

3D mesh voxelization
by Adrián Ferrando Mazarro

Final's Work Memory

Degree in Video Game Design and Development

Universitat Jaume I

June 2019, Valencia

3D Mesh Voxelization

Acknowledgments
Thank my parents for investing their life in me. And to my

friends, for enduring my total disappearance all these

months. And, of course, to all those who devote part of their

time to solve problems in the code of others through Internet

forums, and all the teachers who have managed to make me

a wiser person. Without all of you, this would not exist.

1

3D Mesh Voxelization

2

3D Mesh Voxelization

Abstract
This paper tries to make an approach to the use of voxels as

a basic element of a videogame agent, both in terms of

visualization and interaction through the use of a Unity game

engine plug-in.

3

3D Mesh Voxelization

Table of contents
1. ​Introduction​...……...………………………………………………………………………………………06

1.1. Motivation of work ​……….…….....……………………………………………………………………..06

1.2. Objectives ……………………..……………………………………………………………………………….07

1.3. Context and initial state ​……………………………………………………………………….…..08

2. The Plug-in​…………………………………………………………………………………………………..09
2.1. Unity implementation​………………………………………………………………………………….09

2.2. Object lesson ​………………………………………………………………………………………………...10

3. Planning and evaluation of resources​……………………………..……………….14
3.1. Planning ​……..14

3.2. Evaluation of resources ​……………………………………………………………...…………….15

4. System design and analysis​…………………………………………..……………………...17
4.1. Requirements analysis​…………………………………………………………………………….….17

Functional requirements

Non-functional requirements

4.2. System design​………………………………………………………………………………………….…...18

4.3. System architecture ​……………………………………………………………………………………26

4.4. Interface Design​………………………………………………………………………………………….27

5. Development of work and results​……………………………………………………….29
5.1. Work Development ​……………………………………………………………………………………. 29

5.2. Testing ​…….. 37

5.3. Results ​………..40

6. Conclusions and future work​………………………………………………………………41
6.1. Conclusions ​……………………………………………………………………………………………………41

6.2. Future work ​……………………………………………………………….……………………………..……42

7. Bibliography​………………………………………………………………..……………………………..43

4

3D Mesh Voxelization

5

3D Mesh Voxelization

1. Introduction
This chapter will provide a compilation of the initial conditions of the

realization of this project. The motivations that propitiated the present text will

be exposed, the objectives set out in the beginning and the context of the

execution, which I hope will contribute to better understand the evolution of the

project.

1.1. Motivation of work
The main subject in the field of Computer Graphics studies how

three-dimensional scenes are visualized in a 2D image. In short, and to simplify

a lot, a mesh structure based on triangles is established and, through certain

projections, it becomes an image from the point of view of a camera.

To represent different effects, certain calculations based on this mesh

structure are applied, such as the reflection of the light photons of the

environment and its visual result depending on the properties of the object. This

is enough to recreate illuminated surfaces, both for its ability to reach a perfect

visual realism thanks to the use of complex calculations and its relatively low

computational cost.

So important is this type of representation that we have created dedicated

hardware to deal with the massive calculations that are needed to be carried

out: the graphics cards. However, they are not so good for representing

volumes; after all, the triangle is a two-dimensional unit.

The destruction of objects, the thermodynamics of a volume, calculation of

fluid mechanics or truly realistic calculations of physics are extremely

complicated to do in meshes and, often, they are not perfect.

That is why the possibility of representing these meshes volumetrically

could be a much closer approach to reality; create a kind of atoms, a minimum

unit that allows computing it more or less efficiently. For this, it’s possible to use

cubes to divide the volume, making a simile with a raster image made of pixels.

This, as I would discover later in my research, is called ​voxel​.

The project will also help me to check, develop and consolidate my

knowledge in fields as varied as data structures, graphic computing and

hardware acceleration -in this case, through GPU-, the use of efficient algorithms

in an applied way and so on.

6

3D Mesh Voxelization

1.2. Objectives
The objectives of this Final Degree Work report have been adapted as my

knowledge about it was deeper. At first I thought directly about making my own

engine, which would give me a lot of control over all the algorithms that were

responsible for generating and rendering the structure, but it would also give me

an too much work, as I found out as soon as I investigated in more detail the

practice of implementing an engine from scratch.

After realizing this, I thought then about creating a plug-in for a game

engine in which I already had enough experience as Unity is. In addition, its

wide dissemination on the Internet would allow me to solve more easily the

problems that might be encountered with the engine itself. This plugin would

allow using meshes already made in standard modeling programs such as 3DS

Max or Blender to generate voxel structures at different resolutions. It would

also allow us to control this structure to some extent, to generate the in-game

effects that the user wants.

