
Practical Considerations for Acoustic Source

Localization in the IoT Era: Platforms, Energy

Efficiency and Performance
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Abstract

The rapid development of the Internet of Things (IoT) has posed
important changes in the way emerging acoustic signal processing ap-
plications are conceived. While traditional acoustic processing applica-
tions have been developed taking into account high-throughput comput-
ing platforms equipped with expensive multichannel audio interfaces, the
IoT paradigm is demanding the use of more flexible and energy-efficient
systems. In this context, algorithms for source localization and ranging
in wireless acoustic sensor networks can be considered an enabling tech-
nology for many IoT-based environments including security, industrial
and health-care applications. This paper is aimed at evaluating impor-
tant aspects dealing with the practical deployment of IoT systems for
acoustic source localization. Recent Systems-On-Chip (SoC) composed of
low-power multicore processors, combined with a small graphics acceler-
ator (or GPU), yield a notable increment of the computational capacity
needed in intensive signal processing algorithms while partially retaining
the appealing low power consumption of embedded systems. Different al-
gorithms and implementations over several state-of-the-art platforms are
discussed, analyzing important aspects such as the trade-offs between per-
formance, energy efficiency and exploitation of parallelism by taking into
account real-time constraints.

Index terms— wireless acoustic sensor networks, source localization, acous-
tic signal processing, parallel architectures, parallel processing, heterogeneous
(hybrid) systems, energy efficiency.
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1 Introduction

Sound in general, and speech in particular, constitutes a natural and intuitive
way for the development of human-machine interfaces in emerging IoT scenar-
ios [1]. This is one of the reasons why networks of wireless computing devices
incorporating microphones (and sometimes loudspeakers), also known as wire-
less acoustic sensor networks (WASNs), are increasingly attracting the interest
of the IoT community [2–5]. In this context, WASNs may be easily integrated
into existing living or industrial environments with well-known advantages [6].
First, audio is a cheap and complimentary sensing modality that does not re-
quire visual or physical interaction. Second, acoustic sensing devices can be
useful in situations when other sensors fail, such as when a sound-emitting tar-
get is in the dark or is occluded. Third, voice is still the dominant human
communication modality and can be fused with other sensing modalities for an
improved overall performance [7].

The use of location information and its potential for the development of
ambient intelligence applications has significantly promoted the design of lo-
cal positioning systems during the last decade [8]. The localization and rang-
ing capability in networks of wireless devices has traditionally been a desirable
property since, besides being easily deployable, the nodes can be substantially
cheaper with respect to traditional sensing architectures. While most wireless
sensor networks (WSNs) have been typically using the received signal strength
(RSS) or the time of arrival (TOA) of radio signals, the use of sound in WASNs
brings a set of benefits [9, 10]. For example, since the localization accuracy
depends on both the signal propagation speed and the precision of the tempo-
ral measurements, acoustic signals may be preferred over radio signals for their
lower propagation speed. Additionally, in typical IoT-based applications for am-
bient intelligence, such as in ambient assisted living (AAL), the system already
relies on application-dependent sensors such as cameras and microphones [5].
In this context, the location of the user is a valuable piece of information, since
knowing the position of the user enables the implementation of services that
may make the living environment easier, safer or more comfortable.

From the hardware perspective, mobile platforms for acoustic sensing are
made up of two key elements: low-power processors and acoustic sensors. Audio
capturing and processing is considered a challenging matter, which involves a
trade-off between the complexity of the audio processing task and the hardware
resources. The audio monitoring process introduces some specific requirements
on hardware platforms. On the one side, audio signals are normally sampled
at relatively high rates, demanding large memories and high computational
capabilities. On the other side, signal processing tasks should be programmed
carefully to deal with the audio sampling process and to optimize the system
resources properly.

A popular approach for sound source localization is the well-known Steered
Response Power (SRP) with Phase Transform (PHAT) algorithm [11,12]. This
method is based on a grid-search procedure where the output power of a filter-
and-sum beamformer is computed through a grid of candidate source locations.
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The power map resulting from the values computed at all these locations (also
known as Global Coherence Field) will show a peak at the estimated source
position. Since the nodes of a WASN are not usually synchronized, the usual
practice is to compute a power map at each node of the network using multiple
microphones. Then, the maps are all combined together in a meaningful way be-
fore estimating the final source location. As a result, each node of the network
must perform intensive signal processing operations, this being an important
issue from a resource management perspective. Fortunately, the SRP-PHAT
method exhibits a massive fine-grain parallelism, with the same operations per-
formed over many sets of data [13, 14]. Usually, these data sets correspond to
the audio samples of the different audio channels involved in the system. More-
over, source localization applications may involve different needs in terms of
the number of microphones and spatial resolution. In this context, the com-
putational complexity of the system may be affected by the total number of
candidate locations explored by the algorithm [which may depend on the size
of the localization space or the desired spatial resolution] and the number of
microphones.

