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MAXIMAL `p-REGULARITY FOR DISCRETE TIME VOLTERRA
EQUATIONS WITH DELAY

CARLOS LIZAMA AND MARINA MURILLO-ARCILA

Abstract. In this paper we investigate the existence and uniqueness of solutions
belonging to the vector-valued space `p(Z, X) by using Blunck’s theorem on the
equivalence between operator-valued `p-multipliers and the notion of R-boundedness
for the discrete time volterra equation with delay given by

u(n) =

n∑
j=−∞

b(n− j)Au(j) +

k∑
j=1

βju(n− τj) + f(n), n ∈ Z,

where A is a closed linear operator with domain D(A) defined on a Banach space
X and b ∈ `1(Z) verifies suitable conditions such as 1-regularity. We characterize
maximal `p-regularity of solutions of such problems in terms of the data and an
spectral condition and we provide optimal estimates. Moreover, we illustrate our
results providing different models that label into our general scheme such as the
discrete time wave and Kuznetsov equations.
Keywords: volterra equations, maximal `p-regularity, R-bounded, discrete wave
equation, discrete kuznetsov equation
Mathematics Subject Classification (2010): 45D05, 35R09, 65Q10, 39A06.

1. Introduction

In this paper we analyze the existence and uniqueness of solutions in vector valued
`p(Z, X) spaces for discrete time formulations of the following integro partial differential
equation with delay,

u(t) =

∫ t

−∞
a(t− s)Au(s)ds+ βu(t− τ) + f(t, u(t)), t ∈ R,

where A is a closed linear operator defined on a Banach space X. This equation models
viscoelastic fluids, heat conduction with memory and electrodynamics processes with
memory [4, 28]. Typical models that are included in this article correspond to different
discrete versions of the multidimensional wave and Kuznetsov equations

(1) utt − c2∆u− νε∆ut = f(t), t ∈ R.
The analysis of qualitative properties of Volterra type equations has been considered

by various authors, see [10] and all the references therein. Moreover, numerical methods
for the resolution of Volterra equations have been studied among others in [6, 7, 9, 19,
26, 27]. On the other hand, the study of maximal regularity for discrete systems that
belong to the Lebesgue space of vector-valued sequences since the pioneer work of S.
Blunck [5] has experimented a great development as it can be seen in the recent papers

The first author is partially supported by FONDECYT grant number 1180041.
The second author is supported by MEC, grant MTM2016-75963-P and GVA, Grant 18I264.01/1.
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2 C. LIZAMA AND M. MURILLO

[13, 21, 20, 22]. This study is strongly connected with the necessity of optimal `p − `q
time-space estimates for the corresponding linearized problem [2, 11, 13, 16, 14, 18,
17, 24, 25].

In our work, we succeed characterizing maximal `p-regularity for the following ab-
stract model

(2) u(n) =
n∑

j=−∞

b(n− j)Au(j) +
k∑
j=1

βju(n− τj) + f(n), n ∈ Z,

where f ∈ `p(Z, X), A is a closed linear operator with domain D(A) defined on X and
b ∈ `1(Z). It is worthwhile to observe that, for instance, model (2) includes among
others the discrete Kuznetsov equation (1) taking A = −∆d,N , the multidimensional
discrete Laplacian, b(n) = −(c2 + νε)δ0(n) + νεrδ0(n − 1), β1 = 2r, τ1 = 1 and β2 =
−r2, τ2 = 2.

This paper is organized as follows: in Section 2, we first recall the notions of UMD-
spaces, R-boundedness, `p-multipliers, sectorial operators and the discrete time Fourier
transform defined on the space of distributions. Moreover, we recall the well-known
Blunck’s Fourier multiplier theorem [5] for operator-valued symbols on UMD-spaces
that establishes the equivalence between `p-multipliers and R-boundedness.

In Section 3, we prove our main result, namely, if b ∈ `1(Z) is 1-regular, b̂(t) 6= 0 for
all t ∈ T and {

1−
∑k

j=1 βje
−itτj

b̂(t)

}
t∈T

⊂ ρ(A).

then the following assertions are equivalent:

(i) For all f ∈ `p(Z, X) equation

u(n) =
n∑

j=−∞

b(n− j)Au(j) +
k∑
j=1

βju(n− τj) + f(n), n ∈ Z,

has a unique solution in `p(Z, [D(A)]);

(ii) M(t) := (1−
∑k

j=1 βje
−itτj − b̂(t)A)−1 is an `p-multiplier from X to [D(A)];

(iii) The set {M(t) : t ∈ T} is R-bounded.

Observe, that our result demands 1-regularity of the kernel sequence b(n). We intro-
duce this concept for the first time in definition 3.2 and it corresponds to the discrete
counterpart of the notion of 1-regularity introduced in [15]. Furthermore when X is
Hilbert we simplify the previous result by replacing the condition (iii) above by an
easier computable condition

sup
t∈T
‖M(t)‖ <∞.

We also ensure optimal estimates for model (2) under any of the above conditions, that
is, the following estimate also holds

‖u‖`p(Z;X) + ‖b ∗ Au‖`p(Z;X) ≤ C‖f‖`p(Z;X).

