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Abstract Quality in a manufacturing process implies that
the performance characteristics of the product and the pro-
cess itself are designed to meet specific objectives. Thus, ac-
curate quality prediction plays a principal role in delivering
high-quality products to further enhance competitiveness. In
tubing extrusion, measuring of the inner and outer diameters
is typically performed either manually or with ultrasonic or
laser scanners. This paper shows how regression models can
result useful to estimate both those physical quality indices
in a tube extrusion process. A real-life data set obtained
from a Mexican extrusion manufacturing company is used
for the empirical analysis. Experimental results demonstrate
that k nearest-neighbor and support vector regression meth-
ods (with a linear kernel and with a radial basis function)
are especially suitable for predicting the inner and outer di-
ameters of an extruded tube based on the evaluation of 15
extrusion and pulling process parameters.
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1 Introduction

Tubings and pipes are manufactured using different meth-
ods, but extrusion is probably the most efficient one. This
complex thermoforming process involves heating a raw ma-
terial (usually plastic, metal, polymer, concrete or ceramic)
and forming a final ring-shaped product. A primary advan-
tage of extrusion over other manufacturing processes is its
capability to create a very complex cross-sectional profile
object (Oberg et al, 2012). However, extrusion processing
compresses many interdependent input parameters (both pro-
cess and system variables) and output parameters. Process
variables refer to the operating conditions that can be con-
trolled and manipulated directly, whereas the system vari-
ables are determined by the process parameters and have an
impact on the output parameters (Chevanan et al, 2007).

Unlike the cyclic techniques such as injection molding
or blow molding, extrusion is a steady-state or continuous
process. This means that, for example, a change in the pa-
rameters of the extruder will disrupt the steady-state pro-
cess condition with a non-negligible effect on the quality of
the extruded product. Therefore, all input parameters must
be identified, controlled and monitored to guarantee success
in the extrusion process since manufacturing quality predic-
tion, control, and monitoring are critical (Khan et al, 2014).
Common deficiencies of extruded products are related to vi-
sual or geometrical characteristics (e.g., diameter variations,
color changes and rough surface) and physical or mechani-
cal properties (e.g., elasticity and rigidity).

Several intelligent and soft computing models (Witten
et al, 2011) have been applied to a large variety of manufac-
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turing processes, such as production, fault detection, process
planning and monitoring, machine maintenance, and quality
prediction and control (Charaniya et al, 2010; Choudhary
et al, 2008; Harding et al, 2006; Köksal et al, 2011; Kusiak,
2006; Pratihar, 2015; Yin et al, 2015). In particular, the use
of these techniques for machinery fault detection and prod-
uct quality prediction has received increasing attention over
the last years.

Krömer et al (2010) showed the ability of genetic pro-
gramming to evolve fuzzy classifiers on a real-world prob-
lem for detecting faulty products in an industrial production
process. Multi-layer perceptron neural networks were em-
ployed to predict errors in mold surface roughness (Erzu-
rumlu and Oktem, 2007) and the product quality in a wave
soldering process (Liukkonen et al, 2009). Support vector
machines (Jiang et al, 2013) and radial basis function neural
networks (Zhang et al, 2014) were used to predict the quality
of propylene polymerization in industrial processes. Chien
et al (2007) applied the K-means clustering algorithm and
decision trees for the detection of defects in semiconduc-
tor manufacturing. The rough set approach was applied to
find out solder defects in printed circuit boards (Kusiak and
Kurasek, 2001). Quality prediction in plastic injection mold-
ing processes was tackled using back-propagation neural net-
works (Sadeghi, 2000), support vector machines (Ribeiro,
2005) and genetic algorithms (Meiabadi et al, 2013). A com-
bined method based on artificial neural network and particle
swarm optimization was proposed to improve the mechani-
cal performance of polymer products (Xu et al, 2015). Adly
et al (2015) presented a simplified subspace regression algo-
rithm for accurate identification of defect patterns in semi-
conductor wafer maps. Two evolutionary fuzzy ARTMAP
neural networks were designed by Tan et al (2015) to deal
with the class imbalance problem in semiconductor manu-
facturing operations. Ghorai et al (2013) developed a visual
inspection system to localize defects on hot-rolled steel sur-
faces employing some kernel classifiers, such as the sup-
port vector machine and the vector-valued regularized ker-
nel function approximation. Wu et al (2017) introduced a
method based on random forests for tool wear prediction
and compared its performance with that of support vector
regression and feed-forward back-propagation neural net-
works. Wang et al (2018) presented a comprehensive survey
of deep learning algorithms for smart manufacturing.