From the above considerations, it becomes clear that practical IoT systems
incorporating sound source localization features must be scalable and computa-
tionally efficient, posing important challenges for the platforms selected for such
edge computing tasks. The use of system-on-chips (SoC) within IoT systems is
becoming widespread [15, 16]. The emergence of SoC composed of multi-core
processors built either from multicore CPUs or even a small graphics accelerator
(or GPU) contributes a notable increment of the computational capacity while
partially retaining the appealing low-power consumption of embedded systems.

A primary goal of this paper is to provide insight concerning the implemen-
tation of SRP-based localization algorithms in IoT-oriented platforms, taking
into account the main challenges arising in terms of real-time performance,
energy consumption and exploitation of parallelism. Obviously, the complete
fulfillment of all design constraints will not be straightforward. For example,
high-accuracy localization involves increasing the computational cost, which
makes it more difficult to achieve real-time performance. Likewise, using more
resources to increase the speed of the algorithms comes at the expense of larger
energy consumption. Therefore, implementations designed to leverage the dif-
ferent components and capabilities of the device are a must. In this context,
the paper considers different techniques aimed at reducing the cost and energy
consumption of the algorithm, while providing sufficient speed to achieve real-
time performance. These include the reduction of the frequency of different
components of the platform, the pre-computation of some values, the use of the
fastest memories of the GPU or arranging the data to get a coalesced access,
among others.

We focus on the evaluation and the practical requirements for performing
sound source localization over three state-of-the-art multi-core-based SoCs: (1)
The ODROID XU3; (2) the Jetson TX1; and (3) the Raspberry Pi 3. We dis-
cuss different implementations and analyze the trade-offs between performance
and energy efficiency for different distributions of the computational load on
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the three proposed SoCs. We use well established programming tools, such
as OpenMP, OpenCL and CUDA to obtain portable implementations that can
leverage the parallel capabilities of the CPU and GPU cores of a wide range of
SoCs. Besides, we analyze the effect of modifying the frequencies of the cores
or even disabling some of them on the time and energy consumption of the
algorithm. As a result of this analysis, we establish the practical limitations of
source localization systems relying on platforms of this kind, taking into account
considerations such as the size of the system, the final spatial resolution, the
real-time performance capabilities and the resulting energy consumption. In ad-
dition, we compare results with another recently proposed algorithm specifically
designed to reduce the computational cost of SRP-based localization.

The rest of the paper is structured as follows. Section II reviews IoT appli-
cation scenarios where sound source localization is useful and describes the fun-
damentals of the two SRP-based algorithms considered in this paper: the con-
ventional SRP-PHAT method (C-SRP) and the refined volumetric SRP method
(RV-SRP). Section III summarizes the main features of the SoCs employed in
this work, describing specific implementation issues in Section IV. A thorough
performance evaluation is conducted in Section V. Finally, Section VI provides
a few concluding remarks.

2 Acoustic Source Localization in IoT

2.1 Sound source Localization in IoT scenarios

Sound source localization has already been applied to different scenarios within
the paradigm of IoT, such as automatic surveillance, environmental monitoring,
elderly care, smart homes or industrial environments. In most of these environ-
ments, energy efficiency is required due to the fact that an electricity connection
is not always available [17].

For pervasive IoT acoustic surveillance, it is necessary to detect and localize
abnormal acoustic events in a distributed collaborative manner [18]. In fact,
we can find in the literature research works aimed at preventing hazardous
situations such as might be indicated by the sound of human screams [19,20] or
other kinds of sounds such as gunshots, explosions, machine sounds or children
voices, among others [21].

In the industry, there also exists a wide range of applications that require
to perform acoustic source localization [22]. Currently, smart factories making
use of distributed sensors are gaining momentum. In this context, source local-
ization allows the detection of machine break-downs such as in [23]. In [24], the
authors propose a system that can detect the acoustic signature of power tools,
and the effectiveness of the system being used as an early warning system to
detect misuse of machinery is demonstrated.

Smart farms can also benefit from acoustic-based IoT systems. As an exam-
ple, in [25] the authors implement sound source localization in farms in order
to detect sick animals in commercial piggeries, since sick animals emit charac-
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teristically unusual sounds.
Another interesting IoT scenario is that related to ambient assisted living [5].

