

Serious Game Concepts in the Development of a

Video Game with VR Technology in Unity

Araceli Cazorla González

Final Degree Work

Bachelor Degree in

Video Game Design and Development

Universitat Jaume I de Castelló

June 27, 2019

Supervised by: Juan Miguel Vilar Torres, PhD.

https://creativecommons.org/licenses/by-nc-sa/3.0/

For my parents,

who always lend me a hand in everything I needed,

for Alberto,

who encouraged me in the hardest moments,

and for Antonio,

who gave me the boost I needed in many bumps in this degree.

 2

Abstract

Nowadays, VR video games are filling malls and entertainment locals. Also, little by little VR video

games are reaching homes and schools, allowing casual players to live new experiences that traditional

console games can not offer.

In this document, Bone Playhouse is shown. Bone Playhouse is the alpha project and the research

necessary to a bigger project that will allow one or two players to play at the same time a serious game

about learning how something is built, in this case human anatomy, with virtual reality technology.

The objective is to make the players learn something new, with a double purpose: getting the players

more motivated due to the unusual game, and making them assume the concepts with more staying

power than in traditional learning techniques.

This project is meant to be executed with the Leap Motion technology, that will allow the players to

evade controllers or touchscreens, and let them to use their own hands. Moreover, it is intended to be

executed with the virtual reality headset HTC, although due to the flexibility of the game engine

Unity3d, other glasses could be compatible in the alpha phase.

Due to the scale of the project, throughout this document it will be shown how the different parts of

the development of the game are executed, with the purpose of showing the academic progress of the

student in all the areas of the degree.

Key words

Serious game, VR, Anatomy, Immersion.

