
1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 1/56

 

VIDEO	GAME	DESIGN	AND	DEVELOPMENT	DEGREE 

Degree	Final	Project 

 

 

 

 

Design	and	development	of	top	down	2D 

action-adventure	video	game	with	hack 

&	slash	and	bullet	hell	elements 

 

Daniel		Estradera	Benedicto 

 

 

Supervised	by: 

María			Barreda	Vayà 

 

June	17,	2019 

 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 2/56

Abstract 

The following document contains the report for the Final Project of the Video Game Design                             

and Development Degree. This project’s final result will consist of an original 2D                         

action-adventure		video	game	rendered	in	pixel	art	style.  

The video game genre is 2D real-time action-adventure inspired by the 8-bit and 16-bit                           

games such as Legend of Zelda: A link to the past	. The core of the gameplay is based on a                                       

challenging arcade combat, framed in a fantasy world. The combat blends elements from                         

the genres hack and slash and bullet hell	. This means that the player will fight with a                                 

melee weapon versus enemies that fire an overwhelming number of projectiles. To                       

overcome this challenge, the player will have at his/her disposal two defensive skills: bullet                           

deflection and dodge. After fighting several lesser enemies along its path, the player will                           

finally face the main antagonist. The emphasis of the project lies in this climaxing endgame                             

battle. 

The project is going to be developed in the Unity3D engine and will aim to craft an engaging                                   

action gameplay with stunning visuals that bring to life the world where the adventure                           

takes place. The target platform is a PC and it is designed to be played with a XBOX                                   

controller	(or	mouse	and	keyboard	as	an	alternative). 

Keywords:		Action-adventure,	Boss	battle,	Pixel	art,	Unity,	Bullet	hell,	Hack	&	slash.   

1 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 3/56

Index 

 
Index 2 

1			Technical	Proposal 5 

1.1			Introduction	and	Motivation 5 

1.2			Related	Subjects 6 

1.3			Objectives 7 

1.4			Project	planning 7 

1.5			Expected	results 9 

1.6			Tools 9 

1.7			References 11 
2			Game	Design 13 

2.1			Game	Overview 13 

2.1.1			The	high	concept 13 

2.1.2			Story	overview 13 

2.1.3			Technological	requirements 13 

2.1.4			Art	style 13 

2.2			Game	Structure 14 
2.2.1			Title	screen	and	flowchart 14 

2.2.3			Loading	screen 14 

2.2.4			Game	camera 15 

2.2.5			HUD	system 15 

2.3			Player	character 16 

2.3.1			Description 16 

2.3.2			Controls 16 

2.3.3			Combat 18 

2.3.4			Health 18 

2.4			World 19 

2.4.1			Level	Design	and	World-map 19 

2.4.3			Level	details 20 

2.4.4			Universal	mechanics 24 

2.5			Enemies 25 
2.6			Boss:	The	Supreme	Priest 26 

3			Project	development 27 

3.1			Character	Controller 27 

3.1.1				Movement 27 

2 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 4/56

3.1.2			Game	feel 27 

3.2			Collision	detection 29 

3.2.1			Alternative	to	Unity’s	physics	simulation 29 

3.2.2			Raycast	system 29 

3.3			Input	Manager 32 

3.3.1			Processing	the	player	input 32 

3.4			Gameplay	mechanics 33 

3.5			Camera 35 

3.5.1			Achieve	pixel-perfect	camera 35 

3.5.2			Camera	controller	logic 36 

3.6			Projectile	system 37 

3.6.1			Object	Pooling 37 

3.6.2			Further	optimizations 38 

3.6.3			Projectile	patterns 40 

3.7			Managing	damage	and	health 42 

3.8			Enemy	AI	and	behaviour 43 

3.8.1			AI	in	video	games 43 

3.8.2			Pathfinding 43 

3.8.3			Optimization	of	the	A*	algorithm 45 

3.8.4			Steering	behaviours 46 

3.9			Boss	behaviour 48 

3.9.1			Finite	state	machines 48 

3.9.2			Phases	of	the	Boss	fight 50 

3.10			Environments 52 

3.10.1			Tile-based	design 52 

4			Conclusions 53 

4.1		Achieved	goals 53 

4.2			Planning	deviation 54 

4.3			Future	lines 55 
4.4			Personal	reflection 55 

5			Bibliography 55 

 

 

   

3 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 5/56

1			Technical	Proposal 

1.1			Introduction	and	Motivation 

In an era of ever growing titles and massive triple A sagas, costs in the video game industry                                   

are raising exponentially to reach the self imposed standards in each new launch. Doing                           

this while keeping competitive prices that lure new players, requires more ingenious and                         

aggressive tactics. Inevitably, this will reach a stalemate when the gap between salaries and                           

sales	are	irreconcilable.  

While big-budget games rely on established ideas and struggle with changes, indie games                         

(as independent low-budget video games) have the freedom to unleash their creativity,                       

reinvent	the	wheel	and	tackle	the	video	game	creation	as	an	art	instead	of	a	service. 

In the near future, artificial intelligence (AI) driven content creation will for sure change the                             

landscape and provide us with cost-efficient mainstream titles. In the meantime,                     

independent games may shine again as players appeal to them in search for fresher or                             

simpler	concepts	instead	of	their	baroque	and	over	bloated	counterparts. 

The aim of this project is developing a video game that emulates the style and philosophy                               

behind well-known independent titles that strive to deliver a tight experience without                       

creative limitations. With every aspect of it developed by one person, the scope of the game                               

is	small	but	it	leaves	space	to	experimentation	and	gameplay	innovation. 

This project is a genuine and personal creation to show the game design skills I have learnt                                 

and trained during my degree studies. Nevertheless, the game itself is different to others of                             

the	same	genre	in	its	design,	narrative	and	art. 

In the video game, the player controls a small heroine armed with a sword. She stumbles                               

upon a village that is being assaulted by zealots of a cult obsessed with fire. Despite of                                 

being none of her business, she gets ambushed and forced to fight back. After the skirmish,                               

4 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 6/56

a lone peasant survivor points her to a huge cathedral where the Priest, the leader of the                                 

perpetrators,	dwells.  

This prologue to the main action of the game will serve as a tutorial for the player and will                                     

give context and meaning to the encounter with the main villain of the game. The entire                               

game will include 7 levels, the last one being a long combat versus the Supreme Priest of                                 

the cult. This combat will take place inside the cathedral and will be divided into 3 phases,                                 

each	featuring	different	skills,	patterns	and	animations	for	the	Priest. 

1.2			Related	Subjects 

VJ1215	-	ALGORITMOS	Y	ESTRUCTURAS	DE	DATOS 

Building up on the concepts upon the previous Programación I and Programación II , this                             

subject teached me how to apply my programming skills to solve problems using efficient                           

code	and	proper	data	structures. 

VJ1224	-	INGENIERÍA	DE	SOFTWARE 

In the same fashion as the previous subject, this one continued developing my                         

programming	skills	introducing	methodologies	and	principles	of	software	engineering.  

VJ1222	-	DISEÑO	CONCEPTUAL	DE	VIDEOJUEGOS 

The principles used in the definition of mechanics and rules for the game design were                             

introduced	in	this	subject.  

VJ1227	-	MOTORES	DE	JUEGOS 

This subject served as an introduction to the Unity 3D game engine. This was the software                               

used	to	craft	an	put	together	this	whole	project.  

VJ1231	-	INTELIGENCIA	ARTIFICIAL 

Some of the techniques for artificial intelligence introduced in this subject were                       

implemented in this project to perform the movement, pathfinding and decision making of                         

the	enemies. 

5 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 7/56

1.3			Objectives 

The main goal of this project is to design, implement and polish the gameplay and art of                                 

the described video game to a point where its quality is equated to popular indie video                               

games	of	similar	scope.  

In order to achieve the main purpose, the work is divided into several specific objectives                             

which	are	summarized	as	follows: 

● To design an engaging gameplay that is entertaining and challenging (easy to learn                         

and hard to master). It combines the effortless action packed aspect of the                         

hack’n’slash genre with the frenetic and precise controls that require the bullet hell                         

genre. 

● To implement efficient artificial intelligence for the Priest (final boss) and its                       

minions to produce an interesting behaviour. It is designed to pose a real threat,                           

while avoiding erratic and unpredictable actions in order to be understandable by                       

the	player. 

● To create an original setting and a variety of characters consistent with the world                           

rendered in pixel art style. It requires frame by frame hand drawn art for the                             

animations. 

1.4			Project	planning 

To reach the final goal of the project, we must manage the required workload in advance.                               

Initially we have to set the project’s scope, following by a breakdown of the tasks and their                                 

estimate costs. The duration of the tasks should be balanced to ensure that, even in the                               

worst case, a minimum viable product is achieved. Roughly 40% of the time will be                             

destined to programming, 30% for the drafting of the Final Memory. The rest is assigned to                               

art, however, drafting and coding are prioritised. This is because this area is not as vital to                                 

reach a functional state of the project as the other two. The detailed planning is the                               

following: 

6 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 8/56

● Game	Design	Document	(15	hours) 

● Implement	the	game	mechanics	and	core	systems	(80	hours) 

○ Implement	the	player	controller	with	custom	collision	system. 

○ Implement	the	hitboxes	and	projectiles	as	a	foundation	for	the	combat. 

○ Implement	the	core	mechanics:	dash,	bullet	deflection. 

○ Implement the button buffering and combos: lunge, backflip, sprint, critical                   

strike. 

● AI,	behaviour	and	pacing	of	the	encounter’s	phases	(40	hours) 

○ Implement	the	state	machine	to	control	enemy	behaviour. 

○ Implement	the	steering	behaviours	and	pathfinding. 