Systems oriented to the monitoring of homes where elderly or disabled people
live have been receiving a lot of attention in recent years. The first approaches
designed to detect events of this kind were carried out in [26,27] where emergency
falling detection systems were considered. The authors of [28] incorporate other
high performance computing features to acoustic sensor networks by designing
a real-time audio event detection for surveillance remote monitoring.
It is important to highlight that such systems do not only require powerful
embedded systems, but they also should be designed to make an efficient usage
of energy resources. In applications of this kind, edge computing may play a key
role, since it makes it possible to reduce the response time when an emergency
occurs: the most important part of the computation is carried out on the device,
so there is not need to send the information to a central node and wait to a
response as it happens in a cloud-computing environment [29]. Thus, edge
computing reduces the response time by limiting communication between nodes
and makes it possible to develop applications as the ones considered above. In
this paper we analyze the most important aspects that need to be considered in a
computational-demanding IoT scenario centered on acoustic source localization,
seeking for maximum computational performance, real-time and energy-efficient
solutions.

2.2 Source localization networks

A typical WASN for sound source localization assumes a moving acoustic source
and a collection of fixed anchor nodes placed at known (or unknown) positions.
In common IoT applications, the source usually consists of an unknown speech
source or an acoustic event. Since the source and the nodes are not synchronized,
the use of time-of-arrival (TOA) information is rarely employed, motivating
the use of time-differences of arrival (TDOAs) between synchronized sensors at
each node. Therefore, typical WASN nodes incorporate a set of synchronized
microphones following a particular geometry from which TDOA estimates can
be obtained. Note, however, that the microphone signals from different nodes
may not be synchronized.

A popular approach for inferring the location of the sound source relies on
the computation of Steered-Response Power (SRP) maps [30]. In a typical
setup, each node of the WASN would compute an SRP power map, sending
it to a sink node that merges the spatial likelihood information gathered by
each node. In order to minimize signal transmissions and allow for an increased
battery life in the nodes, sending the signals captured by the microphones to a
central node for computing SRP power maps is generally avoided. As a result,
the nodes are in charge of performing the required signal processing, sending
only the power maps once these have been computed. However, an important
aspect of SRP-based localization is that algorithms are relatively expensive from
a computational point of view and, thus, powerful edge platforms capable of
managing costly signal processing operations over multiple microphone channels
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become necessary.
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Figure 1: WASN with three nodes and three microphones per node.
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Figure 2: An examle of SRP-based localization using four nodes. (a) SRP power
maps computed by each node. (b) Combined SRP matrix.

Figure 1 shows a general WASN with a set of wireless nodes and an emitting
sound source. It is assumed that the network consists of M nodes and that
each node incorporates S microphones. In the example shown in Figure 1,
M = 3 and S = 3. The nodes are assumed to be located at positions qm =
[qx,m, qy,m, qz,m]T , m = 1, . . . ,M , while the microphone locations are denoted

as m
(m)
l = [x

(m)
l , y

(m)
l , z

(m)
l ]T , l = 1, . . . , S, where the superscript (m) identifies

the node at which the microphone is located. The source position is denoted as
xs = [xs, ys, zs]

T , while a general point in space is x = [x, y, z]T . Note that all
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these location vectors are referenced to the same absolute coordinate system.
The time instant at which the source signal arrives to a given microphone, i.e.

the TOA, is denoted as τ
(m)
l . TDOAs are denoted by τ

(m)
kl , and correspond to

the observed TOA differences between pairs of microphones (kl). For the sake
of clarity in the notation, throughout the rest of the paper we will consider pairs
of microphones within the same node, so we will omit the superscript (m) of the
sensor.

2.3 Conventional SRP-PHAT algorithm (C-SRP)

Consider the output from a microphone l, ml(t), in a system composed of
S microphones. The power of a beamformer steered to a spatial location
x = [x, y, z]T can be calculated in terms of the generalized cross-correlation
(GCC) of the different microphone pairs of the system. Given the pair of micro-
phones k and l, with k 6= l, the GCC between ml(t) and mk(t) can be written
as [31]

Rkl(τ) ,
1

2π

∫ π

−π
Mk(ω)M∗l (ω)Ψij(ω)ejωτdω, (1)

where Ml(ω) is the DTFT of ml(t),
∗ is the conjugate operator and Ψij(ω) is

a suitable weighting function. One of the most common choices is to use the
PHAse Transform (PHAT) weighting function, i.e.

