
Ricardo Sanz Ferrero Video Games Design and Development

1

Emergency behaviors as a first-class

mechanic in video games

Ricardo Sanz Ferrero

Advisor: Dr. Luis Amable García Fernández

Ricardo Sanz Ferrero Video Games Design and Development

2

Ricardo Sanz Ferrero Video Games Design and Development

3

Acknowledgments

First of all, I would like to thank my Degree Final Project supervisor, Luis Amable García
Fernández for his inspiration before the beginning of the development and all the help
provided during the development phase.

Ricardo Sanz Ferrero Video Games Design and Development

4

Ricardo Sanz Ferrero Video Games Design and Development

5

Contents

1. Technical proposal .. 7

1.1. Abstract ... 7

1.2. Keywords ... 7

1.3. Related subjects .. 7

1.4. Work motivation ... 8

1.5. Objectives .. 9

1.6. Expected results .. 10

1.7. Task planning and temporary .. 10

1.8. Resources evaluation .. 11

2. Environment and initial state .. 13

3. System analysis and development .. 15

3.1. Requirements analysis .. 15

3.2. Environments element design .. 15

3.2.1. Cleaning obstacle .. 15

3.2.2. Collecting obstacle .. 16

3.2.3. Exploring obstacle ... 17

3.3. Entities design ... 19

3.3.1. Cleaners complex behavior ... 19

3.3.2. Collectors complex behavior ... 22

3.3.3. Explorers complex behavior .. 26

3.4. Squad system .. 31

3.4.1. Squad system structure ... 32

3.4.2. Squad system actions .. 32

3.4.3. Squad battles system .. 34

3.4.4. In-game squad creator .. 40

3.5. Emergency parameters .. 42

3.5.1. Cleaners emergency parameters .. 43

3.5.3. Explorers emergency parameters ... 44

3.5.4. Squad emergency parameters .. 44

4. Problems and results ... 46

4.1. Problems ... 46

4.2. Results ... 48

4.3. Hours spent ... 52

4.4. Project access and download .. 53

Ricardo Sanz Ferrero Video Games Design and Development

6

5. Conclusions and future work .. 54

6. Bibliography .. 55

7. Annexes ... 58

7.1. Annex 1 (Selection Process) .. 58

7.2. Annex 2 (Squad Class) ... 60

7.3. Annex 3 (NavMesh Unity) ... 61

7.3.1. Area masks .. 61

7.3.2. Determine if a destination is valid .. 62

7.4. Annex 4 (Squad actions) .. 63

7.4.1. Squad cover ... 63

7.4.2. Squad returns to the player .. 63

7.4.3. Squad changes formation.. 64

7.4.4. Wrestler follows player ... 65

7.4.5. Wrestler changes formation position ... 66

7.4.6. Wrestler breaks formation .. 66

7.4.7. Wrestler assigned as leader .. 66

7.4.8. Wrestler joins a squad ... 67

7.5. Annex 5 (Saving system) .. 69

7.6. Annex 6: Demo Game Design Document (GDD) ... 71

7.6.1. Narrative design .. 71

7.6.2. Characters ... 72

7.6.3. Environment .. 74

7.6.4. Playability .. 75

7.6.5. Art .. 76

7.6.6. HUD and Controls .. 76

7.7. Code architecture .. 79

7.7.1. Entities architecture .. 79

7.7.2. Obstacles architecture .. 82

7.7.3. UI and Input architecture .. 83

7.8. Annex 8: Code captures .. 86

List of figures ... 96

Videos .. 99

Ricardo Sanz Ferrero Video Games Design and Development

7

1. Technical proposal

The Game Design Document of the created Demo is in Annex 6.

1.1. Abstract

This document consists on the project report of the Video Games Design and
Development Degree Final Project by Ricardo Sanz Ferrero. The project consists on
exploring how to integrate the emergency behaviors applied to multi-agent systems as
an active element in a video game with the objective of providing unpredictability and
unexpected behaviors for the player. These emergent behaviors will occur when the
agents interact between them, with the scenario or with the player. Besides, the project
presents a great focus on the squad’s coordination and battles between them applying
these emergent behaviors. All these emergent behaviors are delimited by a set of
parameters which are easily manipulated by anyone allowing scalability and
understandability.

1.2. Keywords

Unpredictability, Complex Systems, Emergency Behaviors, Multi-Agent Systems,
Emergency Parameters, Squads Coordination and Battles.

1.3. Related subjects

- VJ1231 (Artificial Intelligence (AI)): the AI techniques studied in this subject will

help to develop these emergent behaviors and the Squad coordination.

- VJ1234 (Advanced Interaction Techniques): the subject showed us some

advanced techniques which can be really useful. Besides, the main purpose of

this project is an uncommon technique in the field of Video games.

- VJ1227 (Game Engines): in this subject Unity 3D was explored and studied so it

is useful for the development of this project.

- VJ1208 (Programming II): the base of the Object-Oriented Programming in the

career and the programming language used for developing this project is studied

in this subject.

- VJ1215 (Algorithms and Data Structure): when working with a lot of entities it is

important to keep in mind to create efficient algorithms and to use the proper

data structures. This is studied in this subject.

Ricardo Sanz Ferrero Video Games Design and Development

8

1.4. Work motivation

Nowadays, video games are a field that is constantly increasing in society. On the one

hand, there are hundreds of thousands of people who play video games and on the

other hand there is a big number of people who make these video games. In my case, I

love both to play video games and to program it.

So, my work motivation is divided between the player’s point of view and the

programmer’s point of view. First, the player’s point of view is going to be explained.

The main approach of the video games is to entertain the player, and for accomplishing

it, the video game needs to be funny.

For the player who has played the same game many times, it becomes boring and

repetitive. This means that the game has lost a very important factor: the

unpredictability. Thus, one of the main guidelines in my project is the emergent

behaviors applied to multi (AI) agents’ systems. This is, the unpredictable behaviors that

emerge when some agents interact between them and with the scenario. Usually, these

behaviors are unique and unexpected for the player. Applying these behaviors in a video

game will ensure different results for the player in each game.

Secondly, the other half of my motivation for doing this project is the designer and

programmer point of view. We understand emergent behaviors as the set of behaviors

that emerge from agents with certain parameters. The main advantage of this is that if

we vary these parameters a bit, the result we obtain will be completely different and

this opens a huge range of possibilities. Imagine a video game in which there is a troop

enemy and a troop of allies. The objective is to defeat the enemy troop with your troop.

Each squad has different types of roles (archers, close range knights, tanks, healers…).

The game is divided into some levels and each level has an increase of difficulty. There

are some things that you can change in your troop: the position of the troop, the shape

of the troop, the health of each troop member, the healer’s time delay, etc. So,

depending on all these parameters the difficult will vary. The designer and the

programmer have to adjust these parameters for the enemy troops in order to get a

funny experience for the player. The main advantage of this is that there is no any kind

of global AI controller who controls each troop member. They act based on the

parameters on their own and the final result emerge of all these acts interacting

between them.

Another alternative of doing this would be to program the whole AI behaviors on each

troop for each level and to have a controller that controls everything. This is infinitely

less efficient and expensive to program.

In the next points I will explain more extensively what the emergency behaviors and

multi-agent systems are and how I develop my project around it.

Ricardo Sanz Ferrero Video Games Design and Development

9

1.5. Objectives

Based on the motivation of the work, there are some goals to achieve:

- To understand how the emerging behaviors work.

- To think and design some emergent behaviors.

- To achieve complex emerging behaviors based on interaction of simple

behaviors.

- To think which parameters will vary the behavior obtained.

- To vary these parameters and see how the behaviors change.

- To organize all these behaviors in order to be easily manipulated by a designer.

- To create squads and apply them these emergent behaviors.

- To create a simple in-game squad creator and store them.

- To get battles between the squads and see how the result changes varying some

parameters.

- To divide the set of parameters into configuration files and easily applying them

in testing phases.

- To think examples of how to apply these emergent behaviors in a video game.

- To create a demo in which different kind of behaviors are shown.

- To create the base of these emergent-behaviors that can be extended by others.

There are some secondary objectives:

- To learn more about Unity AI agents.

- To learn more about Unity AI System. [Annex 3]

- To learn how to develop a well-scalable code architecture. [Annex 7]

- To learn how to create an organized level manager.

- To learn more about the functionalities of Scriptable Objects.

Besides, must be known that emergency behaviors applied to multi-agent systems are

typically used in simulations and other problems. In video games they are commonly

used in a different way than the one I am going to use. They are used as a passive

element of the game, like crowds of people, flocks of birds, etc. and the main purpose

of my project is to use them as an active element on a video game. Thus, the video game

could not be played without them.

Ricardo Sanz Ferrero Video Games Design and Development

10

1.6. Expected results

The expected results for this project are the followings:

- To achieve complex behaviors as the interaction of simple actions.

- To achieve applying these emergent complex behaviors to multi-agent systems.

- To create some of these agents in a video game as an active element.

- To have a squad coordination system done entirely by me.

- To have battles between squads and basing them in emergency behaviors.

- To obtain completely different behaviors varying the emergency parameters.

- To be able to share the project to a designer and allow them to create new

behaviors varying the emergency parameters.

- To be able to play a demo in which all the behaviors are shown.

1.7. Task planning and temporary

The planning is a very important task in the project to keep the workflow. Here it is

detailed how the development of the project is divided. It must be known that all the

tasks are between two estimated times. The first one is the one in case everything goes

well and the second one is for the case in which there are unforeseen events. As have

been said before, some things have been changed from the initial days until now. The

planning is the following:

- Reading and learning theory of emerging behaviors: to read and find information

about the emergency behaviors and how they are related to the multi-agent

systems. This takes between 10 and 15 hours. (Mathivet, 2018)

- Entities behaviors design: to think and design the emergency behaviors and how

they will occur, which entities will be involved, how they will interact with the

scenario, between them, which parameters are those which emerge behaviors,

etc. This takes between 10 and 15 hours.

- Entities behaviors coding: to develop the behaviors of the entities designed. This

part contains the “cleaners”, the “explorers” and the “collectors”. In order to

able the future expansion of the project, a good code architecture needs to be

done to ensure scalability. This takes between 50 and 60 hours.

- Squad system develop: the hardest part of the project. That is, to apply emergent

behaviors theory into multi-agent squads and battle them. It is very important in

this part to think a good way of represent ing the squads. Besides, the in-game

squad creator is contained in this part. This part takes between 100 and 110

hours.

Ricardo Sanz Ferrero Video Games Design and Development

11

- Organization of the parameters in configuration files: This is a very useful task

because it allows the easy manipulation of the parameters by the designers of

the game. It allows to test just changing some parameters and see how it affects

to the resultant emergent behavior. This part takes between 40 and 50 hours.

- Project report and other documents: the documentation of the project is a very

important way of keeping track of the evolution of the project so some

documents need to be done. This part will take between 40 and 50 hours.

- Video game demo: a demo in which all the entities developed and the squad

interaction is shown. The main objective of the project is not to develop a video

game. It is to show how powerful is to use these AI techniques and how well-

scalable they are. This part will take between 60 and 70 hours.

The total estimated time oscillates between 310 and 360 hours. In order to end this

point, the way of working must be stated. Due to at the same term of these project is

being carried out, external internships are being performed there is no possibility of

dedicating more than 4 hours per day. These hours will be done in the afternoon. Some

days more or less hours can be done depending on the commitments.

1.8. Resources evaluation

In this point is listed the software and hardware needed to do this project. Not all are

essential but they help the correct development of it.

- Windows PC (i7 CPU, 16 GB RAM and GPU GTX 1080): I will use this PC in a regular

way.

- MacBook Pro (i5 CPU, 8 GB RAM): I will use this PC in occasions when I am not in

the usual place of the project development. Besides, it will serve to show demos

of the project to the supervisor and the final presentation.

- Unity 3D 2018.3f: the engine of the project. It will be developed on it. (Unity

Technologies, 2019)

- Visual Studio Community 2017 for Windows and Mac: Attached with Unity 3D is

a very useful tool for coding and allows switching between Unity and Visual.

Besides, Visual Studio has a powerful debug function which will help me to find

and solve bugs. I will use C# language because it is the one I use for all the

projects. (Microsoft, 2019)

- GitHub (GitHub Desktop): a git repository client where I will upload my work.

Besides, this is a good tool for me because as I said, I will be switching between

different devices and this is a good way of having everything update. (GitHub,

2019)

Ricardo Sanz Ferrero Video Games Design and Development

12

- Adobe Photoshop CS6: this will be used to design the user interface (UI) and

some of the elements of the games in 2D. (Adobe, 2019)

- Audacity: a powerful tool for sounds and music. (Audacity, 2019)

- Vegas Pro 16.0: to edit the videos that this report contains. (MAGIX Software

GmbH, 2019)

- NetLogo: this is a program I will use to see examples of multi-agent and complex

systems. Besides you can see how some of them are coded. It is far from the

code I will use but it can give you a main idea of how to do it. (Wilensky, 2016)

- Trello: a website used to control the work. Divided on pending, doing and done

it can be used to divide the whole work into tasks. It helps a lot with the

organization. (Atlassian, 2019)

Ricardo Sanz Ferrero Video Games Design and Development

13

2. Environment and initial state

The project’s environment is almost as important as its development so it has to be

clearly defined. It is important talking about the interests of the author of the project in

the sector of video games. I like to program so I want to become a video games Artificial

Intelligence programmer. This is probably the main reason that I choose this project.

Besides, my Degree Final Project supervisor talked me about the multi-agent systems

and I thought it was really interesting. So, the idea of the project is born as a mix of AI

gameplay and multi-agent systems.

The environment of the video games industry is continuously increasing their

technologies and the AI is becoming a very important part of the games, so I think it is

useful to keep working on it and doing research in order to improve or complement

what already exists. Talking about the development of the project team, the members

of the project are Ricardo Sanz Ferrero as a main responsible for the project and Luis

Amable García Fernández as the supervisor.

