

Video game design and development degree

Final degree project’s Technical Report

A retro-style based shooter

Author: Mario Tormo García

Tutor: José Martínez Sotoca

Mario Tormo García Final Degree project

2

Mario Tormo García Final Degree project

Summary
This document summarizes and explains the process of creating a spaceship shooter game
from the perspective of game design, programming and art.

In terms of game design, it is intended to be a twist of classics like asteroids, adding original
mechanics like using the recoil force as an impulse or sharing the same meter for the health
and ammo and making the most of it through the level and enemy’s design without resulting
unfair or boring. Some of the techniques and decisions made in the design process such as
the use of colour, shapes or the structure of the level to guide the player and introduce new
mechanics will be explained here.

All those ideas in the paper must be turned into something playable, for that we use the
programming. Some complex algorithms have been developed for the behavior of enemy AI,
for example, that of basic enemies, able to surround the player and avoid losing sight of the
target to shoot him or the ability to reorganize when another enemy is eliminated. There are
also examples in the player mechanics as the system to charge the shots or regenerate the
health/ammo meter among others.

On the art side, some shaders are developed with Shader Graph, Unity's new tool for
developing shaders without coding, along with the use of post-processing tools to match the
neon aesthetic goal and, ultimately, to improve visuals.

3

Mario Tormo García Final Degree project

Contents (Index)
1 Introduction 7

1.1 Work motivation 9

1.2 Objectives 9

1.3 Justification 11

2 Planning and resources evaluation 13

2.1 Planning 13

2.2 Resources evaluation 17

3 System analysis and design 21

3.1 Artistic design 21

3.2 Game design 25

4 Work development 31

4.1 Technical development 31

4.2 Artistic development 39

4.3 Results 53

5 Final Planning 55

6 Conclusions and future work 57

6.1 Conclusions 57

6.2 Future work 58

Bibliography 59

4

Mario Tormo García Final Degree project

Figures Index
Figure 1: PinOut 8

Figure 2: Geometry Wars 3 8

Figure 3: Gantt chart 1 16

Figure 4: Gantt chart 2 16

Figure 5: Gantt chart 3 17

Figure 6: Battlezone 21

Figure 7: Asteroids 22

Figure 8: Tron (1982) 23

Figure 9: Tron: Legacy (2010) 23

Figure 10: Player’s ship design 24

Figure 11: Chromatic aberration 25

Figure 12: Game feel comparison (off) 27

Figure 13: Game feel comparison (on) 27

Figure 14: Level design, first room 29

Figure 15: Level design, second room 30

Figure 16: Activity Diagram PlayerScript 32

Figure 17: Activity Diagram PlayerProjectileScript 34

Figure 18: Activity Diagram EnemyScript 37

Figure 19: Regular enemies’ AI 38

Figure 20: Turret AI 39

Figure 21: Ships and projectile models 40

Figure 22: Other models 40

Figure 23: Ships’ textures 41

Figure 24: In-game textures appearance 42

Figure 25: Floor texture 42

5

Mario Tormo García Final Degree project

Figure 26: UI textures 43

Figure 27: Health/ammo bar textures 43

Figure 28: Main menu 44

Figure 29: Post-processing comparison 45

Figure 30: Muzzle flash effect 46

Figure 31: Missile explosion effect 46

Figure 32: Missile trail effect 47

Figure 33: Shader Graph, neon wall shader (1) 48

Figure 34: Shader Graph, neon wall shader (2) 48

Figure 35: Neon wall shader properties 49

Figure 36: Neon wall shader, scene view 49

Figure 37: Shader Graph, floor shader (1) 50

Figure 38: Shader Graph, floor shader (2) 50

Figure 39: floor shader properties 51

Figure 40: Result Image 1 54

Figure 41: Result Image 2 54

Figure 42: Future work example 58

6

Mario Tormo García Final Degree project

1 Introduction
The first video games in the 80s were all about playability, they had a small premise at best
but gameplay came first. Due to the hardware limitations, they were way more simple but
also more difficult than today’s game, as they were shorter and have fewer inputs they had
to be harder to last longer.

Arcade machines were all over the place, space was a trend at the time so most of them
were for playing space games, all decorated with that classic cyber futuristic look. Movies
like Tron (1982), thanks to the amazing designs done by Syd Mead and Jean Giraud among
others, embodied that aesthetic of polygonal meshes, grids and neon lights perfectly.

Meanwhile in the music panorama synths were used in plenty of genres like techno or house
but also pop and rock, such recognizable sonorous and visual factors were used as a sign in
later nostalgic artistic movements from the 2000s and 2010s like the synthwave, retrowave
or vaporwave among many other names.

Those will be the main references for this game, the design will be closer to an arcade game
but introducing more current elements and both music and graphics will emulate those
artistic movements mentioned above. Games that follow the same patterns and therefore
are also referents, would be PinOut (Figure 1) and Geometry Wars (Figure 2). The main
areas of development on which this report will focus are the following:

· Game design: As said, it will be a simple game in terms of objectives and
mechanics, but it will be tried to make the most of the possibilities they offer. The
player can only perform two actions, moving and shooting, those would be the main
mechanics and it will be through them that he will be able to interact with the
environment. There will be many levels and they will consist of a series of more or
less labyrinthine scenarios in which the player must reach the end to reveal the next
one. To prevent it, these will be full of traps to dodge, segments against the clock or
rooms with enemies to defeat to unlock the way forward.

· Programming: There is lots of work to do to translate the design ideas from the
paper to Unity but the most important and difficult parts to get right are the player’s
mechanics and the enemies’ AI. Since it's a very movement-based game, getting a
good response is one of the hardest things to do along with an enemy AI capable of
surrounding the player.

· Art: As it has been said the game will try to evoke that retrowave style, all
surrounded by neon lights. Each piece of geometry will be simple to be easily
recognizable. Things which are capable of damaging the player will be straight and
pointy, while everything else will tend to be more rounded. Same with colors. Particle
effects and shaders developed with Unity's new tool will also be used to achieve a
better look.

7

Mario Tormo García Final Degree project

Figure 1: Pin Out is one of the visual references. [F1].

Figure 2: Geometry Wars 3: Dimensions is a visual and playable reference. [F2].

8

Mario Tormo García Final Degree project

1.1 Work motivation

That idea came to me back in 2017 when I saw a video in Game Maker's Toolkit youtube
channel announcing a game jam. The theme was based on a game called Downwell, a
simple game where almost every mechanic serves multiple purposes. I began thinking about
several possible ideas and then something came up to me. When the mechanics were all
decided the next to think about had to be the elements that challenged those mechanics.
Many ideas were written down but none of them were implemented, the project was filed and
I moved on.

I got to the fourth grade and enrolled in the final grade work, I was sure I wanted to make a
video game by myself because until now I had never faced the process alone. It was also
clear to me that I wanted to develop all facets equally (art, programming and design) without
any of them standing out from the others. That's when I remembered that abandoned project
and decided to go back to it so I could prove myself that I was capable of doing it, also I was
very interested in learning the basics of shader development and becoming familiar with
Unity's new tool, Shader Graph, so I combined those two objectives for this project.

1.2 Objectives

· Obj 1: Create a demo corresponding to the first level where all the main
characteristics of the first idea I came to watching that Game Maker’s Toolkit video
can be appreciated. An arcade-inspired game with few versatile and profound
mechanics.

· T1: Enemies and traps that require shooting to get the impulse that comes
with it.

· T2: Segments against the clock to force the player to take risks.

· Obj 2: Introduce the mechanics gradually and create an adjusted difficulty curve.
Guide the player through the level.

· T1: Start in a safe environment and make sure that the player understands
what has to do before allowing him to move forward.

· Obj 3: To implement a satisfactory control of the Player through physics.
Movement-focused gameplay.