○ Design	4	types	of	lesser	enemy,	each	one	with	a	distinct	role. 

○ Implement	the	system	to	coordinate	lesser	enemy	groups. 

○ Design	and	implement	3	final	boss	phases	with	different	patterns	and	skills. 

● Character	animations	and	VFX	(50	hours) 

○ Animate	heroine	and	her	FX	for	sword	slashes/hits. 

○ Animate	the	Priest,	with	a	different	set	of	animations	for	each	phase. 

○ Animate	4	types	of	lesser	enemy. 

○ Fire	FX:	projectiles,	explosions,	etc. 

● Environmental	art	and	world	building	(30	hours) 

○ Forest and village background tiles and props (decoration for the                   

background). 

○ Cathedral	exterior	and	interior	tiles	and	props. 

○ Cathedral	seen	from	the	distance. 

○ Animated	decorations	and	critters	to	breathe	life	into	the	scene. 

● SFX	and	music	(10	hours) 

○ Boss	battle	music	that	changes	on	each	phase. 

7 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 9/56

○ Ambient	music	for	the	introductory	levels. 

○ Specific	sound	effects	for	the	heroine	skills. 

○ Specific	sound	effects	for	the	Priest	skills. 

○ Sound	effects	for	fire	projectiles	and	explosions. 

○ Background	sounds. 

● Implement	the	non-gameplay	systems	and	miscellanea	(10	hours) 

○ Implement	the	menu. 

○ Implement	the	controller	bindings	for	player	customization. 

○ Cover	art	for	the	start	of	the	game. 

○ Scripted	scenes	between	gameplay. 

● Final	Memory	(60	hours) 

● Project’s	Defense	(5	hours) 

1.5			Expected	results 

By the end of the project, a fully playable video game is expected to be developed. In this                                   

game the player will control a heroine with a range of expressive skills. As the heroine, the                                 

player will engage in fights that combine elements of the hack & slash genre with the bullet                                 

hell genre. The action will be framed in a beautiful fantasy setting to explore, rendered in                               

pixel art and divided in 7 levels. The first levels will be introductory to the plot and                                 

gameplay, leading to a final interior set, where a huge battle takes place. There will be four                                 

types of lesser enemies and a powerful boss with three increasingly difficult phases, each                           

one	with	its	own	skills,	patterns	and	animations. 

1.6			Tools 

Game	engine	-		Unity3D 

Unity 3D is a well established industry standard game engine. It is used widely for its                               

cross-platform support and its accessibility. I chose to work with it because the scripting                           

8 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 10/56

API uses C#. While not as fast as C++, it does not overcomplicate the development process                               

and still offers muchmore control than visual scripting tools offered in other game engines.                             

Although the engine was first conceived for 3D, it now extensively supports 2D rendering,                           

physics	and	animation.  

IDE	-		Visual	Studio 

Visual Studio is an integrated development environment from Microsoft that can be                       

obtained	along	with	Unity.	It	is	also	an	industry	standard	for	video	game	coding.  

External	software	-		Unity’s	Libraries 

The scripting API in Unity is used to code the rules for the gameplay and how the game                                   

responds to the player input. That includes graphical effects, the physical behaviour of                         

objects	and	the	artificial	intelligence	of	enemies.  

Animations	-		Aseprite 

Aseprite is a software to create 2D art and animations for games. It specializes over retro                               

style graphics of the 8-bit and 16-bit era, in other words, pixel art. It is really lightweight and                                   

its	workflow	helps	to	speed	up	the	creation	process. 

Maps	-		Pyxel	edit 

Pyxel edit is designed for tile-based art. It offers a better pipeline to create this type of asset,                                   

which	otherwise	would	be	much	more	time	consuming. 

FX	-		Pixel	Fx	Designer 

As the previous two tools, this is an specialized piece of software for pixel art. This one                                 

eases	the	process	of	creating	special	effects	in	pixel	art	style.  

Concept	Art	-		Photoshop 

Photoshop is the industry standard for digital art as a whole. Although I could use                             

photoshop to create all the art in the game, this powerful software is more suited for                               

conventional	art	and	photo	editing. 

9 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 11/56

Music	and	SFX	-		Bosca	Ceoil 

It is a free, easy to use tool for creating music. Since most of the time music and sound                                     

effects are neglected during the development of a game, I wanted to use an accessible                             

software	to		simplify	this	task	as	much	as	possible. 

1.7			References 

The following titles are some of the games where this project will draw inspiration from.                             

They	share	genre	elements	and	pixel	art	graphics. 

Nuclear Throne [1], top-down 2D shooter roguelike. The gameplay premise of the game is                           

simple but really polished, with a focus on being responsive and engaging. The frenetic                           

action and chaos embraced by the design of the game works because of the robust and                               

tested	core	mechanics. 

Hyper Light Drifter [2], is a top-down 2D action-adventure hack & slash. The aesthetics of                             

the game are carefully crafted to build a complex and rich world. The game does not                               

feature text or dialogue but still manages to convey an intriguing narrative through                         

environmental storytelling. This is done through hints left along the game that suggest the                           

player a sequence of events so they come up with their own interpretations of the story.                               

Aside	from	the	world	and	art,	the	action	is	quite	immersive	as	well. 

Enter the Gungeon [3], is a top-down 2D bullet hell roguelike. This game is a good example                                 

of an action game that features and combines elements of the bullet hell genre. It                             

showcases	really	challenging	and	interesting	bullet	patterns	in	the	enemies	and	bosses.  

Titan Souls [4], is a top-down 2D action-adventure. The catch of this game is a simple                               

mechanic that in turn has an interesting depth. The player has a single arrow that can be                                 

thrown at will, but then it must be retrieved to be used again. However, the arrow can be                                   

called back anytime. This opens a wide range of uses that emerge from aminimal concept.                               

It is also relevant that the structure of the game features only challenging boss encounters                             

without	any	lesser	enemies	in	between. 

10 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 12/56

2			Game	Design 

2.1			Game	Overview 

2.1.1			The	high	concept 

This is the fast paced action-adventure game where you slash through hordes of fire                           

obsessed zealots. Dodge and deflect their fire projectiles back at them and fight their                           

Supreme	Priest	in	a	frenetic	boss	battle.  

2.1.2			Story	overview 

You play as a wandering swordfighter named Pira. Along your journey, you stumble upon a                             

small village that is being ravaged by a group of brainwashed cultists. Under the rubble you                               

find a lone survivor. He reveals you where the lair of the cult is located. They occupied the                                   

sacred	ruins	of	an	abandoned	cathedral	and	only	you	can	kick	them	out	of	these	lands. 

2.1.3			Technological	requirements 

The game will be developed in Unity for the PC platform. The use of an xbox controller is                                   

prefered, as the game is designed with that control scheme in mind. Nonetheless, the use                             

of	mouse	and	keyboard	is	a	valid	alternative	and	it	is	supported	too. 

2.1.4			Art	style 

The art style used will be pixel art. Character animations will be drawn frame by frame and                                 

backgrounds	will	be	composed	using	tiles	and	decorated	with	reusable	props. 

To achieve a true pixel perfect graphics, textures are imported in Unity using point filter                             

mode	and	without	compression. 

11 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 13/56

2.2			Game	Structure 

2.2.1			Title	screen	and	flowchart 

The title screen of the game features a pixel art illustration that shows the player character                               

in heroic pose over a background with the cathedral. The player character and several                           

details	in	the	scene	are	animated	to	show	the	movement	caused	by	soft	wind	gusts. 

The options listed to be selected are: Play	, Settings and Quit	. Once the player starts a new                                 

game for the first time, the Play option will be switched to Resume and New Game	. Resume                                 

continues the game from the last checkpoint reached by the player, while New Game                           

restarts any progress made. The flowchart shown in Figure 2.1 describes the structure of all                             

the	interconnected	scenes. 

 

Figure	2.1.	Flowchart	of	the	game 

2.2.3			Loading	screen 

The use of a loading screen is mostly cosmetic in the case of this game, because loading                                 

times are brief. It will serve as a transition between the Title screen and playing the actual                                 

game. It will also appear briefly in between levels, to let the game load the map layout and                                   

the	enemies.  

12 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 14/56

2.2.4			Game	camera 

The camera follows the character from an overhead perspective. It can offset towards the                           

aiming direction so the player is able to look ahead. In certain level sections, the camera                               

will be locked inside predefined bounds. This is used in order to hide the limits of the world                                   

or	even	to	lock	the	camera	in	place	to	frame	a	fight	encounter	you	cannot	bypass. 

It is set as an orthographic view that snaps to the pixel grid at a native resolution of 480x270                                     

pixels (16:9 aspect ratio). Usually, PC screens are four times bigger (1920x1080 pixels), so the                             

game is upscaled four times. Moreover, since the gameplay action happens in a 2D world,                             

there is a problem with how to tackle the depth sorting in the rendering of juxtaposed                               

elements. To solve this, instead of using complex masking or manual layer sorting, the                           

camera is tilted 60º and the all graphics in the game are skewed by a factor of 2 in the Y axis                                           

and	a	factor	of	1.155	in	the	Z	axis. 

2.2.5			HUD	system 

The head-up display system for this game is simple and unobtrusive. It displays the player                             

health in a bar of health points in the top left corner and a reticle that shows where player is                                       

aiming	at. 

During the boss battle, a big health bar is displayed at the bottom center of the screen. This                                   

bar	shows	the	remaining	health	points	for	the	current	phase	of	the	boss.   

13 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 15/56

2.3			Player	character 

2.3.1			Description 

Pira is a wandering swordfighter, last daughter of a long dynasty of once revered                           

swordsmen. She travels the land fighting the evil, keeping the family oath: feed her spell                             

bound	sword	with	the	blood	of	the	twisted	and	the	wicked.  

