Cp1p, for

0 <k <n-—2,is equal to ¢, the g-adic expansion of (11) is obtained by adding one unit to the next power
of ¢, and when b,,_5 + ¢c9,_o = ¢, again one must use the fact that X = X — X — . X

Taking into account that the power (X q%*l)i with 7 = 1 can appear only once, we deduce that the g-adic
expansion 3 :" % diq* of the expression (11) satisfies dj < (6 —1)+1 = (¢+2)/2 < ¢— 1 and not every

coefficient of the mentioned ¢-adic expansion is equal to ¢ — 1. [
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