· T1: Move the spaceship by applying forces instead of updating its position.

· T2: Resistance to any change in its velocity (inertia).

· Obj 4: Apply some Game feel techniques to make the game’s response feeling,
better.

· T1: develop an invokable camera shake script.

9

Mario Tormo García Final Degree project

· T2: develop an invokable camera freeze script.

· T3: hit animations for the player and enemies, along with other effects.

· Obj 5: Get an enemy AI that puts the player in trouble.

· T1: Enemies capable of surrounding the player.

· T2: Guided missiles to a player's previous position (delayed effect).

· Obj 6: Establish a balance between risk/reward mechanics.

·T1: the act of shooting lowers your health meter and stopping firing for a few
seconds regenerates it.

· T2: Shooting can fly the player away from danger thanks to its impulse at the
expense of losing health.

· Obj 7: Develop visually appealing and coherent graphics learning and using
shaders, particle systems and post-processing effects.

· T1: Make projectiles as a kind of particle, not regular objects.

· T2: Particle effects for some object’s destroying animations.

· T3: Neon walls shader.

· T4: Floor shader animation.

· Obj 8: Achieve a professional appearance in all aspects of the game.

· T1: Appealing art style.

· T2: Quality music and sound effects.

· T3: Polished gameplay without bugs.

10

Mario Tormo García Final Degree project

1.3 Justification

I've always been a big fan of games heavily based on playability, where nothing stands
between you and fun. That indescribable feeling of chaining combos without being touched
in a hack and slash, making a perfect lap in a racing game or linking jumps without losing
momentum in a platform game; those moments when you enter "the zone" and are
invincible. From the beginning, I wanted this to be that kind of game, as minimum text as
possible, and the ability to restart instantly, so you don't waste time on anything but playing.

That's why the movement is so important, so much that the fact of shooting causes the
player to move, to the point that it is often necessary to use it in your favor. This detail, apart
from making the game more original, simplifies the gameplay while providing more depth at
the same time. In a way, that comes close to the essence of classic games even though it is
a 3D game and is developed with current technology. Capturing that essence was always
the goal, so instead of doing it in 8 bits with chiptune music as the games were back then, it
is intended to recreate the aesthetics and the feelings they conveyed so as not to replicate
every detail of those games, but to produce a similar general feeling in the player.

11

Mario Tormo García Final Degree project

12

Mario Tormo García Final Degree project

2 Planning and resources evaluation
2.1 Planning

At first, it was planned about 300 working hours to have everything finished by the first
deadline, but given that the finish of the work came very tight for the delivery date, the
planning was reorganized to give a greater margin this time with the second deadline as an
objective.

From the beginning of the project on February 4th until the end, on June 16th, there are 19
weeks, which leaves about 15 hours of work per week. Work divided into 4 main categories:

·Design [30h]:

As it has been said previously, the process of designing the mechanics was
already done since it was an old idea brought back for this project, but several
adjustments will still be needed after programming and testing the
functionality.

·Game design: adjusting the mechanics, enemies abilities and behaviour,
object’s interaction, stats values… [10h]

·Level design: Think and combine the arrangement of the elements, build the
stage. [20h]

·Art [55h]:

·Modelling the player, enemies and projectiles. [2h]

·Modelling the stage. [30h]

·Painting textures. [2h]

·Create the particle effects. [10h]

·Post-processing. [1h]

·Shader development. [10h]

·Programming [140h]:

·Player: Movement, Charge shot, recoil impulse, health management. [30h]

·Enemies AI: Regular enemies’ surrounding ability, Missile guidance. [30h]

·Game states: Harming enemies, getting damage, game over, winning. [20h]

·Camera movement: smooth camera, camera shake. [20h]

13

Mario Tormo García Final Degree project

·Animations: Animator states, trigger animations, animation events. [10h]

·Adding Sounds. [15h]

·Menu. [15h]

·Documentation [70h]:

·Technical proposal. [5h]

·Design and analysis document. [15h]

·Definitive report. [45h]

·Slide presentation. [5h]

WEEKS TASKS TYPE

4-10 February ● Player’s movement

● Shooting mechanic

Programming

Programming

11-17 February ● Charged shot effect Programming and art

18-24 February ● Design and analysis document

● health/ammo management

Design and documents

Programming

25 February - 3
March

● Basic enemy’s AI Programming

4-10 March ● Basic enemy’s AI Programming

11-17 March ● Turret’s AI

● Camera shake and freeze
scripts

Programming

Programming

18-24 March ● Player, enemies and stages’
modelling

Art

25-31 March ● Develop neon shader

● Design the traps function and

Art and programming

Design

14

Mario Tormo García Final Degree project

placement on the stage

● Develop the functioning of the
traps and the damage system

Programming

1-7 April ● Develop floor shader

● Add the animations and
program their execution and
animation events

Art and programming

Programming

8-14 April ● Finish developing the art Art

15-21 April ● Final level design Design

22-28 April ● Model the level Art

29 April - 5 May ● Build level

● Polish playability, design and art

Design

All

6-12 May ● Bug testing and fixing Programming

13-19 May ● Make a first report version with
the information gathered day by
day

Documents

20-26 May ● Add music and sounds Programming

27 mayo - 2 June ● Make the Menu art

● Program the menu

● Final testing and adjustments

Art

Programming

All

3-9 June ● Finish developing the memory
and submit for corrections

Documents

10-16 June ● Video recording and slide show
preparation

Documents

15

Mario Tormo García Final Degree project

Figure 3: First part of the project Gantt chart.

Figure 4: Second part of the project Gantt chart.

16

Mario Tormo García Final Degree project

Figure 5: Third part of the project Gantt chart.

2.2 Resources evaluation

I work in a moderately powerful PC, although some of the pieces are a bit too old and can’t
be considered top end, they are enough to be placed above most of the casual domestic
computers and allow me to use some specific and demanding programs without many
problems; at the same time, I can assure that if the game runs well on my computer it will
work fine in a more modern PC.

· Hardware:

· CPU: i5 4690k

· GPU: Radeon HD 6950 2GB GDDR5

· RAM: 8GB DDR3

· Software:

· [Unity]: Is a cross-platform game engine developed by Unity Technologies.
It is suitable for the developing of 3D, 2D, VR and AR games among other
experiences. It was chosen because it is one of the most used game engines

17

Mario Tormo García Final Degree project

in the industry, it is free, is easy to find lots of tutorials and documentation
online and also has a great variety of tools to choose from his asset store:

· Shader Graph: It is a tool included in the Unity 2018’s LightWeight
Render Pipeline in which shaders can be developed without
programming. As programming shaders is difficult for beginners
because it is different from what you may have known about
object-oriented programming, this tool offers a more visual approach
and although may have its limits, it is perfect for the simplest shaders.

· [Pro Builder]: Is a tool for 3D modelling inside the Unity editor,
perfect for blocking the level design but also for obtaining final results
as it permits texturing too. As it might seem it is a very useful tool
because allows you to apply changes and test them instantaneously,
always having the references in sight and letting you forget about
scales and measurement systems.

· [Pro Grids]: A tool useful for helping with the stage modelling, it
provides grids and snapping functions that combined with Pro Builder
delivers a great experience.

· [TextMesh Pro]: it is a better option than Unity’s default text tool
useful for creating the UI text of the game.

· [Universal Sound FX]: An extense sound library.

· [Ultimate Game Music Collection]: An extense music library.

· [Blender]: It is a free and open-source 3D computer graphics software
toolset with multiple purposes (modelling, sculpting, rigging, texturing,
animating...), but in this case was used for modelling the player and enemies
along with their projectiles because it was easier for unwrapping and painting
the textures.