With regards to the particular case of product quality
prediction in extrusion processes, we can pay attention to
a set of works that have employed some soft computing
techniques. For instance, Wu and Hsu (2002) combined the
finite-element approach, a polynomial network and a genetic
algorithm to develop a method for the design of the opti-
mal shape of an extrusion die. Li et al (2004) adopted the
cooperation between a three-layer back-propagation neural
network and a genetic algorithm to set up the system and

optimize the technical parameters in the semi-solid extru-
sion of composite tubes and bars. Yu et al (2004) proposed
a strategy based on a fuzzy neural-Taguchi network and a
genetic algorithm to determine the optimal die gap program-
ming of extrusion blow molding processes. Oke et al (2006)
optimized the flow rate of the plastic extrusion process in
a plastic recycling plant with the application of a neuro-
fuzzy model. González Marcos et al (2007) introduced im-
provements in the rubber extrusion process by predicting the
characteristics of rubber with a multi-layer perceptron neu-
ral network. Sharma et al (2009) suggested a model of for-
ward mapping for hot extrusion process using the ANFIS
neuro-fuzzy approach. Hsiang et al (2012) investigated the
optimal process parameters that maximize the multiple per-
formance characteristics index for hot extrusion of magne-
sium alloy bicycle carriers through a fuzzy-based Taguchi
method. Ramana and Reddy (2013) proposed to make use
of clustering, naı̈ve Bayes, and decision trees to predict and
improve the final product quality in a plastic extrusion pro-
cess. Zhao et al (2013) employed a Pareto-based genetic al-
gorithm for optimization of porthole extrusion die. Support
vector regression models and multi-layer perceptron neu-
ral networks were compared for the prediction of specific
properties of rubber extruded mixtures (Urraca Valle et al,
2013). Carrano et al (2015) employed an evolutionary com-
puting algorithm to optimize the operational and screw geo-
metrical parameters of a single screw polymer extrusion sys-
tem. One-class classification methods were used by Kohlert
and König (2015) for yield optimization of an extrusion pro-
cess in a polymer film industry. Chondronasios et al (2016)
introduced a feature extraction technique based on gradient-
only co-occurrence matrices to detect blisters and scratches
on the surface of extruded aluminum profiles using a two-
layer feed-forward artificial neural network.

The main purpose of this paper, therefore, is to analyze
the performance of some regression models in the predic-
tion of product quality (regarding the inner and outer di-
ameters) in a tubing extrusion process. From an application
perspective, the novelty of this study is on the specific so-
lution proposed for product quality control in a plastic tube
manufacturing plant. To the best of our knowledge, there are
no previous reports that analyze the use of parameters taken
from the extrusion and pulling processes to predict the inner
and outer diameters of an extruded tube using the regression
methods considered here.

Henceforth the paper is organized as follows. Section 2
describes the tubing extrusion process of a Mexican man-
ufacturing company, which provided us with the database
used for the subsequent empirical analysis. Section 3 intro-
duces the bases of the regression models that will be ex-
plored in this study. Next, Section 4 presents the experimen-
tal set-up and the performance evaluation criteria used in
the experiments, while the results are given and discussed
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in Section 5. Finally, Section 6 summarizes the main con-
clusions and outlines some possible avenues for future re-
search.

2 Description of the tubing extrusion process

This section provides a general description of the tube ex-
trusion process used by a manufacturing company located
in Ciudad Juárez (Chihuahua, Mexico). Thus the extrusion
process consists of two stages. In the initial phase, the plas-
tic is fed into the heating chamber of the extruder to melt it
(see Fig. 1). Once molten, the plastic is pushed by a screw
device through the shaped die, which forms the plastic into
a tube-shaped form.

Fig. 1 Extrusion process. Process parameters that determine the qual-
ity of the tube: [1-4] zone temperatures, [5] melting temperature, [6-9]
die temperature, [10] revolutions per minute of the screw, and [11] base
hopper temperature

In the second phase depicted in Fig. 2, the extruded tube
is pulled by a mechanism through a water tank or a blowing
system to cool it down and get the final form.