Ψij(ω) =
1

|Mk(ω)M∗l (ω)|
.

DiBiase [11] demonstrated that the SRP at a spatial location x ∈ R3 calcu-
lated over a time interval of T samples can be efficiently computed in terms of
GCCs:

J
(SRP)
C (x) =

2

T

S∑
k=1

S∑
l=k+1

Rkl (τkl(x)) +

S∑
k=1

Rkk(0), (2)

where τkl(x) is the time difference of arrival (TDOA) that would produce a
sound source located at x with a propagation speed c, i.e.

τkl(x) =
‖x−mk‖ − ‖x−ml‖

c
. (3)

The last summation term in Eq. (2) is usually ignored, since it is a power
offset independent of the steering location. When GCCs are computed with
PHAT, the resulting SRP is known as SRP-PHAT. In practice, the method is
implemented by discretizing the location space region V using a search grid G
consisting of candidate source locations in V and computing the functional of
Eq.(2) at each grid position. The estimated source location is the one providing
the maximum functional value:

x̂(C-SRP)
s = arg max

x∈G
J
(SRP)
C (x). (4)
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Figure 2 shows a 2D example of a localization system in a room of dimen-
sion 5 × 6 m, with four nodes located at the mid-points of the walls. Each
node incorporates 3 microphones. The power maps computed by each node are
represented in (a). It can be clearly observed that the power concentrates in
some directions. When all the power maps are combined in (b), the overlaid
SRP map shows a peak on the true source location (red circle).

2.4 Refined Volumetric SRP (RV-SRP)

The conventional SRP-PHAT algorithm (C-SRP) previously described requires
dense grids for achieving high-accuracy location estimates. This may be pro-
hibitive in real-time applications with many microphones. To deal with this
issue, the modified SRP method was first proposed as a robust alternative con-
sidering the volume surrounding each point of the search grid, which enables the
use of coarser grids and, consequently, reduces considerably the computational
cost [32]. Following a similar rationale, the refined volumetric SRP (RV-SRP)
method has been recently proposed as an alternative for achieving high-accuracy
location estimates with reduced cost, which defines a two-step procedure [33].
First, the entire search space is reduced to a volume V̂, chosen as the volume
that maximizes the objective function

J
(SRP)
RV (V) =

S∑
k=1

S∑
l=k+1

τmax
kl,V∑

τ=τmin
kl,V

Xkl(τ,V)Rkl (τ)) , (5)

where Xkl = 1 when there exists at least one point of the grid x ∈ V such that
its associated TDOA τkl(x) is equal to τ , and the limits τmin

kl,V , τmax
kl,V are given by

the minimum and maximum TDOA within a volume V. Otherwise, Xkl is zero.
In the second step, the C-SRP is applied inside the new search space V̂. Note
that the RV-SRP method needs to be initialized by considering a fine grid from
which lag limits are pre-computed, although a functional is only computed in
the second step over those points contained within the winning volume.

2.5 Sequential implementation

The C-SRP and RV-SRP may be implemented following a sequential approach.
In fact, the second step of RV-SRP is equivalent to a C-SRP evaluated over a
reduced search space.

The SRP-PHAT algorithm takes as input sample buffers of size L corre-
sponding to S microphones. The main steps carried out by the algorithm are
the following:

1. For each of the S microphones weight the L samples by a Hamming window
vector.

2. For each of the S microphones perform an L-point FFT resulting in S
vectors, each containing L frequency bins.
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3. Compute the GCC matrix of size Q×L, being Q the number of microphone
pairs.

4. For each of the Q rows of GCC compute an inverse L− FFT.

5. Compute a three-dimensional SRP matrix. Each element of the matrix
corresponds to a point of a 3D spatial grid and its value depends on the
TDOA resulting from the grid point to one pair of microphones.

6. Obtain the position of the maximum SRP value corresponding to the
estimated sound source location.

A more detailed version of the algorithm, including an analysis of the cost
of each step can be found in [14].

3 SoCs for IoT

We evaluate the SRP-PHAT algorithm on three different SoCs that are repre-
sentative of the state-of-the-art in heterogeneous low-power architectures. All
of them implement the ARM Cortex-A microarchitecture, with support of the
ARMv7 (32-bit) and ARMv8 (64-bit) Instruction Set Architectures (ISAs). Al-
though all of them are considered to be low power architectures, they substan-
tially differ in terms of heterogeneity, use of accelerators or amount of memory.
Thus, this selection illustrates a range of solutions available in the market and
can be applied to different scenarios depending on the specific computation or
power consumption requirements of the target application.