· [Photoshop]: It is a raster graphics editor published by Adobe Inc. and one
of the standard programs used in the video games industry for plenty of
applications. All the textures maps for the objects and shaders and the main
title of the game were developed with it.

· Google Docs: It is a free word processor offered by Google within its
Google Drive service. It was used for writing all the needed documents.

· Google Slides: It is a free presentation program offered by Google within its
Google Drive service. It was used for making the slide presentation.

· [Google Drive]: A file storage and synchronization developed by Google,
very useful for storing all the documents of the project, accessing from
everywhere and preventing from losing any advance.

18

Mario Tormo García Final Degree project

· [Trello]: It is a list-making application used for planning and managing
projects. At first, I thought I could plan everything in my head because it was a
project I had in mind for a long time, but it ended being necessary.

· [GitHub]: It is a program that provides hosting for software developing and
was used for sharing the project code.

19

Mario Tormo García Final Degree project

20

Mario Tormo García Final Degree project

3 System analysis and design
Design is an essential part of any product, not only defines the first impression you get
visually, but also the user experience.

In the specific case of video games we can find two big sections of the design, artistic design
and game design, both equally important.

Taking references from the real world, video games and other media is highly recommended
during the designing process, almost necessary. It helps to set a goal and with that in mind
is much easier to develop the idea in a way that is coherent a cohesive, which means
minimizing the appearance of discordant or random elements that detract from the global
vision that is wanted to achieve.

More detail on the two major design sections, as well as the sub-sections and inspirations
taken for each of them, will be provided below.

3.1 Artistic Design

At the beginning, only the gameplay was planned, so when the idea was rescued for this
project, the question arose as to how the game will look. The mechanics were already
inspired by games like asteroids, it made sense for the aesthetics to go in the same direction
too. One of the characteristic visual features of the arcade machines is the typical brightness
of tube screens visible in the Asteroids image (Figure 7), as well as the vector graphics of
games like Battlezone (Figure 6) that resembled a 3D wireframe view mode.

Figure 6: Battlezone is one of the examples of that wireframe view made by the vector graphics of the
time. [F6].

21

Mario Tormo García Final Degree project

Figure 7: This image shows the game Asteroids with that glow and chromatic aberration characteristic
of tube screens. [F7].

The computer graphics of that time looked the same. Films such as Tron (1982), whose plot
revolves around a videogame programmer who enters a digital world, demonstrates the
relevance that technology was having in the society of the time and is also one of the visual
references for this project (Figure 8). From 2010 onwards, nostalgic artistic movements
began to emerge trying to evocate those features, they are known by many names such as
'Retrowave', 'Synthwave', ‘Vaporwave’ or simply 'ＡＥＳＴＨＥＴＩＣＳ'. This is the moment
when the sequel Tron: Legacy (Figure 9) came out, which gave a more updated vision of this
same artistic style.

22

Mario Tormo García Final Degree project

Figure 8: Tron (1982) whose aesthetics are largely due to Moebius, Syd Mead and Peter LLoyd. [F8].

Figure 9: Tron: Legacy(2010). [F9].

From all these examples we can deduce several common features: The importance of
shapes and contours, and the use of colors and glowing lights.

The use of shapes and contours : as it can be appreciated from the images referenced in
this section (Figures 6, 7, 8 and 9), straight lines are predominant, but whether is due to the
technical difficulties in the first two images (Figures 6 and 7) or due to an artistic choice in
the second pair (Figures 8 and 9), it can be discerned a trend to avoid complex shapes and
highlight them with lines that often follow the contour. These very standards will be applied to
this project, both for scenarios, traps, enemies and their projectiles which will avoid the use

23

Mario Tormo García Final Degree project

of curves; only the player and the elements with which he can interact safely will have
rounded shapes. This will serve an essential purpose, to help the player visually differentiate
dangerous elements from those that are harmless. Furthermore, the player and the enemies
will be textured emphasizing the edges of the geometry simulating the wireframe view.

Figure 10: Some of the initial design proposals for the player’s ship

Although the intention was for the player’s ship to be rounded it couldn’t have a completely
circular shape as the player needs to easily distinguish where his character is facing. Some
of the first designs of the ship can be appreciated in Figure 10.

The use of colors and glowing lights: in Figure 11 can be seen a typical effect on cathode ray
screens, chromatic aberration, in which the additive primary colours of light, which are
nothing more than the values of the red, green and blue lights that are added together to
obtain any colour, appear slightly separated and create a kind of multicoloured outline
around the objects. This effect is not very difficult to obtain and can be a good addition to
approach the nostalgic aesthetic that is wanted to achieve. In addition to that, a certain glow
can be appreciated in the same image as the white light contrast against the black
background of the screen, the same in the other images.

That was a technical limitation in video games’ case because some of the machines were
only capable to show a few colors and having most of the screen in black consumed fewer
resources; although this didn't affect movies, as Tron (1982) was inspired by arcade video
games it continued with the same aesthetics of glowing, spot colors on dark backgrounds,
and since Tron: Legacy (2010) is a sequel it continued with that same style by adding a few
changes. One of those changes is the color palette, while the original film has a wider range

24

Mario Tormo García Final Degree project

of colors, the continuation is mainly based on the use of blue, white and orange lights
combined with dark backgrounds.

In this project a similar approach to the 2010 film will be made, with much less variety of
colors in contrast to black; hot and cold neon lights will be used in the same way as shapes
to differentiate between harmless (cold colors) and enemies or traps (warm colors, normally
associated with danger).

Figure 11: An example of chromatic aberration from the game in a zoomed area.

3.2 Game Design

· Mechanics: Probably the movement mechanic is the most important in the game, from the
beginning it was clear that the player should have a lot of inertia to better convey the feeling
of floating in space, this is something that Asteroids captures very well despite being an
extremely simple game. This type of movement means that it costs a little to reach maximum
acceleration, change direction or simply brake.

To counteract the slow acceleration and braking we have the other two mechanics (they are
actually very closely linked, to the point that one is a direct consequence of the other), the
firing and the impulse/recoil. The shot can be charged, with the projectile becoming
increasingly larger, damaging and faster; serving this to eliminate enemies or interact with
switches. When the shot is released, it emits a large amount of energy directly proportional
to the time it has been loaded, translating this into a force that pushes the player in the
opposite direction. This pushing force, recoil or dash serves multiple purposes and allows
the player to achieve an incredible speed from standing and to brake dry when there is a lot
of inertia. This can serve multiple purposes, from gaining momentum, dodging traps or
enemies or quickly changing course depending on the direction in which the shot is fired
compared to the direction of the inertia carried by the ship itself.

All this, wisely used in addition to the mechanics of movement, can help to provide a more
precise and stimulating control that it would seem at first. But using that impulse doesn’t
come at any cost, since every shot will consume an equivalent percentage to the charging

25

Mario Tormo García Final Degree project

time of the ammo meter but also the health meter as both stats will become the same; that
means that, attacking a lot can leave you with little health to survive or little ammunition to
escape and, likewise, if the player receives a lot of damage he may have little ammunition
left to attack or start a getaway; however, although while charging shots the bar will keep
lowering, there is a limit for charging so the player could never die only by charging even
though it will leave its health/ammo at minimum. To regenerate the bar, it will be necessary
to go a while without pressing the shooting button, being more vulnerable during that period.
That offers a great risk/reward mechanic and brings a little more strategy to the gameplay.

Of course, to make a good profit of the mechanics the other systems need to work together
in the same direction. There will be traps that force the player to make quick and precise
movements, fire-activated switches that start a countdown forcing the player to speed up
and take more risks, turrets that need to be killed by directing its own missiles to them and
avoiding them at the last time… All those things and more serve to give variety and depth to
the mechanics, but it is useless that they all work well if the interaction between the player
and its environment is very basic and dull. In other words, there's no point having a character
with the same abilities as Super Mario if the platforms aren't set up properly, the enemies are
boring and all the characteristics offered by the character are not taken advantage of.