Fig. 2 Pulling process. Process parameters that determines the qual-
ity of the tube: [1-2] tank temperature, [3] vacuum pressure, and [4]
tension of the pulling mechanism

A defect can be defined as a deviation of the product
characteristics from the specifications set up by the manu-
facturing process (Khan et al, 2014), or the difference be-
tween the desired product and the resulting product (Dhafr
et al, 2006). It can be caused by a single source or the cumu-
lative effect of several factors, which may arise at any stage
of the extrusion process. Some defects can be found in ex-
truded parts such as the rough surface, the extruder surging,

the thickness variation, the uneven wall thickness, the diam-
eter variation, and the centering problem. In this work, the
extruded tube quality was defined regarding the inner diam-
eter (ID) and the outer diameter (OD), as shown in Fig. 3.
Although other characteristics could affect the quality of the
product (e.g., length of the tube, wall thickness, or color
uniformity), the only functional requirements for this appli-
cation correspond to the inner and outer diameters because
these are the critical characteristics that were stated by the
customer.

Fig. 3 Extruded tube. Quality indices: inner and outer diameters

To guarantee the quality of the manufactured tube (i.e.,
the inner and outer diameters have to be within design speci-
fications set by the customer), every process parameter must
be identified, controlled, and monitored throughout the ex-
trusion process. For example, in the extruder zone, there are
several input parameters that might yield significant devia-
tions in the characteristics of the product: the base hopper
temperature (BHT), the zone temperature (ZT), the die tem-
perature (DT), the melting temperature (MT), and the revo-
lutions per minute of the screw (SRPM). In the case of the
pulling stage, the set of parameters are the tank tempera-
ture (TT), the vacuum pressure (VP), and the tension of the
pulling mechanism (TPM).

In total, there are 15 process parameters that may pro-
duce deviations in the functional requirements of the ex-
truded tube: four zone temperatures, four die temperatures,
the melting temperature, the revolutions per minute of the
screw, the base hopper temperature, two tank temperatures,
the vacuum pressure, and the tension of the pulling mecha-
nism. As a result, each sample will be described by these 15
input parameters and the two output variables mentioned in
the previous paragraph (ID and OD).

Table 1 reports the main characteristics of the database
used in the empirical analysis: the attribute number, the at-
tribute description and some statistics, such as the minimum
and maximum values of the attribute, the mean and the stan-
dard deviation.
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Table 1 Characteristics of the tube-extrusion data set used in the experiments

Extrusion process
No. Description Minimum Maximum Mean Std. Dev.
1 Zone 1 Temperature (◦F) 435 448 440.68 2.39
2 Zone 2 Temperature (◦F) 432 445 440.53 2.45
3 Zone 3 Temperature (◦F) 429 463 433.69 4.09
4 Zone 4 Temperature (◦F) 425 440 433.48 3.05
5 Melting Temperature (◦F) 436 450 441.78 2.96
6 Die 1 Temperature (◦F) 442 454 447.99 2.88
7 Die 2 Temperature (◦F) 441 459 448.39 3.28
8 Die 3 Temperature (◦F) 445 456 448.97 2.31
9 Die 4 Temperature (◦F) 444 458 449.10 2.46
10 Revolutions per Minute of the Screw (rpm) 52 75 62.00 5.94
11 Base Hopper Temperature (◦F) 46 80 58.50 7.84

Pulling process
No. Description Minimum Maximum Mean Std. Dev.
1 Tank 1 Temperature (◦F) 49 71 64.40 5.70
2 Tank 2 Temperature (◦F) 0.2 10.1 1.01 6.23
3 Vacuum Pressure (inHg) 59 65.6 61.42 1.42
4 Tension of the Pulling Mechanism (ft/min) 40 56 50.34 2.13

Output Variables
No. Description Minimum Maximum Mean Std. Dev.
1 Inner Diameter (in) 0.227 0.233 0.230 0.001
2 Outer Diameter (in) 0.228 0.331 0.328 0.014

It is important to point out that the different input pa-
rameters were measured and recorded using specific sensors
during the extrusion and pulling processes, and an opera-
tor collected the data at a fixed time. Analogously, the input
and output diameters of tubes were measured manually with
a vernier caliper by the operator. At each shift, these tasks
were carried out three times, thus obtaining a data set as the
one shown in the example of Table 2.