Finally, in section 4, we prove, as an application of our characterization, the existence
and uniqueness of `p(Z; `q(ZN)) solutions for time discretizations forms of the wave and
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Kuznetsov equations in terms of the data of the problem as it can be seen in theorems
4.2,4.3 and 4.4. In addition, we obtain maximal `p − `q- estimates for such models.

2. Analytical framework and notation

In this section, we present some results that will be needed throughout the paper.

Let X be a Banach space. We denote by S(Z;X) the space of all vector-valued
sequences f : Z → X such that for each k ∈ N0 there exists a constant Ck > 0
satisfying pk(f) := supn∈Z |n|k‖f(n)‖ < Ck and when X = R we denote S(Z).
We write as Cn

per(R;X), n ∈ N0, the space of all 2π-periodic X-valued and n-times
continuously differentiable functions defined in R. In what follows, we will denote
T := (−π, π) and T0 := (−π, π) \ {0}. The space of test functions is the space
C∞per(T;X) :=

⋂
n∈N0

Cn
per(R;X). When X = R we simply write C∞per(T).

For each f ∈ `p(Z;X) we can define the map

(3) Tf (ψ) := 〈Tf , ψ〉 :=
∑
n∈Z

f(n)ψ(n), ψ ∈ S(Z),

and we have Tf ∈ S ′(Z, X) = {T : S(Z)→ X : T is linear and continuous}.
Remark 2.1. By this mapping we identify `p(Z;X) with a subspace of S ′(Z;X). When
convenient and confusion seems unlikely, a function f ∈ `p(Z;X) is identified with
Tf ∈ S ′(Z, X).

There also exists a natural mapping that identifies C∞per(T;X) with a subspace of
D′(T;X) = {T : C∞per(T) → X : T is linear and continuous} which assigns to each
S ∈ C∞per(T;X) the linear map

LS(ϕ) := 〈LS, ϕ〉 :=
1

2π

∫ π

−π
ϕ(t)S(t)dt, ϕ ∈ C∞per(T),

and we have LS ∈ D′(T;X).

Definition 2.2. The discrete time Fourier transform F : S(Z;X) → C∞per(T;X) is
defined by

Fϕ(t) ≡ ϕ̂(t) :=
∞∑

j=−∞

e−ijtϕ(j), t ∈ (−π, π]

and the corresponding inverse transform is given by

(4) F−1ϕ(n) ≡ ϕ̌(n) :=
1

2π

∫ π

−π
ϕ(t)eintdt, n ∈ Z,

where ϕ ∈ C∞per(T;X).

This isomorphism, allows us to define the discrete time Fourier transform (DTFT)
between the spaces of distributions S ′(Z;X) and D′(T;X) as follows:

(5) 〈FT, ψ〉 ≡ F(T )(ψ) := T̂ (ψ) ≡ 〈T, ψ̌〉, T ∈ S ′(Z;X), ψ ∈ C∞per(T),

whose inverse F−1 : D′(T;X)→ S ′(Z;X) is given by

〈F−1L, ψ〉 ≡ F−1(L)(ψ) := Ľ(ψ) ≡ 〈L, ψ̂〉, L ∈ D′(T;X), ψ ∈ S(Z).
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We finally present a technical lemma introduced in [22] which will be necessary
througout the paper. We first need the following definition.

Definition 2.3. Given u ∈ `p(Z;X) and v ∈ `1(Z) the convolution product between
u and v is defined as

(u ∗ v)(n) :=
n∑

j=−∞

u(n− j)v(j) =
∞∑
j=0

u(j)v(n− j), n ∈ Z.

Moreover, the convolution of a distribution T ∈ S ′(Z, X) with a function a ∈ `1(Z+)
is defined by

(6) 〈T ∗ a, ϕ〉 := 〈T, a ◦ ϕ〉, ϕ ∈ S(Z),

where

(a ◦ ϕ)(n) :=
∞∑
j=0

a(j)ϕ(j + n).

Lemma 2.4. Let u, v ∈ `p(Z;X) be given and a ∈ `1(Z+) which is defined by 0 for
negative values of n. The following assertions are equivalent:

(i) a ∗ v ∈ `p(Z, X) and (a ∗ v)(n) = u(n) for all n ∈ Z.
(ii) 〈u, ϕ̌〉 = 〈v, (ϕ · â−)̌〉 for all ϕ ∈ C∞per(T),

where

(ϕ · â−)̌(n) :=
1

2π

∫ π

−π
â(−t)ϕ(t)eintdt, n ∈ Z.

We recall the notion of R-bounded sets and `p-multipliers in the space B(X, Y ) of
bounded linear operators from X into Y endowed with the uniform operator topology.

Definition 2.5. Let X and Y be Banach spaces. A subset T of B(X, Y ) is called
R-bounded if there is a constant c > 0 such that

(7) ‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R,
for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N, where

‖(x1, ..., xn)‖R :=
1

2n

∑
εj∈{−1,1}n

∥∥∥ n∑
j=1

εjxj

∥∥∥,
for x1, ..., xn ∈ X.

For more information about R-bounded sets and their properties see [1, Section 2.2]
and [8]. We next recall the following notion.