Therefore, based on the above, we can establish the following objectives for

the ​plug-in​ Unity:

-Creating a data structure that allows us to work with voxels efficiently in

real time.

-​Baking meshes in this structure in a simple and automatic way so that
1

the user of the plug-in does not have to do too much work to generate

these structures -the existing tools to generate voxel structures are

limited, complicated to use and require a very different workflow from the

usual one to generate 3D meshes.

-To visualize this efficiently, using 3D meshes as an intermediate step

between the structure of voxels and the image taken by the screen, so

that we can take advantage of the already developed technology of 3D

visualization to simplify our work and increase performance.

-To be able to manage in any of the ways previously proposed

-transmission of temperatures, destruction/generation in real time- the

structure of voxels in real time.

1
Term in Computer Graphics defined as the act of pre-computing something in

order to speed up some other process later down the line.

7

3D Mesh Voxelization

1.3. Context and initial state
Shortly before starting work, I moved from my student apartment in

Castellón to Valencia, to the house of my parents. This was motivated by two

main factors: the first, the realization of curricular internship in a small team

whose mainly commission was to make a demo of a virtual museum for a

medieval castle in the Aragon municipality of Mora de Rubielos. This took up

most of my time during the first months: the whole morning was spent going to

the office for working in the project. The hours that could devote daily to the

development of the project that occupies us in the present text would be

reduced, then, in this initial period.

In addition, I began to obtain positions of greater responsibility in the

political organization in which I am a member and I started a separate project as

study director with six students at Universitat Politècnica de València coursing

the degrees in Computer Engineering and Industrial Design and Product

Development Engineering. This left me with even less time available, so I had to

have a very constant work discipline and to spend a lot of my free time on the

project. However, I am a person who reaches his true potential after a good

amount of time working, which did not allow me to work to the maximum of my

abilities in this initial period.

In short, I started the project with a much tighter agenda than I would like,

which, as we will see later, will give me some problems.

8

3D Mesh Voxelization

2. The Plug-in
This chapter will explain how the plug-in works, which tasks it has to do

and we will also see an example of use. A deepest analysis of the coding and the

system structure will be explained later in this report.

2.1. Unity implementation
There are several ways to make a plug-in for Unity. This is thank to his

Editor classes, which are deeply customizable and allows to modify the interface

as much as you want. In this case, with the purpose of making the tool very

easy to use for every beginner in the environment of the Unity game engine, we

choose to use the in-scene hierarchy of the engine itself. For this reason, we use

a Unity concept called ​Prefab.

A Prefab (see in Figure 1) is a GameObject -an agent object in the scene-

that can be saved in secondary memory for later be instantiated in the scene.

For example, we can build an Enemy GameObject in the scene and set some

parameters to his components -BoxCollider, Custom Scripts, Rigidbody and

many more-. Then, we save this in a project asset folder. All the instantiated

GameObjects using this prefabs will have the same configuration.

And how this will work with our plug-in? We will use this for creating a

GameObject in-scene tool​, which could make all the spatial configurations we

need, taking advantage of the built-in scene Gizmos of Unity. In the following

section, we will see how to use the plug-in in a practical example and, in

addition, it will explain us how to this tool works better.

9

3D Mesh Voxelization

2.2. Object lesson
In this lesson, we will see how the plug-in works with an example mesh.

Here, Stanford Bunny will be used as example, modified for having no holes (see

in Figure 2).

However, for the purpose of this plug-in, the 144046 faces shaping the

mesh are too much and that will mean a huge slowdown in the performance. We

should, then, decrease the number of polygons: we are not aiming for full

detailed meshes, as we only need the shape in order to conform a clearly profile

in the voxel system. The model was optimized to has 1% of the original faces,

only 1436 faces (see in Figure 3).

10

3D Mesh Voxelization

With that model imported into Unity, we go and select the ​VoxelSystem

GameObject ​in our scene hierarchy (see in Figure 4). This will deploy in the

Inspector the components of this agent. Here we can see the ​VoxelSystem script

component ​(see in Figure 5), which let us to configure some variables for

voxelizing a mesh.

11

3D Mesh Voxelization

For correctly voxelize the bunny, we should adjust the voxelization volume

box to fit the model as we see in Figure 6.

Then, we proceed with voxelizing the model with a depth of 8 -depth, as

we will explain later, is the ​resolution of our voxel system-. The result can take a

while, so we wait until is finished and the result should be in Figure 7.

12

3D Mesh Voxelization

As we see, the resulting voxel system keeps the flat faces of the low poly

model. This can be avoided by reducing the resolution of our model. Let’s see

the result of that in the Figure 8.