3 Regression models

In this section, we briefly introduce the regression methods
that will be further applied to product quality prediction for
the tubing extrusion process just described.

Let T = {(x1, a1), . . . , (xn, an)} ∈ (x × a)n be a data
set of n independent and identically distributed (i.i.d.) ran-
dom pairs (xi, ai), where xi = [xi1, xi2, . . . , xiD] repre-
sents an instance in a D-dimensional feature space and ai
denotes the continuous target value associated to it. The aim
of regression is to learn a function f : y → a to predict the
value a for a new sample y = [y1, y2, . . . , yD].

3.1 Nearest neighbor regression

One of the most popular and successful supervised learn-
ing methods corresponds to the nearest neighbor (NN) rule
due to its algorithmic simplicity and high prediction perfor-
mance. This non-parametric technique works under the as-
sumption that new samples share similar properties with the

set of stored instances and therefore, it predicts the output of
a new sample based on its closest neighbor.

The concept of the NN rule can be generalized for re-
gression because the nearest neighbor method assigns a new
sample y the same target value as the closest instance in
T , according to a particular dissimilarity measure (gener-
ally, the Euclidean distance). An extension of this procedure
is the k-NN decision rule, in which the algorithm retrieves
the k closest instances in T . When k = 1, the target value
assigned to the input sample is the target value indicated
by its nearest neighbor. For k > 1, the k-NN regression
model (k-NNR) estimates the target value f(y) of a new in-
put sample y by averaging the target values of its k nearest
neighbors (Biau et al, 2012; Guyader and Hengartner, 2013;
Kramer, 2011; Lee et al, 2014):

f(y) =
1

k

k∑
i=1

ai (1)

where ai denotes the target value of the i-th nearest neigh-
bor.

3.1.1 Distance-weighted k-NN regression

When the basic k-NN algorithm estimates the target value
for the new sample, it ignores some relevant information
that each of the k nearest neighbors might provide regard-
ing their distance (Batista and Silva, 2009). To overcome
this shortcoming, Dudani (1976) proposed a weighting func-
tion, which weights more heavily closer neighbors than dis-
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Table 2 An example of collected data for the tubing extrusion process

Time ZT1 ZT2 ZT3 ZT4 MT DT1 DT2 DT3 DT4 SRPM BHT TT1 TT2 VP TPM ID OD
1 438 437 431 434 442 448 451 452 455 64 71 62 1.58 63.4 47 0.228 0.327
2 441 439 452 437 450 452 457 453 455 68 78 56 3.05 61.7 51 0.230 0.311
...
t 440 443 461 429 444 445 452 448 448 70 74 60 1.83 64.0 52 0.229 0.330

tant neighbors, depending on their corresponding distances
to the new sample.

In general, a weighting function has to work based upon
the premise that the weights should decrease with increas-
ing sample-to-neighbor distance (Dudani, 1976). Let xi(i =
1, . . . , k) be the closest instances to an input sample y, and
let di = d(xi, y) be the distance between xi and y. A com-
mon weighting technique computes wi for the i-th nearest
neighbor as the inverse of its distance (Dudani, 1976):

wi =
1

di
di 6= 0 (2)

Another possible weighting function (Batista and Silva,
2009) can be defined as

wi = 1− di (3)

Once the weights wi have been computed, the distance-
weighted k-NN approach for regression (k-NNRw) estimates
the target value as follows (Hall et al, 2009):

f(y) =

k∑
i=1

wiai

k∑
i=1

wi

(4)

3.2 Linear regression

Multiple linear regression (LR) attempts to model the rela-
tionship between two or more independent variables (in this
case, the input attributes reported in Table 1) and an output
or response variable by fitting a linear equation to the ob-
served data (Draper and Smith, 1998). Every value of the in-
dependent variable is associated with a value of the response
variable. The general form of the multiple linear regression
equation can be written as follows:

f(y) = α+

D∑
j=1

βiyi + ε (5)

where α is a constant (the point where the regression line
intercepts the Y -axis), βi are the regression coefficients on

the independent variables yi, and ε is the residual or fitted
error.

The regression coefficients βi are estimated by curve fit-
ting based on the least square method with the aim of mini-
mizing the fitted error (the difference between the observed
and estimated values). Eq. 5 indicates how the average re-
sponse of the output variable changes with the independent
variables. Thus the LR model can be used to predict the tar-
get value a from new observed values of y.