 

Figure	2.2.	Pira,	the	player	character 

 

2.3.2			Controls 

Pira has the following set of basic moves that are binded to the controls shown in Figures                                 

2.3	and	2.4: 

Move: When using the left analog stick of the XBOX controller or the W-A-S-D keys in the                                 

keyboard,	Pira	runs	in	that	direction. 

Roll: Evasive move that displaces Pira in the direction she is running. This action prevents                             

the player from taking any damage. It is useful to dodge incoming attacks and navigate                             

with ease between enemies. It can be triggered with the left bumper in the XBOX controller                               

or	the	Space	key	of	the	keyboard. 

Attack	: It is the skill with the most complex interactions of the kit. Melee attacks are the                                 

primary source of damage, but they require you to get in the middle of the fray, which may                                   

14 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 16/56

lead to a risky situation. On the other hand, this same sword slashes are able to deflect                                 

incoming projectiles from afar, offering a strong defense from enemy attacks, yet more                         

unreliable damage output. The right bumper in the XBOX controller or the left click of the                               

mouse	are	tied	to	this	action. 

Aim: Attacks can be aimed at 360 degrees, and parried projectiles get deflected in the                             

direction the player is aiming. The input is taken from the right analog stick of the XBOX                                 

controller	or	the	movement	of	the	mouse. 

 

Figure	2.3.	Xbox	Controller	controls 

15 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 17/56

 

Figure	2.4.	Mouse	&	Keyboard	controls 

2.3.3			Combat 

During combat, the player must juggle between slashes to deal damage and rolling to                           

prevent other sources of damage that can not be deflected. However, keeping a constant                           

motion can be tricky and could sometimes end up in a bad spot. If surrounded by a thick                                   

barrage of projectiles, the player can hold down the attack button to unleash a flurry of                               

quick attacks. This special move creates a protective barrier destroying the projectiles.                       

Although it comes with a downside, as the movement of the player character and the                             

aiming become restricted for the duration. While situational, it can be a powerful tool when                             

overwhelmed. 

2.3.4			Health 

Health is displayed at the top left corner of the screen. Five health points are represented in                                 

a bar. Enemy projectiles and attacks that hit Pira take away her health points. When                             

depleted, you die. However, the bar can be refilled by gathering soul fragments. These souls                             

fragments are dropped by enemies that get hitted by special attacks. Getting 4 of them                             

replenishes	1	health	point.	Fragments	are	also	displayed	next	to	the	health	bar. 

16 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 18/56

2.4			World 

2.4.1			Level	Design	and	World-map 

The world is divided in 7 levels with a linear progression. This means that each one                               

connects to the following one, and the game can only be completed by beating each one in                                 

succession.	The	Figure	2.5	shows	all	the	maps	interconnected	from	start	to	end. 

Each level is designed with some principles in mind. The main priority is to keep an                               

interesting pace for the player, mixing segments of intense action with more paused                         

sections. Along the way there will be scattered hints and detail for environment for                           

storytelling to sell the narrative. Finally, the goal is to effectively teach the user how to play                                 

the	game	as	it	progresses. 

 

Figure	2.5.	World-map	featuring	all	the	levels	in	their	context 

17 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 19/56

2.4.3			Level	details 

1.	Forest	glade 

Tutorial level where the player can get a grasp of the basics. It showcases destructible                             

obstacles to introduce attacks, platforms over a precipice to teach how to roll and a single                               

enemy. 

 

2.	Forgotten	Shrine  

This level starts with a fight versus a tougher enemy to settle down the mechanics of                               

combat. Then, it follows with a serene walk to a viewpoint that overlooks the valley ahead,                               

dominated by a huge structure, the Cathedral. From that far, figures carrying torches are                           

vaguely	distinguished	marching	from	the	entrance	down	to	the	valley. 

   

18 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 20/56

3.	Lost	village 

After a descent towards the valley, the player will get introduced to new types of isolated                               

enemies. This will serve as a preparation for the merciless ambush that awaits ahead. The                             

player reaches a desolate village that was just ravaged by cultists. A considerable group of                             

them	is	still	there,	ready	for	the	assault. 

 

4.	Pilgrim’s	road 

Following the path, the player can see a parade of cultist returning to the cathedral not so                                 

far ahead. The second stretch of the road is a bridge over with a frail foundation and the                                   

ground shatters as you step on it. This leads to a frenetic race to arrive safe to the other                                     

side. If the player falls and Pire dies, she will respawn half through the level, just before the                                   

bridge. 

 

19 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 21/56

 

 

5.	Holy	Stair 

This level opens with another tight combat that requires to maneuver over precipices. The                           

second section of the level is a long walk up the stairs of the cathedral. The cultist are aware                                     

of your intrusion and will drop flaming wheels rolling down to kill Pira and prevent her                               

advance.	The	player	must	internalize	the	timing	of	these	hazards	to	overcome	them. 

   

20 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 22/56

6.	Ruined	Path 

Almost there, the cultists destroy before your eyes the path to the cathedral as a last                               

resource to halt your pace. The player must find the hidden shortcut to reach the other                               

side.	This	section	has	difficult	platforming	action	without	any	cover	from	enemy	projectiles. 

 

7.	The	Cathedral 

The	end	level	where	the	boss	fight	takes	place. 

 

 

   

21 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 23/56

2.4.4			Universal	mechanics 

Breakable obstacles: These props function both as decoration and as a way to control the                             

pace of the player blocking exits. Since they also block the enemies advance, they are                             

useful as a tactical resource to cover from their attacks. This type of terrain is featured in                                 

three	types: 

- Tall	Grass		reduces	movement	speed			but	the	player	can	easily	cut	through	it.  

- Bushes		block	movement	and	only	take	one	hit	to	get	destroyed. 

- Pillars		block	movement	too,	however,	they	take	several	hits	before	breaking	apart. 

Precipices: Gaps in the terrain. If the player character falls into them, it respawns with less                               

health. The player must use the Roll ability to overcome this gaps. There is also a variation                                 

of terrain called Falling Ground	, which is terrain that disappears when the player steps on                             

it,	becoming	precipices. 

Firewall: When facing an enclosed enemy encounter, firewalls are spawned on the                       

entrance and exit of the fight. The fire puts out when every enemy is defeated and the                                 

combat	ends.  

Firewheels: Fast moving objects that roll down steep terrain or stairs and burn on contact.                             

The	player	can	dodge	them	or	run	away	since	attacking	it	has	no	effect	on	this	contraption. 

   

22 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 24/56

2.5			Enemies 

Enemies in the game are crazy zealots that belong to a fire obsessed cult. They follow the                                 

orders	of	a	Supreme	Priest. 

 

Figure	2.6.	Concepts	for	the	lesser	enemy	types 

Pyromancer	: The pyromancer is a long ranged enemy that casts fire barrages towards Pira                           

and tries to keep a distance from her. They have 2 hit points and the ability to teleport                                   

themselves	after	a	small	channel	time. 

Pyromaniac	: The pyromaniac is a medium ranged enemy that casts a fire cone in front of                               

him. He also has the ability to suddenly dash forward to get in range for his attack. They are                                     

slightly	tougher	than	the	pyromancer,	with	3	hit	points. 

Immolator	: The immolator is an erratic unit that runs chaotically before setting himself on                           

fire and running towards Pira. If he reaches her, he will explode and stun Pira with the blast.                                   

They	have	only	one	hit	point. 

Executor	: The executor is a tough melee enemy that can deal high damage with his axe.                               

They	have	5	hit	points	and	can	stun	Pira	with	their	axe	strikes.   

23 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 25/56

2.6			Boss:	The	Supreme	Priest 

The Priest awaits the player inside the cathedral, the last level. The encounter is divided in                               

three different phases where the boss displays a different behaviour and set of attacks.                           

Each phase, the player has to deal 30 hit points to the Boss, for a total 100 hit points for the                                         

whole	fight. 

Phase 1: During this phase, the Priest acts elusive, keeping distance from the player with                             

the ability to teleport anywhere in the room. His attack pattern is predictable. He casts                             

barrages of fire projectiles that travel at slow speeds. Slowly they accumulate filling up the                             

room.	Alternatively	he	summons	pyromancers	to	help	him.  

Phase 2: In his second form, the Priest uses two huge sickles and relays onmelee combat.                                 

Charging forward to slice Pira in two. He only stops to catch his breath and channel a                                 

powerful beam of energy aimed directly at Pira. The only way to avoid it is to find cover                                   

behind	a	pillar.	At	the	end	of	this	phase,	Pira	beheads	the	Priest. 

Phase 3: The cultists start eerie chants and immolate themselves. Their souls converge in                           

the carcass of their deceased master and turn it into a demonic flesh aberration. The final                               

phase starts and the pace of the combat gets frenetic. The monster is able to produce                               

spontaneous combustions. Pira has to step outside of the hot areas before they explode. It                             

can cast fire barrages like the ones in the first phase, but this time they are harder to predict                                     

to	avoid	the	damage. 

If the player beats this phase and gives a final death blow to the monster, the game will                                   

end.   

24 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 26/56

3			Project	development 

This section is dedicated to explain the creation process of the project. The reasoning                           

behind the implementation choices and a breakdown of its elements. The order in which                           

each	concept	is		presented	follows	the	actual	progression	that	the	development	had. 

3.1			Character	Controller 

3.1.1				Movement 

At the core of every great action game there is a great character controller. Character                             

controllers are responsible for controlling the movement of the character: how they                       

respond	to	player	input	and	interact	with	the	world. 