Finally, we can see the result using the ​Debug ​toggle in the inspector of the

Figure 9. This will show us the surface voxels as purple wire cubes and the inner

ones as blue cubes. This is useful for checking if all is setted correctly.

13

3D Mesh Voxelization

3. Planning and evaluation of resources
In this section we will explain how the planning of the project times has

been carried out. There will also be a brief reflection on the costs of the project

in the event that it was a paid engineering project.

3.1. Planning
The initial conditions that I mentioned in the previous section in relation to

the external workload that I suffered required a planning that was not only clear

and concise, but highly flexible and with wide margins, so that I could coordinate

it with the rest of matters of my daily life, sporadic and improvised by nature.

Let's set a target time of 270 hours. I assume that several tasks are likely

to last longer than I expect, because experience in other projects leads me to

extrapolate that I tend to assume that things will happen faster than they

actually take to take place.

The calculation of times I made can be observed in the following table (see

in Figure 10). In addition, you can also observe the time that was finally

invested in each task.

The method was according to the specific context of the project: due to my

lack of initial knowledge on the subject, each section required an investment of

time in ​research ​(except for the last one, because it is simply a construction on

the systems that I have already created). In addition, I also include in the two

most complex tasks a task for ​planning​, which would help me establish the route

14

3D Mesh Voxelization

to follow for trying to avoid improvisation in the ​implementation ​as much as

possible. After implementing the code, there is a small subtask -where some

parts are optimized or some sections of the program are refined- that has been

denominated here as ​adjustment​.

In the end, the difference between the real and the estimated was 60

hours, which validates my hypothesis which establishes down that I tend to

underestimate the temporal cost of the tasks, making the decision to estimate

the project times with a generous upper room in a correct choice.

Below you can see a Gantt diagram that I have made with the purpose of

visualizing the distribution of all the tasks over time (see in Figure 11).

As you can see, there are often overlapping tasks. This is due to two main

reasons: some weeks I ended with one task and started with another, and the

only way to represent it is by putting both active tasks in that week, and that, on

some occasions, especially with the research stage, this overlap was due to the

parallel performance of both tasks.

The subordination of some tasks to others follows a simple order: all tasks

depend on the previous one. In the case of an individual execution of the

project, this is true. However, in an execution with a team of people, the third

stage -the ​visualization- ​could have been carried out in parallel with the second

stage, and even with a certain more advanced part of the first stage.

3.2. Evaluation of resources
In summary, if it had been a paid project, the cost of the project would

amount to 2950€ with a payment of 10€ per hour. Taking into account that the

initial estimate was 2350€ (235h * 10€/h), the difference was 600€. That is to

say, in a non-academic situation there would have been an extra cost of 25.5%

with respect to the initial price. This type of things are common in software

development, but should not occur: the customer could refuse to pay the extra

cost and end up forcing the developer to take it on their own.

In addition, in the case of a company, this extra cost should be added to

the payments of facilities and personnel, which can become a problem if the

possibility of it happening is not taken into account.

15

3D Mesh Voxelization

16

3D Mesh Voxelization

4. System design and analysis
This chapter will review all the topics related to the analysis, design and

architecture of the system, as well as the design of the ​plug-in ​interface.

4.1. Requirements analysis
We will divide the requirements into two classes: the ​functional ones​, which

refer to all those requirements with input and output of data and an established

behavior, and the ​non-functional ones​, which cover all the conditions

characteristic of the design and implementation of the project.

Functional requirements
-Given a maximum resolution, a position and a scale in three dimensions,

generate an octree with these characteristics capable of saving

information.

-Given an octree and a mesh, transmit the information of the surface of

the second to the first, filling this surface to obtain in the octree a solid

structure equivalent to the surface of the mesh.

-Given a system of established voxels, to be able to visualize the system

in a graphical way.

-Given a voxel system, to be able to ​interact ​with him in game time.

Non-functional requirements
The project requires the following characteristics:

-Efficiency in terms of the interaction and visualization of the system, so it

can be used in real time at a minimum frame rate of 24 fps.

-Understanding and readability in the structure of the code over

optimization, with the aim of being able to include in a relatively simple

way new functional characteristics to the project, as well as to facilitate its

understanding by third parties in pursuit of the scalability of the

development team , either under contract of employment or for free on

the Internet.

-Simple simplicity of use by the user, so that it does not require great

knowledge about the system or the programming itself.

17

3D Mesh Voxelization

-Taking into account the previous section, it will be the ​plug-in ​which will

explain itself.

4.2. System design
The system presented in this paper has a class structure defined in the

diagram on the next page (see in Diagram 1). In it you can appreciate the

relationships between different systems. We will proceed to review more

carefully what job each one performs to meet the previously defined objectives.