 3

TECHNICAL PROPOSAL 9

1.1 Introduction and project motivation 9

1.2 Context analysis 10

1.3 Related subjects 10

1.4 Task and temporal scheduling 11

1.5 Project objectives and expected results 12

1.6 Tools and environments 12

1.6.1 Programming 12

1.6.2 Art 12

1.6.3 Documentation 13

1.7 SDK 13

1.8 Resources evaluation 14

1.9 Risk Management 14

GAME DESIGN DOCUMENT 15

2.1 Introduction 15

2.2 Entities 15

2.2.1 Players 15

2.2.2 Human model 16

2.2.3 Bones 16

2.2.5 Hands 17

2.3 Gameplay 17

2.3.1 What does the player 17

2.3.2 Tutorials 17

2.4 Game experience 18

2.5 Visual style 18

2.6 Mechanics 19

2.7 Game modes 19

2.8 Scenery design 19

2.8.1 The Sims 19

2.8.2 Toy Story 3 The video game 19

2.8.3 Among the sleep 20

2.8.4 Ikea 20

 4

2.9 Sound and music 20

PROJECT DEVELOPMENT 21

3.1 Previous research 21

3.1.1 Research about serious games 21

3.1.2 Research about anatomy 22

3.2 Game development 23

3.2.1 Adding the project to Github 23

3.2.2 General information classes 23

3.2.2.1 Created for the project itself 23

3.2.2.2 Used from Leap Motion libraries 24

3.2.2.3 Used from Photon libraries 24

3.2.3 Game modes and difficulties 24

3.2.3.1 Solo 24

3.2.3.2 Cooperative 25

3.2.3.3 Free 25

3.2.3.4 Against the clock 25

3.2.3.5 Easy 25

3.2.3.6 Medium 25

3.2.4 User interfaces 26

3.2.4.1 UI Main menu 26

3.2.4.1.1 Solo - Cooperative 27

3.2.4.1.2 Free - Against the clock 27

3.2.4.1.3 Easy - Medium 27

3.2.4.2 UI Bones 27

3.2.4.3. UI Hands 28

3.2.4.3.1 Spawning buttons 28

3.2.4.3.2 Menu button 29

3.2.4.3.3 Unlock button 29

3.2.4.3.4 Help button 29

3.2.5 Multiplayer and network connection 29

3.3 Art 30

3.3.1 2D Art 30

3.3.1.1 Tileable textures 30

3.3.1.2 Handmade textures 31

 5

3.3.1.3 UI Sprites 32

3.3.2 3D Art 33

3.3.2.1 Previous design 34

3.3.2.2 First steps of modelling 34

3.3.2.3 Fixing the topology 34

3.3.2.4. Unwrapping the models 35

3.3.2.5 Scenery 36

3.3.2.6 Organic models 37

3.3.2.6.1 Rabbit 37

3.3.2.6.2 Skeleton 37

3.4 Testing 39

3.4.1 Sanity check 39

3.4.2 Functional test 39

3.4.3 Free testing 40

RESULTS OBTAINED 41

4.1 Game Development 41

4.1.1 Game modes 41

4.1.2 User Interfaces 41

4.1.3 Network 42

4.2 Art 42

4.2.1 2D Art 42

4.2.2 3D Art 42

4.3 Testing 43

4.4 Documentation 43

4.5 Final planification 44

NEXT OBJECTIVES 45

CONCLUSIONS 47

BIBLIOGRAPHY 49

 6

List of Tables

Table 1: Task and temporal scheduling

Table 2: Gantt diagram

Table 3: Programming tools

Table 4: Art tools

Table 5: Documentation tools

Table 6: SDK

Table 7: Risk Management

Table 8: Different types of bones

Table 9: UI Button Sprites

Table 10: Scenery

Table 11: Bones

Table 12: Test Results 1

Table 13: Test Results 2

Table 14: Test Results 3

Table 15: Element recount

Table 16: Final planification result

 7

List of Figures

Figure 1: HTC Vive

Figure 2: Leap Motion

Figure 3: Base bones

Figure 4: Definitive bones

Figure 5: Error bones

Figure 6: Score panel

Figure 7: Leap Motion Controller

Figure 8: Text in-game

Figure 9: Hand painted style

Figure 10: Bone icons

Figure 11: The sims reference

Figure 12: Toy Story Reference

Figure 13: Among the sleep reference

Figure 14: Ikea 1 reference

Figure 15: Ikea 2 reference

Figure 16: Handmade anatomy sketches

Figure 17: Ulna Differences between hand moves

Figure 18: UML classes diagram

Figure 19: Game Object Skeleton

Figure 20: Starting game modes

Figure 21: UIButtons

Figure 22: First design of bone spawn buttons

Figure 23: Final design of bone spawn buttons

Figure 24: Bad tileable texture

Figure 25: Example of how the tileable tool works

Figure 26: Good tileable texture

Figure 27: 3D Result of tileable texture

Figure 28: Handmade textures

Figure 29: Handmade textures for a wall

Figure 30: Handmade bed design

Figure 31: Preliminary bunny draw

Figure 32: Bone model

Figure 33: Rabbit rigged

Figure 34: Room 3D Art

 8

TECHNICAL PROPOSAL

Contents

1.1 Introduction and project motivation 12

1.2 Context analysis 13

1.3 Related subjects 13

1.4 Task and temporal scheduling 13

1.5 Project objectives and expected results 14

1.6 Tools and environments 14

1.7 SDK 15

1.8 Resources evaluation 16

1.9 Risk Management 16

This chapter will reflect what is the origin of the idea and which resources are needed for the

development of the project from a technical point of view.

1.1 Introduction and project motivation

This project is based on the creation of a tridimensional video game prepared to be executed by one or

two players with virtual reality technology (See figure 1).

Players will stand up while playing the game. In front of them, they will find a empty human body that

they should fill with bones in the correct places.

The objective of this serious video game [6] is teaching children and teenagers how anatomy works in a

practical way.

Since the target of this game are children, it is important to show a friendly scenery that motivates

them to keep playing. Skeletons, organs, and anatomy in general is a taboo topic, specially in some

cultures. That is why a cartoon style, hand-painted with post-process effects will be used, looking for a

comfortable environment.