3.1 ODROID XU3

The ODROID XU3 is a board that integrates the Samsung Exynos 5422 SoC
based on an octa-core ARM Cortex CPU featuring a big.LITTLE paradigm.
The SoC integrates four fast ARM Cortex A15 and four energy-efficient ARM
Cortex A7 in the same die, together with an ARM Mali-T628 MP6 GPU. The
board includes 2 Gbytes LPDDR3.

3.2 Nvidia Jetson TX1

The Nvidia Jetson TX1 is a board that features a SoC based on a quad-core
ARM Cortex-A57 CPU with 4 Gbytes LPDDR4 and a high-performance 256-
core Nvidia Maxwell GPU. Designed with computer vision and deep learning in
mind, it exhibits a plethora of connectivity interfaces, including 802.11ac WiFi,
Bluetooth 4.0, Gigabit Ethernet and PCIe Gen2. The board draws up to 15
Watts TDP when the processing module is fully used. It includes 4 Gbytes of
LPDDR4.
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3.3 Raspberry Pi 3

The Raspberry Pi 3 is the latest release of the Raspberry Pi series. The board
integrates a Broadcom BCM2837 SoC with a quad-core ARM Cortex A53 CPU
and a small Broadcom VideoCore IV GPU. The system is equipped with 1
Gbyte LPDDR2 memory and wired and wireless interconnection interfaces.

3.4 Power monitoring infrastructure

The energy measurements in this paper require an environment that yields de-
tailed and reproducible values. In order to obtain comparable energy measure-
ments across all boards, we decided to measure the power consumption of the
complete boards (that is, measuring at the DC entrance). While the Jetson
TX1 and the ODROID XU3 include an isolated energy counter for the SoC, the
lack of this mechanism in the Raspberry Pi 3 invalidates their usage if a fair
comparison is desired. In our case, we have adapted the pmlib framework [34]
to interact with the Smart Power device [35] in order to monitor the instanta-
neous power draw for the complete execution. For the Jetson TX1, we measure
the same value leveraging internal power sensors. In all cases, we report appli-
cation energy consumption numbers by subtracting the observed idle power of
the corresponding board to that observed during the application execution.

4 Implementation Issues

Each of the six main steps of the the C-SRP algorithm allows us to exploit data
parallelism. Specifically, in step 1) every sample can be weighted in parallel,
while in steps 3) and 5) every element of matrices GCC and SRP respectively,
can be computed in parallel. Regarding steps 2) and 4), there exist several
efficient parallel implementations of the FFT included in well-know libraries.
Finally, the computation of the maximum in step 5) can be performed by means
of a parallel reduction schema.

We have used different programming technologies to leverage the resources
of the parallel architectures trying to obtain the best performances both in
terms of time and energy consumption. We have chosen well-known tools that
allow us to obtain portable algorithms that can be executed in a wide range of
parallel architectures, from low-power SoC platforms to high performance par-
allel computers. Specifically we have implemented a parallel OpenMP version
of the algorithm to run on the CPU cores [14]. It is quite straightforward to
use parallel pragmas to parallelize some of the loops of each of the steps of the
algorithm or to use the reduction clause to obtain the position of the max-
imum SRP value. We have compared different loop scheduling strategies and
chosen the best in each case. Steps 2) and 4) have been parallelized using the
multi-threading capabilities of the FFTW library [36].

Some SoC platforms include a GPU and provide the possibility of using
CUDA, OpenCL or both technologies to run the SRP-PHAT algorithm. There-
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fore, we have also implemented parallel versions of the algorithm that use both
programming tools [13,14,37].

Algorithm 1 summarizes the main steps of the parallel implementation using
OpenCL. The version using CUDA is very similar. Input parameter B is a
vector containing the S input sample buffers of size L, vector H contains the
Hamming window and p the position of the microphones. We have implemented
five kernels to solve steps 1), 3), 5) and 6) of the sequential version. The two
calls to clFFT functions in lines 4 and 6 correspond to the routine included in
the OpenCL FFT library [38]. In the CUDA version we use the routine included
in the library [39]. The algorithm minimizes the transfer of information between
the host CPU and the GPU device. It involves an initial transfer of some input
vectors from host to GPU and the final transfer of the sound source position
pmax from the GPU to the host. All the kernels produce and reuse intermediate
results in the global memory of the device and leverage its local and private
memories when possible.

Algorithm 1 Parallel OpenCL SRP-PHAT algorithm.