First of all, it should be known what an emergency behavior is. It is a complex behavior

which gives a sense of intelligence and it occurs unexpectedly as a consequence of a

series of simple actions. Secondly, a multi-agent system is a system formed by some

intelligent agents. They are used to resolve problems that a simple agent would not be

able to solve. So, in this project emergent behaviors are going to be applied to multi-

agent systems in order to create entities that can be used in a video game.

Before starting talking about the project itself, we are going to see some examples of

emergency behaviors. We are going to talk about animals. In particular to the ants: when

we see hundreds of ants forming a long line on the street, they are acting by emergency.

This is, they need going for food, so they look for it everywhere. When an ant finds some

food, she takes it and bring it to the nest. The curious thing is that the ant, while it is

going to the nest, is shedding pheromones so when another ant finds that trail of

pheromones, it follows it and it ends up where the food is located. This phenomenon,

applied to hundreds of ants, produces a complex behavior and it is as simple as:

- Move until finding food.

- Take the food and go back to the nest (leaving pheromones).

- Follow the pheromones when you find the trail.

The persistence value (time until disappear) of these pheromones in the scenario will

provide different patterns of ants’ complex behavior. These three simple actions lead to

a complex behavior. These kind of insects (ants, termites, bees…) are known as eusocial

insects and the organization they show is known as eusociality. (Biomolecular Blog, s.f.)

So, now that we have what an emergency behavior applied to a multi-agent system is,

we are going to talk about what this project is going to consist. As it has been said before,

the emergent behaviors applied to multi-agent systems is a very good way of ensure

Ricardo Sanz Ferrero Video Games Design and Development

14

unpredictability to a video game, creating unexpected behaviors for the player and the

main advantage is that it allows big variations on the final result just variating some

parameters.

Next, I am going to list the entities I decided to explore applying them emergency

behaviors. In section 3.2, they will be explained action by action with some code

captures.

- Cleaners: they clean debris for the player. In a video game this can be used to

unlock a path that was locked, for example. It is based on the eusociality of

termites.

- Collectors: they collect resources from production sources and take it to a

destination point. This can be used to collect some in-game resource, like elixir.

It is based on the eusociality of ants.

- Explorers: they find a path from one point to another that for the player was

unattainable. A priori, it is not based on any eusocial insect. It has been the

choice and design of the author.

These entities have the objective of helping the player to complete the level. Without

their help is impossible to do it. Apart from that, it has been decided to apply emergency

behaviors to squads. A squad is a couple of entities that moves and interact in group and

each entity inside the squad adopt a different role. A typical example of squads is a

medieval army. Inside the army, there are different types of roles and they do different

actions based on it. Nevertheless, the whole army acts together. The objective of the

project is to face two or more squads and make them fight acting by emergency.

In this project, the squad chose by the author is formed by the following:

- Archer-like entities.

- Close combat-like entities.

- Tank-like entities.

- A leader.

Besides, a simple in-game squad creator will allow the player to create squads based on

the situation. All about the squads is more extensively explained in section 3.4.

Ricardo Sanz Ferrero Video Games Design and Development

15

3. System analysis and development

3.1. Requirements analysis

One of the main advantages of the emergency complex behaviors is that is formed by

some simple behaviors. These do not need a great hardware to work so they can be

coded in almost every kind of computer. An example of this is the software NetLogo.

This is full of demos with emergent behaviors coded, and it can run in every hardware.

Nonetheless, my purpose in this project is to develop these emergent behaviors applied

to multi-agent systems and adapt them in order to include them in a video game, and

for doing it some better hardware will be needed.

So, the main requirements come when 3D models appear. The code is well-structured

and it will not cause any kind of efficiency problem. Besides, due to my main purpose is

to program the emergency behaviors applied to multi-agent systems, most of the art of

video game will be taken from external sources. These all will be shown at Annex 6.

Before continuing, some of the explanations will need code captures in order to fully

understand how it works. Some of these captures will be referenced in Annex 8.

3.2. Environments element design

In this point, all the elements that form the environment in which the entities will
interact to emerge behaviors will be explained. It is important to know that all these
elements are going to be called from now to the end “obstacles” and each entity will
have a different type of “objective”, which is one of the following obstacles.

3.2.1. Cleaning obstacle

The Cleaning obstacle, also known as Debris obstacle is formed by a set of objects (debris
parts) scattered on the floor. They block the road beyond where they are located. In
Figure 1 we can see an example of this.

Figure 1: Debris Obstacle

Ricardo Sanz Ferrero Video Games Design and Development

16

In order to pass it, all the parts must be placed one on top of the other. We understand
as a part each box or barrel. This obstacle is the one that the cleaners can solve. So, this
is the objective of the cleaners.

As it can be seen in Figure 86 (Annex 8), each debris obstacle has a list of all their parts
and another list of all the parts that are potential. This means all the parts that are
already placed in the floor and cannot be carried by a cleaner. This is an optional simple
trick to avoid accumulate all the debris parts in a point that we do not want. For
example, if we do not want to place all the parts in the barrels of the left, we just mark
as potential those which are on the center and on the right.

In order to place all the debris parts in the same point, we just mark one of all the
potentials as “already placed”. Just one. It is done randomly as we can see in the method
ResetSettledDownDebris().

Figure 87 shows the simple code of each part. It is formed by a reference of the cleaner
that is charging it and a bool that indicates if it is already placed. It is important to bear
in mind that if it is placed (settledDown = true) the cleaner will not be able to carry it.

In section 3.3 the cleaners entities will be explained and shown how the behavior
emerges when they interact with it.

3.2.2. Collecting obstacle

The Collecting Obstacle, also known as Elixir/Energy obstacle is formed by a set of
objects (stones of elixir) around a collecting machine. The collecting machine is empty
and needs to be fulled itself with the resource that is extracted from the stones.

Figure 2: Energy Obstacle

Ricardo Sanz Ferrero Video Games Design and Development

17

For passing this obstacle, all the energy stored in the stones must be in the collecting
machine. This obstacle is the one that collectors can solve. So, this is the objective of the
collectors.

We can see in Figure 88 that it consists of a list of all the stones around the machine and
the total amount of resource available. These values are filled automatically at the
beginning.

In Figure 6 we can see how simple is the code of each stone. It just consists of the initial
elixir in and how many collectors can be collecting at the same time. It also has a type,
which can be Elixir or Energy. From the point of view of a programmer it is the same,
both types have exactly the same value and the only reason that exists is to provide
variety.

We can see that in the Update() method it is checked if the stone is empty. So, it will
disable the emission in that case.

3.2.3. Exploring obstacle

The Exploring obstacle, also known as Multipath, is probably the most complex obstacle.
It is formed by many sets of corridors. It is recommended to watch Figure 3 in order to
figure out how this obstacle is.

Figure 3: Multipath

For passing this obstacle, the combination of consecutive corridors must be known. For
example, if the combination is 0-1-4-6-2, this means that the first corridor will be the 0,
the second one will be the 1, the third one the 4, the fourth one the 6 and the last one
the 2. If at any point this combination is broken, the position of the player will be
restarted to the beginning. This is, for example, if the player takes the 0 corridor at the
beginning, nothing will happen. At this point, the player should take the corridor 1,
instead of it, he decides to go through the corridor 2. As soon as he passes the corridor
exit door, he will be at the beginning again.

Ricardo Sanz Ferrero Video Games Design and Development

18

If a player decides to try randomly the correct combination, he will probably waste a lot
of time, so this is why the explorers exist. This is the obstacle than the explorers can
solve, so this is the objective of them.

The class MultipathObstacle.cs is empty. Nonetheless, it exists because of a well-
scalable code architecture (this will be seen in the Code Architecture Point). The code of
the multipath is in another class because it is more efficient to access to the children
objects than access to the grandchildren. For understanding this, it is important to see
Figure 8.

Figure 4: Multipath Hierarchy

As we can see in Figure 8, the MultipathObstacle.cs class is in the multipath object and
the Paths object contains all the logic that allows that the multipath works. This is
because there is direct access to the children of this object. From the script attached on
Paths we can access every path; and from every path, we can access all the content
inside each of them. The hierarchy is going to be explained:

Figure 5: Set of corridors

As we can see in Figure 9, each set of corridors is formed by the walls of each of them,
a trigger at the begin, a trigger at the end, and a trigger inside each corridor. A trigger is

Ricardo Sanz Ferrero Video Games Design and Development

19

an empty object with a trigger collider that serve to know if any game element is
touching it.

The begin trigger (Figure 90) detects if the player was in the correct corridor, the middle
trigger (Figure 91) sets which in corridor is the player passing through and the end trigger
(Figure 92) checks if the multipath is finished. In case of yes, nothing happens. In case of
no, the position of the player is restarted to the beginning.
Before finishing with the multipath, it is important to see this demo in which the player
is trying to pass the multipath without the explorer’s help.

Figure 6: Multipath demo

[Video 1]

3.3. Entities design

At this point, it is going to be explained the set of actions of each type of entity (cleaners,

explorers and collectors) and how they interact with the environment and between

them to emerge the complex behavior.

3.3.1. Cleaners complex behavior

The cleaners clean debris efficiently and they pile them in one point. This complex

behavior is based on the eusociality of termites. These insects can build enormous

termite mounds known as cathedrals.

As every complex behavior, it must be divided into simple actions. The cleaners have the

following actions associated:

1. Move randomly.

2. If they collide with an obstacle or debris, they grab it.

3. If they collide with another obstacle or debris while they are carrying one, they

place the carried one over which they have just hit.

https://www.youtube.com/watch?v=i3ALl0J-fwU

Ricardo Sanz Ferrero Video Games Design and Development

20

And that is all. These three simple actions can produce incredible complex behaviors. It

will be seen later. But first, these actions are going to be translated to code.

The first action is the movement one. All these entities are AI agents from Unity so the

movement system is to set a destination and the AI system creates a path between the

current point and the destination point. They move randomly because this is the base

of the emerging behaviors. They do not reason: their behavior emerges while they

perform some actions and interact between them and the scenario.

As it can be seen in Figure 7, these entities need to have an objective in order to start

doing their job. This is needed because as they form part of a video game, if the player

decides to spawn them in a place where there are not debris to clean, they have to

detect it and go back to player. This code is inside an Update() method, which means

that is executing every frame.

Figure 7: Cleaners action 1

The first condition is in case that the current objective is null, which means they have

not found where the first debris is. At the exact moment when they find a part of a

debris, they already will have an objective: The Debris obstacle. So, in the case they have

not found the objective (is null), they will move randomly inside a circle around the

spawn initial position (GetRandomPointAroundCircle()).

The second condition is in the case that the current objective is not null. Thus, they will

move randomly the whole objective (GetRandomPointAroundObjective()).

Ricardo Sanz Ferrero Video Games Design and Development

21

Figure 8: Cleaners action 2

The second action that the cleaners perform is to carry a debris part if they collide with

it and they are not carrying another part in that moment. If their current objective was

null, now they have an objective. We can see in Figure 8 the code of this.

In the case they were already charging a debris part and they collide with another one

placed on the floor, they deposit it in that point. If the debris part in which the cleaner

has collided was settled down, the carried one will be too. This means that this part will

not be carried by any other cleaner anymore. It is shown in Figure 9.

Figure 9: Cleaners action 3

When they accomplish their work (checking that all the parts are settleDown = true), the

objective is completed.

Here is a short demo (Figure 10) about how the cleaners do these actions and how the

cleaning behavior emerges. Keep in mind that the main purpose of this project was to

get the emergency behaviors and apply them to multi-agent systems.

Ricardo Sanz Ferrero Video Games Design and Development

22

Figure 10: Cleaners demo

[Video 2]

3.3.2. Collectors complex behavior

The collectors have to collect some kind of resource from some “resource sources” and
bring it to a collecting machine. In this case we are going to refer these sources as elixir
stone. If the movement was completely random, it should take a long time to collect all
the available elixir in the stones. Nonetheless, due to the emergency behavior created
by the actions performed by the collectors, it is quite fast.

This complex behavior is based in the eusociality of the ants, explained at the beginning
of this point.

The actions performed by the collectors are the following:

1. Move randomly until they find an elixir stone or a valid path of remains of elixir.

2. If they collide a stone, start collecting its elixir.

3. When the collecting process is done, go looking for the collecting machine. While

they are moving looking for the collecting machine, they are leaving a trail of

elixir (like the ant’s pheromones).

4. If they collide a path of remains of elixir and they are carrying collected elixir,

follow that trail in direction through the collecting machine. If they were not

carrying elixir, follow that trail in direction through the stone.

5. When they find the collecting machine and they were carrying elixir, they deposit

it in the machine and all the path they were leaving from the stone to the current

position become a valid path so now the rest of explorers can follow that path if

they find it.

It is important to explain how the trail works. It starts as soon as the collecting process

is done. While they move looking for the collecting machine in order to deposit the

carried elixir, they are leaving a trail. In the moment they find the collecting machine,

this trail become a valid trail. At this moment, there is a trail that communicates an elixir

stone with the collecting machine. This means that every explorer that finds that trail

https://www.youtube.com/watch?v=eXGZXzV8twc

Ricardo Sanz Ferrero Video Games Design and Development

23

can go direction to the stone or direction to the collecting machine. They just have to

follow the trail.

Now, these actions are going to be explained showing some code so it will be clearly

explained. First of all, must be known that the movement they follow while there is not

any objective assigned is following the already seen function

GetRandomPointAroundCircle() and if there is some objective and they are moving

random they are following the GetRandomPointAroundObjective(). It is important to

remember that the objective is assigned as soon as they interact (collide or touch) with

one of their obstacles. In this case, the Collecting Obstacle.

In order to simplify the code of the collectors, it has been decided to create

CURRENT_STATE variable. It will help the development of all the actions. We are going

to see which values can have this variable.

- GoingToCollectorMachine: this is the state of the collectors when they collect

elixir and they are looking for the elixir collecting machine.

- WanderingAroundObjective: when they are looking for an elixir stone. Here they

are using the function WanderingAroundObjective().

- WanderingAroundCircle: when they are looking for an elixir stone but they do

not have an objective assigned. They are using the function

WanderingAroundCircle().

- CollectingElixir: when they are collecting elixir. The time it takes depends on a

emergency behavior parameter.