Definition 2.6. [22] Let X, Y be Banach spaces, 1 < p < ∞. A function M ∈
C∞per(T,B(X, Y )) is an `p-multiplier (from X to Y ) if there exists a bounded operator
T : `p(Z;X)→ `p(Z;Y ) such that

(8)
∑
n∈Z

(Tf)(n)ϕ̌(n) =
∑
n∈Z

(ϕ ·M−)̌(n)f(n)

for all f ∈ `p(Z;X) and all ϕ ∈ C∞per(T). Here

(ϕ ·M−)̌(n) :=
1

2π

∫ π

−π
eintϕ(t)M(−t)dt, n ∈ Z.
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We now recall the following Fourier multiplier theorem for operator-valued symbols
given by S. Blunck [5, 1]. This theorem provides sufficient conditions to ensure when an
operator-valued symbol is a multiplier, and allows to establish an equivalence between
`p-multipliers and the notion of R- boundedness for the UMD class of Banach spaces.
For more information about these spaces see [3, Section III.4.3-III.4.5].

Theorem 2.7. [5, Theorem 1.3] and [22] Let p ∈ (1,∞) and let X, Y be UMD spaces.
Let M ∈ C∞per(T0,B(X;Y )) such that the sets

{M(t) : t ∈ T0} and
{

(1− eit)(1 + eit)M ′(t) : t ∈ T0

}
,

are both R-bounded. Then M is an `p-multiplier (from X to Y ) for 1 < p <∞.

The converse of Blunck’s theorem also holds without any restriction on the Banach
spaces X, Y as follows:

Theorem 2.8. [5, Proposition 1.4] Let p ∈ (1,∞) and let X, Y be Banach spaces. Let
M : T → B(X;Y ) be an operator valued function. Suppose that there is a bounded
operator TM : lp(Z;X)→ lp(Z;Y ) such that (8) holds. Then the set

{M(t) : t ∈ T}
is R-bounded.

We now provide some notions concerning sectorial operators. Let Σφ ⊂ C denote
the open sector

Σφ = {λ ∈ C \ {0} : | arg λ| < φ}, 0 < φ ≤ π.

We denote by
H(Σφ) = {f : Σφ → C holomorphic}.

and
H∞(Σφ) = {f : Σφ → C holomorphic and bounded}.

H∞(Σφ) is equipped with the norm

||f ||φ∞ = sup
| arg λ|<φ

|f(λ)|.

We further define the subspace H0(Σφ) of H(Σφ) as follows

H0(Σφ) =
⋃
α,β<0

{f ∈ H(Σφ) : ||f ||φα,β <∞},

where

||f ||φα,β = sup
|λ|≤1

|λαf(λ)|+ sup
|λ|≥1

|λ−βf(λ)|.

Definition 2.9. A closed linear operator A in X is called sectorial if the following
conditions hold:

(i) D(A) = X,R(A) = X, (−∞, 0) ⊂ ρ(A);
(ii)||t(t+ A)−1|| ≤M for all t > 0 and some M > 0.

A is called R-sectorial if the set {t(t+ A)−1}t>0 is R-bounded.
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The class of sectorial (resp. R-sectorial) operators in X will be denoted by S(X)
(resp. RS(X). Set RA(φ) = R(λ(λ + A)−1 : | arg λ| ≤ φ}. If A ∈ S(X) then Σφ ⊂
ρ(−A) for some φ > 0 and

sup
| arg λ|<φ

||λ(λ+ A)−1|| <∞.

We denote the spectral angle of A ∈ S(X) by

φA = inf{φ : Σπ−φ ⊂ ρ(−A), sup
λ∈Σπ−φ

||λ(λ+ A)−1|| <∞}.

Definition 2.10. A sectorial operator A is said to admit a bounded H∞−calculus if
there are φ > φA and a constant Kφ > 0 such that

(9) ||f(A)|| ≤ Kφ||f ||φ∞ for all f ∈ H0(Σφ).

The class of sectorial operators A which admit a bounded H∞−calculus is denoted
by H∞(X). Moreover, the H∞− angle is defined by

φ∞A = inf{φ > φA : (9) holds }
When A ∈ H∞(X) we say that A admits an R-bounded H∞−calculus if the set

{h(A) : h ∈ H∞(Σθ), ||f ||θ∞ ≤ 1}
is R-bounded for some θ > 0. We denote the class of such operators by RH∞(X). The
corresponding angle is defined in an obvious way and denoted by θR∞A .

Remark 2.11. IfA is a sectorial operator on a Hilbert space, Lebesgue spaces Lp(Ω), 1 <
p <∞, Sobolev spaces W s,p(Ω), 1 < p <∞, s ∈ R or Besov spaces Bs

p,q(Ω), 1 < p, q <
∞, s ∈ R and A admits a bounded H∞ calculus of angle β, then A already admits
and RH∞ calculus on the same angle β on each of the above described spaces (see
Kalton and Weis [12]). More generally, this property is true whenever X is a UMD
space with the so called property (α) (see [12]).

Example 2.12. Well known examples for general classes of closed linear operators
with a bounded H∞ calculus are: normal sectorial operators in a Hilbert space; m-
accretive operators in a Hilbert space; generators of bounded C0-groups on Lp-spaces
and negative generators of positive contraction semigroups on Lp-spaces.

The following result will be necessary for establishing `p − `q estimates in section 4.
It can be found in [8, Proposition 4.10].