· Game Feel: It is known as game feel or game juice that intangible feeling of response that
makes the player feel satisfied when interacting a game. Sometimes games have incredible
mechanics that work perfectly, awesome art style, animations and a great level design but
don’t hook the player up. This often happens because the game doesn't feel good. Some
small tricks that can be added to fix that and although the base being the same and at first
glance not seeming so important, they make a big difference to game juice. In Figure 12 and
Figure 13 can be seen the difference between having game feel features and not, for more
explanations and examples you can see this talk [Game Feel Talk]. These are the ones
appearing in the game:

Camera shake is one of the most popular features used for that purpose, having a camera
that trembles when there is a big impact on screen, helps to bring more physicality to the
action, as real cameras are affected by the environment.

Smooth camera, a camera that doesn’t follow the character position with exact precision, but
takes its time to catch up the target when speeds up, it is more related with real cameras
and cameramen.

Applying a muzzle flash effect to the shot helps giving more punch to the action despite the
caused damage being the same.

Knockback animations for the enemies when they are impacted by the projectiles add weight
to the shots.

Similarly works the enemy flash animation, which also conveys the player that the enemy is
receiving damage. A similar animation can be applied to the player’s ship too.

Flash screen animation another way to know when the player is taking damage.

26

Mario Tormo García Final Degree project

Freezing time for a few milliseconds is a good way to make any clash more impactful, but it
can’t be for too long or the people playing it would feel the game is struggling and it is
unstable.

Figure 12: This is an example of the project in a late state with all the game feel features
deactivated. [F12].

Figure 13: This is a GIF of the game in the same state but with all those features activated.
[F13].

27

Mario Tormo García Final Degree project

· Level Design: Is how to place the diverse elements in the environment to guide the player
and transmit him some specific emotion, while keeping the difficult progression and level of
entertainment.

Despite being a single level, this can be divided among several rooms, although some of
them are more corridor-shaped; each one having its purpose. From the initial and final, to
combat, traps and puzzle rooms.

First room: The player begins in an empty safe room with a closed door at the front, where
he can learn the main controls without any threat. To the right there is a hallway, the only
place he has access to at the moment, at the end of it there is a switch that opens the door
when activated. To turn it on it needs to be hit by a player’s projectile and a countdown will
begin while the gate opens. There is little time to reach it before the countdown ends and the
door closes again, this way we make sure that the player knows how to shoot and use the
recoil to propel himself before leaving the starting zone.

When the player arrives at the end of the corridor where the first switch is placed, the end of
the level can be seen behind a wall, which helps the player to know his objective right from
the beginning and to orientate him spatially. Also, some kinds of beacons are placed near
relevant objects like switches and doors to make their recognition easier. All these
explanations about the first room can be better seen in Figure 14.

28

Mario Tormo García Final Degree project

Figure 14: This is the layout of the first mode captured from the “Scene” view in Unity and scheme
explaining the path to follow.

Second room: Next there is a greater room with the first menaces, a static and a rotating
trap, there is a switch in front of the entrance, but now it opens one door and closes another.
This is a twist of the first puzzle and this time not only the player has to be quick but also
avoid the traps at the same time. When the switch is activated, the first door is closed
blocking the player’s path and only leaving free the way full of traps on the right. If the player
arrives at the second door before the time is up, he can go to the next room, otherwise, he
can go back through the same path full of traps or use the shortcut that is no longer blocked
by the door to try again. All these explanations can be better seen in Figure 15.

29

Mario Tormo García Final Degree project

Figure 15: Layout of the second room, when the switch is activated, the door next to it closes so the
player has to search another route.

Third room: The following room is the first combat room where two basic enemies need to be
destroyed to open the path forward.

Fourth room: When you defeat those enemies, a corridor full of traps that links with the next
combat room is shown. Here two more kinds of traps are introduced, the saw blades and the
smashing trap that closes suddenly and is avoidable by using the impulse. This time there
isn’t a countdown so the player can take its time looking at the traps and knowing how to
avoid them carefully.

Fifth room: As soon as the player enters the room a new enemy, a turret, will start shooting
remote-controlled missiles to the player. As it is a new enemy and he might be caught
unprepared, there is a wall in front of him that stops the missiles, a kind of cover which can
be used by the player to observe, understand a think safely.

Sixth room: After the player discovers how to defeat the turret, the last hallway is opened, is
larger, has two consecutive smashing traps and now saw blades are bigger and move
sideways. This is a twist of the fourth room.

Seventh room: The last trial is a fight in a bigger room against three regular enemies and
one turret combined, here the player will need to focus and use all the things learned before
to unlock the goal and end the level.

30

Mario Tormo García Final Degree project

4 Work development

4.1 Technical development

·Player mechanics: As the player’s mechanics are few and they are strongly connected, it
is preferable if they are programmed together in the same script (PlayerScript, Figure 16)
allowing much easier communication between them. Since the player’s movement is
intended to be floaty with great inertia like in Asteroids, instead of programming it like the
vast majority of games, by having a speed value and calculating its position based on this
and the elapsed time, the movement needs to be implemented by physics. Unity already
has a remarkable physics engine with numerous options and functions, it only needs to be
added a rigidbody to the object and then use some of the functions designed to apply forces
to an object.

The Update() function is executed per frame being ideal for catching input signals, this is
where the WASD key pressing is detected, each of which corresponds to a direction on the
horizontal and vertical axes. This values are then stored and multiplied by the corresponding
force to apply it in the direction desired; this is done in the FixedUpdate(), which is very
similar to the Update() function but is called in a regular timeline, meaning that the time
between calls is always the same, that is useful for making the physics calculations and
changes on the rigidbodies.

At first the function AddRelativeForce() was chosen to apply the forces for the player
movement on the FixedUpdate(), which receives a vector3 for the direction and magnitude
and a ForceMode for the type of force; but it was lastly replaced by AddForce() because the
intention was to apply the forces globally in regardless of the player’s orientation and after
some failures trying to fix it, the mistake was discovered. the ForceMode used was Force as
it is the default type.

31

Mario Tormo García Final Degree project

Figure 16: Activity Diagram (UML) for the PlayerScript.

Another problem detected was that when the player tried to go diagonally, due to the sum of
the forces, the ship moved faster. Luckily that was easy to fix as the only thing to do was
normalize the forces using the Vector3.normalized property on the input vector.

Then it was time to make the ship rotate facing the cursor to aim properly, there is a function
in Unity called LookAt() that rotates the object facing a previously passed GameObject as an
attribute, but since the cursor was a 2D image moving in the Screen’s plane and not a
GameObject, the solution wasn’t so trivial. Following the Unity [S. shooter tutorial], a Ray
was projected from the camera to the “Floor” plane to obtain the collision point towards
whose X and Y direction needed the ship to look, RaycastHit. After that, all that was left was
to get the vector direction from the player position to the mouse position and apply the
rotation to the transform using Quaternion.LookRotation().

32

Mario Tormo García Final Degree project

For gameplay’s sake the cursor required to be visible and replaced by another image, that
was done in a simple script called MouseScript. All the information for that was found in
Unity’s documentation [Unity manual].

After achieving the player’s rotation another mistake was noticed, as it seemed to rotate well
but with some small angle error that might be problematic when implementing the shooting
mechanic because the greater the distance between the player and the objective, the
greater the error would be. Having tried almost everything to fix that, it was discovered that
when changing the cursor image with SetCursor() it sets by default the pointer cursor as the
top left corner of the image, but the image supplied was designed to have the pointer at the
centre. Once that was discovered the solution was straightforward.