In Unity, objects are usually moved in two different ways. Either by changing their position                             

directly or by applying forces to a rigidbody[19] component and leaving the physics engine                           

to deal with movement. Rigidbodies replicate quite well the behaviour of real world physics                           

of simple objects. On the contrary, the kind of controls we require for our character are                               

composed of complex actions and must be parameterized by hand. In this case, by directly                             

modifying the position of our controller, we are able to finely tune how it moves around.                               

This	is	essential	to	get	a	game	that	feels	nice	and	plays	fluidly. 

This line of code on the Update method of the Controller2D class will translate the                             

character a certain distance every frame, multiplied by deltaTime to ensure it remains                         

framerate	independent. 

transform.Translate(velocity
*
Time.deltaTime); 

3.1.2			Game	feel 

This method grants a great precision when interpreting the player input but it can feel stiff                               

and rigid. This happens because we move from a full stop to the full acceleration instantly                               

and vice-versa. If we move something with direct input from the player, there is simple trick                               

but really effective trick to improve the feeling. When the input to move is received, we                               

25 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 27/56

apply a constant acceleration to the speed up to a limit. When the input stops, we apply a                                   

constant	deceleration	[7].		The	Figure	3.1	compares	the	two	approaches. 

 

Figure	3.1.	Comparative	of	the	two	methods	to	change	movement 

In Unity, we can just apply a Vector2.SmoothDamp() method to the speed to get this                             

smooth transition between standing still and moving. Finding the right values takes trial                         

and error, and depending on the parameters used we can arrive to different conclusions. If                             

we keep short transitions, we are emulating a high acceleration and high friction that                           

results	in	great	responsiveness.	The	feeling	is	snappy,	since	it	sacrifices	precision	for	speed.  

On the opposite, having slower transitions result in floaty movement that become                       

unbearable to play with. With low acceleration and friction, there are no immediate                         

changes	in	direction,	so	the	player	does	not	feel	in	control	of	the	character. 

Instead of the previous approaches, the best game feel comes from giving the player more                             

agency over the character. We can get great precision by reducing acceleration and keeping                           

a high friction. This way, we get in motion gradually and suddenly stop as required. As an                                 

exemption, when we want something to have impact, we should reverse the parameters to                           

have instant acceleration and gradual deceleration. This will be really useful for the dash                           

mechanics	of	the	character. 

Up to this point, the character can move freely since it does not take into account any                                 

limitation or boundary of the world. To be able to interact with the environment, we need                               

some	kind	of	collision	detection	that	prevents	the	character	to	get	through	obstacles.  

   

26 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 28/56

3.2			Collision	detection 

3.2.1			Alternative	to	Unity’s	physics	simulation 

Unity’s physics engine was built for physics simulation. Unfortunately, simulations tend to                       

behave in a non-deterministic way and produce inconsistent results in favor of realism. For                           

the purpose of this game, realistic physics are not required. On the other hand, consistency                             

in movement and collision detection is a must [6]. Collision detection is in charge of                             

identifying the boundaries of the map and hits between the different entities that populate                           

the game scene. The component rigidBody2D of the Unity 2Dphysics engine is perfectly                         

capable of doing this task. However, relying on the physics engine for this specific                           

calculation is a waste of performance. Even if we ignore the extra costs, there are still some                                 

edge cases where this type of collision detection lacks precision. One of these pitfalls is that                               

unless physics are computed in the expensive continuous collisions mode, they may fail to                           

detect a moving object intersecting others at great speeds. Even if we overlooked all these                             

problems assuming our target platform is a powerful PC, using the Unity physics engine                           

would not result in sharp and precise controls for the player character movement (I will                             

expand on this on the 2D character controller section). Building our own system allows a                             

fine	tuning	that	we	can	not	get	from	anywhere	else. 

For the former reasons, I opted to implement my own 2D collision detection system based                             

on ray casting. Ray casting is the method of casting a ray towards a direction that then picks                                   

up information about what intersects the ray. Using this method, explained in the next                           

subsection,	we	can	determine	how	the	character	controller	moves	around	the	world.  

3.2.2			Raycast	system 

Conveniently, Unity provides a Raycast[18] function which is an incredibly cheap operation.                       

It is conceptually like a laser beam fired from a point in the space towards a particular                                 

direction. Any collider that makes contact is detected and reported. Moreover, the function                         

returns a RaycastHit object with a reference to the collider that was hit. Their already fast                               

performance can be further improved on using LayerMasks. This option allows to only                         

27 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 29/56

apply the detection to certain types of objects, reducing the amount of overhead from                           

unnecessary	checks. 

In	this	approach	to	collision	detection	these	are	the	three	main	steps	applied: 

We have a moving object with a certain speed, direction of movement and position in a 2D                                 

space.  

1. We break down the direction of movement in the “x” and “y” axis (we ignore the “z”                                 

component	since	we	are	working	on	a	2D	space). 

2. We cast rays in both “x” and “y” axis with a length equal to the exact distance that                                   

we attempt to cover in the next frame. This distance is obtained with the product of                               

the	speed	and	the	delta	time	of	the	update	rate	of	the	screen. 

3. If no hit is detected, then we move the object to the desired position and repeat the                                 

process. If the ray hits some collider, the hit point will define the maximum value the                               

object	will	be	able	to	reach	on	the	axis. 

This method [5] provides extremely precise collision detection, independent from frame                     

rate and speed, because the length of the rays takes this parameters into account. For                             

instance, if we had to move the character controller at really high speeds (or we had a low                                   

frame-rate due to a performance spike) the raycasts simply would stretch to cover a longer                             

distance.	This	way,	the	collision	detection	check	can	not	skip	a	collider	passing	through	it. 

In order to account for the total extent of our character collider we should at least cast 2                                   

rays per axis, one from each corner. However, if there were obstacles smaller than the                             

distance left between them, more rays should be used. To account for this scenario, I                             

implemented a RaycastController class that takes the maximum gap that can be left                         

between raycasts and dynamically casts more or less depending on the size of each side.                             

Now, having several raycasts per side, we must iterate along them to get the one that                               

returns	the	shortest	distance	to	a	collider	and	discard	the	others. 

28 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 30/56

 

Figure	3.2.	Character	controller	detecting	an	obstacle 

 

I came across an important issue when casting rays from the edge of the character                             

controller bounds. When the player controller is standing close to a collider, we still need a                               

small amount of space from which we can effectively fire the rays. This was solved by                               

adding	an	indent	of	small	width	to	the	point	where	rays	are	being	cast. 

 

 

Figure	3.3.	Highlight	of	the	indent	that	offsets	the	origin	of	the	raycasts 

29 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 31/56

3.3			Input	Manager 

3.3.1			Processing	the	player	input 

Unity historically has lacked from a robust input manager that eased the addition of the                             

numerous controller mappings that exist out there. This is going to change soon as the next                               

version of the engine is going to make available a great input manager which simplifies the                               

current	workarounds.  

For this project I had to implement an alternative solution to communicate the actual input                             

of	the	player	with	the	character	actions	in	the	game	[8].  

On one side we have the user, who has multiple ways to send the input. On the other, the                                     

in-game actions that must be triggered as a result. Since the game is built for PC, mouse &                                   

keyboard work by default. Although, I designed a gameplay that favors a console controller,                           

so	I	focused	on	getting	XBOX	Controller	support	too.  

If the user tries to perform an action, wemust get a keypress from the keyboard or a button                                     

press from the XBOX controller. Regarding the code, we could implement a condition for                           

each kind of input of every controller type and tie them directly to the action. However,                               

with the introduction of a new controller we have to repeat the process. Likewise, when a                               

different	action	is	added,	we	need	to	add	new	conditions	to	check	for	each	controller. 

To take a better approach we can create a layer between the input and the game. A class                                   

able to read the input from all the controllers and convert it back into a single virtual input.                                   

In our code we can then use our virtual input to call the appropriate action function. This                                 

way, if we were to end up adding more controllers, we would only have to connect them to                                   

our	new	virtual	input	and	no	to	every	single	piece	of	code	triggered	by	these	inputs. 

This gives us more control of what is sent to our game. We then can block this input or alter                                       

it while it is actually being sent. In Figure 3.4 we can visualize the result of this                                 

configuration. 

 

30 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 32/56

 

Figure	3.4.	Diagram	of	the	communication	between	the	input	related	classes  

3.4			Gameplay	mechanics 

Gameplay encompasses what the players can do and how the game responses to their                           

actions. This interactivity with the game state relies in some elements we call mechanics.                           

The interaction of different mechanics with synergy between them can create great depth                         

for the gameplay. In this game, the player has access to three actions: running around,                             

rolling	and	attacking.  

Running is the most intuitive of them. It allows the player to traverse the space and position                                 

itself for further interaction. While running, the player character has great maneuverability                       

but it is vulnerable to attacks. The implementation is really straightforward, building upon                         

the 2D controller we simply update the direction of movement according to the players                           

input	and	multiply	it	with	the	movement	speed. 

Rolling is a defensive action. It allows the player to reposition quickly to dodge incoming                             

attacks. It requires some planification ahead, since it can not change direction halfway. In                           

combination with the ability to run, it grants extra speed to travel faster. It also comes in                                 

handy to close gaps for an offensive approach. To implement it, we simply add a special                               

case for running. In the direction the player is facing we apply a sudden burst of speed with                                   

a negative acceleration. While the speed is different to zero, we do not allow the direction to                                 

change	and	any	further	player	input	is	ignored.  

Attack has the more depth to it. When used, it covers a short range in front of the player                                     

character and damages anything caught inside. It can be used offensively at closeup range,                           

31 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 33/56

just as a straight up damage dealing ability. However, andmore interesting, it also deflects                             

projectiles, sending them back in the facing direction of the enemy. This makes a great                             

defense against projectiles. With good aim, the projectiles can even be turned against                         

enemies. 