Proposition 2.13. Let A ∈ RH∞(X) and suppose that {hλ}λ∈Λ ⊂ H∞(Σθ) is uni-
formly bounded for some θ > θR∞A , where Λ is an arbitrary index set. Then the set
{hλ(A)}λ∈Λ is R-bounded.

3. Abstract setting: A characterization of maximal `p-regularity

Let β ∈ R, τj ∈ Z, b ∈ `1(Z) and X be a Banach space. For a given vector-valued
sequence f : Z→ X we consider the abstract discrete equation

(10) u(n) =
n∑

j=−∞

b(n− j)Au(j) +
k∑
j=1

βju(n− τj) + f(n), n ∈ Z,
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where A is a closed linear operator with domain D(A) defined in a Banach space X.
Recall that by [D(A)] we denote the domain of A endowed with the graph norm.

Definition 3.1. Let 1 < p < ∞ be given. We say that equation (10) has maximal
`p-regularity if for each f ∈ `p(Z;X) there exists a unique solution u ∈ `p(Z; [D(A]) of
(10).

In this section, our purpose is to provide a characterization of maximal `p-regularity
of equation (10). For the sake of simplicity, we will first obtain this characterization
for the following equation

(11) u(n) =
n∑

j=−∞

b(n− j)Au(j) + βu(n− τ) + f(n), n ∈ Z.

As a corollary, we will have a full characterization of maximal `p-regularity for the
more general equation (10).

We first introduce the following definition. Observe that, in some sense, it corre-
sponds to the discrete counterpart of the notion of k-regularity introduced in the paper
[15]. See also [28].

Definition 3.2. Let k ∈ N0 be given. A sequence b ∈ `1(Z) is called k-regular if there

exists a constant c > 0 such that |((1+eit)(1−eit))n[b̂(t)](n)| ≤ c|b̂(t)| for all 1 ≤ n ≤ k
and all t ∈ T0.

Remark 3.3. A simple example of a k-regular sequence is given by b(n) = 1
2n
, n ∈

N0 and 0 otherwise. The 1-regularity follows easily since b̂(t) = 2(2 − e−it)−1 and∣∣∣(1 + eit)(1− eit) [b̂(t)]′

b̂(t)

∣∣∣ =
∣∣∣ i(e2it−1)

(2eit−1)

∣∣∣ ≤ 2. The case k > 1 follows analogously.

Let τ ∈ Z be given. In what follows we denote by δτ : Z→ R the sequence defined
by

δτ (n) =

 1 n = τ,

0 otherwise.

We are now ready to prove our main theorem.

Theorem 3.4. Let X be a UMD space, 1 < p < ∞, β ∈ R, b ∈ `1(Z) such that

b(n) = 0 for all n ∈ Z− and τ ∈ Z. Suppose that b is 1-regular, b̂(t) 6= 0 for all t ∈ T
and {

(1− βe−itτ )
b̂(t)

}
t∈T

⊂ ρ(A),

The following assertions are equivalent:

(i) Equation (11) has maximal `p-regularity;

(ii) M(t) := (1− βe−itτ − b̂(t)A)−1 is an `p-multiplier from X to [D(A)];
(iii) The set {M(t) : t ∈ T} is R-bounded.
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In addition, if any of the hypothesis holds true, then u, b ∗ Au ∈ `p(Z;X) and there
exists a constant C > 0 ( independent of f ∈ `p(Z;X)) such that

(12) ‖u‖`p(Z;X) + ‖b ∗ Au‖`p(Z;X) ≤ C‖f‖`p(Z;X).

Proof. We first show (i) implies (ii). Let f ∈ `p(Z;X) be given. By hypothesis there
exists a unique sequence u : Z→ [D(A)] such that u ∈ `p(Z; [D(A)]) satisfies:

(13) u(n) =
n∑

j=−∞

b(n− j)Au(j) + βu(n− τ) + f(n), n ∈ Z.

Let Tα : `p(Z;X) → `p(Z; [D(A)]) be defined by Tα(f) = u. It can be easily shown
using the closed graph theorem that Tα is bounded. Since b ∈ `1(Z), we obtain the
following identities:

(b ◦ Š)(n) =
∞∑
j=0

b(j)Š(j + n) =
∞∑
j=0

b(j)
1

2π

∫ π

−π
ei(n+j)tS(t)dt

=
1

2π

∫ π

−π
eint
( ∞∑
j=0

eijtb(j)
)
S(t)dt

=
1

2π

∫ π

−π
eintb̂(−t)S(t)dt =: (̂b− · S )̌(n),(14)

valid for any S ∈ C∞per(T,B(X, Y )). Therefore, using the hypothesis, the fact that

M ∈ C∞per(T,B(X, [D(A)]), and the identity I = M(−t)−βeitτM(−t)− b(−t)AM(−t)
we get

〈Tαf, ϕ̌〉 = 〈u, ϕ̌〉 =
∑
n∈Z

ϕ̌(n)u(n) =
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)u(n)dt

=
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)(1− βeitτ − b̂(−t)A)−1u(n)dt