The projectiles were created as particle systems following this [Projectile tutorial] to take the
profit of all the visual effects that can be implemented with this versatile tool. Colliders and
scripts to write its behaviour were added and the enemies’ projectiles were created by
inheritance. The parent script was called ProjectileController. When created the PlayerScript
passes the damage value to the projectile using the method setDamage(), after that in the
Start() function is called the method setProjectileData() which takes care of updating the
size, the speed and the range of the projectile depending on the damage value set before.

In the Update() function is calculated the position of the transform by multiplying the speed
value by its forward direction and the Time.deltatime property, that stores the elapsed time
between the calls of the Update() function.

On the OnTriggerEnter() function it is checked which is the object whose collision has been
detected with, and if it is an enemy, the damage will be infringed to it, then the projectile will
be destroyed. If it is another projectile it will check whose damage value is greater and the
one with the lower one will be destroyed, which means that the projectiles can also be used
to stop enemies attacks. If no object has collided and the projectile reaches its range
distance it will disappear too.

The next implementation was the shooting mechanic. The first thing to do was adding an
empty object at the point from which the projectiles will be fired, in such way that its position
is passed to the function that instantiates the projectiles along its forward direction; the
backward direction of the empty object will also be useful to know in which direction the
recoil force has to be applied.

The mouse input detection was done at first in the FixedUpdate() of the PlayerScript
because the impulse force has to be applied while the projectile is instantiated, and the
FixedUpdate() is for the physics; but it skipped some inputs so the mouse detection was
moved to the Update() and a bool variable was actualized for the FixedUpdate() to check
and know when to add the impulse. That impulse was applied again thanks to AddForce()
but this time using Impulse as the ForceMode.

The bullet’s damage and the amount of impulse received are calculated with a Lerp()
function between a maximum and a minimum value depending on the amount of

33

Mario Tormo García Final Degree project

health/ammo consumed during the charging process which occurs from the moment the
mouse click is pressed until it is released.

A system that increased the speed at which the health/ammo bar lowered when loading the
attack was originally developed. Once the mouse had been clicked, the descent speed was
constant until reaching half of a time limit value, from this half until reaching the total time,
the descent speed increased until reaching the maximum. But this has been discarded
because it was not well balanced. There was no reason for the player to charge its shot as
using regular shots, by the sum of forces, resulted in reaching more speed while spending
lesser health/ammo. To solve that, for each shot, a constant amount of health/ammo plus
the variable part that depends on the charged time are removed; Besides, the regeneration
takes a second to activate and it accelerates with time. These two measures serve to
balance the use of normal shots and charged shots since for the latter are insignificant
changes.

Figure 17: Activity Diagram (UML) for the PlayerProjectileScript.

·Camera: For the camera movement a tutorial from the Brackeys channel was followed
[Camera tutorial]. A script called CameraController is attached to the camera and has a
public variable, smoothSpeed, that controls the speed at which the camera moves from the
current position to the desired position. The smoothedPosition is obtained by lerping the

34

Mario Tormo García Final Degree project

actual position and the desired one using the smoothSpeed by Time.deltatime as the
interpolant.

Another Brackeys tutorial [Camera shake tutorial] was used for developing the screen shake
using coroutines (functions that can pause the execution, return the control to Unity and
continue where they were in the next frame). The function is quite simple and only receives
two arguments, the duration of the effect and its magnitude. While the time has not been
fulfilled, in each iteration the x and y values of the new camera position are calculated using
a random number between -1 and 1 and then multiplied by the magnitude. The result is set
as the new camera position and the process is repeated until it is time. When finished, it
returns the camera to its original position.

·Enemies AI: After a lot of thinking about how to make the enemies surround the player the
following idea came up. Unity already has a pathfinding system called Navmesh that after a
series of adjustments is capable of finding the shortest path and controlling the movement of
a character from its position to another one assigned through NavMeshAgent.destination.

If it was going to be used then it would only be necessary to give it the positions where the
enemies should be positioned and Unity would take care of the rest, however, this system
has its limitations and if the objective is mobile, the positions of the targets have to be
updated continuously. Besides this still does not allow enemies to surround the player and
reorganizing depending on the remaining amount of them or placing themselves in shooting
positions avoiding obstacles between them and the player, all this is managed by script.

A script for spawning objects in a circle was developed. CreateObjectsAround checks if the
objects have already been instantiated, if not, it creates a new array of GameObjects of
length objectsAmount (an attribute of the class that specifies how many objects will be
created) and divides 360 by objectsAmount to obtain the separation angle between the
objects when instantiated. With a for loop every object is created in its respective place of
the array using Instantiate() at a radius distance from the spawner position, radius is another
of the attributes and specifies the distance between the spawner and the spawned objects.
Then, the position is transformed using RotateAround() giving the angle obtained before and
multiplying it by the index of the for loop to get the corresponding rotate angle of each object.

Another version of the script is called EnemySurroundingGoalSpawner and inherits from
CreateObjectsAround. It is thought to spawn around the player the targets that the enemies
will have to follow. It works similarly, but this time the objectives are instantiated as children
of the player as they need to move along with him. That makes them inherit the player’s
rotation as well, but that effect is not desired so their positions will need to be reset every
frame using the method updatePositions(). That method goes through every object in the
array and updates them to maintain their relative position to the parent. There is an
additional method for when an enemy is killed, decreaseAmountByOne() deletes the targets
and if there is at least one lasting, it creates and places the number of targets required.

When the player enters a trigger collider, placed at the beginning of every fighting room, it
sends how many enemies will appear in that room to the player’s script

35

Mario Tormo García Final Degree project

EnemySurroundingGoalSpawner, to create the right amount of targets, and to the
CreateObjectsAround of the spawner which is in charge of instantiating the enemies.

Enemies' AI is controlled by Unity's navmesh, but their behavior is defined by script. At first,
in the Start() function, the player is set as the destination of the enemy, then, in the Update()
the enemy is forced to face the player using LookAt(). After that, if there is an object between
the enemy and the player is checked with the checkObstacles(), which looks for collisions
sending a Physics.Raycast() in player’s direction. If there is an obstacle, the player will be
set as the destination of the enemy, since that means that the enemy doesn’t have a clear
way to shoot him; if there is no obstacle the target assigned will be set as the destination.

When a target created around the player enters the trigger area of the enemy and the enemy
doesn’t have an objective yet, if the objective isn’t occupied by another enemy it is set as the
destination of the current enemy and the ObjectiveOccupation is set to true. Likewise, when
the target assigned to the enemy leaves the trigger zone ObjectiveOccupation is set to false
and the player is the destination again.

Whether the player is in range to be shoot or not and when it will get shot are decided by
TryToShoot(). If the distance between them is below the range value and enough time has
elapsed since the last shot was fired, a random function with a defined hit percentage
decides if it is time to shoot or not, if not, starts all over. The internal functioning of the
EnemyScript can be seen better in Figure 18, and the final result in Figure 19.

36

Mario Tormo García Final Degree project

Figure 18: Activity Diagram (UML) for the EnemyScript.

37

Mario Tormo García Final Degree project

Figure 19: A look of the enemies’ AI. [F19].

A small knockback effect (variable according to the power of the player’s shot) has been
added to the enemies employing a coroutine. When receiving or firing a shot, they will
receive a small shift in that direction. The ideal would have been to implement it as a force in
the desired direction using the physics engine and the AddForce() function, but as the
enemies were being controlled by the navmesh, this was incompatible with physics control.

The screen freeze function was developed following this tutorial [Screen freeze tutorial] to
call it whenever a bullet hits an enemy. It is done by changing the timeScale property to zero
for a small period.