- FollowingMarkersToElixirStone: when they were wandering around and they

find a trail of elixir.

- FollowingMarkersToCollectorMachine: when they were looking for the collecting

machine and they find a trail of elixir.

- DepositingElixir: when they find the collecting machine.

- GoingToPlayer: when they finish their work or the player orders the collectors to

come back.

There is an important parameter in the configuration of the collectors. It is called
BoogiesKnowCollectorMachinePosition. This is a Boolean parameter. In the case it is
true, as soon as they finish collecting the elixir, they will go to the collecting machine. In
the case it is false, when they complete the collecting process, they start moving
randomly because they do not know where is the collecting machine, they would act
like if they were blind. In the demo at the end of this point, it is shown in the case they
do not know where the machine is located. In the author’s opinion, this case allows more
emergent behaviors because they will arrive if they follow the trails. Otherwise, the trails
are not as useful.

Ricardo Sanz Ferrero Video Games Design and Development

24

Figure 11: Collectors action 2

As we can see in Figure 11, when they collide a stone, if the stone still has elixir available,
they start collecting it. And in case that the objective has not been already assigned,
they assign it. There are some conditions in order to be able to start collecting. These
are the following:

- The Stone type must be the same than our collecting type. Remember that this

could be Energy or Elixir.

- The collector is not carrying elixir in that moment.

- The collector is wandering around or following the trail in the stone direction.

- The stone does not exceed the stablished number of maximum collectors.

In Figure 12, we can see the action performed when this collecting process is finished.
In the case the collectors know where the collecting machine is, they set their
destination where it is located. Otherwise, they start moving randomly until they find
the collecting machine or a trail of elixir which they can follow direction to the collecting
machine.

Ricardo Sanz Ferrero Video Games Design and Development

25

Figure 12. Collectors action 3

Figure 13 shows how the collectors check which direction taking in the case they find a
trail of elixir in the floor. This decision will depend on if they are carrying elixir in that
moment or not. In affirmative case, they will take the direction towards the collecting
machine (because they need to deposit the carried elixir). If not, the direction will be
towards the elixir stone (because they need to collect elixir).

Figure 13: Collectors action 4

There is just one action left to be explained and it is the simplest of all. When the
collectors are in the collector machine and they were carrying some elixir, they deposit
it in the machine. This is shown in Figure 14.

Figure 14: Collectors action 5

For ending this part, it is important to see the following demonstration of how the
complex collecting behavior emerge of these simple actions explained above.

Ricardo Sanz Ferrero Video Games Design and Development

26

Figure 15: Collectors demo

[Video 3]

3.3.3. Explorers complex behavior

The explorers have to explore a path between two points through a multipath. Their
objective is the multipath explained above so they need to find the combination of
corridors in order to pass it. Nonetheless, as they have the purpose of helping the player,
they need to communicate to the player which is that combination in order to the player
be able to complete it.

The actions performed by the explorers are the following:

1. Move randomly until they find the beginning of a corridor.

2. If there is no clue at the beginning of the multipath that indicates which corridor

is the correct one, they select randomly a corridor. Otherwise, they go through

the correct corridor.

3. If that corridor was the correct one, when they pass through the exit corridor

door, they drop a clue which indicates that corridor is the correct one.

4. In case that was not the correct corridor, they restart their position to the

beginning of the multipath.

5. If they find a clue in the floor, they pick it and they place at the beginning of the

multipath.

6. When they are in the beginning of the multipath and they were carrying a clue,

they deposit it.

These are the simple actions performed by the explorers and when a multi-agent system
performs it, a complex exploring behavior emerges and the result of it is the full
combination of paths indicated by the clues position at the beginning of the multipath.
Before start explaining the actions showing the code, it is going to be shown what are
the clues and how they work.

https://www.youtube.com/watch?v=a_X-DLCVhww

Ricardo Sanz Ferrero Video Games Design and Development

27

Figure 16: Clues

As we can see in Figure 16, the Clues are objects that contains a number. This number
indicates the number of the corridor. As it has been said before, these clues are dropped
by the explorers and taken by them too. When they pick a clue, they go to the beginning
of the multipath carrying it and they place it in a point. Thus, when some clues are
placed, they will form a sequence of numbers which is the exact combination. In Figure
17 we can see the final result of the combination 2-3-4-6-0.

Figure 17: All clues placed

So, now is a good moment to focus on the behaviors of the cleaners, because of there
are some actions to be performed. The explorers have a simple parameter called
CURRENT_STATE which indicates which action is performing at any moment. Now, we
are going to have a look of it.

Ricardo Sanz Ferrero Video Games Design and Development

28

- FindingMultipathBegin: as soon as they are spawned, they move around the

circle using the function seen before: GetRandomPointAroundCircle().

- GoingToOneCorridor: when they find the beginning of a set of corridors, they go

to one of the corridors.

- GoingToEndPath: when they are passing through a corridor, they need to go to

the end of the same.

- GoingToInitNextPath: after reaching the end of a corridor, it is moment to go to

the next path.

- CarryingClue: when they find a clue and carry it to the beginning of the

Multipath.

- GoingToEnd: when they pass through the last corridor door and there are no

more corridors.

- GoingToPlayer: when the player passes the multipath or the player orders the

explorers to come back.

Once understood this, the first action is the movement one. As soon as they are
spawned, they move randomly around the circle (state FindingMultipathBegin), exactly
as the cleaners and the collectors do. They will change their destination in the moment
they find the beginning of the multipath. As we can see in Figure 18, they will do it when
collide with the CorridorBegin trigger object. When they do it, their state will change to
GoingToOneCorridor.

Figure 18: Explorers action 2

As we can see in Figure 18, there are two cases when they find the CorridorBegin. On
the one hand, if it was the first path (beginning of the multipath) they will assign the
multipath as the objective so from now to the end, when they move randomly they will
move using the function GetRandomPointAroundObjective(). After doing this, they
select a corridor. This function is going to be explained now.

When the explorers have to select a corridor, they see if there is any clue that indicates
which corridor to select. If there is no clue, they pick a corridor randomly. It is important

Ricardo Sanz Ferrero Video Games Design and Development

29

to pay attention to the value probabilityFollowClue, this is a parameter of the emergency
behavior. The higher the parameter, the more probable will be to go to the clue’s
corridor. If this parameter is 0, clues would be useless.

In the next action, it is going to be explained how the explorers drop a clue in the case
that was the correct corridor in the combination. They do it when they touch the
CorridorEnd trigger and they were not carrying a clue.

Figure 19: Explorers action 3 and 4

As it can be seen in Figure 19, if they collide with CorridorEnd, it is checked if that was
the correct corridor. On the one hand (action 3), if it is the correct corridor, they check
if there already is a clue of that corridor at the beginning. In that case they set their
destination to the next corridors. Otherwise, they place a clue which indicates that it
was the correct corridor and keep moving randomly to the next corridor. On the other
hand, if it is not the correct corridor (action 4), their position is restarted to the beginning
of the multipath.

There is just one action left, when they pick a clue on the floor and bring it to the
beginning of the multipath.

Ricardo Sanz Ferrero Video Games Design and Development

30

Figure 20: Explorers action 5 part 1

Figure 21: Explorers action 5 part 2

As it can be seen in Figure 20, when they find a clue in the floor, they do some
assignments and start the coroutine shown in Figure 21. In PickClue() we can see that
they set as destination the beginning of the multipath.

In order to conclude this part, it is important to see how they place the Clue in the
beginning. We can see it in Figure 22. First, what they do is to move to the “placing
position”. Once there, they check there is not a clue of that corridor already placed. In
that case, they place it. Otherwise, the clue is destroyed.

Figure 22: Explorers action 6

Ricardo Sanz Ferrero Video Games Design and Development

31

For ending with explorers complex behavior. In Figure 23 it is shown a demo of how they
traverse a multipath.

Figure 23: Explorers demo

[Video 4]

3.4. Squad system

In this point, it is going to be shown and explained the squad system built for this project.
It is a multi-agent system formed by some entities with different roles. Each role has a
different set of actions. Nonetheless, they all act as a squad and the emergency
behaviors appear when two or more squads face each other.

It has been decided to separate this point from the last because in the last point the
multi-agent systems were formed by some entities of the same type. Here, although
they all are “wrestlers”, each of them has a different role. Before starting the
explanation, we are going to identify these roles.

- Distance: they attack from afar with low damage and are faster than the rest.

- Close: they attack close-combat with low damage.

- Giant: they attack close-combat with high damage. Besides, their help is higher

than the rest.

- Commander: he attacks close-combat with high-damage. He coordinates the

whole squad.

First of all, is is going to be explained how this point is going to be divided. Firstly, the
main structure of the squad system will be explained. In the second place, the whole set
of actions that the squad can perform will be shown. For ending this point, the battle
system will be explained with demos and code captures.

https://www.youtube.com/watch?v=r7-XN3fG6D8

Ricardo Sanz Ferrero Video Games Design and Development

32

3.4.1. Squad system structure

The squad internally is represented as a matrix. Each position of the matrix has two
indexes (typically known in matrix as rows and columns). The Commander has the
indexes 0,0. The rest of the wrestlers are positioned relative to this Commander.
Besides, there is a parameter called offsetBetweenIndexs that is the separation between
these wrestlers. So, calculating the position of each of them is as simple as follow this
equation:

𝑉𝑒𝑐𝑡𝑜𝑟3 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
= 𝑛𝑒𝑤 𝑉𝑒𝑐𝑡𝑜𝑟3(𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑒𝑟. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥 + 𝑖𝑛𝑑𝑒𝑥𝑒𝑠. 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
∗ 𝑜𝑓𝑓𝑠𝑒𝑡𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐼𝑛𝑑𝑒𝑥𝑠, 𝑌𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑒𝑟. 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑧
+ 𝑖𝑛𝑑𝑒𝑥𝑒𝑠. 𝑟𝑜𝑤𝑠 ∗ 𝑜𝑓𝑓𝑠𝑒𝑡𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝐼𝑛𝑑𝑒𝑥𝑠;

This is the same than calculating first the offset position and add it to the commander’s
position. It can be seen in Figure 24.

Figure 24: Position calculation

The rotation of each troop is the same of the commander, so it gives more impression
of squad coordination. Besides, each entity inside the squad has two references. One is
for the Commander, and the other one is for the Leader. At the beginning they both
Commander and Leader are the same. Nonetheless, there are some actions (which will
be explained in the next point) that can change this. They move relative to the Leader.

There is a reason because there exists both references: the player can be covered by the
squad, so the squad will move relative to the player. In this case, the player would be
the Leader and the Commander would be another wrestler covering the player. Besides,
any wrestler can act as the Leader so it is necessary to have a distinction between the
Leader and the Commander.

3.4.2. Squad system actions

This point is going to be divided into three groups; the actions performed by a squad,
the actions performed by a wrestler inside a squad and the actions performed by a
wrestler without squad. All these actions have a lot of code so it will be referenced as
Annex 4, explained at the end of the document.

3.4.2.1. Squad actions

This set of actions is shown when the user clicks with the left button of the mouse at
any member of the squad.

- Move: the whole squad will move to a point. Internally, the commander selects

the destiny point and each wrestler will select his/her position relative to that

Ricardo Sanz Ferrero Video Games Design and Development

33

point. This is, they are going to select the position where they will be once the

squad arrives. As soon as it is selected, they set their destination to that point.

- Cover: the whole squad will cover a selected body. For this to be possible, a

position of the squad must be assigned to what it is going to cover. This position

is selected in the squad in-game creator. It will be seen later. The squad can cover

everything of the type InteractableBody. This includes the player, the clues, the

elixir stone, all the entities, etc. When they cover them, they set that body as the

Leader, because now the whole squad is going to move relative to this body.

They will have to adapt their velocity to the covered body’s.

- Rotate: the leader rotates so the whole squad will position relative to him.

- Back to player: if the player orders the squad to go back to him/her, they will go.

- Change formation: this is a very interesting action. There can be stored some

configurations of the squad (the concept configuration will be seen later). This

is, different formations of each entity inside the squad. The squad will be able to

change the formation to another as long as both have the same number of

wrestlers in each role both allow the Cover action or not.

3.4.2.2. Individual entity being in a squad actions

This set of actions is shown when the user clicks with the right button of the mouse at
a wrestler inside a squad.

- Follow player: the wrestler will follow the player moving around a circle with the

player as center. As soon as they start following the player, they break the

formation.

- Change position: the wrestler is able to change his position with another wrestler

of the same squad. This is, they exchange positions. This is very useful if one of

them has low health, etc.

- Break the formation: the wrestler can break the formation in the squad. This

means, he will no longer be in that squad. He will move with total freedom and

will adopt the set of actions explained in the next point.

- Assign as leader: the wrestler will now be the leader. This means the whole squad

is going to move and act relative to him.

3.4.2.2. Individual entity without squad actions

This set of actions is shown when the user clicks with the left button a wrestler without
a squad.

Ricardo Sanz Ferrero Video Games Design and Development

34

- Join a squad: the wrestler is able to join a squad as long as that squad have a free

position.

- Follow player: this works exactly as the Follow player action explained above.

- Move: the wrestler can move totally free without depending of a leader or a

commander. He sets his destination in the designated point and he move

towards it.

- Back to player: the wrestler will go to the player if him/her orders it.

As in the case of the explorers and the collectors, in order to simplify some code, a
simple set of states have been created and each wrestler has one of them active in every
frame. These are the following.

- OnSquadObserving: wrestler is inside a squad and the squad is not moving.

- OnSquadAttacking: the squad is facing another squad or individual wrestlers.

- OnSquadCovering: the squad is not moving and it is covering a body.

- OnSquadCoveringMoving: the squad is moving while covers a body.

- OnSquadMoving: the squad is moving.

- AloneObserving: a wrestler without squad is not moving or attacking.

- AloneAttacking: a wrestler without squad is attacking.

- AloneFollowingPlayer: a wrestler without squad is following player.

- AloneMoving: a wrestler without a squad moving.

- BackToPlayer: wrestler is going back to the player.