It will be possible also to use Leap Motion technology [4] (See Figure 2). For that reason players can

move their hands in the tridimensional space and interact with the environment, in order to solve the

different minigames. This means that the immersion will be bigger than in other VR projects where the

input is a controller.

 9

Figure 1: HTC Vive Figure 2: Leap Motion

It is also important to mention that players can cooperate between them thanks to the network

connection with Photon plugin [3] that will allow them not only to interact with the same virtual room

where their partners are, but also see their actions in real time.

1.2 Context analysis
This project was born from the idea of developing video games that could teach somebody how

something is built in the inside. It is a common issue that students lose interest in the subject because

it is hard to learn so many concepts and naming off different things from a book. That is because this

project is aimed on keeping players learning while they play.

Furthermore, this project will be realized with VR technology because the immersion and

concentration in VR games is usually higher. The shape of the bones, the names and the positions are

easier to remember if the player can move and place them with their own hands in a virtual world

where he is involved.

There are two problems that we have to take care of:

- Education games are not attractive: we have to design the game properly to create

something interesting even for a child.

- Dizziness and headaches: in experiences of this type, consumers usually get tired, dizzy and

sometimes have headaches and nauseas, due to different reasons:

● The activity duration: that usually takes a long time.

● Proximity: the screen is too close to the eyes.

● Framerate: it is necessary to be at 60fps minimum.

● Motion sickness: dissonance between what the vision is capturing and what other

senses, like balance, are interpreting.

1.3 Related subjects

The following subjects have direct impact on this project:

- VJ1227 – Game Engines.

- VJ1223 – Video Game Art.

- VJ1228 – Multiplayer Systems and Networks.

- VJ1216 – 3D Design.

 10

1.4 Task and temporal scheduling

In the next schedule we can see that this project has four main components that need to be

completed: Game Development, Art, Testing and Documentation. This project is thought to take

three hundred hours.

Table 1: Task and temporal scheduling

In the table below, you can see the Gantt diagram:

Table 2: Gantt diagram

 11

1.5 Project objectives and expected results

- As many gaming modes as possible (bones, organs, muscles), at least one of them.

- One stage totally decorated.

- Total immersion.

- Challenging gameplay

- Well-designed project where dizziness will not be a problem.

- Project that can involve 2 players.

- To develop a project for everyone, where friends can play cooperatively.

- Possibility of moving hands inside the project, in order to interact with other elements.

- Bonus: add different gameplay modes, or buffs for the players.

1.6 Tools and environments
In this section we can find the tools that will be used during this project.

1.6.1 Programming

Below you can see the programming tools used during this project.

Unity 3D [1]

This is the main tool used for the game development, along

with Visual Studio. It is a free game engine that supports HTC

Vive [5], Photon and Leap Motion. Also, it is prepared for

Blender FBX and 2D elements. All these features made this

engine the chosen for this project.

Visual Studio

Integrated development environment. It is used to develop

computer programs and accepts many languages, as C#,

needed in this project. With Unity 3D, is the main core of the

development of the project.

Table 3: Programming tools

1.6.2 Art

Below you can see the art tools used during this project.

Blender [2]

It is the main tool used for the 3D modelling. Free and

open-source 3D software used for creating 3D models, organics

and inorganic. Models are exported in FBX.

Adobe Photoshop

Raster graphics editor used for creating the UI sprites and

some textures used on the 3D models and the logo.

 12

Krita [7]

Raster graphics editor used for creating most part of the 3D

textures. It has many pencils and options for creating pictures

where the hand-painted style is present.

Table 4: Art tools

1.6.3 Documentation

Below you can see the documentation tools used during this project.

Google Docs and Google Slides

The main tools used for creating the Technical proposal, Game

Design Document, Final Report and Final Presentation. With

this tool users can create and share their files through Google

Drive platform. It is a free Web-based application.