To implement the attack action, we can create a method that calls                       

Physics2D.OverlapCircleAll in a radius slightly offset to the direction the character is facing.                         

This method returns a list with all the colliders inside the defined area. Then by iterating                               

through the list we can call the method TakeDamage() with parameters for damage and                           

direction of the hit. Only those objects that implement the interface IDamageable will take                           

damage	and/or	get	pushed	in	the	direction. 

There are a series of tweaks to balance things and prevent the player from mindlessly                             

pushing the attack button. If the attack button is hold down or pressed in quick succession,                               

the attack turns into a flurry of sword swings. It becomes impenetrable but deflected                           

projectiles are weakened, losing accuracy and speed. Additionally it slows down the                       

running and rotation speeds of the player character. These modifications result in a reliable                           

tool to withstand a huge barrage of projectiles. However, they momentarily take away all                           

the	offensive	power	and	open	up	a	weak	spot	for	non-projectile	enemy	attacks.   

32 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 34/56

3.5			Camera 

3.5.1			Achieve	pixel-perfect	camera 

By default, Unity does not render pixel art properly. Both the camera and the sprite import                               

settings must be adjusted to get pixel perfect style. By this, I mean getting the art style                                 

exactly as it was designed, without stretching, missing or duplicated lines and blurriness                         

[9]. 

 

Figure	3.5.	Comparative	between	blurred	sprites	and	pixel	perfect	sprites 

First, anti aliasing should be turned off. It is a useful rendering technique that blurs the                               

jagged lines that appear when rasterizing 3D art to the screen. We need the opposite effect,                               

clean	cut	pixels	in	the	screen.  

The import settings for sprites also try to hide pixels using a blur filter, this should be                                 

disabled. In addition, Unity applies an image compression by default, to prevent large                         

textures from consuming toomuchmemory in game and reducing loading times. Since our                           

sprites are really small and must retain their original colors, compression is unnecessary                         

and	even	counterproductive. 

33 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 35/56

Now that the pixel art sprites look as intended, we need the camera to render it correctly to                                   

the screen. PC screens usually have a 16:9 aspect ratio, with resolutions of 1920x1080 pixels.                             

However, there are screens with different resolutions and aspect ratios, and the game                         

should look equally as good on all of them. The key to achieve this is to settle for a smaller                                       

resolution that favors pixel art. I chose 480x270 as the native resolution of the game                             

because it keeps the common 16:9 ratio. The game will run on this size and then get                                 

upscaled	to	perfectly	fit	standard	or	atypical	screen	sizes.  

Next, in the camera configuration, we set an orthographic size equal to the height of the                               

native screen resolution divided in half. This way we get to match sprite pixels with our                               

native	screen	pixels. 

3.5.2			Camera	controller	logic 

While designing a camera controller there are three main challenges to face: what the                           

player wants to see, what the designer wants the player to focus on and how to achieve                                 

both	in	a	comfortable	and	fluid	manner	for	the	player	[10]. 

Interaction: The camera should give the players control over what is displayed and tie the                             

changes	to	their	controls	so	that	they	are	predictable. 

Attention: The camera needs to provide enough game info and feedback about what is                           

happening	at	any	given	time	by	framing	the	action. 

Comfort: Changes must be done with ease and contextualization to reconcile the two                         

previous	requirements. 

Being a top-down game where threats can come from any angle of the screen, it makes                               

sense to center the camera on the player character. This ensures a balanced amount of                             

vision in any direction and keeps a clear point of reference even in chaotic situations.                             

However, to give more agency to the player, we take the aiming input of the controller into                                 

account. Through it, the player can shift the camera to see further in that direction. This is                                 

done by averaging the focus of the camera between the player character and the aiming                             

target. 

34 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 36/56

To transition smoothly between both, the camera position is interpolated at a speed that                           

feels quick and responsive. The speed should be capped to a reasonable value                         

nevertheless, to prevent fast movements that may cause disorientation and nausea. This                       

happens during dashes and fast impulses, where the camera does not follow the character                           

instantly	and	gets	dragged	behind	before	catching	up. 

3.6			Projectile	system 

3.6.1			Object	Pooling 

The game’s core design borrows the idea of a huge amount of proyectiles displayed at once                               

from the bullet-hell genre. Each projectile is an instance of a Unity prefab. A naïve                             

implementation would be to instance new projectiles each time and destroying them later                         

as	required. 

This can cause some fundamental problems because of scalability. For small amount of                         

objects, instancing and destruction operations are trivial. However, as the quantity of these                         

operations increase, they start affecting performance. This is especially apparent in the                       

case of destroy operations due to the nature of the programming language used in Unity.                             

C# does not give direct control of memory management: when a Destroy() function is called                             

on an object, it gets marked as pending to kill and remains in the memory instead of being                                   

destroyed right away. It is the job of a system called garbage collector to remove any                               

objects marked as pending to kill from the memory. It does this task regularly on its own                                 

and	as	developer	we	do	not	have	any	control	over	when	it	will	happen. 

As a consequence of getting numerous pending to kill objects at once, the garbage collector                             

can freeze the game while doing its job. This would result in stuttering and gameplay would                               

be	negatively	affected.  

Here is where object pooling becomes useful. Object pooling is an optimization technique                         

that gives an extreme boost of performance in these cases. The idea is to instantiate a pool                                 

of objects and recycle them, rather than continually having to create and destroy new ones                             

[11]. 

35 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 37/56

I created a PoolManager class that takes in a Unity prefab and a pool size integer. It                                 

instantiates the amount of objects specified and stores a reference of them in a queue.                             

When we are reusing an object, we simply take the first one out of the queue, that being the                                     

oldest object, and then just add it back on to the end of the queue when we are done with                                       

it. 

3.6.2			Further	optimizations 

With object pooling we can take care of instancing hundreds of objects in the game. But                               

there are other expensive tasks that greatly escalate cost with the amount of projectiles in                             

use. To start off we must update their positions on each frame; change speed, trajectory                             

direction, etc. If we treat each projectile as an individual object with their own logic and                               

collision	detection	in	the	scene,	we	are	starting	to	get	low	performance.  

Fortunately, Unity has lately come up with some huge improvements in terms of                         

performance in writing optimized multithreaded code. At the center of this changes is the                           

new Entity Component System (ECS) [12]. Using ECS allows us to write extremely efficient                           

code in certain scenarios. ECS is a new way of writing code in Unity, moving away from                                 

object	oriented	programming	to	something	called	data	oriented	design.  

Up until recently, Unity has been pretty much based on using gameObjects and                         

monoBehaviours. With this approach, creating a projectile would mean making a                     

gameObject and attaching monoBehaviour components to give the projectile functionality.                   

This monoBehaviours are strips of code that would take care of rendering, physics and                           

movement. With ECS we split this projectile gameObject into 3 parts. An entity, a                           

component and a system. Entities group together components and components contain                     

data. Unlike traditional monoBehaviours, these components do not have any logic in them.                         

Instead we use a system to contain the logic that defines component based behaviour. In                             

other words, the system is responsible to operate on all entities with a specific set of                               

components.   

36 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 38/56

 

 

Figure	3.6.	Comparative	between	traditional	OOP	and	ECS	paradigms 

 

There are two ways to implement the new ECS in the game. The pure ECS approach is                                 

completely different from the old coding paradigm, scrapping gameObjects and                   

monobehaviours altogether. On the other hand, hybrid ECS makes it easier to transition                         

between the old system to ECS by combining them. This does not bring the full potential of                                 

ECS but it is more manageable as a starting point since it allows the use of                               

monoBehaviours to store data. The standard scripting method hadmonoBehaviour scripts                     

with data and a behaviour. The hybrid ECS still maintains monoBehaviours to hold data on                             

each object, but relies on a Component System to handle the behaviour applied to those                             

objects,	thus	becoming	entities.  

Our system will be called ProjectileSystem and will be tasked with updating entities with                           

the component Projectile. This component holds the required information to display a                       

projectile with its current speed, acceleration, layer mask, animation etc. Now, each                       

projectile on the screen is updated from our streamlined ProjectileSystem instead of                       

updating individually on its own. During my performance tests, this implementation                     

allowed the game to increase the maximum count of projectiles from 300 to a 1000 keeping                               

a	steady	framerate	of	60	fps.  

A 333% improvement seems great, but according to the performance profiler, physics                       

calculations are restraining the game. Apparently, our raycast collision detection is not                       

37 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 39/56

scalable for its use onmore that a thousand entities. As explained before, raycast are one of                                 

the cheapest operations for collision detection so we need an even lighter solution.                         

Carefully analyzing the projectiles behaviour, I noticed that all the projectiles in screen are                           

checking for collisions even with trajectories facing away from the player character. This                         

means that projectiles that will never collide with the player are doing pointless collision                           

checks	and	that	is	a	huge	waste	of	resources.  

In summary, we can assume some simplifications to strip the projectiles of all collision                           

detection based on physics functions. We can consider that both the projectiles and player                           

character have circle boundaries, determined by a point in space and a radius. At this point,                               

we can infer a collision takes place if the squared distance of separation between them is                               

smaller than the addition of both squared radius. This type of solution is viable only                             

because the comparison happens between multiple projectiles to one player character, so                       

the	cost	of	the	problem	is	O(n)	and	scales	linearly. 

After this optimizations, the maximum count of projectiles went from 1000 to a 10000                           

keeping a steady framerate of 60 fps. In addition to the pooling system, the result is virtually                                 

infinite	bullets	at	our	disposal. 