18

3D Mesh Voxelization

19

3D Mesh Voxelization

20

3D Mesh Voxelization

The most important part is the class ​VoxelSystem​. This class composes the

central axis of the ​plug-in​, since it derives from the basic class of Unity scripting

Monobehavior​. This allows it to be the bridge between the internal system of the

program and the Unity API; to derive from ​Monobehavior allows the script to

belong to an agent entity in the game engine and, therefore, act within it.

This system can be controlled by the user to the extent that the class

VoxelEditor ​allows, which is derived from the class ​Editor Unity. This allows you

to create buttons, fields, slide bars and more input tools into the Unity Inspector

(that is, the GUI of the engine that allows the user to control the agents of the

scene).

Encapsulated in the class ​VoxelSystem​, the class ​Octree is a tree-type data

structure where each node, with the exception of the ​leaves -the deepest

nodes-, has exactly 8 children, and where every node has one or no node as a

parent. A deepest explanation of the octree concept is in the ​Work Development

chapter. It is responsible for managing all the nodes of the Octree and contains

only a relationship with the root node -the only node without a parent and the

one with the least depth-, so that all the data is accessed recursively.

The class that defines the nodes, then, is ​OctreeNode​. In this class there

are several attributes that allow us to save information. The two most important

are the transform, a struct called ​OctreeTransform​, ​and the morton code,

defined in the class ​Morton​. The use of the latter will be explained later, but, to

summarize, it is the coded position of the node with respect to the root.

In addition, each node generates during the ​Bake operation an object of the

Intersector ​class, which stores information about its AABB (​Axis Alligned

Bounding Box​)​, and serves as a controller for the intersection calculations to

which the structure will have to submit in order to convert the mesh into the

voxel system. It is not encapsulated in the node in order to decrease the total

RAM used by the system.

Intersector​, in turn, has as attributes the ​AABB ​of the object which it has to

manage and, if needed, the ​Triangle ​it includes -this is false in the case of being

a node ​Intersector​. The AABB can be either from an ​OctreeNode or from a mesh

triangle. The ​Triangle​, as its name suggests, is the class that helps with certain

geometric operations for the intersection algorithm used in the system.

Next we will see how these systems communicate with each other in the

three main operations that are carried out in the system. For this, some

sequence diagrams have been made with the aim of helping us to better

understand how the systems relate to each other.

21

3D Mesh Voxelization

In the case of the first large operation, ​Create()​, which generates the

structure at a certain depth level, we will observe the diagram (see in Diagram

2). First, the ​VoxelSystem ​sends the command to the ​Octree​, who in turn

transmits the command to the root node. This node creates its children, in turn

they create other 8 children each in a recursive loop until reaching the maximum

depth of the structure defined by the user.

The following diagram (see in Diagram 3) is the one that represents the

baking ​of the mesh in the voxel structure: ​Bake()​. In this operation, a similar

pattern to ​Create() ​is followed: the message being transmitted by the

VoxelSystem-Octree-OctreeNode ​hierarchy to the root of the octree. Once at the

nodes level, it is checked whether or not there is an intersection with any

triangle of the mesh. If there is no intersection, that node does not propagate to

its children, since by definition there will be no intersection either. In the case of

having it, it spreads. In this way, we avoid calculating nodes that we already

know will not intersect any triangle. To check each intersection, the node orders

the test to be performed by its intersector, who executes the tests in the

respective geometric classes.

22

3D Mesh Voxelization

The last sequence diagram (see in Diagram 4) corresponds to the operation

generated by the structure display grid, ​GenerateMesh()​. In this operation there

is a noticeable change with respect to the others: instead of using a self-calling

recursive function in the ​OctreeNode ​class, a while loop is used in the ​Octree

class, iterating until all the nodes in some given k-level are obtained. This does

not mean that the order to obtain a specific node is not propagated by the data

structure. It has been done in this way for not complicating the diagram

unnecessarily and thus demonstrate the importance of the operation: a loop that

will collect in a data buffer all the positions of the nodes at a certain level. The

peculiarities of the ​GetNode() ​command will be explained later. After this, the

VoxelSystem sends the position buffer to a shader that will be responsible for

drawing the geometry by using a geometric function and computing all the visual

aspects of the system using a fragment function.