3.4.3. Squad battles system

At this point we will explain how the squad battles work. Some code will be showed and
some demos too. First of all, it should be known that in order to two squads can face
each other, they need to be from different teams. So, every wrestler has a parameter
called team. We are going to divide this point into three parts: detection phase, attack
phase and emergent changes.

Ricardo Sanz Ferrero Video Games Design and Development

35

3.4.3.1. Detection system

Each of the wrestlers has a system dedicated to detect if there is any wrestler from the
other team in front of them. Now, it is going to be explained this detections system.

Figure 25: Detection system

As we can see in Figure 25, they have a viewRadius which is the circle around him. This
is the minimum area of detection. Besides, there is a view angle, which is the field of
view called viewAngle. So, every wrestler from the other team that enters in that angle
at a maximum distance of that circle’s radius will be added to a list called visibleTargets.

Besides, there is one more thing that should be known: the masks. They will just detect
those which are in the NPC mask (npcMask). And if they are behind an object with the
obstacle mask (obstacleMask) they will not be detected. For doing this,
Physics.OverlapSphere has been used. It detects all the colliders with the specified mask
inside a sphere of given radius. Once the colliders are taken, they are “raycasted” using
Physics.Raycast in order to see if a ray between us and the target collides with any
obstacle. If it does, the target is not added because this means there is an obstacle
between the wrestler and the target. In Figure 26 we can see how that code works.

Figure 26: Targets detection

Ricardo Sanz Ferrero Video Games Design and Development

36

Figure 27: Distance detecting Commander

The detection system is inspired in a detection system made by Sebastian Lague and
modified and applied to the need of this project. Link of the video will be referenced at
the end of the document. (Lague, 2015)

3.4.3.2. Attack system

Once visibleTargets has one or more elements, they select (this selection process will be
explained in the next point) one of them as a wrestlerSelected. This selection is
performed as follows: each role inside the squad has a list of preferences. This list is full
with the roles. For example, the Distance role has the next preferences list: Commander,
Giant, Distance and Close.

These preferences are sort by most preferred to less. This means that if this wrestler has
inside his visible targets list a Commander, a Giant and a Close, he will choose the
Commander because it is the most preferred by this role in this squad. It must be clear
that these preferences for each role depend on the configuration of each squad. This
will be explained in next points. The selection process is shown in Annex 1.

So, once they have a wrestler selected (a target to attack) some coroutines are started.
These are the following:

- GoToEnemy: set the destination of the wrestler where the target selected is

located. It will be updating the destination every frame so he will be following

every time while the selected is chosen as a target. It is shown in Figure 28.

Ricardo Sanz Ferrero Video Games Design and Development

37

Figure 28: GoToEnemy()

- AttackPlayer: it checks every frame if the wrestler is close enough to the selected

target. If it is close enough then he attacks. This parameter to detect if it is close

enough to attack or not depends on each wrestler. For example, it will not be the

same for those who attack on a close-combat mode and for the distances, who

attacks with a long range. This can be seen in Figure 29.

- ChooseEnemyObjective: this is a coroutine that brings variety to the battle. It

depends of some parameters like timeToFindTargets, probChangeObjective, etc.

So, if these parameters are well-adjusted the enemy will not be following and

attacking the same enemy the whole time. He/she will vary and change the

target. What it simply does is to select another player from the visible targets or

select a target by emergency. This will be explained in the following points.

Ricardo Sanz Ferrero Video Games Design and Development

38

Figure 29: AttackEnemy()

Each wrestler has a PlayerHealth.cs component which has a health value. Each attack
subtracts an amount to that health. When that health is 0 or under 0 the wrestler dies.
If is the commander who has died, the whole squad is now without a commander, so
they are not a squad anymore and they will change their behavior according to it.
Besides, as soon as a battle between squads starts, a coroutine called CheckBattleEnds()
is started. When the battle has ended, this coroutine will finish and will regroup those
who remain alive of the same team.

3.4.3.3. Emergency behaviors in a battle

During a battle there are some things that can happen that vary the behavior of those
involved in it. These changes are summarized in changing the current target selected.
We are going to see in which situations this will occur. I consider this is an important
part so I will show some code captures of these situations.

- A wrestler from team A has not any target selected and anyone from team B

attacks him from behind. Automatically wrestler A will set wrestler B as the

selected target. (Figure 30)

Ricardo Sanz Ferrero Video Games Design and Development

39

Figure 30: Emergency behavior 1

- If the commander from team A is being attacked by one or more wrestlers from

team B, all the wrestlers of B attacking the commander of A must have any

wrestler of A attacking him/her. This is a way of ensure that if anyone is attacking

the commander, the commander will receive help immediately. (Figure 31)

Figure 31: Emergency behavior 2

- If a wrestler from team A has less health points than a certain minimum, all the

wrestlers from A will go protecting him attacking all those who attack the weak

wrestler. (Figure 32)

Figure 32: Emergency behavior 3

Ricardo Sanz Ferrero Video Games Design and Development

40

So, these are basically the situations that allow the emergency behaviors in the squad
battles. Keep in mind that when a wrestler changes his objective, the wrestler who was
attacking him will keep following trying to attack him and so over and over again, so all
of the wrestlers involved in the battle will experiment a change.

3.4.4. In-game squad creator

One of the objectives of the project was to interact with the squads and for doing that
some testing was needed. Each time I needed to test the interaction between different
squads I had to create each of them, save them and load them every time in the game,
this is, exiting the game and entering again every time. This was really inefficient.

Then, I had an idea: what if I created the squads while I was in play mode and at that
moment, I saved them as Scriptable Objects and so I could load them without having to
leave play mode? Besides, it should be really powerful for a player or for a designer. That
was a really good idea.

First time I did, I had was to think some information about how to save and load data
from Scriptable Objects. A Scriptable Object is an instance of a class, so I had to create a
class which would contain the whole content that a squad would need. It is shown in
Figure 33.

Figure 33: Squad.cs

The [CreateAssetMenu(filename = “New Squad”, menuName = “Squad”)] (Unity
Technologies, 2019). instruction is used to enable the creation of Squads from the editor
of Unity. Looks like in the following Figure 34.

Figure 34: Unity editor Create/Squad

Once this class was created, it was the moment to create a panel in which was possible
to create the squad selecting a role for each position.

Ricardo Sanz Ferrero Video Games Design and Development

41

Figure 35: Squad in-game creator panel

As we can see in Figure 35, the operation was very simple. First click on the desired
position and then select the desired role. When the squad was done, the button Save is
pressed and it will execute the code shown in Figure 94.

What this method does is to create a list of roles. Remember that a role is just an
identifier that indicates if it is a Commander, a Close, a Distance or a Giant. So, this list
will be formed of all the selections of the player in the creator panel. Besides, it stores
the number of rows and the number of columns of the squad.

Apart from executing this method, when the Save button was pressed a popup is shown
requiring a name for the Squad. Internally it checks that name to be unique. Besides,
this popup allows us to select a configuration for this Squad. This will be explained in the
next point. Once the name is selected it is time to store these just-created Squad in the
Unity Assets. Unity Assets is the place where all is stored. This is, it was the moment to
store the Squad we have just finished creating as a configuration file. For doing this it
was necessary to create an instance (Figure 45) of the Squad class (seen in Figure 33),
assign in it the list of roles we just created in the previous step and more information as
the number of rows, number of columns and the name of the squad. Finally, it was the
moment to save it into Assets using AssetDatabase.CreateAsset(asset, path) and
AssetDatabase.SaveAssets() (Unity Technologies, 2019). It can be seen in Figure 96.

Now it should be explained how to load the information stored in this Scriptable Objects
in order to spawn a squad. But for doing this, it is needed to understand how the popups
system works. Therefore, the Loading from assets will be explained in section 4.3.

Ricardo Sanz Ferrero Video Games Design and Development

42

Here is shown a demo of the full process:

Figure 36: Squad in-game creator demo

[Video 5]

3.5. Emergency parameters

The emergency behaviors are based on a set of parameters. If one of these parameters
vary, the emergent complex behavior obtained will change completely. So, at this point
it is going to be shown how these parameters are organized into configuration files.
Some of this configuration files captures will be referenced to Annex 8.

A configuration file is a file which contains all the parameters with certain value. This file
is stored as a Scriptable Object and it is added to a group so the group will act basing
their actions in these parameters and the behavior emerged will be close related to the
configuration file. Remember that a Scriptable Object is an instance of a class.
Remember that a configuration is just a set of parameters which variating them the
emergent behavior of the multi-agent system will vary. So, there will not be the same
set of parameters for the wrestlers and for the collectors, for example. So, every type of
entity needs a different configuration, this is a different class. All of these classes are
using the [CreateAssetMenu(filename = “New … Configuration”, menuName = “…
Configuration”)]. This is shown in Figure 37.

Figure 37: All the configurations

This point is going to be divided into the configuration parameters of the cleaners, the
explorers, the collectors and the squad wrestlers. There will be code captures of the
configuration files of each of them (this is, the Scriptable Objects). It is important to note

https://www.youtube.com/watch?v=1fCK7YiLAKQ

Ricardo Sanz Ferrero Video Games Design and Development

43

that these following configurations are what I have considered as default, but these
parameters can be varied and create infinite configurations.

3.5.1. Cleaners emergency parameters

Some of these parameters are common to the cleaners, the collectors and the explorers
so these are going to be explained now and it will serve for the explorers and the
collectors too.

- Min Speed: minimum speed of the agent.

- Max Speed: maximum speed of the agent.

- Probability Variate Speed: a value between 0 and 1. If it is 0 it will never vary the

speed. If it is 1 it will vary the speed as soon as.

- Time Try Variate Speed: the time to try to variate the speed of the agent.

- Max Time To Find Objective: as soon as they are spawned, a coroutine is started.

This coroutine checks the maximum time to come back to the player if they do

not have an objective assigned.

- Time To Check If Work Finished: as soon as they have an objective assigned a

coroutine is started. This coroutine checks if the work is done, this is: the obstacle

is completed. So, this value is the time this check will be performed.

These are the common, now the proper parameters are going to be explained.

- Time To Charge Again: as soon as they place a debris, they are not able to charge

again during this seconds.

- Time To Uncharge Again: as soon as they pick a debris, they are not able to

uncharge again during this seconds.

3.5.2. Collectors emergency parameters

- Time To Collect: the time they are collecting in front of the rock.

- Time To Collect Again: as soon as they deposit elixir they are not able to collect

again during this time.

- Time To Follow Marker Again: as soon as they deposit or collect elixir they are

not able to follow markers (elixir paths) again during this time.

- Min Time Change Direction: minimum time to change direction.

- Max Time Change Direction: maximum time to change direction.

Ricardo Sanz Ferrero Video Games Design and Development

44

- Probability Change Direction: a value between 0 and 1 that handles the

probability of changing the direction. If it is 0, they will never change the

direction. If it is 1, they will change it always every X seconds.

- Time To Deposit: the time they are depositing the elixir.

- Time To Release Marker: they release a marker while they are carrying elixir.

These markers will form the paths. They release one marker this time.

There is a coroutine started as soon as they are created that changes every X seconds
the direction of the collectors. This is done because if they are following a path and it
disappear, they will remain in that position without an objective so this will avoid it. This
“X” is a random value between the minimum and maximum.

3.5.3. Explorers emergency parameters

- Time To Carry Again: as soon as they deposit a clue, they are not able to carry

another clue during this time.

- Probability Follow Clue: this is a value between 0 and 1. If it is 0, they will never

follow the clues, so the clues will be useless. If it is 1, they will follow the clues

always.

3.5.4. Squad emergency parameters

- Health Settings: initial health of each wrestler.

- Attack speed Settings: the wrestlers are able to attack every this time.

- Vision distance Settings: a value that indicates how far are the wrestlers able to

see.

- Field of view Settings: a value that indicates how is the angle of vision (Field of

View) of each wrestler.

- Attack range Settings: the minimum distance for the Distance Wrestler at which

he can attack.

- Offset between them Settings: the distances between the wrestlers inside a

Squad. This distance can variate between a maximum and a minimum every X

time.

- Changing objective Settings: times and probabilities of changing the current

wrestler target.

- Speed Settings: minimum and maximum values and probabilities of the speed of

each kind of wrestler.

Ricardo Sanz Ferrero Video Games Design and Development

45

- Probability preferences Settings: probability of follow the preferences of each

wrestler.

- Preferences Settings: list of the attack preferences of each wrestler.

- In Battle Settings: these parameters set the minimum percent of health points

of each wrestler in order to be covered (remember the Emergency Behavior 3 of

the Squad battles). Besides, there are some that indicate every few seconds they

are able to cover.

- Callbacks when die Settings: a callback is a call to a function. So, this call will be

specified in there and as soon as they die, they will call that function.

To conclude this point, it should be known that all the entities that use this configuration
files have a function called AssignConfiguration() that gets all the values from the
configuration file and assign the real components values with those (Figure 38).

Figure 38: AssignConfiguration()

Ricardo Sanz Ferrero Video Games Design and Development

46

4. Problems and results

4.1. Problems

During the development process there were some errors that had me stuck trying to
solve them. In this point I am going to list them and explain how I solve them.

- Squad intern matrix was not exactly a problem, it was rather a constant

headache. When I started to develop the Squad actions, some problems

appeared. In particular, in those actions that required a change of position inside

the matrix. This was really hard because it was needed to store the initial

position, that is: the initial indexes inside the matrix, etc. And when some

wrestler position was changed some things are needed to be changed. For

example, when I changed the position of a wrestler with another wrestler, the

current indexes inside the matrix were changed, the list of roles position was

changed too, but the hardest part was to store all these changes because when

the action “Reset formation” was performed, everything reseted as it was before

doing any change.

- This one is close related with the explained above. Comparing custom classes is

not as simple as it seems. The SquadConfiguration class (Annex 2) is a class that

contains all needed to the creation of the Squads. It contains the following

custom classes:

o Squad: similar to the class that the Scriptable Objects instantiate to store

and load the configuration of a squad. It contains some information

about the squad (list of “roles”, number of columns, number of rows, the

name of the squad, the Configuration file selected, etc.).

o SquadSlot: a class that contains the information needed for every slot of

the squad. This is, the information needed on each position inside the

squad (role, position, wrestler that is inside, etc.).

o Index: a class that is just formed with two numbers (one indicating the

row and another one indicating the column).