1: function SRP-PHAT(B, H, p, L, S)
2: Transfer CPU → GPU: B, H, p
3: RB = kHamming(B, H, L, S)
4: RFB ← clFFT(RB, “forward”)
5: GCC = kGCC(RFB, L, S)
6: RGCC = clFFT(GCC, “backward”)
7: SRP = kSRP(RGCC, p, L, S)
8: max = kRedMax(SRP)
9: pmax = kPosMax(SRP, max)

10: Transfer CPU ← GPU: pmax
11: return pmax
12: end function

The implementation of the kernels executed by each work-item to approach
steps 1), 3) and 5) of the sequential algorithm are summarized in algorithms 2, 3
and 4 respectively. Kernel kRedMax uses a multi-step parallel tree reduction
schema, such as the one describe in [40], to obtain the maximum value of matrix
SRP. Finally, in kernel kPosMax the work-item containing that maximum value
returns its position.

We have implemented different versions of the kernels trying to reduce the
memory access cost and reuse the data on each work-item. For example, we have
analyzed the effect of precomputing the distances from every grid point to every
microphone or to every pair of microphones instead of computing them on each
iteration of the algorithm. For example, those distances are computed in lines
8 and 11 in the version of the kernel included in algorithm 4. However, our ex-
perimental results show that it is faster to precompute all the inter-microphone
time delays (see line 12) only once at the beginning of the localization process.

The main drawback of the previous strategy is its spatial cost, because we
need to store an integer distance from every point of the grid to every pair of
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microphones. If we increase the spatial resolution or the number of microphones
those values might not fit into the memory of the CPU or GPU, even more when
dealing with low power devices with small memories. A possible solution that
could alleviate that problem is to precompute only the distances from every
point to every microphone and use them to compute the interdistances during
the localization process.

In order to reduce the memory access cost we have arranged the data so
that the work-items perform, when possible, a coalesced access to the matrices
and vectors. For example in kernel kHamming (algorithm 2) work-item i reads
the i − th sample of each microphone. As matrix B stores consecutively those
samples, we achieve a coalesced access to the global memory of the GPU. Notice
also that every work-item uses one element of the Hamming window and in line 3
of the algorithm we copy it from the global memory to much faster private
memory, which usually involves registers of the GPU.

We have also implemented versions of some of the kernels where each work-
item performs computations with different granularities. For example, in kernel
kHamming each work-item could compute one of the elements of matrix GCC.
However, it is faster to increase the granularity by computing all the elements
of one row on one work-item, as it is shown in algorithm 2.

Finally, another aspect that needs to be taken into account in order to op-
timize the CUDA and OpenCL codes and adapt them to every device is the
size of the thread blocks that execute each kernel. The experimental results
shown in this paper are always obtained with the thread block sizes that give
the minimum time on the corresponding GPU device.

Algorithm 2 Hamming window application kernel.

1: function kHamming(B, H, L, S)
2: i = global index of the work-item
3: pH = H[i] // copy to private memory
4: for f ← 1 to S do // for each microphone
5: RB[i] = ( B[i] ∗ pH, 0.0 )
6: i += L
7: end for
8: return RB
9: end function

5 Experimental platforms and testbed

We have performed our experiments in the three well-known low-power plat-
forms described in Section 3.

All the experiments have been conducted using a varying number of mi-
crophones (from 6 to 24) over synthetic recordings simulated by means of the
image-source method. In the following subsections we will mostly show results
using 12 microphones because all the parallel algorithms allow us to perform the
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localization in real time on the three experimental platforms using that number
of microphones. The algorithms have been tested with sample buffers of size
L = 4096 for each microphone. For a sample frequency fs = 44.1 KHz, if we
want to locate the source in real time, the processing time of the algorithm must
be less than tp = 92.88 ms.

Algorithm 3 GCC matrix computation kernel.

1: function kGCC(RFB, L, S)
2: i = global index of the work-item
3: pa = 0 // pair index
4: for m1 ← 1 to S do
5: for m2 ← m1+1 to S do
6: // Complex conjugate product
7: c = RFB[m1 ∗ L+ i] ∗ RFB[m2 ∗ L+ i]
8: angle = atan2(c)
9: GCC[pa ∗ L+ i] = ( cos(angle), sin(angle) )

10: pa++
11: end for
12: end for
13: return GCC
14: end function

Algorithm 4 SRP matrix computation kernel.