23

3D Mesh Voxelization

Finally, I have made the following activity diagram (see in Diagram 5) ​that

represents the Möller algorithm​[2]
to check the intersection between an AABB and

a triangle. It was chosen because one main factors: it is above 2 times faster

-this increased performance depends on the CPU you use- than the main

previous intersection algorithm found in Gems V​[4]​
, which is also faster than the

previous one described in Gems III​[5]​
. The algorithm made by Thomas

Akenine-Möller consists, in broad strokes, in making a series of very quick

preliminary checks to execute that result in a false positive: if it turns out that

there is no intersection, this statement is completely true; if it turns out that

there is an intersection, the affirmation does not have to be true. In this way,

the only test that ensures the intersection is the last test, which is based on the

separation axes theorem -or ​hyperplane separation theorem​- which is more

expensive to compute. Due to the huge number of voxels that statistically do not

intersect with a certain triangle, this small trick allows for much shorter

computation times.

24

3D Mesh Voxelization

25

3D Mesh Voxelization

4.3. System architecture
Due to the requirements mentioned above, a computer with the following

basic characteristics is required, in addition to all the standard elements of a PC

oriented to today's average games:

-Medium-high/high-end home graphics card range with a recommended

VRAM amount of 4GB or more and support for DirectX 11 or higher or

OpenGL 3.0 ES or higher. In the development an NVidia GTX 1070 of 8GB

of VRAM was used.

-Quantity or greater than 4GB of system RAM, although it is

recommended to have at least 8GB.

-Processor: by not using this version of the parallel computing project, the

available physical or virtual cores of the processor does not really matter,

but it is fundamental to be able to maintain a high clock frequency for

extended times. There are, therefore, not discarded but poorly

recommended, the laptop processors (due to their limited cooling

capacity) or processors with low clock frequencies (less than 2GHz).

26

3D Mesh Voxelization

4.4. Interface Design

For the interface Unity Inspector has been used. The class that manages it

is the ​VoxelSystemEditor​. In it you can enter a series of values: the depth of the

octree that you want to generate, with a slider that includes from 0 to 8; a box

where to specify the agent that has the mesh that we want to voxelize; a marker

where we can activate a drawing with a series of colors that helps the user to

see what is happening with his voxel system; the color we want the voxels to

have. In addition, in a section separated by bars, we find a series of markers

that work as specified in Interface 1. When the Voxelize button is pressed, all

the tasks named in the labels of the mentioned markers will be executed in order

from top to bottom. When the scene is loaded by entering the game mode, it is

equivalent to pressing the Voxelize button.

The entire project, in the end, is in a Unity agent. As we can see in

Interface 1, on the right we have the hierarchy of the scene with all the agents

present in it. In our case, the ​VoxelSystem ​is located in the agent of the same

name, which is the son of the mesh that it generates (and that will be applied,

27

3D Mesh Voxelization

therefore, in the parent object ​Mesh​). As a brother agent of ​VoxelSystem we

have the ​Fillers ​agent, which is a agents container that act as situational points

in the space of the scene from the inspector, with the objective that the user

places them in all the regions that they want to be filled with its voxel structure.

28

3D Mesh Voxelization

5. Development of work and results
This chapter will present a chronological journey through the development

of the project, in order to observe both my academic growth during the course of

the same as the reason for each of the fundamental decisions of the work done.

5.1. Work Development
I started the project by researching an appropriate way to represent

three-dimensional space. This is how I easily found the data structure called

octree (see in Figure 12). Each node represents a cube, and each cube can be

divided into 8 cubes of equal size. Thus, we can recursively obtain a separation

of the space with a variable precision for each one of the sections of it, according

to the criteria that we follow when using these structures.

Having seen this, I began to plan the structure and how each of the parties

would communicate. With this I achieved a system capable of altering the scale

29

3D Mesh Voxelization

of each of the cubes. In the figure (See in Figure 13) you can see the result in

Unity.

The previous octree has a depth of k = 2. The depth indicates the number

of times the structure is subdivided. When k is zero, we have a single cube: the

root node. The amount of memory consumed by the structure at each level of

detail scale based on the following formula:

Where ​n ​is the number of nodes per child, ​x the depth of the tree, ​m the

memory consumed by each node and ​y the amount of memory consumed at the

depth level ​x​. This gives us the following graph (See in Figure 14) for , , 4,n∈ 2 8

which corresponds to a ​bintree​, ​quadtree ​and ​octree​, respectively. In it we can

see in the ​x axis ​the depth of the tree and in the ​y axis ​the spatial cost of the

30

3D Mesh Voxelization

depth level. The total cost of the structure is , where ​k ​is the ((2) m)∑
k

x = 0

n−1 x−1
*

maximum depth level of the structure.

Due to this excessive growth of the spatial cost of the structure, excessively

high values ​​of depth are discarded in their treatment in real time. It will also be

necessary to minimize the number of nodes to increase the performance of the

system as much as possible.