Next was time to program the turret enemy. This has a simple script that makes the turret
always face the player with the LookAt() function and fires a single missile directed to him at
a time, it checks if the missile can be fired because the other one has already been
destroyed and then the shootMissile() method is called. TakeDamage() is public and it is
called by the missile whenever a collision with the turret occurs, it starts the corresponding
animations, calls the camera shake and camera freeze coroutines, subtracts the missile
damage from the turret health and if the result is less than or equal to zero, destroys the
turret.

The missile script is a bit more complex. As the missile itself will be the only way to destroy
the turret, it will cause damage on the turret whenever it collides, but as the missile is
instantiated next to the turret we don’t want it to explode as soon as it is created, for that, a
bool variable is put to true when the turret leave the trigger collider.

The missile must follow the player with a delay so that the player can direct it towards the
enemy and move away at the last moment to crash it against the turret. At first, the
navMeshAgent was used for controlling the missile and through the script the player’s
position was transmitted as the target every defined period. But when was tested, it made

38

Mario Tormo García Final Degree project

clear that it wasn’t the right approach as the missile could dodge obstacles between it and
the player and would always reach the player’s last position and then change direction to his
newest position.

The intention was for the missile to advance forward to crash into the turret or a wall even if
the player has dodged them. At last the movement was programmed by script. The
movement is controlled in the Update(), the missile advances forward updating its
transform.position and then the method TurnToPlayer() is executed. This method gets the
actual missile rotation and the rotation it should have when facing the player with
Quaternion.LookRotation(); then, those two rotations are lerped using Time.deltatime
multiplied by a rotationSpeed as the interpolant. That allows control to the rotation velocity of
the missile giving the player enough time to dodge it with an impulse at the last moment. All
these methods working can be seen in Figure 20.

Figure 20: A look of the turret and missile’s AI. [F20].

4.2 Artistic development

Audio: A lot of time has been spent listening and choosing the most fittable sounds and
music pieces for the game from the sound Libraries. When adding them to Unity there are
two options, to add sounds in 2D or 3D, the difference is that the 2D sounds are heard the
same from any point and the 3D depends on the distance between the AudioSource and the
Listener. For the music or the timer, 2D audios have been used, while 3D audio has been
chosen for shots, traps or doors. Some modifiers have also been applied to volume, tone
and speed; for example, during the last seconds of the timer, the audio is accelerated to tell
the player that there is little time left. The volume and pitch of the audio of the player's shots
have also been modified and depending on how long it has been charged, it will sound
higher or lower. Furthermore, not every sound needs to be executed on awake so some of
these parameters need to be controlled by a script.

39

Mario Tormo García Final Degree project

Art:

·3D art: The characters and projectile models (Figure 21) were done in Blender as it
was necessary for doing the unwrap and applying its respective textures, since the
stage and the traps will have a material with a specific shader, they wouldn’t need
unwrapping and could be created using the ProBuilder tool in Unity (Figure 22).

Figure 21: The 3D models of the player, regular enemy and turret (Top). The models of the
player, regular enemy and turret’s projectiles (Bottom).

Figure 22: Some of the traps and the door model done with ProBuilder (top). Saw blade and
light beam done in Blender (bottom).

40

Mario Tormo García Final Degree project

As it can be appreciated, the models are pretty simple and follow the stated rules in
the design process; traps and enemies are pointy whereas the player’s ship and its
projectiles are round.

·Texturing: It was decided on following the wireframe style where the player and
enemies’ ships have the edges of their models highlighted, so it was partly necessary
that they were simple models. Black and white textures were chosen for the emission
maps (Figure 23) because this way it was easier to adjust the color of the enemies
without having to change the textures. Final results of the texturing in Figure 24.

Figure 23: The textures used for the player and enemies’ albedo properties and as emission
maps.

41

Mario Tormo García Final Degree project

Figure 24: Final look of the textures applied to the player and enemies.

Some other maps were done, for example those hexagonal cells for the floor shader
as that kind of pattern can be also seen in other futuristic movies and games (Figure
25).

Figure 25: One example of the tileable texture used for the floor shader.

All those textures were made in Photoshop.

·UI elements: these elements were also done using Photoshop and following some
tutorials in YouTube [UIT].

For the logo design it is tried to imitate he Outrun titles style, but having the shape of
the player’s ship as the background (Figure 28).

For the buttons, panels and health bar the same style has been targeted but more
simplified and focusing on the outlines (Figures 26, 27 and 28).

42

Mario Tormo García Final Degree project

Figure 26: Some of the UI elements of the menus.

Figure 27: The shot power meter and the health/ammo bar.

43

Mario Tormo García Final Degree project

Figure 28: A glimpse of the main menu with the UI elements integrated.

Post-processing: Unity provides some post-processing tools that can be used to improve
the visual appealing of the game, although it is not recommended to abuse using them as
some of the effects can be pretty demanding. The difference between using them and not
can be appreciated in Figure 29. These are the ones used in this game:

·Bloom: This is an effect in which light seems to extend beyond the edges of a light
source. It is something that occurs in real cameras and, in video games serves to
enhance the illusion of extremely bright light. In this case, it has been used to
achieve that neon result in materials with emissive properties.

·Chromatic aberration: As mentioned before, it was subtly used to imitate the image
emitted by the cathode-ray tube screens.

·Lens distortion: Curves the image creating a fisheye-like result. In this project, it
has been used lightly to imitate the curvature of the old screens.

·Grain: As other effects above, was used to mimic the look of elder cameras and
projections.

·Vignette: Radially and gradually darkens the edges of the screen with the selected
color. It has been used in the player’s damage animation to tint the edges of the
screen red.

44

Mario Tormo García Final Degree project

Figure 29: Here can be seen the difference between using post-processing (left) and not (right).

Along with the Vignette effect many of them were also used to make the animation of
receiving damage, which had to be developed by script since the Unity animation system
does not allow access to the parameters of the post-processing effects. The content of this
script is only a coroutine that is called when the player is hurt and is responsible for
increasing their respective values for a specified time and return them to their initial values.

Particle effects: For the game, many effects of particles have been developed although
most of them show many similarities. That is because it was decided to reuse some
elements as textures or the particles’ shapes, as a way of obtaining a similar style.

The muzzle flash effect (Figure 30) uses a texture of a cartoonish explosion with
transparencies applied to a cone. It flashes followed by a burst where a bunch of particles is
emitted forward at the same time and then a kind of smoke circle expands until disappearing
where the shot took place.

45

Mario Tormo García Final Degree project

Figure 30: The muzzle flash effect.

For the missile explosion (Figure 31) it is done a similar effect but this time, instead of a
cone-shape explosion there are three desynchronized billboard explosions followed by a
burst of particles in all directions.

Figure 31: The missile explosion effect.

46

Mario Tormo García Final Degree project

The missile’s trail (Figure 32) has a very simple but appealing effect where two kinds of
triangle-shaped particles are continuously emitted in world space, that means that they don’t
move relative to the object but its own speed which is different for each one, same with the
rotational velocity.

Figure 32: The missile’s trail effect

Shaders: One of the initial purposes of this project was to learn how to use the Unity Shader
Graph tool. Because of that, most of the development time of these shaders was spent
looking for documentation. Although these shaders are not very complex, the entry level for
using the level is a little high, as it is necessary to learn a lot of information [S. graph manual]
[S. graph tutorial] about what most nodes do to know what is being done.

47

Mario Tormo García Final Degree project

Figure 33: Neon walls shader (1).

Figure 34: Neon walls shader (2)).

48

Mario Tormo García Final Degree project

The shader works in such a way that it paints with a certain color the faces whose normal
points upwards and with another color (emissive) the others. Its node distribution can be
appreciated in Figures 33 and 34, for the explanation, each number in brackets corresponds
to the node numbers shown in the figures.