So, the problem came when I tried to compare or assign values to these elements
of different squads. When you equal two custom classes they both point to the
same place in memory so changing the value of one will change the value of the
other. This also means that two classes are equal if they are pointing to the same
point of memory. These caused problems when I was trying to compare two lists
of roles because despite of, they were exactly the same, they were pointing to
different points in memory so it returned that they were different. And the
opposite problem, when I equaled the indexes of one wrestler with the index of
another wrestlers every time these indexes changed for one, they also changed
for the other.

Ricardo Sanz Ferrero Video Games Design and Development

47

For solving the first problem I had to create a custom lists comparer (Figure 104)
that internally compare element by element.

For solving the second problem, every time I wanted to change the Indexes of a
wrestler with the values of the indexes of other wrestlers, I created them as new.
So, each time that is created a class, it is created in another place of the memory
so they will no longer be equal.

As it can be seen in Figure 105, first the values of the Index are stored and once
it is done, the new Index can be created using the constructor. If we directly do:
leaderIndex = squadConfig.leaderPosition we are saying that these two Index are
pointing to the same position on memory so every time one of them changes,
the other one will change too (Albahari, s.f.).

- Problems on the collectors when they were ordered to come back to the player:

this problem happened when the collectors were carrying elixir and were

ordered to return to the player. The problem here was that they subtracted the

elixir from the stone but they had not placed it in the collecting machine because

while they were looking for the collecting machine, the player ordered them to

come back. So, this elixir disappeared forever and the Collecting Obstacle system

would not work. The solution was to return that elixir to the stone source as soon

as the action “Back to player” was executed.

- Problems with coroutines of wrestlers: I experimented a big problem when I was

trying to face two squads. As soon as they started to fight everything was good,

but few moments later all the squad members of one of the squads died

inmediately. After some research of how this could be happening, I realized that

they had active the same coroutine several times. It is important to remember

that as soon as a wrestler was selected as a target, two coroutines were

initialized. GoToEnemy() and AttackEnemy(). These both coroutines were active

since that moment to the end of the battle so every time they changed the

objective and selected a new target these both coroutines were enabled again.

The solution was to maintain these coroutines active while there was an enemy

selected. In the moment the target died or it was changed the objective these

coroutines stopped and started again as soon as a new target was selected.

- This is probably the biggest problem I experimented in the game. The 9 of April

I decided to import a 3D pack which contained some models and animations.

Specifically, those I was going to use for the enemy wrestlers. This pack was really

big and included more than 20 models and I only needed 4. What I did was to

delete them from Unity, nonetheless I had already committed it so when I tried

to push it some errors appeared. These errors did not allow me to push during

some time until I decided to repair it. The first option was to delete the repo and

create another one but I would have lost all the commits already pushed, so what

I do, after some research, cancel all the pendent commits and join all them in

Ricardo Sanz Ferrero Video Games Design and Development

48

only one. After it, I tried to push it and the error disappeared. This commit

contained the work of a month. The id of this commit is 8d272b5.

4.2. Results

Based on the objectives cited in point 1.5, I can ensure that all the main objectives have
been completed. In this point and in the following (5.3) it is going to be shown how these
objectives have been accomplished. The secondary objectives have been completed too
and they will be explained in the Annexes.

In this point it is showed different complex behaviors that emerge from the actions of
the entities and how they change depending on the parameters configuration of each
of them. It is going to be also shown an example of the collectors, an example of the
cleaners, an example of the explorers and an example of a wrestler’s squad battle.
Besides, this will serve to see demos of the explained in the section 3.

In the first place, we are going to talk about how the Cleaners will change depending on
the emergency parameter they have. In the case of the Cleaners we are going to change
the minimum time until they are able to charge again and the minimum time until they
are able to deposit again. As we can see in Figure 39 these two parameters are the only
changed and the demo (Figure 40) shows that the resultant complex behavior changes
completely.

Figure 39: Cleaners parameters

As it can be seen, the variation is from 2 seconds and 2 seconds to 4 seconds and 4
seconds, respectively. The first thing we can imagine is that they will take more time in
order to finish the job because they will be more time wandering around the objective
without being able to deposit or charge the debris. Nonetheless, the results are
completely different. They were amazing to me too. So, as we know and we have been
able to observe: the emergent behaviors can be unexpected. This is because every
change made as small as it is triggers changes in all actions making it very difficult to
predict the final result.

Ricardo Sanz Ferrero Video Games Design and Development

49

Figure 40: Cleaners variation demo

[Video 6]

In the second place, we can see how the Collectors will change depending on their
emergency behaviors. In this case, it has been decided to change the path markers life
period. As we can see in Figure 41 it is just the parameter called MarkersLifePeriod.

Figure 41: Collectors parameters

As we are about to see in the demo of Figure 42, due to the markers have a life period
as short as 3s, the paths become not as useful as when they have 10s of life period. This
affects the collectors in that they are no longer able to follow a path, so finding a stone
or collecting stone is a matter of randomness. Therefore, in this case, they will take more
time to complete the job.

https://www.youtube.com/watch?v=pLLd1LIN6Hk

Ricardo Sanz Ferrero Video Games Design and Development

50

Figure 42: Collectors variation demo

[Video 7]

In the third place, we can see how the explorers change their behavior and the time to
complete the multipath depending on the parameters. In this case it has been decided
to vary the parameter ProbabilityFollowClue. That is, if there is a clue placed that
indicates which path to take in each corridor, they have a probability of following it or
select randomly a path. If this probability is 0, the clues are completely useless so it has
been decided to set that probability to 50%. In Figure 43 we can see this variation.

Figure 43: Explorers parameters

As it can be seen in the demo of Figure 44, in the case the probability is 50% they take a
really long time in order to complete the level. This is because they select randomly the
corridor at least the half of the times. So, as soon as this value is closer to 1 (100%), they
will select the correct path in more occasions and it will be faster.

https://www.youtube.com/watch?v=OpZIusVvVMg

Ricardo Sanz Ferrero Video Games Design and Development

51

Figure 44: Explorers variation demo

[Video 8]

Finally, we are going to show how we can vary these parameters to the wrestlers in
order to obtain different emergency complex behavior. These three examples shown
before are quite simple compared with the number of parameters the squads have. The
possibilities that offer the variation of all these parameters are infinite. We can create
long battle squads, short battle squads, make them move fast, make them move slow,
dynamic battles (continuously changing the objective) or more strategic battles (always
attack to your first preference), etc. Besides, playing with the damage, range of attack,
vision distance, etc. there can be created thousands of possible squads. This allows a lot
of combinations and it is easy to a designer manipulate these parameters and see how
the resulting battle changes in order to get the expected result.

It is important to remember that the in-game squad creator allows to select the
configuration. What it does is to access the folder where all the Wrestlers Configurations
are stored and show them. The user just has to select the one he wants.

Figure 45: Select configuration

In order to simplify this, we are just going to vary the attack preferences of each wrestler
and the probabilities of these. In Figure 107 and 108 we can see two different
configuration files of the Enemy Squad. The Allie Squad has the same configuration in
both of the battles (Figure 106). The only thing we are going to vary is the Enemy Squad
parameters. Due to these images need to be big in order to allow the correct reading of
them, these are in Annex 8.

As we can see in the demo of Figure 46, depending on the strategy attack adopted by
the wrestlers, the result of the battle will be one or another. In the first case, when the
allies win the enemy squad is attacking to giants and close as the first option. Besides,

https://www.youtube.com/watch?v=F2ePGhU3G0E

Ricardo Sanz Ferrero Video Games Design and Development

52

the Distance is in all the wrestlers the third option so they are allowing the Distances to
be attacking from far with nobody attacking them. Furthermore, the probabilities are
varying so probably, they are not attacking their first option in many occasions.

In the second case, when the enemies win, they change Distance from third place to
second place in all the wrestlers. Besides, Giant become the first option for everyone
because the Giants are wrestlers who have great power attack and high health. So, it is
interesting to kill them as soon as possible. Furthermore, the probabilities are always
100%. This means they will always attack their first option.

Figure 46: Wrestlers variation demo

[Video 9]

As it has been seen, varying a bit the parameters of the configuration files of each entity,
the result changes. Here we have just seen four examples but the possibilities are
unimaginable. Besides, this allows designers to create behaviors to their likely just
varying some parameters.

4.3. Hours spent

In this subsection we show the number of hours spent in each task based on the 1.7.

point schedule. Furthermore, these times are going to be compared with the expected.

Task Hours expected Hours spent

Read and learn theory of

emergency behaviors

10 – 15 11

Entities behaviors design 10-15 18

Entities behaviors coding 50 – 60 65

Squad system develop 100 – 110 110

https://www.youtube.com/watch?v=o_fmlik6wHM

Ricardo Sanz Ferrero Video Games Design and Development

53

Organization of the parameters in

configuration files

40 – 50 35

Project report and other

documents

40 - 50 45

Video game demo 60 – 70 60

Total 310 - 370 344

As it can be seen, the expected hours are not fare from the hours used so it can be

considered that the planification and design of the project was carried out fairly well.

4.4. Project access and download

In order to access to the project repository, it is necessary to follow this link.
https://github.com/ricardosanz97/DegreeFinalProject

Here, in the following link there is the Trello of this project. In it, all the develop of the
project can be followed: https://trello.com/b/DCYKIfDc/dfp

In the following link of Google Drive is located the build of the project in order to be
tested: https://drive.google.com/drive/folders/18bQ1A-IJ9-87n2IJM-
iftLtxjBBvdeCG?usp=sharing

In my YouTube channel there are some videos of the development of the project,
including a video of the playable demo. Here is the link:

https://www.youtube.com/channel/UC75iDHTEptSxIGxSK0aJWJg?view_as=subscriber

https://github.com/ricardosanz97/DegreeFinalProject
https://trello.com/b/DCYKIfDc/dfp
https://drive.google.com/drive/folders/18bQ1A-IJ9-87n2IJM-iftLtxjBBvdeCG?usp=sharing
https://drive.google.com/drive/folders/18bQ1A-IJ9-87n2IJM-iftLtxjBBvdeCG?usp=sharing
https://www.youtube.com/channel/UC75iDHTEptSxIGxSK0aJWJg?view_as=subscriber

Ricardo Sanz Ferrero Video Games Design and Development

54

5. Conclusions and future work

As soon as my DFP’s supervisor talked to me about the emergency behaviors and multi-
agent systems I started to get interested on it and I thought it would be really interesting
to do this project around it. Besides, before talking with my supervisor I was already
interested in Artificial Intelligence so this project theme fitted perfectly on me.

Once I have finished it, I can affirm that the emergency behaviors applied to multi-agent
systems possibilities are immense and the workload that is saved using them correctly
is enormous. I am pretty sure that the AI guidelines in the video games that are going to
come will be based in the emergency behaviors. The main advantage of them is that
they do not need a controller that manages everything. They act by emergency, this is,
they act according to the interactions with other entities, with the player or with the
scenario.

Besides, the tools created in this project can be used in other project and if more
behaviors are needed the base system is already created so creating news would be
really simple. The squad system allows multiple implementations in a video game. They
can be used as an army, as environment elements, as the main elements of the game,
etc. The squad creator can be used in MMO games or in simulations of battles in order
to see how one formation of the squad would be better than another, etc.

Talking about the future work, there are some things that I will finish that have not been
developed during the project because of the time limitation. Besides, more emergency
behaviors will be included. My main purpose for the future of this project is to adapt it
as a tool that can be exported to other projects and can be easily manipulated by
someone. Besides, due to the quality of code that allows scalability, it is easily scalable
and using the already created base system, creating and expanding the project with new
behaviors, new actions, etc. would be really easy.

I have enjoyed developing this project and I have learnt a lot about coding and all the
advantages of using this. Besides, as it is related with the Artificial Intelligence, I think I
have learnt a lot doing this project. Furthermore, I feel proud of having worked on
something innovative as it is the application of emergency behaviors on multi-agent
systems in video games as a first-class element.

Ricardo Sanz Ferrero Video Games Design and Development

55

6. Bibliography

3D, J. (n.d.). Medieval barrels and boxes. Retrieved April 20, 2019, from Unity Asset
Store: https://assetstore.unity.com/packages/3d/props/exterior/medieval-
barrels-and-boxes-137474

3DHaupt. (n.d.). Sci-Fi Emergency Backup Generator. Retrieved May 18, 2019, from

sharecg: https://www.sharecg.com/v/92921/browse/5/3D-Model/Sci-Fi-
Emergency-Backup-Generator

Adobe. (2019). Adobe Photoshop Free Trial Download. Retrieved April 29, 2019, from

Adobe Photoshop: https://www.adobe.com/es/products/photoshop/free-trial-
download.html#

Adobe. (2019). Mixamo. Retrieved April 07, 2019, from Mixamo:

https://www.mixamo.com/#/?page=1&type=Character

Albahari, J. (n.d.). C# Concepts: Value vs Reference Types. Retrieved May 11, 2019,

from Albahari: http://www.albahari.com/valuevsreftypes.aspx

Atlassian. (2019). Trello. Retrieved May 17, 2019, from Trello: https://trello.com/

Audacity. (2019). Audacity Download. Retrieved April 22, 2019, from Audacity:

https://www.audacityteam.org/download/

Biomolecular Blog. (n.d.). Biología Molecular. Retrieved May 3, 2019, from

Biomolecular Blog:
https://biomolecularblog.wordpress.com/2018/03/31/eusocialidad-que-es/

Fungus Games. (n.d.). Fungus. Retrieved May 10, 2019, from Unity Asset Store:

https://assetstore.unity.com/packages/templates/systems/fungus-34184

GitHub. (2019). GitHub. Retrieved May 07, 2019, from GitHub: https://github.com/
Johansson, D. (2012, July 1). Complex Systems in Video Games - a literature survey.
Lague, S. (2015, December 26). Field of view visualisation (E01). Retrieved May 15,

2019, from YouTube: https://www.youtube.com/watch?v=rQG9aUWarwE

MAGIX Software GmbH. (2019). Vegas Dowload. Retrieved April 20, 2019, from Vegas

Creative Software:
https://www.vegascreativesoftware.com/index.php?id=351&L=52&AffiliateID=
178&phash=LjmUipAVFVxrmmmH&ef_id=Cj0KCQjw2v7mBRC1ARIsAAiw348hJv
dRWMEKtRg2gv1FfIQB9WjGIx9goQdOtI1nJeIMA2HPWAauaxsaAv8OEALw_wcB
:G:s&gclid=Cj0KCQjw2v7mBRC1ARIsAAiw348hJvdRWMEKtRg2gv1FfIQ

Mathivet, V. (2018). Sistemas multi-agentes. In V. Mathivet, Inteligencia Artificial para

desarrolladores - Conceptos e implementación en C# (pp. 359-422).