Then, during the development a fundamental problem of the structure was

found: how could I search for a specific node without having to go through the

entire tree node by node? This problem was going through my mind for a long

time until, one day, in a conversation with a friend who was studying computer

engineering, he told me that he was studying structures called hashtable. These

structures allow finding elements within them in O (1) based on a parameter

called key, which can be a word, a code, etc. Just what I needed.

Investigating this issue and its application I found something curious: the

Z-order curve. This type of order when saving the elements in a two-dimensional

31

3D Mesh Voxelization

structure looks similar to the one in Figure 15. This is the way in which the

quadtrees are ordered, and is mathematically applicable to three-dimensional

spaces, that is, to octrees, presenting a similar shape (see in Figure 16).

This type of order fulfills a property: it is encodable by means of a code

called code of Morton​[1]​
, that allows to convert into a single integer a coordinate

of N dimensions encoded in its binary code. This allows to take a node from a

position in O(1) using only bitwise operations. A summary of the operation can

be seen in the two-dimensional case​[3]
in the figure (see in Figure 17). We will

extrapolate this to a three-dimensional case.

32

3D Mesh Voxelization

As a result of this, we have that, virtually, our system can reach a depth

level up to 21. This is due to the fact that the three-dimensional coordinates of

each node have to be encoded in a ulong-type variable, which comprises 64 bits

of space. Therefore, each coordinate can be a maximum of 21 bits. This is not a

major problem since a depth of 21 would be equivalent, with each node

containing 117 bytes of information, to 154.2 exabytes (or 1.542 * 10​11
GB),

which obviously escapes from our technological capabilities, so we do not need

more precision for making the Morton coordinates. In fact, given the architecture

of the aforementioned system, the depth cannot be greater than 8, since it is

equivalent to 2.243 gigabytes, and would not support 9 levels of depth, which

equals 17.95 gigabytes, much more than our limit of 8GB of RAM.

33

3D Mesh Voxelization

With this clear and implemented matter, I went on to investigate how to

detect which triangles intersected with which voxels to be able to reflect the

mesh in the system. This task did not have to be very fast, since it is ​baked

-precomputed- ​in the Unity editor before using it in the game. However, I did

not have to greatly extend the development of the work of the designers of the

game, so I needed a fairly fast algorithm. Investigating I found a huge amount

of different algorithms for this purpose, but there was one that convinced me for

its simplicity and elegance: the Möller triangle-cube overlap algorithm​[2]​
. The

algorithm is explained in more detail in the section on system design (see in

Diagram 5).

The result can be seen with a depth value equal to 3 in Figure 18. We can

also appreciate it better in an image captured with a orthographic camera from

the side (see in Figure 19).

After this task, the structure is filled. This is done simply by using a

standard ​flood fill ​algorithm​[6]
-the cube tool in many 2D image edition

programs- in three dimensions that does not include diagonals. This will have to

be done by the user himself, so that he decides which parts are really empty and

which ones are empty.

34

3D Mesh Voxelization

With all this, it is time to start visualizing the voxel structure efficiently,

since the cubes that you have been seeing so far were drawn by a single thread

of the processor, which was enormously expensive. To perform this task we will

use the GPU, so that the cost is much lower.

To use the graphic card we use programs called shaders: ours uses a

specific one called ​geometry shader​[7]​
, which allows adding vertices to the mesh

that receives from the ​vertex shader​ (see in Figure 20).

35

3D Mesh Voxelization

This allows us to generate a mesh of points, where each point is a position

of a node. It should be noted that only those nodes that make up the surface are

transmitted to the GPU, since it is absurd to draw those parts that are not

visible. As the geometry shader is executed for each vertex, we are executing it

once for each node, which allows us to create the cube that visually represents

the voxel. In the fragment shader we perform the necessary color and light

calculations, so that we obtain an optimal visualization (see in Figure 21).

The shader, for reasons of time and complexity of combining shadows with

geometry shaders in the Unity ShaderLab API, neither casts shadows nor is

projected by them.

For the interaction I was thinking exactly what I should implement. The

objective in the original Technical Proposal was to design a system of realistic

destruction. However, in the final planning presented in this document, this

required a quantity of time that, according to my research, greatly exceeds the

time of dedication to the subject. However, leaving the project without any

interaction with him could leave him lame, lacking of any practical employment.

For all this, I decided to implement two functions that allow to contemplate

the potential of this type of structure, and to show its intrinsic qualities that

differentiate it from the classic mesh system. One allows you to generate voxels

with a certain radius without the need to use meshes; the other makes it

possible to erase the voxels in a given radius, respecting the original concept of

the volume given by the voxels.

36

3D Mesh Voxelization

In Figure 22 we can see a voxelized sphere to which voxels have been

erased from three positions with a radius of 21 voxels.