Making the dot product (2) from the normal vector of the world space (1) by the specified
direction we obtain a mask (3) that can be already applied to paint the faces with different
colors, however it is needed to paint only the faces whose normal is completely vertical, for
that it is used the step function (4), to filter the normals according to the specified value. With
this result, one applies as a mask for the Albedo property of the material, and the other with
the inverted values (5) as a mask for the emission property.

The values used for the neon walls shader in the walls’ material can be seen in Figure 35
and a GIF showing the shader functioning, in Figure 36.

Figure 35: These are the values used in the material for the shader, Vector1 is the value used to filter
in the Step function.

Figure 36: A visual reference of the shader function with a lower Vector1 value. [F36].

49

Mario Tormo García Final Degree project

Figure 37: Shader Graph, floor shader (1).

Figure 38: Shader Graph, floor shader (2).

In the case of the floor shader, its node distribution can be appreciated in Figures 37 and 38.
A texture (2) is used this time as a mask. With the tiling and offset node, the user can control
the tile scalability of the texture (1) or the noise (8). The texture mixed with a color is used for
the albedo property using a multiply node (3). Step functions are used for filtering the values
of the texture (4) and the noise (10), with both results combined, the emission mask (5) is
obtained, the effect that illuminates the edges of the hexagons as if it were a wave. To
complete the effect, a time function is added to add movement and multiplied by a value to
control the speed (7).

The values used for the floor shader in the floor’s material can be seen in Figure 39.

50

Mario Tormo García Final Degree project

Figure 39: The values used in the material, the Vector1 property controls the scale of the noise.

51

Mario Tormo García Final Degree project

52

Mario Tormo García Final Degree project

 4.3 Results
Source code: https://github.com/mariot11/SuperNeonFire.git

Gameplay video:
https://drive.google.com/drive/folders/1aBg_PdCqD2i5H9v7kPZmvMeBAGoFJ6v3?usp=shar
ing

Looking at the initial objective, which was to develop a demo that would show the basis of
the gameplay with an aesthetic close to a final product, I think that has met expectations.

The aesthetic referents can be clearly observed and although it is not a game that demands
a lot technically due to its simplicity in shapes and textures, it manages to be clear for the
player partly thanks to that simplicity but without ceasing to be visually attractive.

All the bugs founded were solved and besides some minor objectives like adding sound
effects to the menu that were put aside, the game feels solid.

As expected, the gameplay is more focused on the movement rather than shooting, since
the player will spend most of his time trying to avoid the traps and finding the way forward
instead of fighting and in the few encounters with enemies, the movement will also be
important as they are designed to have to dodge their shots and flee from them.

In those terms, compared with Asteroids feels more profound as the possibilities are greater
without resulting overwhelming, thanks to the game design introducing the new concepts like
switches, traps or enemies step by step. That helps to reinforce the idea of an
arcade-inspired game but up to date.

Below are a series of images in which different parts of the level such as traps or turrets with
all the effects applied can be appreciated.

53

https://github.com/mariot11/SuperNeonFire.git
https://drive.google.com/drive/folders/1aBg_PdCqD2i5H9v7kPZmvMeBAGoFJ6v3?usp=sharing
https://drive.google.com/drive/folders/1aBg_PdCqD2i5H9v7kPZmvMeBAGoFJ6v3?usp=sharing

Mario Tormo García Final Degree project

Figure 40: Result image 1.

Figure 41: Result image 2.

As can be seen in the two images (Figure 40 and 41), the same aesthetic code is maintained
throughout the level helping to give more cohesion to the style. It will be between several
levels where a greater aesthetic difference will be appreciated, while all along with one level
the same pattern will be followed.

54

Mario Tormo García Final Degree project

5. Final planning

The initial planning was made taking into account the first delivery date of the memory. The
weekly schedule was kept until the fourth week more or less, but the development of the AI
of the enemies had its complications and ended up prolonging. Until the tenth week, the
hope of being able of getting close to the initial planning was maintained, but from there the
tasks were prolonged more than due and the planning had to be reorganized to adjust it to
more real deadlines, having as objective the date of the second delivery.

In spite of this, new problems arose since the process of level design got a bit stuck and the
subsequent modeling of the scenario with the ProBuilder tool also took many more hours
than expected, as the first results were not optimal and a large part of the scenario had to be
reworked. It was at this point that it was decided to use trello to keep better control of tasks.

In addition to all this, a series of bugs were detected that had to be fixed. The new cursor
wasn't precise and it affected the aiming and the rotation of the player ship, some enemies
lost the target and stood still after one of them was killed, the guided missile rotated at
different speeds, etc.

The solution of these errors and some more had priority over other tasks. As well as tasks
like adding all the features of Game Feel that were not in the initial planning and had to be
added to get a better experience.

This meant that tasks such as programming the menu, creating user interface art and adding
audio had to be reduced in time, so the result in these sections is not at the same level.

The creation of the shaders turned out to be easier than expected once the operation of
some key nodes was understood, although the biggest problem came when looking for the
information necessary to understand it; that's why shaders as one of glitch effect or another
of chromatic aberration were discarded for the second planning and they were replaced by
the effects of postprocessing in spite of offering more limited options for the user.

It should also be noted that other features such as the increasing rate of descent of the
health/ammo meter when charging the shot were discarded once programmed because they
did not fit well into the gameplay.

It was also necessary to take an alternative path in the creation of the AI of the enemies, but
the result was similar to what was expected.

Finally, as far as working hours are concerned, it is possible that the limit of 300 hours was
exceeded, perhaps staying closer to 400 hours and without having finished at 100% since
there is still room for improvement in aspects such as the design and operation of the
interfaces and the music could be replaced by original pieces that get more closer to the
retrowave style.

55

Mario Tormo García Final Degree project

56

Mario Tormo García Final Degree project

6. Conclusions and future work
6.1 Conclusions
In spite of all the difficulties, a first level that works as a demo by bringing together the
essential features that defined the original idea has been developed, that means a game
inspired by arcades without much complexity but with a remarkable difficulty and mechanics
that serve various purposes such as shooting, which in this game is used both to attack
enemies as to activate switches, gain impulses, dry braking or change direction.

For these mechanics to work and feel deep and fun the design has to follow, the enemies try
to surround you or the turrets die with their own missiles to ensure that the player makes use
of the shot and its recoil force in various ways. The same is intended with the use of timer
switches or different traps. All these elements are presented gradually, starting at a save
area and trying to introduce the different types of enemies and traps one by one to make
sure that the player learns to overcome them so later they can appear combined to increase
the difficulty without becoming unfair.

The player's movement mechanic was created by assigning a Rigidbody to the player’s ship
to make use of the Unity physics engine. Both the standard movement with the keys W, A, S
and D and the impulse received after each shot have been programmed using AddForce()
allowing the forces to be added or subtracted to achieve the desired control.

To make the response of the game feel better, a series of features were added such as
camera shake, camera freeze, knockback animations, hit animations, muzzle flash effects,
etc. Most of them to add more strength and impact feeling to the shots and as can be
appreciated in the GIFs, the difference is remarkable.

For the enemies AI there were difficulties to achieve the objective of surrounding the player
so an alternative way was taken in which a series of empty objects are created around the
player, as many as enemies, and these are assigned as targets of the enemies as they enter
their action radius. In spite of this, the results obtained are similar to what was expected at
the first moment. Regarding missile guidance, several difficulties were also encountered, but
in this case, they were resolved as expected.

Regarding the mechanics of risk/reward, health and ammunition meters have been joined,
making them share the same value. Besides, to regenerate this value the player must
remain a while without firing, being more vulnerable. This generates situations in which, for
example, the player has little health/ammo and must decide if it is worth using what is left in
a loaded attack to eliminate the enemy, to run away or if it is better not to shoot and try to
recover. This system works well in combat but loses relevance in the more abundant trap
sections. In spite of having completed what was initially planned, the objective has not been
fully achieved.