− β
∑
n∈Z

1

2π

∫ π

−π
eitτ (1− βeitτ − b̂(−t)A)−1u(n)eintϕ(t)dt

−
∑
n∈Z

1

2π

∫ π

−π
(1− βeitτ − b̂(−t)A)−1b̂(−t)Au(n)eintϕ(t)dt

=
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)M(−t)u(n)dt

− β
∑
n∈Z

1

2π

∫ π

−π
eintδ̂τ (t)ϕ(t)M(−t)u(n)dt

−
∑
n∈Z

1

2π

∫ π

−π
eintϕ(t)M(−t)b̂(−t)Au(n)dt

= 〈u, (ϕ ·M−)̌〉 − β〈u, (δ̂τ− · ϕ ·M−)̌〉 − 〈Au, (b̂− · ϕ ·M−)̌〉

= 〈u, (ϕ ·M−)̌〉 − β〈u, δτ ◦ (ϕ ·M−)̌〉 − 〈Au, b ◦ (ϕ ·M−)̌〉,
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for all ϕ ∈ C∞per(T), where δ̂τ (t) = e−iτt, and in the last equality we have used (14)
with S = ϕ ·M−. Therefore using (6) we get

〈u, ϕ̌〉 = 〈u, (ϕ ·M−)̌〉 − β〈δτ ∗ u, (ϕ ·M−)̌〉 − 〈b ∗ Au, (ϕ ·M−)̌〉(15)

= 〈u− βuτ − b ∗ Au, (ϕ ·M−)̌〉

where (δτ ∗ u)(n) = u(n− τ) := uτ (n). We conclude that 〈Tαf, ϕ̌〉 = 〈f, (ϕ ·M−)̌〉, for
all ϕ ∈ C∞per(T) and f ∈ `p(Z;X). This proves the claim and the theorem.

We now show that (iii) =⇒ (ii) We claim that, by hypothesis, the set {(eit −
1)(eit + 1)M ′(t)}t∈T is R-bounded. Indeed, given t ∈ T and observing that M(t) =

1

b̂(t)
[ (1−βe−itτ )

b̂(t)
− A]−1 we obtain that

M ′(t) = −M(t)
[b̂(t)]′

b̂(t)
−M(t)2iτβe−itτ +M(t)2 [b̂(t)]′

b̂(t)
(1− βe−itτ ) t ∈ T.(16)

Therefore,

(1− eit)(1 + eit)M ′(t) = −(1− eit)(1 + eit)M(t)
[b̂(t)]′

b̂(t)
− (1− eit)(1 + eit)M(t)2iτβe−itτ

+ (1− eit)(1 + eit)M(t)2 [b̂(t)]′

b̂(t)
(1− βe−itτ ), t ∈ T.

From [1, Proposition 2.2.5] and the 1-regularity of b we conclude that the set {(1 −
eit)(1 + eit)M ′(t) : t ∈ T} is R- bounded and the claim is proven. Finally from
Theorem 2.7 we obtain (ii).

It is clear that (ii) implies (iii) follows directly from Theorem 2.8.

It only remains to show that (ii) implies (i). We first claim that N(t) := b̂(t)(1 −
βe−itτ − b̂(t)A)−1 and S(t) := e−itτ (1 − βe−itτ − b̂(t)A)−1 are `p-multipliers. Indeed,

since b ∈ `1(Z) we have that N(t) = b̂(t)M(t) and S(t) = e−itτM(t) are R-bounded
sets. On the other hand, the R-boundedness of the sets {N(t)}t∈T and {S(t)}t∈T, the

boundedness of b̂(t) (which follows from the fact that b ∈ `1(Z)), the 1-regularity of b
and the identities:

(1− eit)(1 + eit)N ′(t) = (1− eit)(1 + eit)
[b̂(t)]′

b̂(t)
b̂(t)M(t) + (1− eit)(1 + eit)M ′(t)b̂(t),

(1− eit)(1 + eit)S ′(t) = −iτe−itτM(t)(1− eit)(1 + eit) + e−itτM ′(t)(1 + eit)(1− eit).

show that the sets {(1−eit)(1+eit)N ′(t) : t ∈ T} and {(1−eit)(1+eit)S ′(t) : t ∈ T}
are also R-bounded and then the claim holds by Theorem 2.7. Let f ∈ `p(Z;X) be
given. By hypothesis, there exists u ∈ `p(Z; [D(A)]) such that

(17)
∑
n∈Z

u(n)ϕ̌(n) =
∑
n∈Z

(ϕ ·M−)̌(n)f(n),
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for all ϕ ∈ C∞per(T). Define N(t) = b̂(t)M(t) and S(t) = δ̂τ (t)M(t). Moreover, there
exist v, w ∈ `p(Z; [D(A)]) such that

(18)
∑
n∈Z

v(n)ψ̌(n) =
∑
n∈Z

(ψ ·N−)̌(n)f(n),

and

(19)
∑
n∈Z

w(n)η̌(n) =
∑
n∈Z

(η · S−)̌(n)f(n),

for all ψ, η ∈ C∞per(T) where

(20) (ψ ·N−)̌(n) =
1

2π

∫ π

−π
eintψ(t)̂b(−t)M(−t)dt,

and

(21) (η · S−)̌(n) =
1

2π

∫ π

−π
eintη(t)δ̂τ (−t)M(−t)dt.

Observe that by hypothesis ϕ(t) = ψ(t)̂b(−t) ∈ C∞per(T). Setting ϕ in (17), from (18)
and (20) we get

〈u, (ψ · b̂−)̌〉 = 〈v, ψ̌〉.
From Lemma 2.4 we conclude from the above identity that

(22) v(n) = (b ∗ u)(n), n ∈ Z.