5.2. Testing
A great way to debug in Unity is to employ the built-in gizmos it provides.

With them we can see in the 3D space where and what is there by using the

color, the position and the scale of standard cubes, wire cubes, lines, spheres

and so on. Here we made use of wired and non-wired cubes -because we are

working with cubic voxels-, and their colors says us what type of voxel it is.

The way to see this debug is with the ​Debug toggle in the script inspector.

With this, as we explain previously in ​The ​Plug-in chapter, the system will be

showed with the shape voxels in wired purple cubes and inner ones with blue

filled cubes. This mode, depending on how high is the depth level chosen, the

performance can come down and the inspector will run at 15-30 fps, although

the objective of this debugging tool is not running in the game.

Also numerous of computational cost test were carried out. Those helped

me choosing what approach to take for implementing some algorithms, like

reducing the amount of triangles to compute for the children nodes of the

current node in the ​Bake() operation by discarding the triangles which already

has been established as not intersecting the prevailing AABB node.

In the Figure 23 we can see the difference between triangle-discarding

approach and the old one. The last measurement of the Old Bake was not taken

37

3D Mesh Voxelization

because of the large amount of time it would took to take enough results -it was

more than 10 minutes computing when I aborted the test-.

In order to check the performance, we used a built-in tool of Unity called

Profiler (see in Figure 24), which allows the user to see when and how much

resources a process is taking. With this tool you can study the CPU usage, the

RAM usage, the rendering process values -vertices, pass calls, triangles and so

on-, the network usage and physics of your scene. You can even code your own

profiler if you need it.

38

3D Mesh Voxelization

With this profiler we saw some low performance ​spike on the CPU usage,

dropping the frame duration to 250ms. Researching a bit deeper in the tool

provided info, there was a process using the 99.8% of the Unity CPU usage. This

was the Unity self Garbage Collector that, for some reason, was consuming a lot

of resources erasing the heap memory. This seemed a dead-end for the solution,

as Unity GC is built-in and you cannot do a lot with it.

Some research about that question lead me to how the garbage collector

works. The method it follows is the Boehms-Demers-Weiser garbage collector​[8]​
,

which is a GC that stops all the process running until it finishes cleaning the

unused memory. It means that it can trigger in real time applications a huge

drop in the frame rate. There is no real solution for avoiding this when you work

with a lot of memory usage in Unity.

Nevertheless, in the research I made I found something interesting: the

Unity team is working on an incremental version of this garbage collector.

Incremental means that the collection of unused memory is made step by step

reallocated in all the frames. This does not reduce the amount of time it takes to

do the process, but by redistributing it allows the user to not see those 250ms

frames that kills the global performance of the game or the application.

This was implemented in the 2019.1 version of Unity, so I had to move

the whole system to this newer version and to activate it from the project

settings -it is not allowed in the default configuration for his really early version.

Finally, this solved the problem, but it was one more thing affecting the

performance according to the profiler: some process in the editor windows was

causing some noticeable decrease of the performance. All the research I made

wasn’t enough to solve this, but I found out that maximizing the Scene/Game

window makes the problem disappear, so it should belong to some internal

process of the Unity Editor. However, this will not affect the performance in the

game build, so I decided to spend the time in other more important matters.

Having seen this, I will talk about probably the most important debugging

tool I used in the project: the Visual Studio ​step-by-step debugger. With it we

can go through our code line by line and see how the variables are changing

(see in Figure 25). In other words, we can trace our code automatically in order

to see what is happening with a certain problem. This was very useful in the

making of the ​Bake() ​function and, along with the gizmos, was decisive in the

completion of the project.

39

3D Mesh Voxelization

5.3. Results
The final state of the project is really satisfactory. In the beginning it was a

job that I considered as a challenge to what I had learned throughout my career.

I have put all my knowledge into this project, even those that I did not have in

the beginning. The following results have been obtained:

-I have made a solid and optimized data structure.

-The structure allows to generate automatically, except for a simple step

that has been left to the user's criteria, as is the selection of which areas should

be filled.

-The structure is visualized making profit of all the hardware acceleration

technologies the employment of GPU instanced meshes gives us, although it has

no shadows.

-The interaction system, although it can be simple, allows its use in

destructible environments. Its simplicity of implementation by the user allows

multiple possibilities of utilizations by the person who desires to employ this tool.