3.3 Support vector regression

The foundations of support vector machines are well-known
for both classification and regression problems. Smola and
Schlkopf (2004) published an excellent tutorial on support
vector machines for regression (SVR). The objective of the
SVR model is to define a linear regression function to map
the input data to a high-dimensional feature space, in which
input data can be separated easier than in the original input
space (Chou et al, 2017; Ma et al, 2003),

f(x) = WTΦ(x) + b (6)

where W is a weight vector, Φ(x) maps the input sample x
to the high-dimensional feature space, and b is a bias term.

The W and b can be obtained by solving an optimization
problem (Ma et al, 2003):

minimize
W,b

1

2
WT W + C

n∑
i=1

(ξi + ξ∗i )

subject to ai − (WTΦ(x) + b) ≤ (ξi + ξ∗i )

(WTΦ(x) + b)− ai ≤ (ξi + ξ∗i )

ξi, ξ
∗
i ≥ 0, i = 1, . . . , n

(7)

where C is a regularization parameter, ξi and ξ∗i are non-
negative slack variables to penalize for errors that are greater
than ε in magnitude

By introducing the Lagrange multipliers α, α∗, and a
kernel function K , the model form in the dual space can be
written as:

f(x) =
n∑

i=1

(αi − α∗
i )K(xi, x) + b (8)
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The use of a kernel function allows to deal with feature
spaces of arbitrary dimensionality without having to com-
pute the mapping function Φ(x) explicitly (Yang and Shieh,
2010). The kernels most commonly used are linear, polyno-
mial, sigmoid, and radial basis functions.

4 Experimental set-up

As already stated, this study aims to evaluate the perfor-
mance of some regression models for product quality pre-
diction in the tubing extrusion process of a manufacturing
plant. Thus we conducted a pool of experiments on a data
set with 260 samples that were collected using the proce-
dure described in Section 2. It has to be remarked that all
input attribute values (process parameters) were normalized
to the range [0, 1].

We focused our study on the simple k-NNR (no weight-
ing), two weighted versions of k-NNR using Eq. 2 and 3,
in the sequel called k-NNRw1 and k-NNRw2 respectively,
the LR model, the SVR technique with three different ker-
nels and the multi-layer perceptron (MLP) neural network.
The kernels used in the SVR model were a linear function
(SVR-1), a polynomial function of degree 2 (SVR-2) and a
radial basis function (SVR-RBF). For the regression algo-
rithms based on the k-NN rule, twenty-five odd values of k
(1, 3, . . . , 29) were tested. All regression models were taken
from the WEKA toolkit (Hall et al, 2009).

Following the standard strategy used to evaluate the per-
formance of regression models when databases are small-
or medium-sized, the 10-fold cross-validation method was
adopted (Buza et al, 2015; Hall et al, 2009; Hu et al, 2014).
The original data set was randomly divided into ten parts
of size n/10 (where n denotes the total number of samples
in the data set); for each fold, nine blocks were gathered as
the training set for learning the model, and the remaining
fold was used as an independent test set. Additionally, with
the aim of increasing the statistical significance of the ex-
perimental scores, ten repetitions were run for each trial and
the results from predicting the output of test samples were
averaged across the 100 runs.

4.1 Evaluation criteria

In the framework of regression, the purpose of most perfor-
mance evaluation metrics is to estimate how much the pre-
dictions (p1, p2, . . . , pn) deviate from the actual target val-
ues (a1, a2, . . . , an). These metrics are minimized when the
predicted value for each test sample agrees with their true
value (Caruana and Niculescu-Mizil, 2004). Two of the most
popular performance measures that have frequently been em-
ployed to assess the model performance in regression prob-
lems are the root mean square error (RMSE),

RMSE =

√√√√ 1

n

n∑
i=1

(pi − ai)2 (9)

and the mean absolute error (MAE),

MAE =
1

n

n∑
i=1

| pi − ai | (10)

Both these metrics show how far away the predicted val-
ues pi are from the target values ai by averaging the magni-
tude of individual errors without taking care of their sign.

5 Results and discussion

Since the quality product was predicted here using the in-
ner and outer diameters of the extruded tubes, the experi-
ments and the subsequent analysis of results were performed
according to these two physical quality indices. Hence, for
each database (i.e., the outer and inner diameter databases),
we compared the average of the two performance measures
(RMSE and MAE) achieved by each regression method.