Now, considering ϕ(t) = η(t)δ̂τ (−t) in (19) we obtain from (19) and (21) the identity

〈w, η̌〉 = 〈u, (η · δ̂τ−)〉̌. Observe that ϕ ∈ C∞per(T) because τ ∈ Z. Again, making use of
Lemma 2.4, we conclude from the above identity that

(23) w(n) = (δτ ∗ u)(n) = u(n− τ), n ∈ Z.
Since AN(t) + βS(t) = M(t)− I, after multiplication by eintϕ(t) and integration over
the interval (−π, π), we have

A(ϕ ·N−)̌(n) + β(ϕ · S−)̌(n) = (ϕ ·M−)̌(n)− ϕ̌I,
for all ϕ ∈ C∞per(T). Then we obtain

〈f, A(ϕ ·N−)̌〉+ β〈f, (ϕ · S−)̌〉 = 〈f, (ϕ ·M−)̌〉 − 〈f, ϕ̌〉,
and by replacing (17), (18) and (19) in the above identity we obtain∑

n∈Z

Av(n)ϕ̌(n) + β
∑
n∈Z

w(n)ϕ̌(n) =
∑
n∈Z

u(n)ϕ̌(n)−
∑
n∈Z

ϕ̌(n)f(n),

for all ϕ ∈ C∞per(T). Considering (22) and (23) and taking into account that A is a
closed linear operator we conclude that u satisfies the equation (11). We have proven
the existence of a solution. It remains to prove the uniqueness.
Let u : Z → X be a solution of (11) with f ≡ 0. For all ϕ ∈ C∞per(T) and (15), we
obtain

〈u, ϕ̌〉 = 〈u− b ∗ Au− βuτ , (ϕ ·M−)̌〉 = 0.
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Taking ϕk(t) := e−ikt, k ∈ Z we obtain u ≡ 0 and then the claim is proven. Finally,
the last assertion is a direct consequence of the closed graph theorem.

�

Remark 3.5. Observe that only (ii) implies (i) requires that b(n) = 0 for all n ∈ Z−
meanwhile the other ones remain true for any b ∈ `1(Z).

As a direct consequence of the fact that R-boundedness is equivalent to boundedness
in Hilbert spaces we obtain the following corollary.

Corollary 3.6. If the space X in Theorem 3.4 is a Hilbert space condition (iii) can
be replaced by

sup
t∈T

∥∥∥(1− βe−itτ − b̂(t)A)−1
∥∥∥ <∞.

As a corollary of Theorem 3.4, we immediately obtain the following result that shows
maximal `p-regularity when equation (11) has a finite number of delays.

Theorem 3.7. Let X be a UMD space, 1 < p < ∞, β ∈ R, b ∈ `1(Z) such that

b(n) = 0 for all n ∈ Z− and τj ∈ Z. Suppose that b is 1-regular, b̂(t) 6= 0 for all t ∈ T
and {

1−
∑k

j=1 βje
−itτj

b̂(t)

}
t∈T

⊂ ρ(A).

The following assertions are equivalent:

(i) Equation

u(n) =
n∑

j=−∞

b(n− j)Au(j) +
k∑
j=1

βju(n− τj) + f(n), n ∈ Z,

has maximal `p-regularity;

(ii) M(t) := (1−
∑k

j=1 βje
−itτj − b̂(t)A)−1 is an `p-multiplier from X to [D(A)];

(iii) The set {M(t) : t ∈ T} is R-bounded.

In addition, if any of the hypothesis holds true, then u, b ∗ Au ∈ `p(Z;X) and there
exists a constant C > 0 ( independent of f ∈ `p(Z;X)) such that

(24) ‖u‖`p(Z;X) + ‖b ∗ Au‖`p(Z;X) ≤ C‖f‖`p(Z;X).

4. Applications

In order to analyze maximal `p-regularity of some concrete models such as the dis-
crete wave and Kuznetsov equations we first state the following abstract result con-
cerning `p − `q estimates. It is enough to take X = `q(ZN) in Theorem 3.4; then, for
any closed linear operator Aq : D(Aq) ⊂ `q(ZN) → `q(ZN) we obtain the following
theorem.

Theorem 4.1. Let 1 < p, q <∞, β ∈ R, b ∈ `1(Z) such that b(n) = 0 for all n ∈ Z−
and τ ∈ Z. Suppose that b is 1-regular, b̂(t) 6= 0 for all t ∈ T,{

(1− βe−itτ )
b̂(t)

}
t∈T

⊂ ρ(Aq),
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and that the set {(1 − βe−itτ − b̂(t)Aq)
−1 : t ∈ T} is R-bounded. Then, for any

f ∈ `p(Z, `q(ZN)) there exists a unique solution u ∈ `p(Z; [D(Aq)]) of the equation
(25)

u(n,m) =
n∑

j=−∞

b(n− j)Aqu(j,m) + βu(n− τ,m) + f(n,m), n ∈ Z, m ∈ ZN ,

such that u, b ∗ Aqu ∈ `p(Z; `q(ZN)) and the following `p − `q estimate holds:

(26)
(∑
n∈Z

‖u(n)‖p
`q(ZN )

)1/p

+
(∑
n∈Z

‖(b∗Aqu)(n)‖p
`q(ZN )

)1/p

≤ C
(∑
n∈Z

‖f(n)‖p
`q(ZN )

)1/p

,

where C > 0 is a constant independent of f ∈ `p(Z, `q(ZN)).