3.6.3			Projectile	patterns 

Bullet hell games essential trait is the overwhelming number of enemy projectiles                       

displayed on screen. However, their major appeal is the impressive formations and patterns                         

emerging from the cloud of pellets moving around. The previous optimizations allowed this                         

game to run with tens of thousands of bullets. At this point we need to take advantage of                                   

them	with	a	highly	controllable	system	that	allows	to	script	diverse	and	rich	patterns. 

The implementation a projectile emitter script that takes as many parameters as I could                           

came up to set trajectories and get interesting patterns. For clarity the parameters were                           

arranged	into	two	types:		emitter	and	projectile	settings. 

The emitter settings determine the direction and position where the projectiles will start                         

from when spawned. They also cover the rate of fire, and either the duration of the barrage                                 

or number of shots fired. On the other hand, the projectile settings take care of the speed,                                 

acceleration, lifetime and special qualities, such as explosion radius upon collision or target                         

38 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 40/56

seeking. The interesting part comes from the combination of all the parameters, which                         

result	in	emerging	patterns	that	would	be	really	hard	to	obtain	otherwise.  

Through trial and error I got multitude of interesting and challenging projectile patterns.                         

Although, in order to use them later, it became evident the need for a system to store them                                   

efficiently. To achieve this, I used Unity scriptableObjects. ScriptableObjects are data                     

containers able to store data as an asset [13]. Those assets can then be accessed at runtime                                 

by other scripts. In this case, each scriptableObject stores different values for the                         

parameters the projectile emitter will use. The projectile emitter has an array of                         

scriptableObjects references and access them following a timed sequence or external                     

command. 

The	list	of	the	parameters	is	as	follows: 

Emitter	settings: 

Angle:	The	direction	at	which	the	emitter	is	aiming	defined	by	360º. 

Spread:	A	±	random	variation	added	to	the	previous	angle	on	each	shot. 

Tracks:	Number	of	simultaneous	shots. 

Arc:	The	arc	defined	by	up	to	360º	that	the	previous	tracks	must	cover. 

Gap:	A	±	forward	offset	to	the	initial	spawn	of	the	shot. 

Separation:	The	distance	in	which	the	tracks	must	separate	from	each	other. 

Tilt:	The	direction	in	which	this	separation	takes	place. 

AimTarget:	A	boolean	that	controls	whether	the	emitter	should	face	its	target	automatically. 

RotationSpeed:	The	speed	at	which	the	emitter	changes	its	aiming	direction. 

RotationAcceleration:	The	acceleration	of	the	previous	rotation. 

Oscillating:	A	boolean	that	controls	whether	a	sine	wave	should	offset	the	aim	direction. 

Frequency:	The	frequency	of	the	sine	wave. 

Amplitude:	The	amplitude	of	the	sine	wave. 

Rate:	The	time	between	shots. 

Duration/Ammunition:	The	maximum	of	either	time	or	shots	the	emitter	must	perform. 

Projectile	Settings: 

39 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 41/56

Seeker:	A	boolean	that	controls	if	a	projectile	should	steer	automatically	towards	its	target. 

Speed	and	acceleration:	Speed	at	which	the	projectile	moves. 

Angular	speed	and	acceleration:	The	speed	at	which	the	projectile	changes	direction. 

Lifetime:	The	time	that	each	projectile	lasts	before	being	destroyed. 

ExplosionRadius:	The	circular	area	that	gets	damaged	when	the	projectile	is	destroyed. 

3.7			Managing	damage	and	health 

Enemies and projectiles pose a challenge to the player because they are hazards that can                             

damage and eventually kill the player’s character. In action and combat video games,                         

health is usually represented through an abstraction of discrete numbers or stats. Health                         

points, for example, are convenient and easy to understand. They give instant feedback of                           

the cause and effect of actions, and let the players plan effectively when they know exactly                               

how much damage they can take before death. This abstraction of health works with a                             

number of maximum points that decrease when damage is received until no more is left                             

and	the	character	dies.  

The player character, enemies, the boss and destructible terrain share a similar reaction to                           

damage, it depletes their health and destroys them when it reaches zero. Aside from that                             

not much is shared between them, so it seems obvious that an interface could come in                               

handy for this. IDamageable is the interface I created to call a method named                           

TakeDamage(). This method takes care of updating the health of the bearer of said interface                             

when it takes damage from any source. Aside from the amount of damage taken, it can also                                 

get	the	direction	of	the	hit	and	the	thrust	applied. 

Once health is depleted reaching a minimum of zero, a Death() function is triggered. In the                               

case of simple enemies or proyectiles, this implies getting disabled and returning to their                           

respective pool queue to be recycled. In the case of the player character, the whole scene                               

gets restarted to its original state through a loading screen that dramatizes the game over                             

condition. 

40 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 42/56

3.8			Enemy	AI	and	behaviour 

3.8.1			AI	in	video	games 

Artificial intelligence is used broadly in video games to carry out behaviours and responses                           

to the environment and player interactions. Within a game, implementing a traditional AI is                           

not generally the goal. Nevertheless, many traditional AI techniques are borrowed to be                         

applied in some way. However, the AI of games usually consist of a set of predetermined                               

responses to limited inputs that, in consonance with the gameplay, manage to create the                           

illusion of intelligent behaviour. In other words, its mission is to serve the gameplay                           

restrictions	and	create	a	balanced	challenge	to	the	player. 

The most relevant tasks of AI in games are pathfinding, decision making, and                         

procedural-content generation. This last one is a method to create content algorithmically,                       

which is not a goal of this project. On the other hand, pathfinding is used extensively                               

through	this	project	with	two	techniques:	A*	pathfinding	and	steering	behaviours. 

3.8.2			Pathfinding 

A* pathfinding is a pathfinding algorithm, which can find a path between two nodes inside a                               

graph [14]. It also happens to find the shortest path possible even when navigating through                             

obstacles. It is quite efficient, only outperformed by algorithms that precompute the graph                         

to avoid the runtime calculations. To use it appropriately, we need to translate our world                             

into a grid of nodes. Such task is trivial in our case, since the maps are already built up                                     

inside	a	grid. 

Inside of this grid we should have walkable nodes and obstacles. In order to know the                               

shortest path between A to B we need establish some things. First, we decide the distance                               

between each node. Generally we can assume it is a single unit, therefore, a diagonal move                               

is the square root of two units. To simplify things, we define an orthogonal move as a                                 

distance	of	10,	and	a	diagonal	move	as	a	distance	of	14.  

41 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 43/56

With the grid of nodes set and ready, the algorithm begins by going to the starting node and                                   

checking	all	the	surrounding	nodes.	Then	it	calculates	three	numbers	for	each	node.  

1. The	G	cost	is	the	distance	from	this	node	to	the	starting	node.  

2. The	H	cost	is	the	distance	from	this	node	to	the	end	node. 

3. The	F	cost	is	G	cost	plus	H	cost. 

Finally,	the	node	stores	the	neighbour	node	that	led	to	it. 

Once this step is completed, the algorithm will repeat the process selecting a new node                             

with the lowest F cost. If two nodes have the same F costs, then it will select the one that is                                         

closest to the end node (smaller H cost). This also takes into account any previous nodes                               

whose	costs	were	calculated. 

Eventually, the algorithm is guaranteed to find the shortest path. This is because as soon as                               

it is not moving in an straight line, the F costs of consecutive nodes will keep increasing and                                   

that will force it to look for other routes. Once it reaches the target node, we can retrieve the                                     

path	that	led	to	it	because	each	node	stored	the	previous	node.   

42 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 44/56

Here	is	an	A*	algorithm	pseudo	code	definition: 

 
OPEN


//
set
of
nodes
to
be
evaluated 

CLOSED


//
set
of
nodes
already
evaluated 

add
the
start
node
to

OPEN 

 

loop 






current

=
node
in

OPEN

with
the
lowest
f_cost 





remove

current

from

OPEN 





add

current

to

CLOSED 

 





if

current

is
the
target
node

//
path
has
been
found 









return 

 





foreach

neighbour

of
the

current

node 









if

neighbour

is
obstacle
or

neighbour

is
in

CLOSED 













skip
to
the
next

neighbour 

 









if
new
path
to

neighbour

is
shorter
OR

neighbour

is
not
in

OPEN 













set
f_cost
of

neighbour 













set
parent
of

neighbour

to

current 













if

neighbour

is
no
in

OPEN 

















add

neighbour

to

OPEN 
 

Figure	3.7.	A*	pathfinding	pseudo-code 

3.8.3			Optimization	of	the	A*	algorithm 

The main bottleneck of this algorithm happens in the first step taken at the start of the                                 

loop. To select the current node from the OPEN set we need to traverse this entire list each                                   

time. Such operation is required to find the node with the lowest F cost since they are in no                                     

particular order. This has a worst case cost of O(n) that grows linearly with the amount of                                 

nodes	that	populate	the	OPEN	set. 

A much better approach is to use a different data structure known as heap. A heap is a                                   

binary tree were each node has two child nodes. Then each one of those nodes has other                                 

two child nodes and so on. The heap structure also follows a strict rule that forces each                                 

parent node to have an F cost smaller than both of its child nodes. This setup is achieved                                   

with a really simple strategy. First, each new node that enters the heap is added at the end.                                   

Then, to find its proper location, we simply check its F cost with the parent node. If the cost                                     

is lower, we swap the positions between them. The process is repeated until the current                             

parent	of	this	new	node	has	a	lower	F	cost,	or	if	we	reach	the	root.  

43 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 45/56

Using this method, we raised the new node to the appropriate location with only a few                               

steps. Precisely, the cost of inserting or deleting a node using this binary heap is O(log n),                                 

which is much better than the previous linear cost. And since we always have the lower F                                 

cost	node	at	the	root,	we	can	access	it	easily,	removing	the	bottleneck	we	had. 