1: function kSRP(RGCC, p, L, S)
2: (i, j, k) = global 3D index of the work-item
3: x = position of the grid point (i, j, k)
4: pa = 0 // pair index
5: r = 0.0
6: for m1 ← 1 to S do
7: x1 = p[m1]
8: d1 = ||x− x1||
9: for m2 ← m1+1 to S do

10: x2 = p[m2]
11: d2 = ||x− x2||
12: delay = (d1− d2)/c // integer division
13: r += RGCC[pa ∗ L+ delay]
14: pa++
15: end for
16: end for
17: SRP[i, j, k] = r
18: return SRP
19: end function
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5.1 C-SRP vs. RV-SRP

Firstly we compare two strategies aimed at reducing the temporal cost of SRP-
PHAT localization. On the one hand, we use the low-complexity RV-SRP algo-
rithm described in Section 2.4 On the other hand, we implement several high-
performance parallel versions of the C-SRP algorithm. The objective of this
comparison is to evaluate the gain obtained from a proper resource management
scheme versus the one derived from a low-complexity algorithmic approach.
Specifically, Figure 3 compares the results obtained using 6 an 12 microphones
on a Jetson TX1 platform. The OpenMP results are obtained leveraging the
four cores of the CPU, while the CUDA version is executed on the 256 cores of
the Maxwell GPU. The RV-SRP version uses initially a coarse grain volumetric
grid with a resolution of 0.1 m and refines the results on a smaller volume with
a finer resolution of 0.02 m The sequential and parallel versions of the C-SRP
algorithm use the same fine grain resolution, but on all the search space. If we
are dealing with a sequential platform, the RV-SRP algorithm is an excellent
alternative to the C-SRP, as it clearly reduces its execution time. This reduction
is larger as we increase the number of microphones and so the cost of computing
the SRP value on every grid point. However, the parallel versions of the C-SRP
outperform the lower complexity sequential RV-SRP algorithm. For example,
using 12 microphones the CUDA implementation is around 16 times faster than
the sequential implementation of the same algorithm and around 10 times faster
than the RV-SRP algorithm.

Regarding the energy consumption of the different algorithms, the RV-SRP
version is also more efficient than the conventional version (see Figure 4). How-
ever, the most energy efficient implementation is again the one implemented
using CUDA and leveraging the GPU of the platform.

5.2 Results with the Odroid-XU3

In the following sections we will analyze the behaviour of the sequential and
parallel versions of the SRP-PHAT algorithm, both in terms of time and energy,
in the three experimental platforms.

Figure 5 shows that the sequential version of the algorithm can only perform
the localization in real time with low resolution grids (r >= 0.1 m) and using
the fastest kind of core (Cortex-A15). However the parallel versions of the
algorithm allow us to locate the source with medium resolution grids. The best
results are obtained with the OpenMP version using the fastest core, but the
OpenCL version obtains quite similar results as we increase the resolution.

The following three figures allow us to analyze the effect of modifying the
frequencies of some of the components of the architecture on the energy con-
sumption of the parallel algorithms. We are always using a grid resolution of
r = 0.1 m. Figure 6 shows the energy consumed by the platform in mJ when we
execute the OpenMP version of the algorithm on its two types of CPU cores.
The power dissipated by both kinds of cores slowly increases with their fre-
quency and the number of cores. However, in terms of energy consumption the
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Figure 3: Execution times of the different versions of the SRP method on a
Jetson TX1 platform. The horizontal line shows the real-time threshold.

behavior of both types of cores is quite different. In the case of the A7 cores
the algorithm consumes more energy at the lowest frequencies and using one
core. We obtain the best consumption in the few cases when we can perform
the localization in real time. On the contrary, in the case of the A15 cores,
the energy consumption increases with the frequency and the best results are
obtained at low frequencies (< 1000 MHz) and using 3 or 4 cores.

Finally, Figure 8 allows us to compare the energy consumption of the algo-
rithm in the cases where less energy is consumed by the CPU or the GPU to
perform the localization in real time. The OpenMP version is clearly less power
consuming than the OpenCL version and in both cases it is better to use the
low-power A7 cores. The best option is to execute the OpenMP version of the
algorithm on 3 or 4 Cortex-A7 CPU cores at high frequencies.

5.3 Results with the Jetson TX1

The Jetson-TX1 platform allows us to leverage its four CPU cores using OpenMP
and also its GPU using CUDA to perform the localization. Both parallel ver-
sions clearly improve the sequential execution time and allow us to use finer
grids in real time (see figure 9). The CUDA version clearly outperforms the
OpenMP version on this platform.