Ricardo Sanz Ferrero Video Games Design and Development

56

medwuf. (n.d.). Teleportation - Portal. Retrieved May 03, 2019, from CGTrader:
https://www.cgtrader.com/free-3d-models/exterior/sci-fi/teleportation-portal

Mestras, J. P. (n.d.). Metodologías de desarrollo de Sistemas Multi-Agente. Madrid,

Madrid, Spain.

Microsoft. (2019). Download Visual Studio. Retrieved May 05, 2019, from Visual

Studio: https://visualstudio.microsoft.com/es/downloads/

Protofactor. (n.d.). Heroic Fantasy Creatures Full pack Volume 1. Retrieved April 01,

2019, from Unity Asset Store:
https://assetstore.unity.com/packages/3d/characters/creatures/heroic-
fantasy-creatures-full-pack-volume-1-5730

saladin0511. (n.d.). Old Gate model 3d. Retrieved May 10, 2019, from Free3d:

https://free3d.com/3d-model/old-gate-36315.html

Shiffman, D. (n.d.). Cellular Automata. Retrieved May 10, 2019, from The Nature of

Code.

TL, & DR. (2018). What does NavMesh.AllAreas specify in Unity? Retrieved April 03,

2019, from GameDev:
https://gamedev.stackexchange.com/questions/147915/what-does-navmesh-
allareas-specify-in-unity

TutorialsPoint. (n.d.). Design Patter - Singleton Pattern. Retrieved May 1, 2019, from

Tutorialspoint:
https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

TutorialsPoint. (n.d.). Design Patterns - Observer Pattern. Retrieved February 20, 2019,

from Tutorialspoint:
https://www.tutorialspoint.com/design_pattern/observer_pattern.htm

Unity Technologies. (2019). AssetDatabase.CreateAsset. Retrieved April 19, 2019, from

Unity 3D Documentation:
https://docs.unity3d.com/ScriptReference/AssetDatabase.CreateAsset.html

Unity Technologies. (2019). AssetDatabase.LoadAssetAtPath. Retrieved April 10, 2019,

from Unity 3D Documentation:
https://docs.unity3d.com/ScriptReference/AssetDatabase.LoadAssetAtPath.ht
ml

Unity Technologies. (2019). Button.onClick. Retrieved May 10, 2019, from Unity 3D

Documentation: https://docs.unity3d.com/ScriptReference/UI.Button-
onClick.html

Ricardo Sanz Ferrero Video Games Design and Development

57

Unity Technologies. (2019). CreateAssetMenuAttribute. Retrieved May 2, 2019, from
Unity 3D Documentation:
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html

Unity Technologies. (2019). NavMeshPath. Retrieved May 05, 2019, from Unity 3D

Documentation:
https://docs.unity3d.com/ScriptReference/AI.NavMeshPath.html

Unity Technologies. (2019). Unity Download Archive. Retrieved May 17, 2019, from

Unity 3D: https://unity3d.com/es/get-
unity/download/archive?_ga=2.72937107.1687820219.1558112145-
1103797267.1532608754

Wilensky, U. (2016). Net Logo. Retrieved May 18, 2019, from Northwestern:

https://ccl.northwestern.edu/netlogo/

Zygomatic. (n.d.). Diagram Editor. Retrieved May 18, 2019, from Diagram Editor:

https://www.diagrameditor.com/

Music used for the Menu: https://www.youtube.com/watch?v=5oF5lS0sajs

Music used for the Demo: https://www.youtube.com/watch?v=a0Av2XNPd_g

https://www.youtube.com/watch?v=5oF5lS0sajs
https://www.youtube.com/watch?v=a0Av2XNPd_g

Ricardo Sanz Ferrero Video Games Design and Development

58

7. Annexes

7.1. Annex 1 (Selection Process)

Remember that to select the attacking target of the wrestlers they do a selection
process. In this annex it is going to show this selection process. Keep in mind that each
wrestler has a list of preferences to attack and a parameter which indicates the
probability of follow these preferences. It this parameter is close to 0, the selection will
be almost random and if it is close to 1 it will follow the preferences list.

Each wrestler has a list in which are stored all the targets that are visible to the wrestler.
Besides, there is another common list for all the wrestlers of the squads. This is the
visible targets list of the commander. So, each time a wrestler adds a target to its list, it
also adds the target to the common commander visible targets list. So, in Figure 47 it
can be shown how they perform the target selection searching in these three different
lists.

Figure 47: Selection process

Before explaining it, the remain list is a list contained in the parent of the Squad that
contains all the enemies. This list is also accessed when the commander is dead. If the
wrestler visible targets list has more than one element, they select find an enemy in this
list. Otherwise, depending if the commander is alive (!= null) or not (== null) they will
find on the common or in the remain list, respectively.

Once it is established where the wrestler is going to find a target, these methods use
recursion depending on the probabilities and preferences. Depending on the probability
of follow the preferences or not they will keep finding in this list or will jump to find on
one of the other lists. In Figure 48 it is shown how the TryFindingInOurList() is
implemented. The TryFindingInRemainList() and TryFindingInCommonList() work in the
same way.

Ricardo Sanz Ferrero Video Games Design and Development

59

Figure 48: TryFindingInOurList()

As it can be seen it finds a target in the list which role is equal to the current preference.
If it exists (!=null), that target is selected. If it does not exist, the method
TryFindingInOurList() is called again, but now incrementing the index passed via
parameter by 1.

Ricardo Sanz Ferrero Video Games Design and Development

60

7.2. Annex 2 (Squad Class)

In this annex it is going to be shown how the SquadConfiguration.cs script is. This class
contains all the information that allows creating, modifying and interacting with the
squads. It is formed by the SquadConfiguration class, the Squad class, the SquadSlot
class and the Index class.

The SquadConfiguration class contains information about the different roles and some
methods to compare different squads, like the one shown in Figure 33.

The Squad class contains the information needed to define a squad. Apart from the
information already seen like name, list of roles, indexes of body, indexes of
commander, number of columns, etc. it has a constructor that returns a matrix of
SquadSlot. It can be seen in Figure 49.

The SquadSlot class contains the information needed for each position inside a squad
matrix because a squad is a list of SquadSlot objects. This contains the role, the indexes
position and the wrestler that is occupying this slot.

For ending this annex, the Index class have already been explained and it just contains
two int values. One for indicating the row and other for indicating the column.

Figure 49: CreateCustomSquad(...)

Ricardo Sanz Ferrero Video Games Design and Development

61

7.3. Annex 3 (NavMesh Unity)

In this point it is not going to be explained how the AI NavMesh system works. Instead
of it, I am going to show what I have learnt of it because this was one of the secondary
objectives of the project.

7.3.1. Area masks

Each environment object has a NavMesh area mask and an agent has a set of masks.
The agent will be able to walk just in the areas that are inside that set. So, for example,
if a cleaner has the masks: A, B and C. He will be able to walk on those objects with area
A, B or C. This has been used for locking and unlocking areas. For example, in the demo,
until the cleaner’s door has not been opened, the cleaners are not able to exit the room
in which they are and the player is not able to enter in that room, because:

- The area mask of the room where the collectors are is not in the set of masks of

the player.

- The area mask outside the room where the collectors are is not in the set of

masks of the cleaners.

As seen in Figure 50, in the environment of the demo there are some masks in different
color.

Figure 50: Navigation and masks

Ricardo Sanz Ferrero Video Games Design and Development

62

The set of masks for each agent can be modified at runtime. Nonetheless it is not trivial.
For doing it using the attribute areaMask we have to add the following:

+= 1 << NavMesh.GetAreaFromName(“name of the area mask to add”).

This was for adding a new area mask. If we want to delete one of them:

+= 0 << NavMesh.GetAreaFromName(“name of the area mask to delete”).

This information was extracted from an external source. (TL & DR, 2018)

7.3.2. Determine if a destination is valid

As it has been shown, all the entities on the project are agents. That is, they move using
the SetDestination(Vector3 where) method from the NavMeshAgent component. It is
important to determine if a destination is reachable or not by the agent before ordering
him to go there.

The way for doing it is to use the he NavMeshPath. (Unity Technologies, 2019). This
declare a path and using CalculatePath it returns if it is possible to create a path from
the current position to the selected destination or not. It can be seen in Figure 51.

Figure 51: Check destination valid

Ricardo Sanz Ferrero Video Games Design and Development

63

7.4. Annex 4 (Squad actions)

In the following annex it is going to be explained some actions performed by the wrestler
I consider interesting to explain in order to fully understand how the internal system of
the squads works.

7.4.1. Squad cover

The whole squad covers a selected body. For doing this, for each member of the squad,
their indexes in the internal matrix are modified adding the difference between the
current leader indexes and the body selected to cover indexes. This difference is going
to be called auxIndexes. Keep in mind that there is a list called neededIndexs which
contains the indexes corresponding to the positions that those wrestlers who have left
the squad. If any wrestler want to join this squad this list has to has at least one element,
and the wrestler who wants to join will take this indexes. It is important to modify these
stored indexes with the auxIndexes too. This process can be seen in Figure 52.

Figure 52: Squad selects body to cover

7.4.2. Squad returns to the player

All the members of the squad set their destination to the player. If they were attacking
a target this target will be set to null and their state will change to STATE.BackToPlayer.
This process can be seen in Figure 53.

Ricardo Sanz Ferrero Video Games Design and Development

64

Figure 53: Squad back to player

7.4.3. Squad changes formation

The squad changes the formation to the selected new one. These formations are shown
in a popup. In order to be able to change to a new formation, this new formation has to
have the same number of each type of wrestlers than the current one. Besides, they
both have to allow (or not) the squad cover body. So, when the action Change Formation
is selected, the popup loads all the formations that meet these conditions. This load is
performed using the LoadAssetAtPath explained in the previous points: it loads all the
possible Squads formations from the directory where all the created squads’ formations
are stored.

Figure 54: Call to change formation

As it can be seen in Figure 54, for each squad stored in the directory it is checked if it
meets the condition of equal number of wrestlers and both of them allow the squad
cover action. This is, all this was to show the available squads to change with the
formation. In Figure 55 we can see how this change is performed.

Ricardo Sanz Ferrero Video Games Design and Development

65

Figure 55: Change formation

This method works as following: the whole internal matrix of the objective formation is
traversed. For each element, we find in our current wrestlers one that has the same role.
When we find it, we assign it the new indexes and it is deleted from the auxiliary list
(wrestlersLeft) used for store our wrestlers that have not been changed yet. Besides,
this is assigned the listPosition index. This is, the index in the list of roles. Remember
that this list is unique for each squad and it contains the representation of roles of each
squad.

7.4.4. Wrestler follows player

The follow player action consists in set the destination of the selected wrestler in a
random point inside a circle with center on the player’s position. Each time this position
is reached, a new position is assigned. The hardest part here is that the wrestler breaks
the formation so his/her indexes inside the matrix have to be added to the needed
indexes list so he/she will be able to join the squad in the future. There are two cases to
keep in mind.

- The selected wrestler to follow player was the current leader: in this case the

commander is assigned as leader. All the wrestlers in the squad change their

position according to it.

Ricardo Sanz Ferrero Video Games Design and Development

66

- The selected wrestler was being attacked by other wrestler or was attacking him:

in this case the attack target is set to null.

7.4.5. Wrestler changes formation position

In order to change the position of a wrestler, another wrestler needs to be selected so
they both will interchange positions. For doing this, they change their indexes, their
index in the list of roles and the role inside the list (Figure 56).

Figure 56: Assignments

As in the previous action, it must be considered if one of both wrestlers is the leader. In
that case, the one who is changing with the leader now will be the leader and will
perform the action AssignAsLeader(). This action will be explained later.

7.4.6. Wrestler breaks formation

This action is similar to the follow player one. What it does is to store the selected
wrestler’s indexes in the needed indexes list, set to null the commander and current
leader references and change the current state to STATE.AloneObserving. Besides, the
list of roles has to be modified changing the entry of this wrestler to Rol.None.

Figure 57: Break formation action

7.4.7. Wrestler assigned as leader

In this action a wrestler is assigned as a leader. That is, the whole squad will move and
act relative to him.
For doing this, all the indexes have to be modified according to it. In Figure 58 we can
see the process.

Ricardo Sanz Ferrero Video Games Design and Development

67

Figure 58: AssignAsLeader()

As it can be seen, it depends on if the squad was covering a body or not. If they were
not doing it, it is as simple as call the method ChangeSelectedWrestler() shown in Figure
56 passing via parameter the old leader. This is, changing the position with the old
leader.

In case the squad was covering a body, the first assign as leader the commander and
modify the whole indexes in function of the commander indexes. After doing this they
set the commander indexes to (0,0) and set coveringBody to null and call the method
AssignAsLeader() again. The difference is that now there is no body being covered so it
will proceed as explained in the paragraph above.

7.4.8. Wrestler joins a squad

A wrestler can join a squad if the needed indexes list has at least one element. If it has
more than one element it selects one randomly. It sets the current leader of the squad,
the commander, it is added to the list of wrestlers that conform the squad and it is
modified the list of roles in function of the role of the wrestler and is changed his state
to the commander current state. At the end, the index now busy by this wrestler is
deleted from the list.