5.1 Outer diameter database

Table 3 reports the average results in terms of RMSE and
MAE across the 100 runs for each regression technique.
In the case of the k-NN methods, the values correspond to
those of the best k. Based on the root mean square error, one
can observe that the three k-NN algorithms, the linear sup-
port vector (SVR-1) and the SVR-RBF obtained the lowest
error rates (very close to 0) when predicting the outer diam-
eter. In addition, the same behavior can be viewed in terms
of MAE.

If we consider that the output values of the outer diame-
ter are in a range from 0.228 to 0.331, then all these regres-
sion models appear to be suitable for predicting the quality
of extruded tubes. However, the small differences in both
RMSE and MAE results do not allow us to draw signifi-
cant conclusions about which method is the best numerical
prediction technique. In fact, even the LR and MLP models
could be applied to tackle this problem because their errors
were also close enough to 0.

Figure 4 shows the performance measures for the three
versions of k-NN regression when varying the value of k
from 1 to 29. The graphical results suggest that when k in-
creases, the k-NNRw1 shows a steady behavior along the
X-axis. In the case of k-NNR and k-NNRw2 models, their
error rates increase along with the value of the parameter k.
In summary, it appears that k-NNRw1 performed the best
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Table 3 Average results in terms of RMSE and MAE (with standard deviations) on the outer diameter database

RMSE MAE
k-NNR 0.0096912371 ± 0.0075398296 0.0030848789 ± 0.0021710948
k-NNRw1 0.0096563665 ± 0.0072890820 0.0030848789 ± 0.0021710948
k-NNRw2 0.0096912371 ± 0.0075398296 0.0030848789 ± 0.0021710948
LR 0.0138590570 ± 0.0194352190 0.0062838398 ± 0.0045738531
SVR-1 0.0099222666 ± 0.0101735078 0.0029027012 ± 0.0024793246
SVR-2 0.2603216450 ± 0.9783462937 0.0523638108 ± 0.1920644156
SVR-RBF 0.0095693860 ± 0.0103128854 0.0027710505 ± 0.0024827469
MLP 0.0130784745 ± 0.0076458498 0.0066302173 ± 0.0053236816
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Fig. 4 Outer diameter database: Performance regression measures
with k-NN regression models when varying k

with all values of k > 1, demonstrating the benefits of ap-
plying this technique to predict the quality of extruded tubes
concerning their outer diameter.

5.2 Inner diameter database

As in the previous section, we analyzed the behavior of the
regression models to predict the inner diameter of an ex-
truded tube. Table 4 shows the results of RMSE and MAE

averaged across the 100 runs for each technique. Results are
conceptually similar to those of the outer diameter database:
(i) the methods based on k-NN, the SVR-1 and the SVR-
RBF yielded very low error values (≈ 0); (ii) here MLP also
appears to be among the best performing algorithms; and
(iii) except the SVR-2 method, differences in the results of
the regression models seem not to be significant.

Figure 5 depicts the performance results for all versions
of the k-NN regression models as a function of k. One can
observe that k-NNRw1 achieved very similar performance
results regardless of the k value. In the case of plain k-NNR
and k-NNRw2, when k increases, the error rates decreases
slightly. These results suggest that the three k-NN regres-
sion models are suitable for predicting the inner diameter
of extruded tubes, although the k-NNR and k-NNRw2 ap-
proaches seem to be the best techniques.

6 Conclusions and future work

The present paper has focused on predicting two quality in-
dices in a tubing extrusion process. A thoroughly experi-
mental study has been carried out on a real-life data set
provided by an extrusion tube manufacturing plant located
in Ciudad Juárez (Chihuahua, Mexico). More specifically,
three k-NN regression methods (the straightforward algo-
rithm and two distance-weighted approaches), the linear re-
gression model, three SVR configurations (SVR-1, SVR-
2, and SVR-RBF), and a multi-layer perceptron have been
used to predict the inner and outer diameters of an extruded
tube based on the evaluation of 15 process parameters.

Experimental results suggest that distance-weighted k-
NN regression models along with the linear and the RBF-
based support vector regression methods were the most ef-
fective techniques for the prediction of extruded tube qual-
ity, achieving RMSE and MAE rates close to 0. From our
analysis when varying the k values, we found out that when
k increases, the performance regression rates are (almost)
stable.