Microsoft Excel

Is a spreadsheet program included in the Microsoft Office suite

of applications. Spreadsheets present tables of values arranged

in rows and columns that can be manipulated easily. I will use

this program for creating my testing reports.

Vegas Pro

Is a video editing software package for non-linear editing

(NLE) originally published by Sonic Foundry, then by Sony

Creative Software, and now by Magix. The software runs on the

Windows operating system. I will use this program for creating

the final video.

Table 5: Documentation tools

1.7 SDK

Below you can see the SDK that will be used during this project.

Photon Unity Networking [3]

Unity package for multiplayer games. It allows to get a flexible

matchmaking where players can get into rooms where objects

can be synced over the network.

 13

Leap motion

Unity package for games with AR/VR technology. It allows

the project to use the hands of the player as the main

controller.

Table 6: SDK

1.8 Resources evaluation

For the creation of this project it will be needed some hardware equipment:

- HTC Vive with all the elements (600€): other VR glasses could be compatible, as Oculus

Rift, for example. Because as today I have access to this model, HTC vive is the option.

- Leap motion (80€): this game could be played with mouse, HTC Vive controllers, keyboard or

gamepad controller. Leap motion was chosen because it creates more immersion.

- A PC capable to handle the items above (800€): The minimum requirements are GTX 970,

Intel i5-4590, 4GB ram.

Also, a software license will be needed for: Adobe Photoshop (120.95€)., Vegas (299€) and Microsoft

excel (135€).

Regard to the human resources, for this alpha project only a person will be needed for the

programming, art, and production. In the future, at least it will be necessary to have a person

specialized in each field, or even more.

Considering that the average wage of a programmer is 11€ per hour, an artist 10€ per hour, and a

producer 12€/hour, the results of the hours dedicated are:

● Programmer: 11€x143h = 1573€.

● Artist: 10€x85h = 850€.

● Producer: 12€x72h = 864€.

The total cost of this project is 5321,95€.

1.9 Risk Management
The number of hours planned are 300. However, this schedule (See table 7) is not fixed, because some

unexpected issues could come up and change the program. To anticipate the possible problems, this

section includes some of the possible issues that could appear containing them.

Table 7: Risk Management

 14

GAME DESIGN DOCUMENT

Contents

2.1 Introduction 19

2.2 Entities 19

2.3 Gameplay 20

2.4 Game experience 21

2.5 Visual style 21

2.6 Mechanics 21

2.7 Game modes 21

2.8 Scenery design 21

2.9 Sound and music 23

This section will be show the details about the project related with gameplay, design and art.

2.1 Introduction
Bone Playhouse is a 3D video game, with VR model, cooperative, with cartoon style. It’s genre is

serious game-minigame, and its objective is to beat the minigames that are focused on making people

learn Anatomy.

In those minigames, the player can create, move and place bones in an human model. The objective is

to fill the human model with all the bones in the correct places. Different rules are stated for achieving

the objective, depending on the difficulty and game mode.

2.2 Entities

2.2.1 Players

People who are playing the video game. Their objective is to play the game and beat the minigames

while learning about anatomy in the process. The target public is children between 8-10 years which

are starting to learn how the human body works and teachers who want to play with them. It is

thought to have two kind of players:

● Learners: the players that wants to learn about anatomy.

● Teachers: the players that accompany the learners in the game.

Learners could also play together in competitive modes, like Against The Clock game mode.

 15

2.2.2 Human model
The human model that has to be filled with bones. It is an static 3D model formed by base bones,

definitive bones and error bones.

At the start of the game, all the base bones are activated (See Figure 3). As the game avances, the bones

are substituted by the definitive bones (See Figure 4) or error bones by the player (See Figure 5).

Depending of the game mode, the player can place wrong bones in the base positions. When a bone is

not well placed, the model give clues to the player. (See Figure 5).