Ricardo Sanz Ferrero Video Games Design and Development

68

Figure 59: JoinSquad()

There are more actions performed by the wrestlers but once knew how these functions
work the whole squad system is understandable so showing them and explaining its
code does not give us more useful information. For ending this annex, we are going to
see a demo of the squads in which we are able to see all these actions together (Figure
60) and another one paying more attention to how the squads are able to change their
formation (Figure 61).

Figure 60: Squad actions demo

[Video 10]

https://www.youtube.com/watch?v=kGAspqe-LZw

Ricardo Sanz Ferrero Video Games Design and Development

69

Figure 61: Squad formation changes demo

[Video 11]

7.5. Annex 5 (Saving system)

The functionality of the saving system is the following: an interface called ISaveable that has two
methods. Load() and Save(). All the objects or entities in the game that can be affected when
saving and loading implements this interface. For example, all the NPC’s have it, also the obstacles
and the player.

In Figure 106 it is shown how the interface ISaveable is.

Figure 62: ISaveable

There is a controller called SaverManager that has two events, one (OnLoadData) that
is invoked when the data stored has to be loaded and another one (OnSaveData) that is
invoked when the data has to be stored. All the data is stored using a dictionary. The
key of a dictionary in C# has to be unique so every entity uses a single id declared as
soon as they are created. Besides, it is important to see that the dictionary is of type
<string, dynamic>. This means that the value can be of different types (Vector3, string,
int, long, etc.). In Figure 63 it can be seen how this controller works.

https://www.youtube.com/watch?v=ihSC7ghiUO0

Ricardo Sanz Ferrero Video Games Design and Development

70

Figure 63: SaverManager

As it can be seen, it is not allowed to save while the Boogies are acting. For ending this
point, it is going to be shown how an entity (the Portal, for example) implements this
interface and which data is suitable to be stored in the dictionary.

Figure 64: PortalController

Ricardo Sanz Ferrero Video Games Design and Development

71

As it can be seen in Figure 64, as soon as the object is enabled (OnEnable() method), the
Save() and Load() methods are subscribed to the events. The Save() method stores
information as the state of the particle system of the portal and a Boolean that indicates
if it is enabled or not.

7.6. Annex 6: Demo Game Design Document (GDD)

In order to show all the features explained in the previous points, a playable demo has
been created. In this point it is going to be explained everything about this demo.
Besides, doing this demo we are achieving the objective of incorporate these emergency
complex behaviors in a video game and using them as an active element of the game.

It is important to remark that the main purpose of the project was to develop a back-
end system which is based in the develop of the emergency behaviors applied to multi-
agent systems and apply how to apply them into active elements in a videogame such
as characters that help the player or squad systems that can battle between them.

The game is called “The Cursed Dungeon” and it is created with the objective of showing
how these behaviors work. Using the system created more games and mechanics could
be easily created.

7.6.1. Narrative design

We take control of Jack. A soldier of the division A-85 who has the mission of rescuing
the people who are left alive in a Dungeon where an unknown infection is mutating
people and converting them in monsters. Besides, there is another division, the A-82,
that already tried this mission, but they failed.

Jack is going to know an ancient who will say him to rescue her daughter Aidil that is in
the dungeon. For doing it, the ancient says Jack that he was scientist and he did some
advances in how to genetically modify the mutants in order to obey his orders. He will
give Jack some creatures that will help him to find his daughter.

Besides, Jack will know three different types of entities that will help him to overcome
the dungeon’s obstacles: cleaners, collectors and explorers. During it, Jack finds some
soldiers from the A-82 and they join Jack's army. When Jack finally arrives where Aidil
is, she tells him the truth. Her real name is not Aidil as the ancient said, it is Roxie; and
she is not the daughter of the ancient. Besides, she tells Jack that all these modified
mutants have been modified by her and she tells him that the ancient is called Lodwig.
Lodwig is a liar and the only thing he wants is to torture Roxie to obtain all the advances
she did with the mutants.

Once Jack know this, he goes back to face Lodwig but he finds that there are a whole
enemy squad waiting for him. Jack, using the mutants that Lodwig gave him, with the
soldiers of the A-82 and with some help sent by Roxie, starts an epic battle. When Jack
and his squad defeats all the enemies, Lodwig dies.

Ricardo Sanz Ferrero Video Games Design and Development

72

7.6.2. Characters

- Jack: Jack is a soldier from the division A-85. His mission is to rescue people

trapped in that dungeon. (Figure 65)

Figure 65: Jack

- Ancient/Lodwig: Lodwig is a liar that is trying to get the advances of Roxie in the

genetic modifications of the mutants. He wants to create an army of mutants

that obey his orders. (Figure 66)

Figure 66: Ancient/Lodwig

- Aidil/Roxie: Roxie is a member of the A-82 that was trapped here and she started

to investigate about how to genetically modify the mutants of the dungeon in

order to survive there. She says that her purpose is to help people.

Ricardo Sanz Ferrero Video Games Design and Development

73

Figure 67: Aidil/Roxie

- Boogies: the modified creatures of the dungeon. This is, the cleaners, the

collectors, the explorers and the wrestlers who fight for helping Jack.

Figure 68: Boogies collectors, cleaners, explorers, respectively

Figure 69: Boogie wrestlers squad

- Mutants: the mutants modified by the ancient. They obey the ancient Lodwig.

Ricardo Sanz Ferrero Video Games Design and Development

74

Figure 70: Enemy mutants

7.6.3. Environment

The environment mechanics are subject to the obstacles mentioned in section 3.2. The
first obstacle we find is the Cleaning Obstacle. There are a lot of boxes and barrels that
are blocking the path, so we need the Cleaners to clean it. The second obstacle is the
multipath, once we have the Explorers it is easy to complete it and then we arrive to a
zone in which it is necessary to activate a portal. This portal can only be enabled if a
generator (collecting machine) is full of energy (elixir) from the energy sources (elixir
stones). This is the Collecting Obstacle.

Figure 71: Game Scenario

All these obstacles require to have the proper Boogies that are able to solve it. Initially,
the collectors, the cleaners and the explorers are spared in different rooms so in order
to be able to take them it is necessary to unlock these rooms.

Ricardo Sanz Ferrero Video Games Design and Development

75

As it can be seen in Figure 71, there are two portals that are communicated between
them. In Figure 72 there is an image of them.

Figure 72: Portal

7.6.4. Playability

The playability is limited to the Boogies actions. Here are all the mechanics of the player.
We divide it into active and passive mechanics.

7.6.4.1. Active mechanics

- Move and watch around: the controller of the player has been done by me and it is an
interesting part of the game because it helps a lot in order to see the AI behaviors and
see how they change when the player is moving.

- Spawn boogies: the player has a component BoogiesSpawner that spawns the
boogies in a position selected by the player. This is not a boogies controller because
it just serves to spawn the boogies. This class has a counter of all the entities the
player has selected. The player selects it using a UI popup and then selects a position
to spawn those, he has selected.

- Interact with squads: the player can choose the squad where to go, which formation
to adopt, etc.

7.6.4.2. Passive mechanics

- Be defended by allies: the player can be defended by the squads if the player set it on
the squad. Besides, the behavior of the allies will be differently according of the life
of the player.

Ricardo Sanz Ferrero Video Games Design and Development

76

- Helped by the boogies: the practical approach of the AI behaviors is to help the
player to overcome obstacles. For example, to spawn the Boogies Cleaners to clean
the path of debris in order to be able to continue the path.

- Killed by enemies: enemies can kill the player, so the player will have to be careful
in order to handle the boogies in that situation.

7.6.5. Art

All the art excepting the Particle System used in the portal and the Multipath clues have
been taken from external sources. These sources are listed here.

- Floors, walls, doors and roofs of the dungeon: these have been taken from a

project of the subject Artificial Intelligence.

- 3D Models for Player, Aidil, Ancient, Collectors, Cleaners and ally wrestlers:

These have been taken from a webpage called Mixamo (Adobe, 2019). These

models also include animations. Nonetheless, the animations controllers of each

model have been made by me.

- 3D Models for enemy wrestlers: These models have been taken from a Unity

Asset Store pack that I bought. (Protofactor, s.f.).

- Portal: this have been taken from a webpage called CGTrader (medwuf, s.f.).

- Debris Obstacle parts: all the barrels and boxes have been taken from Unity Asset

Store. (3D, s.f.)

- Elixir Obstacle generator: this model has been taken from CGTrader. (3DHaupt,

s.f.)

- Multipath Doors: these doors have been taken from Free3D. (saladin0511, s.f.)

- Elixir stones: these stones have been taken from a project of the subject Artificial

Intelligence.

7.6.6. HUD and Controls

The User Interface in this demo is really simple. It consists of a menu of the Collectors,
Explorers and Cleaners available and some graphic elements that serve as a marker to
know where to spawn or where to move the entities. This menu at the beginning of the
game is empty. As we go finding the Boogies the corresponding part of the Menu will be
shown and now, we are available to spawn them and control them.

Ricardo Sanz Ferrero Video Games Design and Development

77

Figure 73: Boogies menu selector

The controls are quite simple. To move the player, it is used the W-A-S-D keys and to
look around is the mouse. To select actions, options, positions, Boogies or other
elements it is done with the left click of the mouse. With the right click of the mouse
there are some actions that the wrestlers can do.

In order to spawn the collectors, the cleaners or the explorers it is done with the entity
we want to spawn assigning a number superior than 0 in the menu explained above and
pressing the F key. In order to see the ally’s squads formations, it is done pressing the G
key. To see the enemy squads’ formations, it is done pressing the H key. Nonetheless,
this is just available in the Sandbox scene, not in the demo of the game.

Figure 74: Keyboard controls

Ricardo Sanz Ferrero Video Games Design and Development

78

Other element used in the demo are the dialogs. These are used in the conversation that
Jack has with the ancient Lodwig, with Roxie and with the Giants. The dialogs are part
of an imported Plugin called Fungus. (Fungus Games, s.f.)

Before finishing, it is import to talk about a feature created for the game. That is, a saving
system created in order to be able to play again when the player dies. This system is just
created for the in-game mode. In the future I will adapt it to save it in the local files of
the PC. For this demo it is more than enough to store the in-game data and be able to
load it when desired. It is explained in Annex 5.

Here is the video of the Demo of “The Cursed Dungeon”, the demo created to show the
project mechanics.

[Video 12]

https://www.youtube.com/watch?v=MXA5inP3DLQ

Ricardo Sanz Ferrero Video Games Design and Development

79

7.7. Annex 7: Code architecture

In this section it is going to be explained the code architecture of some elements of the
project. This is a very important point because one of the objectives of the project is to
allow the future scalability, so in order to carry this out a good code architecture is
needed.

This section is going to be divided in the subsections:

- Architecture of the entities (collectors, explorers, cleaners and wrestlers).

- Architecture of the obstacles (debris, elixir, multipath).

- Input and User Interface (UI) architecture.

7.7.1. Entities architecture

All the entities (collectors, cleaners, explorers and wrestlers) share some things so it is
efficient to create a class that contains all these common behaviors. In this project, these
entities are known as “Boogies”.

Figure 75: Class diagram (Zygomatic, s.f.)

The Interactable Body is the parent class. Those who can be covered by a wrestler are
Interactable Body: The Elixir stone, the Clue and the Debris part too. The other child of
Interactable body is AttackTarget. These are those who can be attacked by the
wrestlers. Those who inherit from AttackTarget are those who inherit from Boogie and
the Player. This means that the player can be attacked.

Ricardo Sanz Ferrero Video Games Design and Development

80

The Boogie class contains all the data that the entities that help the player have in
common. That is, those who have emergent behaviors with the objective of helping the
player. They have been explained in the previous points and they are the explorers, the
cleaners, the collectors and the wrestlers. Besides, as there are several types of
wrestlers, they all have common behaviors so they inherit from BoogieWrestler.

It is important to remark that if we have a class A which inherits from a class B, and this
class B is inheriting from class C, A is inheriting from class C too. So, in the case of this
project, a Boogie Wrestler Distance has all the behaviors from BoogieWrestler, from
Boogie, from AttackTarget and from InteractableBody.

Some of the information that each of these parent classes contains it is going to be
explained. First of all, it should be known that InteractableBody is an empty class so it is
just for identifying that the object that has it attached to is interactable, that is, it can
be covered by the wrestlers (remember the Squad actions).

Figure 76: AttackTarget.cs

AttackTarget is an abstract class. As we can see in Figure 76, those who can be attacked
by the target has a method called GetDamage(int amount) and a health parameter.
Besides, they have an abstract method called Die().

Before continuing, it is important to explain what is an abstract class. It is an
“incompleted class” and those classes which inherit from this abstract class must
complete it. This is why the Die() method has no information inside. It is expected to
those classes which inherit from this class complete it, so, it is required that these classes
implement this method. So every class that inherits from AttackTarget will have a Die()
method with his own information.

The Boogie class is going to be explained because it is what matters most to us and has
more relation with the main purpose of the project.

Ricardo Sanz Ferrero Video Games Design and Development

81

Figure 77: Boogie.cs

As we can see, this class contains information that all the different types of
entites/Boogies are going to use. On the one hand it contains methods they use like:

- SetObjective(Obstacle obs): to assign the objective.
- GetRandomPointAroundObjective
- GetRandomPointAroundCircle
- GetRandomPointAroundPlayer
- HandleSpeed: handle the variations of speed.
- ObjectiveNotFound: what to do in case the maximum time to find an objective is
elapsed.

There are some methods that has a base information and can be extended by those who
inherit. These methods are those that have the world virtual in the declaration:

- Awake: first method that executes as soon as the object is created.

And finally, it contains some methods that are just declared (the abstracts) and those
who inherit from this class are obligated to implement it. Remember that if the direct
“son” of this class does not implement it, the “grandchild” can do it. The inheritance
allows multiple generations. In this case:

- OnObjectiveNotFound: all those who inherits from this class have to do something
when they do not find the objective.
- ObjectiveSelected: all those who inherits from this class have to do something when
they assign an objective.