Future research will be mainly addressed to incorporate
a feature selection phase to remove any attribute that might
be considered noisy or irrelevant. Another avenue for further
investigation concentrates on developing some regression



8 Vicente Garcı́a et al.

Table 4 Average results in terms of RMSE and MAE (with standard deviations) on the inner diameter database

RMSE MAE
k-NNR 0.0010767157 ± 0.0001233918 0.0008922620 ± 0.0001050170
k-NNRw1 0.0012095069 ± 0.0001328387 0.0010122028 ± 0.0001120801
k-NNRw2 0.0010783177 ± 0.0001229690 0.0008940031 ± 0.0001048994
LR 0.0011882847 ± 0.0009202389 0.0009338954 ± 0.0002309976
SVR-1 0.0013502332 ± 0.0011949720 0.0009922225 ± 0.0002923969
SVR-2 0.1471915327 ± 0.5658384933 0.0296721074 ± 0.1110184843
SVR-RBF 0.0010781128 ± 0.0001270223 0.0008608249 ± 0.0001151820
MLP 0.0013352608 ± 0.0002263802 0.0010851685 ± 0.0001695045
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Fig. 5 Inner diameter database: Performance regression measures with
k-NN regression models when varying k

algorithms based on the surrounding neighborhood concept.
Finally, we are also interested in analyzing the behavior of
ensembles of regression models.
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affine invariant k-nearest neighbor regression estimate. J
Multivariate Anal 112:24–34

Buza K, Nanopoulos A, Nagy G (2015) Nearest neighbor
regression in the presence of bad hubs. Knowl-Based Syst
86:250–260

Carrano EG, Coelho DG, Gaspar-Cunha A, Wanner EF,
Takahashi RH (2015) Feedback-control operators for im-
proved Pareto-set description: Application to a polymer
extrusion process. Eng Appl Artif Intell 38:147–167

Caruana R, Niculescu-Mizil A (2004) Data mining in met-
ric space: An empirical analysis of supervised learning
performance criteria. In: Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, New York, NY, pp 69–78

Charaniya S, Le H, Rangwala H, Mills K, Johnson K,
Karypis G, Hu WS (2010) Mining manufacturing data for
discovery of high productivity process characteristics. J
Biotechnol 147(3–4):186–197

Chevanan N, Muthukumarappan K, Rosentrater KA (2007)
Neural network and regression modeling of extrusion pro-
cessing parameters and properties of extrudates contain-
ing DDGS. Trans Am Soc Agr Biol Eng 50(5):1765–1778

Chien CF, Wang WC, Cheng JC (2007) Data mining for
yield enhancement in semiconductor manufacturing and
an empirical study. Expert Syst Appl 33(1):192–198

Chondronasios A, Popov I, Jordanov I (2016) Feature se-
lection for surface defect classification of extruded alu-
minum profiles. Int J Adv Manuf Tech 83(1):33–41

Chou JS, Ngo NT, Chong WK (2017) The use of artificial
intelligence combiners for modeling steel pitting risk and
corrosion rate. Eng Appl Artif Intell 65:471–483



Using regression models for predicting the product quality in a tubing extrusion process 9

Choudhary AK, Harding JA, Tiwari MK (2008) Data mining
in manufacturing: A review based on the kind of knowl-
edge. J Intell Manuf 20(5):501–521

Dhafr N, Ahmad M, Burgess B, Canagassababady S (2006)
Improvement of quality performance in manufacturing
organizations by minimization of production defects.
Robot Cim-Int Manuf 22(5–6):536–542

Draper NR, Smith H (1998) Applied Regression Analysis.
John Wiley & Sons, Hoboken, NJ

Dudani SA (1976) The distance-weighted k-nearest-
neighbor rule. IEEE T Syst Man Cy SMC-6(4):325–327

Erzurumlu T, Oktem H (2007) Comparison of response sur-
face model with neural network in determining the sur-
face quality of moulded parts. Mater Design 28(2):459–
465

Ghorai S, Mukherjee A, Gangadaran M, Dutta PK (2013)
Automatic defect detection on hot-rolled flat steel prod-
ucts. IEEE T Instrum Meas 62(3):612–621
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