The final look of the game is satisfactory. The visuals are appealing and the references are
visible without feeling like a copy. The shapes are easily recognisable and help to distinguish

57

Mario Tormo García Final Degree project

the elements despite the colour palette not being very wide. The key to the neon look has
been the use of emitting colours in the shaders and the post-processing bloom effect; other
effects such as noise, chromatic aberration or lens distortion have also helped to imitate the
retro-futuristic style. The particle effects created provide greater visual richness while still
fitting into the same aesthetics and the time spent reading information about Shader Graph
and creating shaders for the walls and floor has served to learn more about this tool and how
shaders work in general.

Overall, it is believed that a satisfactory final appearance both in the visual section has been
achieved, mentioned above, and in the gameplay area since the game feels good and all the
bugs found during development have been corrected. The only sections that are at a lower
level are the UI and the sound part, perhaps because they were the last tasks of
development and had less time for being polished.

6.2 Future work
Now that the core of the game is created, there are many ways in which the project can be
expanded. The most obvious is the creation of new levels introducing new enemies, traps
and puzzles more complicated. For example, the way it has been developed allows
changing the colors of the scenario easily to distinguish the levels (Figure 42). Going a step
further, you could also add boss fights at the end of each level or succession of levels.
Neither would it be difficult to develop alternative game modes such as races against the
clock or against an AI, or one about resisting waves of enemies. All in all, the possibilities
that open up are very broad.

Figure 42: An example of a possible future level with a different color scheme.

58

Mario Tormo García Final Degree project

Bibliography

References:

[Unity manual] - Last Access: 02/07/2019

https://docs.unity3d.com/es/current/Manual/UnityManual.html

[S. shooter tutorial] - Last Access: 02/07/2019

https://youtu.be/R8O8Y6xP79w

[Projectile tutorial] - Last Access: 02/07/2019

https://youtu.be/xenW67bXTgM

[Camera tutorial] - Last Access: 02/07/2019

https://youtu.be/MFQhpwc6cKE

[Camera shake tutorial] - Last Access: 02/07/2019

https://youtu.be/9A9yj8KnM8c

[Screen freeze tutorial] - Last Access: 02/07/2019

https://youtu.be/ji-2t_JLkB4

[S. graph manual] - Last Access: 02/07/2019

https://docs.unity3d.com/Packages/com.unity.shadergraph@6.7/manual/index.html

[S. graph tutorial] - Last Access: 02/07/2019

https://youtu.be/oHPrMjAIBZc

[Game Feel Talk] - Last Access: 02/07/2019

https://youtu.be/AJdEqssNZ-U

Tools:

[Unity] - Last Access: 02/07/2019

https://unity.com/es

[ProBuilder] - Last Access: 02/07/2019

https://assetstore.unity.com/packages/tools/modeling/probuilder-2-x-111418

59

https://docs.unity3d.com/es/current/Manual/UnityManual.html
https://youtu.be/R8O8Y6xP79w
https://youtu.be/xenW67bXTgM
https://youtu.be/MFQhpwc6cKE
https://youtu.be/9A9yj8KnM8c
https://youtu.be/ji-2t_JLkB4
https://docs.unity3d.com/Packages/com.unity.shadergraph@6.7/manual/index.html
https://youtu.be/oHPrMjAIBZc
https://youtu.be/AJdEqssNZ-U
https://unity.com/es
https://assetstore.unity.com/packages/tools/modeling/probuilder-2-x-111418

Mario Tormo García Final Degree project

[ProGrids] - Last Access: 02/07/2019

https://assetstore.unity.com/packages/tools/modeling/progrids-2-x-111425

[TextMesh Pro] - Last Access: 02/07/2019

https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126

[Universal Sound Fx] - Last Access: 02/07/2019

https://assetstore.unity.com/packages/audio/sound-fx/universal-sound-fx-17256

[Ultimate Game Music Collection] - Last Access: 02/07/2019

https://assetstore.unity.com/packages/audio/music/orchestral/ultimate-game-music-collection
-37351

[Blender] - Last Access: 02/07/2019

https://www.blender.org/

[Photoshop] - Last Access: 02/07/2019

https://www.adobe.com/es/products/photoshop.html?promoid=PC1PQQ5T&mv=other

[Google Drive] - Last Access: 02/07/2019

https://www.google.com/intl/es_ALL/drive/

[Trello] - Last Access: 02/07/2019

https://trello.com/

[GitHub] - Last Access: 02/07/2019

https://github.com/

GIFS:

[F12] - Last Access: 02/07/2019 https://imgur.com/ypEgNkh

[F13] - Last Access: 02/07/2019 https://imgur.com/Yg9Gnxj

[F19] - Last Access: 02/07/2019 https://imgur.com/EPOdL5Y

[F20] - Last Access: 02/07/2019 https://imgur.com/e4JihN2

[F36] - Last Access: 02/07/2019 https://imgur.com/N6LxeR3

60

https://assetstore.unity.com/packages/tools/modeling/progrids-2-x-111425
https://assetstore.unity.com/packages/essentials/beta-projects/textmesh-pro-84126
https://assetstore.unity.com/packages/audio/sound-fx/universal-sound-fx-17256
https://assetstore.unity.com/packages/audio/music/orchestral/ultimate-game-music-collection-37351
https://assetstore.unity.com/packages/audio/music/orchestral/ultimate-game-music-collection-37351
https://www.blender.org/
https://www.adobe.com/es/products/photoshop.html?promoid=PC1PQQ5T&mv=other
https://www.google.com/intl/es_ALL/drive/
https://trello.com/
https://github.com/
https://imgur.com/ypEgNkh
https://imgur.com/Yg9Gnxj
https://imgur.com/EPOdL5Y
https://imgur.com/e4JihN2
https://imgur.com/N6LxeR3

Mario Tormo García Final Degree project

Figures:

[F1] - Last Access: 13/07/2019

https://www.wired.com/2016/11/pinout-game/amp

[F2] - Last Access: 13/07/2019

https://www.mobygames.com/game/geometry-wars-3-dimensions-evolved/promo/promoIma
geId,108545/

[F6] - Last Access: 13/07/2019

https://videogamehistory.fandom.com/wiki/Battlezone

[F7] - Last Access: 13/07/2019

http://www.classicgaming.cc/classics/asteroids/

[F8] - Last Access: 13/07/2019

https://www.xataka.com/cine-y-tv/cuando-a-tron-le-negaron-el-oscar-de-efectos-especiales-p
or-considerar-que-utilizar-ordenadores-era-trampa/amp

[F9] - Last Access: 13/07/2019

https://www.imdb.com/title/tt1104001/mediaviewer/rm267237376

Thanks to:

Luis Amable García Fernández

Begoña Martínez Salvador

José Martínez Sotoca

Sergio Montellano Cuartero

Josep Tormo García

Paula Val Corvera

61

https://www.wired.com/2016/11/pinout-game/amp
https://www.mobygames.com/game/geometry-wars-3-dimensions-evolved/promo/promoImageId,108545/
https://www.mobygames.com/game/geometry-wars-3-dimensions-evolved/promo/promoImageId,108545/
https://videogamehistory.fandom.com/wiki/Battlezone
http://www.classicgaming.cc/classics/asteroids/
https://www.xataka.com/cine-y-tv/cuando-a-tron-le-negaron-el-oscar-de-efectos-especiales-por-considerar-que-utilizar-ordenadores-era-trampa/amp
https://www.xataka.com/cine-y-tv/cuando-a-tron-le-negaron-el-oscar-de-efectos-especiales-por-considerar-que-utilizar-ordenadores-era-trampa/amp
https://www.imdb.com/title/tt1104001/mediaviewer/rm267237376