Figure 3: Base bones Figure 4: Definitive bones Figure 5: Error bones

2.2.3 Bones
The elements that should be placed in the model. We can find twenty five bones in the game, fifteen of

them are different from each other.

There are four kind of bones:

● The spawned bones: these bones are the ones that are spawned. Players can grab, move

and place these bones. Fifteen types of bones.

● The base bones: these bones are in the human model. They are placed in the 3D model

from the beginning as a placeholder and can be substituted. Twenty five types of bones.

● The definitive bones: these bones are in the human model. They are placed in the 3D

model and only appear when the base bones or error bones are substituted. Twenty five

types of bones.

● The error bones: these bones are in the human model. They are placed in the 3D model

and only appear when the base bones or error bones are substituted. Twenty five types of

bones.

Spawned Base Definitive Error

Table 8: Different types of bones

 16

2.2.4 Score panel

It shows crucial information needed for the game (See Figure 6). There are three fields, that are

visible or not depending on the game mode and difficulty:

● Bone counter: it shows how many bones are placed.

● Timer counter: it shows how much time is left to lose the game.

● Help counter: it shows how many times the button Help has been pressed.

Figure 6: Score panel

2.2.5 Hands
It is the controller for the game (See figure 3). Players can interactuate with the video game using their

own hands. This is possible thanks to Leap Motion Technology [4], which throws infrared rays to the

hands in order to show them ingame.

The main ways to interact with other elements are grabbing bones and touching the UI.

Figure 7: Leap motion controller

2.3 Gameplay

2.3.1 What does the player

Players main goal will be finish the game mode they choose, and place all the bones in their correct

places, with the rules given by the minigame. If two players are playing, then they must play the same

game mode in order to play together.

To win the minigames, they should create bones, grab, move and place them in the correct places.

2.3.2 Tutorials
Tutorials will appear as text in the game, depending on the game mode that the players choose. Also, a

Security Rules text will appear at the beginning of the game (See Figure 8).

 17

Figure 8: Text in-game

2.4 Game experience
It is expected that some players will be inexperienced in VR video games. For that reason, minigames

should be well designed for everybody.

We hope that the player will be completely involved in the game. That is why the interface is

completely in-game: they are not 2D images that follow the camera, but interactable 3D models.

The interface is very intuitive and easy to use. We want any player who can get used to the game easily.

For that reason, every button has an icon and a label.

The general feeling that we want to make the player sense is relax. That is why the music and the

environment helps to accomplish this objective.

2.5 Visual style
It have stylized, hand painted 3D models (See Figure 9). This style is suitable for project, because it is

thought for a young public target.

In order to carry it out, we are mainly using 3D low-poly models. Some normal and occlusion maps

will be used as a reinforcement if it is necessary to remark lines or illumination.

The sprites created for this project are mainly the bone icons, solid images that creates a silhouette of

the shape of the bone (See Figure 10).

Figure 9: Hand painted style Figure 10: Bone icons

 18

2.6 Mechanics
The main mechanic consist in creating bones and placing them into a human body. Depending of the

game mode (easy or medium), the player can or not lock and expulse the bone.

Once an element is locked, if the player wants to remove it, he has to use a special tool for that. This

tool will be placed in the right hand.

In addition, the player has a tool if he needs aid for solving the minigame.

2.7 Game modes
Different game modes will be implemented:

- Solo/Cooperative: one or two players can play

- Free/Against the clock: the player can play with freedom or with a timer as a challenge

- Easy/Medium: it changes if the bones could be placed in incorrect places or not

2.8 Scenery design
We need to pay special attention for this scenery, because it is where players will pass the most part of

their time, and should not be limited or boring.

The room will have a lot of elements. In order to not to associate it to a gender, the walls and general

colours will be pink, blue and green.

2.8.1 The Sims
The first picture is very useful because it show a palett colour very similar to the scenery in the

project. Also, the staircase of the bed is useful. In the second picture we can see some elements

hand-painted, like the dinosaur or the plushies. The bookshelf, dinosaur and chest are interesting.