At the end, we obtain a precise and optimal way to find the shortest path to a target                                   

through obstacles. However, if we were to interpolate the position of the enemies to move                             

through the path of nodes, the result would appear as if they moved on rails instead of                                 

walking. Due to this, the following task is to get an organic and interesting way of traversal.                                 

This	can	be	achieved	using	steering	behaviours. 

3.8.4			Steering	behaviours 

Steering behaviours were first proposed by Craig Reynold in 1986 as rules for a program                             

called Boids. Boids is an artificial life simulation programwhose complexity arises from the                           

emergent behaviours of individual agents interacting with each other. These interactions                     

follow a set of simple rules known as steering behaviours. They aim tomove characters in a                                 

realistic manner, using simple forces that combine into life-like navigation around the                       

environment	[15].  

The implementation of the forces involved in steering behaviours follow an additive                       

approach. To start off, we need the agents to be able to move towards a target. This is                                   

called seek behaviour, and later will be used to follow the path computed by A* using                               

subsequent points in the path as targets. For seek behaviour, two forces are involved:                           

desired velocity and steering. Desired velocity is a force that pushes in a straight line to the                                 

target, whilst steering is the result of the desired velocity subtracted by the current velocity.                             

This prevents our agent to change direction abruptly, and instead steer smoothly towards                         

its	target. 

desiredVelocity

=
normalize(
target

-

position
)
*maxVelocity 

steering

=

desiredVelocity

-

velocity 

steering

=
truncate
(
steering
,
maxForce) 

velocity

=
truncate
(
velocity

+

steering
,
maxSpeed) 

position

=

position

+

velocity 

44 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 46/56

Figure	3.8.	Implementation	of	seek	behaviour 

The steering force gets truncated, to avoid exceeding the forces that the agent can handle.                             

The velocity gets truncated as well, since otherwise it would add up indefinitely when                           

facing	the	target.  

 

Figure	3.9.	Visualization	of	the	forces	involved	in	seek	behaviour 

To get a fleeing behaviour we can just get the inverse vector of the desired velocity. This will cause                                     

the agent to flee from the target. Finally, to achieve the the behaviour of path following, we can                                   

simply	iterate	through	an	A*	path	updating	the	target	to	each	node	once	we	reach	it.  

At this point, when several agents are spawned and their trajectories cross over they do not                               

react to each other. To get a natural movement from many agents we can apply flocking                               

behaviours	using	three	main	rules:	alignment,	cohesion	and		separation. 

Alignment is the behaviour that causes an individual agent to align itself with agents that are close                                 

by. In Unity we can use a Physics2D.OverlapCircle to get all neighbour agents in a radius. Then we                                   

add up all the velocities of the neighbours to the velocity of the agent divided by the total count of                                       

neighbours.  

Cohesion is the behaviour that causes agents to steer towards the average point of their neighbours                               

location. As previously, we use Physics2D.Overla	pCircle to get all neighbour agents. However,                       

instead of adding the velocities, we add up their locations to the agent’s location divided by                               

45 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 47/56

the total count of neighbours. As a result, we get the center of mass, and to get the direction                                     

towards	it,	we	subtract	the	location	of	the	agent.  

Separation is the behaviour that causes agents to steer away from its neighbours. As                           

before, we first get the neighbours. Then we need to add up the distance between each                               

neighbour to the agent location and divide this by the neighbour count. Additionally, the                           

computed vector must be negated to get the agent to steer away from the neighbour                             

properly. 

 

With all three vectors calculated for a particular agent, we just need to add them to the                                 

velocity. At this point is useful to add a multiplayer on each of this forces to leverage their                                   

contribution to the final velocity. The addition of weights can change drastically how the                           

agents	flock	and	interact	with	each	other. 

3.9			Boss	behaviour 

3.9.1			Finite	state	machines 

Bosses in video games are powerful computer-controlled enemies encountered during a                     

special event called boss fight. This confrontation tends to be the climax of the game and                               

requires a particular strategy to be overcome. In particular, the boss of this game has three                               

distinct phases. The boss behaviour is comprised of a sequence of actions, which, under                           

some conditions may change to adapt to the situation. These conditions are mainly related                           

to the players positioning in relation to the boss. For instance, on each phase the boss has                                 

an ability that provides a way to reposition itself. This is used in order to close distance or to                                     

keep	a	separation	with	the	player	when	needed. 

 

46 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 48/56

 

Figure	3.10.	Finite	State	Machine	diagram	of	the	Boss	behaviour 

 

The implementation of this gameplay is done using a finite state machine [16]. The different                             

states and their relations can be visualized as nodes contained inside of a graph. The nodes                               

reference actions that the boss can execute. When the logic reaches a node, a certain state                               

becomes active and its action performed. To transition between states, a certain condition                         

must be evaluated as true. Some states last for a fixed amount of time while they keep                                 

executing an action, others happen instantly and transition to the next state immediately.                         

Once an action is finished or a condition is met, the boss enters a new state. This new state                                     

is chosen based on different parameters such as the last action taken and the position of                               

the	player. 

As previously stated, along the fight with the boss, there are three different phases that                             

change its behaviour significantly. The change of phase is determined by a specific amount                           

of damage received. The thresholds divide the total health into three equal parts for each                             

phase.	The	boss	is	defeated	once	its	health	points	reach	zero. 

47 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 49/56

3.9.2			Phases	of	the	Boss	fight 

 

Figure	3.11.	Concept	art	of	the	three	Boss	phases 

Phase	1:	Demented	Priestess 

During the first phase, the boss focuses on keeping a cautious distance with the player. To                               

achieve this, it periodically teleports to a different point in the level. This action has more                               

chance to happen the closer the player is. On the opposite hand, the farther the player is,                                 

the higher the chance for the boss to unleash a targeted laser beam. This precise ray takes a                                   

short delay to be casted, but once it does, it travels instantly and can not be deflected by                                   

the	player.	The	only	way	to	counter	it	is	to	hide	behind	an	obstacle	or	dodging	it. 

In the meantime, the boss shots barrages of fire projectiles using the predesigned patterns.                           

These are composed of slow traveling bullets that fly in all directions in distinct patterns.                             

They	also	follow	an	organized	sequence	to	enable	the	player	to	learn	and	predict	the	order. 

Phase	2:	Berserk 

The second phase presents a change in the strategy of the boss. Instead of keeping                             

distance, now it tries to get closer to the player. To achieve this, it periodically dashes                               

forward in the direction of the player doing three slashing cuts. Between each cut, it can                               

48 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 50/56

change direction slightly to face the player again. The strikes can not be parried and may                               

only		be	dodged.  

Periodically, the boss stands still and absorb the air around it creating a vacuum and                             

pulling the player in the process. As a follow-up, it releases all the energy in a short-ranged                                 

explosion. The projectiles shot in this phase are short lived and of chaotic nature, so they                               

are	most	dangerous	at	a	short	distance. 

Phase	3:	Abomination 

The final phase is a callback to the first one, but much harder. This time, the teleports                                 

happen more often, with a chance of being used offensively as a surprise attack. Besides,                             

instead of a laser, the boss can now conjure pillars of fire. These are squared areas that                                 

explode after a delay, pressuring the player to be in constant motion. Maneuvering the                           

room	becomes	harder	because	there	is	no	safe	spot	now. 

Simultaneously, the boss shots fire projectiles echoing the first phase. However, the                       

patterns have fewer but faster bullets, also aimed at the player. The player must plan ahead                               

when to dodge to avoid stepping into a fire pillar, while displaying fast reactions to deflect                               

the	projectiles.    

49 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 51/56

3.10			Environments 

3.10.1			Tile-based	design 

The tile-map model is a remnant of older times where memory storage was the main                             

bottleneck for game development. Early video game consoles had to fit all the sprites of art                               

for characters and background in small cartridges of 4K in size. This left developers with a                               

huge challenge to overcome; so they came up with the idea of building backgrounds with a                               

minimal set of reusable tiles. These square tiles, of 8x8 pixels, could then be set on a grid as                                     

building blocks to create maps much bigger than the current size of memory would have                             

allowed	otherwise.  

Nowadays, the memory savings that this method offers is no longer relevant. However, it is                             

still quite helpful to reduce the amount of artwork required to create maps. After all, new                               

maps can be created using the same tileset. It also shortens the iteration times to make                               

changes	without	having	to	redraw,	speeding	up	the	process	of	level	design. 

A hindrance of this method is the observable pattern that arises from the combination of                             

repeated tiles and the grid they are displayed on. This could be claimed as an artistic trait                                 

of	the	style,	but	I	wanted	to	go	further	and	resorted	to	Wang	tiles	[17]. 

Wang tiles were first proposed by mathematician Hao Wang in 1961. This type of tile-map                             

uses a set of square tiles, with each side of a fixed color that can be arranged side by side in                                         

a rectangular grid, matching the color of their adjacent tile sides. The method ensures that                             

even a small but complete set of hand-made source tiles can be assembled easily without                             

obvious	repetition	or	visual	breaks	between	them. 

There are many variations of tilesets that can apply this rules. I chose one that allows for a                                   

transition	between	two	different	types	of	terrain. 

 

   

50 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 52/56

4			Conclusions 

The resulting product is an action-adventure game that showcases the design and systems                         

developed for this project. It is not in a finished state as a fully fledged game since content                                   

like art and sound exceeded the available time. However it is a proof of concept for the                                 

design	and	its	underlying	systems.  