Figures 10 and 11 allow us to analyze and compare the energy consumption
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Figure 4: Energy consumption of the different versions of the SRP method on
a Jetson TX1 platform.

of the Jetson-TX1 platform using its CPU and GPU cores at their different
frequencies. We can see that the CPU cores are much more power-hungry than
the GPU even in the less expensive case in terms of energy consumption of the
OpenMP algorithm. This behavior is mainly due to the faster execution time
of the CUDA algorithm, because the power dissipated by the platform in both
cases is quite similar. The energy consumption of the CUDA version is quite
stable disregarding the CPU and GPU frequencies and only increases when we
combine the lowest GPU frequency with high CPU frequencies and vice versa.
In the case of the OpenMP version, increasing the number of cores and reducing
the CPU frequencies is beneficial for the energy consumption.

5.4 Results with the Raspberry Pi 3

If we use OpenMP to leverage the four cores of the Raspberry Pi 3, we can per-
form the localization in real time, which cannot be achieved using the sequential
algorithm. In this case we can locate the source using grid resolutions larger
than 0.05, as we can see in Figure 12.

On the other hand, the energy consumption of the algorithm decreases with
the number of cores and their frequencies. However, by using more than one
core it is possible to solve the problem in real time, and the lowest energy
consumption is obtained by reducing the core frequencies, as we can see in
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Figure 13.

5.5 Platforms comparison

If we compare the execution times of the fastest algorithms in each of the three
experimental platforms, Figure 14 shows that we can use 12 microphones to
perform the localization of a sound source using grids with resolutions larger
than 0.05 m in all of them. However, the fastest option is clearly to use CUDA
to leverage the GPU included in the Jetson-TX1 platform.

If we want to perform the localization while reducing the energy consump-
tion, the best option is also to use the GPU included in the Jetson TX1. The
values shown in Figure 15 are always obtained with the best parallel algorithm,
number of cores and frequency of the components on each of the platforms that
allows us to perform the localization in real time.
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Figure 6: Energy consumed in mJ using the OpenMP algorithm with both kinds
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are only shown in the cases where the localization can be done in real time.

6 conclusions

This paper has shown how to exploit the computational capabilities of recent
low-power SoCs to efficiently solve the problem of sound source localization
in real time. We have used well-know parallel programming tools, such as
OpenMP, CUDA and OpenCL to implement several portable versions of the C-
SRP algorithm. This kind of tools allows us to leverage the parallel capabilities
of the CPUs and GPUs of the platforms to obtain efficient implementations
both in terms of time and energy consumption.

Although low-complexity algorithms such as the RV-SRP can offer great
computational advantages over sequential implementations, the use of paral-
lel versions exploiting the computational resources of such platforms has been
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Figure 7: Energy consumed in mJ using the OpenCL algorithm in the Mali
GPU and both types of CPU cores of the ODROID platform as host: A7 (left-
hand side) and A15 (right-hand side). We modify both the CPU and GPU
frequencies. Energy values are only shown in the cases where the localization
can be done in real time.

shown to be a key aspect for achieving high-performance real-time systems.
The implementations have been evaluated on three recent SoCs with different

features in terms of model of cores, type and amount of memory or accelera-
tor: Raspberry Pi 3, Odroid XU3 and Jetson TX1. Experimental results show
that leveraging the computational resources of the three platforms allow us to
locate the sound source in real time using up to 12 microphones on a 3D grid
with a resolution larger than 0.05. We have also exploited the possibility of
controlling the frequencies of the CPU and GPU cores offered by the platforms,
and even disabling some of those cores, to reduce the energy consumption of
the algorithm. Taking into account the programming tool, number and type of
core and frequencies, the best option depends on the platform. For example,
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the fastest results in the Jetson TX1 are obtained using the CUDA version with
the GPU and the CPU at their maximum frequencies. However, the energy
consumption is better if we reduce the frequency of both the GPU and the CPU
to intermediate values.

All in all, if we want to locate a sound source using one of the three platforms
compared, the fastest and lowest energy consuming option is to use CUDA
to leverage the GPU included in the Jetson TX1. Moreover, we have shown
that appropriately leveraging the resources provided by this kind of low-power
platform it is possible to deploy a precise and robust system for acoustic source
localization in real time. We hope that our implementations and evaluation can
be useful on the design of emerging IoT systems.

As for future work, we intend to parallelize the RV-SRP algorithm using the
same techniques that with the C-SRP algorithm and to compare their perfor-
mance both in terms of time and energy consumption.
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Figure 10: Energy consumed by the Jetson-TX1 platform using CUDA and
varying the CPU and GPU frequencies (left-hand side) and using OpenMP on
the CPU cores and varying their frequencies (right-hand side). Energy values
are only shown in the cases where the localization can be done in real time.
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