4.1. The discrete wave equation. We first introduce the following notation. Let
n = (n1, . . . , nN) ∈ ZN . We are going to consider the multidimensional discrete
Laplacian ∆d,N , defined as

(27) ∆d,Nϕ(n) =
N∑
j=1

(
ϕ(n + ej)− 2ϕ(n) + ϕ(n− ej)

)
,

where ej denotes the unit vector in the positive direction of the j-th coordinate. The
operator ∆d,N maps `q(ZN) into itself boundedly for all 1 ≤ q ≤ ∞ and

σ(∆d,N) =
{
−

N∑
j=1

4 sin2(θj/2)
}

θ∈(−π,π]N
,

see [23] for more information.
Let us consider the following time discrete version of the wave equation with the

discrete Laplacian

(28) ∆2
ru(n,m) = ∆d,Nu(n,m) + f(n,m), n ∈ Z, m ∈ ZN , ρ > 0,

where r > 0 and ∆r is two-times the forward r-difference operator acting on the first
variable defined by ∆rf(n) := f(n+ 1)− rf(n). In order words, it corresponds to the
discretization in time of the second order differential operator ∂tt. Rewriting (28) as

u(n+ 2,m)− 2ru(n+ 1,m) + r2u(n,m) = ∆d,Nu(n,m) + f(n,m)

we observe that this equation fits in the abstract model (25) choosing Aq = −∆d,N , τ1 =
−1, τ2 = −2, β1 = 2r, β2 = −1 and b(n) = −δ0(n).Moreover, if we assume the condition

(29) r > 1 +
√

2

then we obtain {
r2 − 2reit + e2it

}
t∈T ⊂ ρ(∆d,N).

In fact, note that r > 1 +
√

2 > 1−
√

2 and σ(∆d,N) = [−4, 0] implies <(r2 − 2reit +

e2it) = r2 − 2r cos t+ cos 2t > r2 − 2r − 1 = (r − (1−
√

2)(r − (1 +
√

2)) > 0, proving
the claim.

We define the function

ht(z) := (r2 − 2reit + e2it + z)−1, t ∈ (−π, π), z ∈ Σπ/2,
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then for any z ∈ Σπ/2 and t ∈ (−π, π) we have

|ht(z)| = |
∫ ∞

0

e−(r2−2reit+e2it+z)sds| ≤ 1

r2 − 2r cos t+ cos 2t+ <(z)
<

1

r2 − 2r − 1
.

Then, Proposition 2.13 shows that the set {(r2−2reit+e2it−∆d,N)−1}t∈T is R-bounded.
We conclude from Theorem 3.7 the following result.

Theorem 4.2. Let f ∈ `p(Z; `q(ZN)), 1 < p <∞ be given and suppose that

r > 1 +
√

2.

Then the numerical solution (u(n,m))n∈Z, m∈ZN of (28), obtained by the forward Euler
r-method exists, belongs to u ∈ `p(Z; `q(ZN)) and satisfies the discrete maximal `p− `q
regularity estimate

(30)
(∑
n∈Z

‖u(n)‖p
`q(ZN )

)1/p

+
(∑
n∈Z

‖(∆d,Nu)(n)‖p
`q(ZN )

)1/p

≤ C
(∑
n∈Z

‖f(n)‖p
`q(ZN )

)1/p

,

where the constant C > 0 is independent of f.

4.2. The discrete Kuznetsov equation. We consider the linearized Kuznetsov equa-
tion:

utt − c2∆u− νε∆ut = f(t), t ∈ R,
where ∆ is the Laplacian operator in RN . The discrete version reads as

(31) ∇2
ru(n,m) = c2∆d,Nu(n,m)+νε∆d,N∇ru(n,m)+f(n,m), n ∈ Z, m ∈ ZN ,

where r > 0 and ∇2
r is two-times the backward r-difference operator acting on the first

variable defined by ∇rf(n) := f(n)− rf(n−1). Simplifying, we arrive at the following
system

u(n,m)− 2ru(n− 1,m) + r2u(n− 2,m)

= c2∆d,Nu(n,m) + νε∆d,Nu(n,m)− νεr∆d,Nu(n− 1,m) + f(n,m)

= (c2 + νε)∆d,Nu(n,m)− νεr∆d,Nu(n− 1,m) + f(n,m)

Choosing Aq = −∆d,N , b(n) = −(c2 + νε)δ0(n) + νεrδ0(n − 1), β1 = 2r, τ1 = 1 and

β2 = −r2, τ2 = 2 we have b̂(t) = −(c2 + νε) + νεre−it and it easily follows that b is
1-regular. Assume

(32) r <
νε− c2

νε
and c2 < νε.

Then {
1− 2reit + r2e2it

(c2 + νε) + νεre−it

}
t∈T
⊂ ρ(∆d,N).