The	following	link	gives	access	to	a	Google	Drive	folder	that	stores	an	executable	game:  

https://drive.google.com/open?id=1di5LIlbj4-iPkCbvsMzu73eVlsgn3Kms 

4.1		Achieved	goals 

The goals described in the technical proposal have been met with different degrees of                           

success:  

Goal 1: To design an engaging gameplay that is entertaining and challenging (easy to learn                             

and hard to master). It combines the effortless action packed aspect of the hack’n’slash                           

genre	with	the	frenetic	and	precise	controls	that	require	the	bullet	hell	genre. 

To develop a robust core for the gameplay, there was a huge investment in crafting systems                               

such as the character controller with collision detection created from scratch. This served                         

as the foundation for the implementation of the gameplay mechanics. These mechanics                       

were in turn fine tuned around the projectile system to offer the best experience possible.                             

Since projectiles are the main feature of bullet hell games, this projectile system received                           

special	attention	and	ended	up	being	really	powerful	and	flexible.  

Goal 2: To implement efficient artificial intelligence for the Priest (final boss) and its                           

minions to produce an interesting behaviour. It is designed to pose a real threat, while                             

avoiding	erratic	and	unpredictable	actions	in	order	to	be	understandable	by	the	player. 

AI for the game was implemented using pathfinding with steering behaviours for mobility                         

and finite state machines for the decision making. The boss had more depth to its design                               

than the enemies, however, its behaviour is more scripted to ensure the challenge it poses                             

51 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 53/56

follows more strict rules. This is done to achieve a more balanced result that avoids                             

arbitrary	actions	giving	structure	and	pace	to	the	encounter.  

Goal 3: To create an original setting and a variety of characters consistent with the world                               

rendered	in	pixel	art	style.	It	requires	frame	by	frame	hand	drawn	art	for	the	animations. 

Many of the designs that were planned could not be completed in time. Pixel art is a craft                                   

that takes lots of time to animate, and since the main focus of the project was design and                                   

programming, this section ended up being the weakest in comparison. Nevertheless, the                       

ones	that	made	the	cut	have	a	distinct	style	and	polished	look	for	high	quality	standards. 

4.2			Planning	deviation 

The figure 4.1 shows the deviation that took place during the development of the project. I                               

prioritised the parts of the project related to code and gameplay systems over the art. This                               

is a significant drawback because the visual aspect of a game it the main barrier to be able                                   

to appreciate the work that went into the design and programming behind it. However, this                             

was a compromise I had to take in order to reach a functional version that could be later                                   

polished	to	its	full	potential. 

Task  Estimated	time  Real	time 

Game	Design	Document  15  15 

Implement	the	game	mechanics	and	core	systems  80  100 

AI,	behaviour	and	pacing	of	the	encounter’s	phases  40  60 

Character	animations	and	VFX  50  40 

Environmental	art	and	world	building   30  10 

SFX	and	music   10  3 

Implement	the	non-gameplay	systems	and	miscellanea  10  2 

Final	Memory  60  70 

Total  300  300 

Figure	4.1.	Table	comparing	the	estimated	times	and	real	times	for	each	task	(in	hours). 

52 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 54/56

4.3			Future	lines 

The systems present in the game reached a fairly finished state and ended up working as                               

planned with efficiency. However, there is still lots of content to make in the art section to                                 

polish the appearance of the game. Also, with proper time, more user testing should be                             

carried	out	to	balance	the	game	difficulty	and	pace. 

I intend to continue developing the game with the addition of all the art that is lacking right                                   

now, such as animations, FX and sound. I also plan to continue designing proper levels and                               

extra content to reach a state of full game in the future. The foundation of the gameplay                                 

and	the	systems	are	already	working	flawlessly. 

4.4			Personal	reflection 

Working on this project was quite satisfactory as it has allowed me to experiment and                             

improve as a game developer in general. I spent a large amount of time coming up with the                                   

concept by trying different innovative twists to already existing ideas until I settled down.                           

This gave me time to layout all the requirements and steps I needed to implement the final                                 

result, which was really useful for productivity. I had previous experience with Unity, but                           

this project broadened my knowledge of the engine and C#, which additionally, made me                           

more	confident	in	my	programming	skills. 

On the downside, I overestimated the actual time for the scope I aimed for. However,                             

instead of rushing things, I worked hard on the foundations of the gameplay. Because of                             

this,	the	project	is	actually	valuable	and	can	be	expanded	upon	in	the	future. 

5			Bibliography 

[1] Vambleer	(2013)	Nuclear	Throne	|	Presskit	[online]	Available	at: 

https://www.vlambeer.com/press/sheet.php?p=Nuclear_Throne		[Accessed	9	Apr.	2019] 

 

[2] Heart	Machine	(2016)	Hyper	Light	Drifter	|	IGDB	[online]	Available	at: 

https://www.igdb.com/games/hyper-light-drifter/presskit		[Accessed	9	Apr.	2019] 

53 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 55/56

 

[3] Dodge	Roll	(2016)	Enter	the	Gungeon	|	IGDB	[online]	Available	at: 

https://www.igdb.com/games/enter-the-gungeon/presskit		[Accessed	10	Apr.	2019] 

 

[4] Acid	Nerve	(2016)	Titan	Souls	|	Devolver	Digital	[online]	Available	at: 

https://www.devolverdigital.com/games/titan-souls		[Accessed	9	Apr.	2019] 

 

[5] Pignole,	Y.	(2013)	The	hobbyist	coder	#1:	2D	platformer	controller	|	Gamasutra	[online]	Available	at: 

https://www.gamasutra.com/blogs/YoannPignole/20131010/202080/The_hobbyist_coder_1_2D_platformer_

controller.php		[Accessed		27	Apr.	2019] 

 

[6] Lague,	S.	(2015)	Creating	a	2D	Platformer	(Video	Series)	|	Youtube	[online]	Available	at: 

https://www.youtube.com/watch?v=MbWK8bCAU2w&list=PLFt_AvWsXl0f0hqURlhyIoAabKPgRsqjz [Accessed   

15	May	2019] 

 

[7] Venturelli,	M.	(2014)	Game	Feel	Tips	III:	More	on	smooth	movement	|	Gamasutra	[online]	Available	at: 

https://gamasutra.com/blogs/MarkVenturelli/20140904/224866/Game_Feel_Tips_III_More_On_Smooth_Mov

ement.php		[Accessed	8	Mar.	2019] 

 

[8] N3K	EN	(2016)	Input	Manager	(Multiple	Inputs)	|	Youtube	[online]	Available	at	: 

		https://www.youtube.com/watch?v=NYZoLOpYp2k		[Accessed	12	Apr.	2019] 

 

[9] Tham,	P.	(2015)	Pixel	Perfect	2D	|	Unity3D	[online]	Available	at: 

		https://blogs.unity3d.com/es/2015/06/19/pixel-perfect-2d/		[Accessed	2	Jun.	2019] 

 

[10] Keren, I. (2015) Scroll Back: The theory and practice of cameras in side-scrollers | Gamasutra [online]                               

Available	at:  

https://www.gamasutra.com/blogs/ItayKeren/20150511/243083/Scroll_Back_The_Theory_and_Practice_of_

Cameras_in_SideScrollers.php		[Accessed	20	May	2019] 

 

[11] Placzek,	M.	(2016)	Object	Pooling	in	Unity	|	Raywenderlich	[online]	Available	at: 

https://www.raywenderlich.com/847-object-pooling-in-unity		[Accessed	2	May	2019] 

 

[12] Shekhar, G. (2018) Entity Component System in Unity | Gyanendu Shekhar’s Blog [online] Available                           

at:  

http://gyanendushekhar.com/2018/08/01/getting-started-entity-component-system-ecs-unity-tutorial/ 

[Accessed	7	May	2019] 

 

54 



1/7/2019 TFG_EstraderaBenedictoDaniel - Documentos de Google

https://docs.google.com/document/d/1FYQfQyder8aA6P4gjBCshSfxGwSQ5pRycGGP0NG6HIk/edit# 56/56

[13] Fisher	J.	(2018)	Scriptable	Objects	in	Unity	|	Raywenderlich	[online]	Available	at: 

https://www.raywenderlich.com/6183-scriptable-objects-tutorial-getting-started		[Accessed	13	May.	2019] 

 

[14] Lague,	S.	(2014)	A*	Pathfinding	(Video	Series)|	Youtube	[online]	Available	at:  

https://www.youtube.com/watch?v=-L-WgKMFuhE&list=PLFt_AvWsXl0cq5Umv3pMC9SPnKjfp9eGW [Accessed   

25	May	2019] 

 

[15] Bevilacqua,	F.	(2013)	Understanding	Steering	Behaviours	|	EnvatoTuts+	[online]	Available	at: 

https://gamedevelopment.tutsplus.com/series/understanding-steering-behaviors--gamedev-12732 [Accessed   

25	May	2019] 

 

[16] Sobolewski,	P.	(2016)	Finite	State	Machines	|	The	Knight	of	Unity	[online]	Available	at: 

https://blog.theknightsofunity.com/finite-state-machine-part-1/		[Accessed	10	Jun.	2019] 

 

[17] cr31	(2018)	Wang	Tiles	|	cr31	[online]	Available	at: 

http://www.cr31.co.uk/stagecast/wang/intro.html		[Accessed	22	Apr.	2019] 

 

[18] Unity	Technologies	(2019)	Physics2D.Raycast	|	Unity3D	Documentation	[online]	Available	at: 

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html		[Accessed	2	Mar.	2019] 

 

[19] Unity	Technologies	(2019)	Physics2D.Rigidbody2D	|	Unity3D	Documentation	[online]	Available	at: 

https://docs.unity3d.com/ScriptReference/Rigidbody2D.html		[Accessed	16	Mar.	2019] 

55 