40

3D Mesh Voxelization

6. Conclusions and future work

6.1. Conclusions
This project has been the most complex I have done throughout my

academic development. I have applied in it everything I have learned throughout

my university education. Even for what I did not know and I had to investigate

on my own, this knowledge has served as a basis to better understand what I

read. Without the knowledge of mathematical language that I received in the

first year of the degree, I could hardly have understood correctly the Möller

paper where the mathematical procedure I follow to check box-triangle

intersections is explained, and much less to be able to compare it with other

procedures in order to find the fastest of them. Without the base that graphic

computing gave me, creating a shader that allows visualizing such a quantity of

information would have taken too much time to be able to integrate it into the

project. Without the ability of abstraction that gave me the subject of software

engineering, working among so many connected systems would have been a

problem of a greater order than it was. And so for many more cases that

occurred throughout the project, probably too many to name in this section.

Although, there have also been many other knowledge that were not

acquired in the college. These I got in my free time; hours and hours absorbed

in front of the computer, learning from what other people did. It is incredible the

community of programmers that there is in the network sharing content,

solutions to problems and detailed guides to create all type of systems. All these

programmers, although not at the same level as in the faculty, have contributed

in a decisive way in my training and, above all, in my creativity as a software

programmer for video games.

In addition, I have also learned something in the development of this

project. Theoretical knowledge, organization, but mainly work under pressure,

and learning to be flexible with the distribution of time if necessary -which,

throughout the development, has had to be quite frequent due to the rest of my

responsibilities-. There is an old war saying that no plan survives contact with

the enemy, and although this is an illustrative hyperbole, there is a certain truth

locked in it: improvisation, like planning, are two vital qualities in the

development of a project with these characteristics.

41

3D Mesh Voxelization

6.2. Future work
Regarding the project, it is obvious that it is enormously expandable. What

is presented in this text is the solid basis on which an enormous amount of

functionalities can be based: simulation of liquids, optimized physics using

Morton, calculation of structures tensions, and many more capabilities. I would

have loved to include all this in the project, but the subject has a certain time

and to introduce all this in that time is a nearly impossible task.

However, I am clear that I do not want to limit myself to what is presented

here. Increase the optimization of the algorithms through the parallelization of

processes, calculation of physical forces and improve the visualization of the

structure are a series of objectives that I have in the short-medium term in

collaboration with some computer engineers with whom I maintain a friendly

relationship. And, who knows, maybe if the project moves forward enough, I will

contact the Unity development team for its native integration in future versions

of the engine.

42

3D Mesh Voxelization

7. Bibliography

[1] Barten, Jeroen. Morton encoding/decoding through bit interleaving:

Implementations.

https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-

bit-interleaving-implementations/​ Accessed: 06/26/2019

[2] Akenine-Möller, Tomas. Fast 3D Triangle-Box Overlap Testing.

http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox_

tam.pdf​ Accessed: 06/26/2019

[3] Gargantini, Irene. An Effective Way to Represent Quadtrees.

http://www.csee.usf.edu/~tuy/Literature/QTree-Represent-CACM82.pdf

Accessed: 06/26/2019

[4] Green, Daniel & Hatch, Don. ​Fast Polygon-Cube Intersection Testing,

Gems V p.375-379.

http://index-of.co.uk/Game-Development/Programming/Graphics%20Ge

ms%205.pdf​ Accessed: 06/26/2019

[5] Voorhies, Douglas. ​Triangle-Cube Intersection, Gems III p.236-239.

https://doc.lagout.org/Others/Game%20Development/Programming/Grap

hics%20Gems%203.pdf​ Accessed: 06/26/2019

[6] Wikipedia. ​Flood fill algorithm​. ​https://en.wikipedia.org/wiki/Flood_fill

Accessed: 06/26/2019

[7] Liu, Jingyu. [Unity3D] Intro to geometry shader.

https://jayjingyuliu.wordpress.com/2018/01/24/unity3d-intro-to-geometr

y-shader/​ Accessed: 06/26/2019

[8] A garbage collector for C and C++. ​https://www.hboehm.info/gc/

Accessed: 06/28/2019

43

https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
https://www.forceflow.be/2013/10/07/morton-encodingdecoding-through-bit-interleaving-implementations/
http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox_tam.pdf
http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox_tam.pdf
http://www.csee.usf.edu/~tuy/Literature/QTree-Represent-CACM82.pdf
http://index-of.co.uk/Game-Development/Programming/Graphics%20Gems%205.pdf
http://index-of.co.uk/Game-Development/Programming/Graphics%20Gems%205.pdf
https://doc.lagout.org/Others/Game%20Development/Programming/Graphics%20Gems%203.pdf
https://doc.lagout.org/Others/Game%20Development/Programming/Graphics%20Gems%203.pdf
https://en.wikipedia.org/wiki/Flood_fill
https://jayjingyuliu.wordpress.com/2018/01/24/unity3d-intro-to-geometry-shader/
https://jayjingyuliu.wordpress.com/2018/01/24/unity3d-intro-to-geometry-shader/
https://www.hboehm.info/gc/