Indeed, we observe that

<
(

1− 2reit + r2e2it

(c2 + νε) + νεre−it

)
= c2 + νε− r(2c2 + νε) cos t+ r2(c2 − νε) cos 2t+ νεr3 cos 3t

≥ [c2 + νε− r(2c2 + νε)]− r2[(c2 − νε) + νεr] > 0.
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We define the function

ht(z) :=
1

(c2 + νε) + νεre−it

(
1− 2reit + r2e2it

(c2 + νε) + νεre−it
+ z

)−1

, t ∈ (−π, π), z ∈ Σπ/2.

Using the same arguments than in the subsection 4.1, and using conditions (32) we get

|ht(z)| ≤ 1

|(c2 + νε) + νεre−it|
1

[c2 + νε− r(2c2 + νε)]− r2[(c2 − νε) + νεr]

≤ 1

|(c2 + νε)− νεr|
1

[c2 + νε− r(2c2 + νε)]− r2[(c2 − νε) + νεr]
.

Therefore supt∈T,z∈Σπ/2
|ht(z)| <∞. As before, we conclude by using Proposition 2.13,

and Theorem 4.1 that under the conditions (32) the equation (31) admits a unique
solution satisfying appropriate `p− `q-estimates. More precisely, we have the following
theorem.

Theorem 4.3. Let f ∈ `p(Z; `q(ZN)), 1 < p <∞ be given and suppose that

(33) r <
νε− c2

νε
and c2 < νε.

Then the numerical solution (u(n,m))n∈Z, m∈ZN of (31), obtained by the backward
Euler r-method exists, belongs to u ∈ `p(Z; `q(ZN)) and is bounded by(∑

n∈Z

‖u(n)‖p
`q(ZN )

)1/p

+
(∑
n∈Z

‖c2∆d,Nu(n) + νε∆d,N∇ru(n)‖p
`q(ZN )

)1/p

≤ C
(∑
n∈Z

‖f(n)‖p
`q(ZN )

)1/p

,

where the constant C > 0 is independent of f.

As a dual example, we examine the following discrete version of the Kuznetsov
equation:

(34) ∆2
ru(n,m) = c2∆d,Nu(n,m) + νε∆d,N∆ru(n,m) + f(n,m), n ∈ Z, m ∈ ZN

where ∆r is the forward r-difference operator. Equivalently:

u(n+ 2,m)− 2ru(n+ 1,m) + r2u(n,m)

= (c2 − νεr)∆d,Nu(n,m) + νε∆d,Nu(n+ 1,m) + f(n,m).

Suppose that the following conditions between the coefficients of the equation hold

(35)
c2 + νε

2c2 − εν
< r <

c2 − 3νε

νε
, c2 > 3νε.

Then we have {
r2 − 2reit + e2it

(c2 − νεr) + νεreit

}
t∈T
⊂ ρ(∆d,N).
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In fact, a simple computation shows that <( r2−2reit+e2it

(c2−νεr)+νεreit ) > 0 if and only if P (t) :=

<((r2 − 2reit + e2it)((c2 − νεr) + νεre−it)) > 0. Now, we observe that, in view of the
hypothesis (35) we have

P (t) = (c2 − νεr) cos 2t+ (νε− 2rc2 + 2ενr2 + r2νε) cos t+ (r2c2 − νεr3 − 2rνε)

≥ −(c2 − νεr)− (νε− 2rc2 + 2ενr2 + r2νε) + (r2c2 − νεr3 − 2rνε)

= [(2c2 − εν)r − (c2 + νε)] + r2[(c2 − 3νε)− νεr] > 0.

This proves the claim. We now define the following complex valued function

ht(z) :=

(
r2 − 2reit + e2it

(c2 − νεr) + νεreit
+ z

)−1

.

Then, as a consequence of the above computation, we obtain the following estimate

|ht(z)| ≤ 1

[(2c2 − εν)r − (c2 + νε)] + r2[(c2 − 3νε)− νεr]

proving that the set {ht}t∈T ⊂ H∞(Σπ/2) is uniformly bounded and then the set

{hλ(∆d,N)}t∈T

is R-bounded and the conclusion follows as before. We arrive at the following result.

Theorem 4.4. Let f ∈ `p(Z; `q(ZN)), 1 < p <∞ be given and suppose that

(36)
c2 + νε

2c2 − εν
< r <

c2 − 3νε

νε
, c2 > 3νε.

Then the numerical solution (u(n,m))n∈Z, m∈ZN of (34), obtained by the forward Euler
r-method exists, belongs to u ∈ `p(Z; `q(ZN)) and satisfies the discrete maximal `p− `q
regularity estimate(∑

n∈Z

‖u(n)‖p
`q(ZN )

)1/p

+
(∑
n∈Z

‖c2∆d,Nu(n) + νε∆d,N∆ru(n)‖p
`q(ZN )

)1/p

≤ C
(∑
n∈Z

‖f(n)‖p
`q(ZN )

)1/p

,

where the constant C > 0 is independent of f.

Remark 4.5. It is interesting to observe that the case r = 1 can be reached under the
hypothesis:

c2 > 4νε

which shows that insofar as the damping term in (34) is not too small, the possibility of
discretizing the temporal derivative by means of the usual backward difference operator
increases. This reveals that in order to have `p − `q estimates for the model (25), the
difference operator that will be used in the temporal discretization of the equation will
depend on the structure of the equation, i.e. on the parameters β and b.
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