Ricardo Sanz Ferrero Video Games Design and Development

82

7.7.2. Obstacles architecture

The obstacles of the environment also have a simple common code so the inheritance
is a good option here again. Before continuing, it is important to show that all those who
inherit from Boogie.cs have a currentObjective parameter, which is of the class
Obstacle.cs.

Figure 78: Boogie.cs parameters

So, as we can see in Figure 79, the Obstacle class contains common information for all
the different kinds of obstacles such as:

- Type: this is the type of Obstacle.

- _Col: this is the collider of this obstacle. This is used to know the area covered by

the obstacle.

- Completed: this is a Boolean that indicates if the obstacle is completed or it is

not.

Figure 79: Obstacle.cs

These are the classes that inherit from Obstacle class. In order to see them, at the end
of the document is linked the repository where all the project is uploaded:

- DebrisObstacle: the class corresponding to the Debris Obstacle.

- ElixirObstacle: the class corresponding to the Elixir Obstacle.

- MultipathObstacle: the class corresponding to the Multipath Obstacle.

Ricardo Sanz Ferrero Video Games Design and Development

83

7.7.3. UI and Input architecture

The UI and the Input system plays a very important role in this project and they both are
close related. So, this is why a good architecture should guarantee absence of bugs and
possibility of scaling the project.

First of all, it is important to know that there is a UI controller class that handles all the
logic input. This class uses the Singleton design pattern (TutorialsPoint, Singleton, s.f.)
so from every class we can access the members of this UIController class with no
references.

In order to able the player to select which actions the entities have to develop; some
popups have been created as soon as the player clicks an entity. This click-checking is
inside the UI controller. There are some actions that require to select a position (for
example, the Move action), to select a body to cover (the Cover action), etc. In order to
do it, the Observer design pattern (TutorialsPoint, Observer, s.f.) has been used. This is,
the UI controller has declared some events and the operation is the one that follows:

1. As soon as an action is selected, the troop that is going to perform this action is

subscribed to the event. This is, to assign a function that will execute as soon as

the event is invoked. We are going to use as an example the action Move. The

user selects this option from the Popup and the wrestler that is going to move is

subscribed to the event. That is, this wrestler assigns a method that do the

following: ChangeDestination(Where).

2. As soon as the player selects with a click this position, the event is invoked and

the method of the wrestler subscribed to this event is executed. This is, the

ChangeDestination(Where) method will set the destination of the wrestler in the

click position.

Figure 80: UIController events

As we can see in Figure 81, the OnMoveSquadPositionSelected is the event that will be
invoked as soon as a destination position be clicked by the user. So, the wrestler that is
going to move needs to subscribe some action to do when this event is invoked.

Ricardo Sanz Ferrero Video Games Design and Development

84

Figure 81: Subscribe MoveToPosition

That function will execute the code shown in Figure 101 as soon as the event
OnMoveSquadPositionSelected is invoked. For ending with the events, we just have to
see in Figure 102 when this event is invoked.

The Observer design pattern has been explained. Now, we are going to see how the
popups are created. As seen before, depending on how we click inside a wrestler a
different popup will appear. So, we have three different types of popups. The way of
creating them is really efficient because they create and destroy themselves. Besides, as
they are static classes, we do not need a reference of them.

Figure 82: Popup constructor

This way of creating popups is really efficient because we establish the actions to do in
each button passing them via parameters. This is very comfortable and it is as simple as
calling to the function as shown as in Figure 83.

Figure 83: Constructing popup

Ricardo Sanz Ferrero Video Games Design and Development

85

The method WrestlerClicked is executed when the event of clicking a wrestler is invoked.
The first thing it does is to create a popup showing all the options available for that
wrestler and for that type of click. Create that popup is as simple as passing via
parameter all the actions that have to be performed depending on the action selected.
The buttons in Unity have an internal event called OnClick (Unity Technologies, 2019).
So, for each button we assign the OnClick action passed via parameter in the popup
constructor.

In Figure 84 it can be seen how these callbacks passed by parameter are assigned as the
actions to execute when the corresponding button is clicked using the AddListener
function. This code is the continuation of the code shown in Figure 82.

Figure 84: onClick.AddListener

This way of programming popups via constructors with the callbacks sent as parameters
is also known as procedural popups.

For ending this point, it is going to be explained how to load Scriptable Objects
information from the Assets. This is a pending explanation of the point 3.4.4 that
required understanding the popups system. For understanding this load, we are going
to see the following example:

When the player wants to spawn a squad of wrestlers, before doing it, he/she has to
select which squad he wants to do from all the squads available. All these squads appear
on a popup. What this popup does is to call this method:
UISquadSelectorController.Create(team:TEAM.A);

The constructor of this popup loads all the assets inside a squad and store them in a list.
(Figure 85).

Figure 85: Loading assets

In order to be able to use the Resources library it is necessary to import the UnityEditor
library.

Ricardo Sanz Ferrero Video Games Design and Development

86

Once the list is full, we will go through it and for each Scriptable Object in this list, we
will load an asset doing a cast of the class that this Scriptable Object is instantiating. For
doing this load it is used the AssetDatabase.LoadAssetAtPath (Unity Technologies,
2019). It is important to see Figure 103 in order to understand this.

Once we have the instance of the class Squad, we can access the whole information of
the file and spawn the squad.

7.8. Annex 8: Code captures

Figure 86: DebrisObstacle.cs

Figure 87: DebrisObstaclePart.cs

Ricardo Sanz Ferrero Video Games Design and Development

87

Figure 88: ElixirObstacle.cs

Figure 89: ElixirObstacleStone.cs

Ricardo Sanz Ferrero Video Games Design and Development

88

Figure 90: CorridorBegin.cs

Figure 91: PathCorridorTrigger.cs (Corridor trigger)

Ricardo Sanz Ferrero Video Games Design and Development

89

Figure 92: CorridorEnd.cs

Figure 93: SelectCorridor()

Figure 94: Save button pressed

Ricardo Sanz Ferrero Video Games Design and Development

90

Figure 95: Creating instance of Squad.cs

Figure 96: Saving into assets

Figure 97: Cleaners configuration

Figure 98: Collectors configuration

Ricardo Sanz Ferrero Video Games Design and Development

91

Figure 99: Explorers configuration

Ricardo Sanz Ferrero Video Games Design and Development

92

Figure 100: Wrestlers configuration

Figure 101: MoveToPosition

Figure 102: Invoke

Ricardo Sanz Ferrero Video Games Design and Development

93

Figure 103: AssetDatabase.LoadAssetAtPath

Figure 104: Custom comparer

Figure 105: Creating new Index using constructor

Ricardo Sanz Ferrero Video Games Design and Development

94

Figure 106: Wrestler allies configuration

Ricardo Sanz Ferrero Video Games Design and Development

95

Figure 107: Wrestlers config. allies win (left)

Figure 108: Wrestlers config. enemies win (right)

Ricardo Sanz Ferrero Video Games Design and Development

96

List of figures

Figure 1: Debris Obstacle .. 15

Figure 2: Energy Obstacle ... 16

Figure 3: Multipath ... 17

Figure 4: Multipath Hierarchy .. 18

Figure 5: Set of corridors .. 18

Figure 6: Multipath demo [Video 1] ... 19

Figure 7: Cleaners action 1 ... 20

Figure 8: Cleaners action 2 ... 21

Figure 9: Cleaners action 3 ... 21

Figure 10: Cleaners demo [Video 2] ... 22

Figure 11: Collectors action 2 ... 24

Figure 12. Collectors action 3 ... 25

Figure 13: Collectors action 4 ... 25

Figure 14: Collectors action 5 ... 25

Figure 15: Collectors demo [Video 3] ... 26

Figure 16: Clues .. 27

Figure 17: All clues placed .. 27

Figure 18: Explorers action 2 .. 28

Figure 19: Explorers action 3 and 4 .. 29

Figure 20: Explorers action 5 part 1 ... 30

Figure 21: Explorers action 5 part 2 ... 30

Figure 22: Explorers action 6 .. 30

Figure 23: Explorers demo [Video 4] .. 31

Figure 24: Position calculation ... 32

Figure 25: Detection system ... 35

Figure 26: Targets detection ... 35

Figure 27: Distance detecting Commander .. 36

Figure 28: GoToEnemy() ... 37

Figure 29: AttackEnemy() ... 38

Figure 30: Emergency behavior 1 ... 39

Figure 31: Emergency behavior 2 ... 39

Figure 32: Emergency behavior 3 ... 39

Figure 33: Squad.cs ... 40

Figure 34: Unity editor Create/Squad .. 40

Figure 35: Squad in-game creator panel .. 41

Figure 36: Squad in-game creator demo [Video 5] .. 42

Figure 37: All the configurations .. 42

Figure 38: AssignConfiguration() .. 45

Figure 39: Cleaners parameters ... 48

Figure 40: Cleaners variation demo [Video 6] .. 49

Figure 41: Collectors parameters ... 49

Figure 42: Collectors variation demo [Video 7] ... 50

Figure 43: Explorers parameters .. 50

Figure 44: Explorers variation demo [Video 8] .. 51

Figure 45: Select configuration ... 51

Ricardo Sanz Ferrero Video Games Design and Development

97

Figure 46: Wrestlers variation demo [Video 9] .. 52

Figure 47: Selection process ... 58

Figure 48: TryFindingInOurList() ... 59

Figure 49: CreateCustomSquad(...) .. 60

Figure 50: Navigation and masks .. 61

Figure 51: Check destination valid ... 62

Figure 52: Squad selects body to cover .. 63

Figure 53: Squad back to player ... 64

Figure 54: Call to change formation ... 64

Figure 55: Change formation .. 65

Figure 56: Assignments ... 66

Figure 57: Break formation action .. 66

Figure 58: AssignAsLeader() ... 67

Figure 59: JoinSquad() .. 68

Figure 60: Squad actions demo [Video 10] .. 68

Figure 61: Squad formation changes demo [Video 11] ... 69

Figure 62: ISaveable .. 69

Figure 63: SaverManager.. 70

Figure 64: PortalController ... 70

Figure 65: Jack .. 72

Figure 66: Ancient/Lodwig .. 72

Figure 67: Aidil/Roxie ... 73

Figure 68: Boogies collectors, cleaners, explorers, respectively 73

Figure 69: Boogie wrestlers squad ... 73

Figure 70: Enemy mutants .. 74

Figure 71: Game Scenario ... 74

Figure 72: Portal ... 75

Figure 73: Boogies menu selector .. 77

Figure 74: Keyboard controls ... 77

Figure 75: Class diagram (Zygomatic, s.f.) .. 79

Figure 76: AttackTarget.cs .. 80

Figure 77: Boogie.cs .. 81

Figure 78: Boogie.cs parameters .. 82

Figure 79: Obstacle.cs ... 82

Figure 80: UIController events ... 83

Figure 81: Subscribe MoveToPosition .. 84

Figure 82: Popup constructor ... 84

Figure 83: Constructing popup ... 84

Figure 84: onClick.AddListener ... 85

Figure 85: Loading assets .. 85

Figure 86: DebrisObstacle.cs .. 86

Figure 87: DebrisObstaclePart.cs.. 86

Figure 88: ElixirObstacle.cs ... 87

Figure 89: ElixirObstacleStone.cs ... 87

Figure 90: CorridorBegin.cs .. 88

Figure 91: PathCorridorTrigger.cs (Corridor trigger) .. 88

Figure 92: CorridorEnd.cs ... 89

Ricardo Sanz Ferrero Video Games Design and Development

98

Figure 93: SelectCorridor() ... 89

Figure 94: Save button pressed .. 89

Figure 95: Creating instance of Squad.cs ... 90

Figure 96: Saving into assets .. 90

Figure 97: Cleaners configuration .. 90

Figure 98: Collectors configuration .. 90

Figure 99: Explorers configuration ... 91

Figure 100: Wrestlers configuration ... 92

Figure 101: MoveToPosition ... 92

Figure 102: Invoke .. 92

Figure 103: AssetDatabase.LoadAssetAtPath .. 93

Figure 104: Custom comparer .. 93

Figure 105: Creating new Index using constructor .. 93

Figure 106: Wrestler allies configuration ... 94

Figure 107: Wrestlers config. allies win (left) ... 95

Figure 108: Wrestlers config. enemies win (right) ... 95

Ricardo Sanz Ferrero Video Games Design and Development

99

Videos

[Video 1] https://www.youtube.com/watch?v=i3ALl0J-fwU

[Video 2] https://www.youtube.com/watch?v=eXGZXzV8twc&t

[Video 3] https://www.youtube.com/watch?v=a_X-DLCVhww

[Video 4] https://www.youtube.com/watch?v=r7-XN3fG6D8&t

[Video 5] https://www.youtube.com/watch?v=1fCK7YiLAKQ

[Video 6] https://www.youtube.com/watch?v=-2RbRhF0zIc

[Video 7] https://www.youtube.com/watch?v=OpZIusVvVMg

[Video 8] https://www.youtube.com/watch?v=F2ePGhU3G0E

[Video 9] https://www.youtube.com/watch?v=o_fmlik6wHM

[Video 10] https://www.youtube.com/watch?v=kGAspqe-LZw

[Video 11] https://www.youtube.com/watch?v=ihSC7ghiUO0

[Video 12] https://www.youtube.com/watch?v=MXA5inP3DLQ

https://www.youtube.com/watch?v=i3ALl0J-fwU
https://www.youtube.com/watch?v=eXGZXzV8twc&t
https://www.youtube.com/watch?v=a_X-DLCVhww
https://www.youtube.com/watch?v=r7-XN3fG6D8&t
https://www.youtube.com/watch?v=1fCK7YiLAKQ
https://www.youtube.com/watch?v=-2RbRhF0zIc
https://www.youtube.com/watch?v=OpZIusVvVMg
https://www.youtube.com/watch?v=F2ePGhU3G0E
https://www.youtube.com/watch?v=o_fmlik6wHM
https://www.youtube.com/watch?v=kGAspqe-LZw
https://www.youtube.com/watch?v=ihSC7ghiUO0
https://www.youtube.com/watch?v=MXA5inP3DLQ