Figure 11: The sims reference

2.8.2 Toy Story 3 The video game
These references are useful because the furniture has round corners. The room does not have a

specific palette colour, but there is not any element who doesn’t fit. The environment is densely

decorated. It is important to remark the desk and the dartboard.

Figure 12: Toy Story Reference

 19

2.8.3 Among the sleep
These references are useful because it shows a room from a very low point of view. This will be the

point of view used in the project. It is important to highlight the cubes.

Figure 13: Among the sleep reference

2.8.4 Ikea

In the first picture we can remark the stool. In the second, the staircase and basketball court could

be useful.

Figure 14: Ikea 1 reference

In the first picture the furniture with three colors and de carpet are interesting. In the second, the

wall painting is beautiful.

Figure 15: Ikea 2 reference

2.9 Sound and music
All the sound in the video game while the game is on will be funny, childish, and chill. We have three

sound effects and one background song, all of them are CCO:

● Place bone: https://bit.ly/2REgtKR

● Create bone: https://bit.ly/2XfrJ6g

● Menu and buttons: https://bit.ly/2Xgzmtl

● Background song: Ukulele beach from https://bit.ly/1wwplPp

 20

https://bit.ly/2REgtKR
https://bit.ly/2XfrJ6g
https://bit.ly/2Xgzmtl
https://bit.ly/1wwplPp

PROJECT DEVELOPMENT

Contents

3.1 Previous research 24

3.2 Game development 25

3.3 Art 36

3.4 Testing 49

In this section I will show the progress during this project in the two different main points:

development and art. In addition, I will talk a little about the testing sessions I did for this project and

the previous research

3.1 Previous research

3.1.1 Research about serious games

During the first weeks, I studied the concept of serious games. This kind of games are designed for two

purposes: entertainment and education. The concept of “education” could be very large, because a

serious game could be also related to engineering, politics or science, but in this project, we will use the

basic education concept.

The use of serious games has been rising these days. The "game based-learning" is finding his own

space in schools over time.

That is why this project is a serious game. I liked the idea of creating a project where you can have fun

and learn something new. Mixing it with VR, could give it an attractive, innovative and immersive

extra that makes the children being interested in something that it is usually not.

I got inspired in these two serious games:

● Surgeon simulator: in this game the player has to save a patient, beating minigames and

placing all the organs in the body in a limited time.I like the idea of placing elements in a body

from this game. Video: https://bit.ly/2FCbqpm

● Cat explorer: in this game the player can see the insides of a cat, using his hands as controller.

in this game I like the idea of explorate the anatomy of a cat. Video: https://bit.ly/2PcR3m2

 21

https://bit.ly/2FCbqpm
https://bit.ly/2PcR3m2

3.1.2 Research about anatomy
During the first weeks, a study about anatomy was done, specially using “An Atlas of Anatomy for

Artist” [9]. This was necessary not only for knowing the details of all the bones that will be included in

the game, but also because it is important to know how these bones are connected to each other and

move with the human dynamics.

In order to understand better how bones work, some sketches were made by hand. This helped me to

have a mental picture of how each bone is connected to other, and what muscles are involved in the

process (See Figure 9).

Figure 16: Handmade anatomy sketches

One example is the strange move of the Radius and Ulna (See Figure 10). When the arm is rotated, the

position of the bones changes completely. Placing the bones in a wrong place will be a big mistake, if I

want to make other people learn with my game.

Figure 17: Ulna Differences between hand moves

All of this details were took in mind in order to create a didactic game where mistakes were not an

issue.

 22

3.2 Game development

3.2.1 Adding the project to Github

The first step that I took when I created this game was creating a repository for the project. I found

that Github has a plug-in for making the commits easier in the program, so I imported it into my

project.

This tool was found in Window - Github. Once it was open, the process was simple, as in console: the

changes were shown in the commit screen, and push sent to my internet repository.

3.2.2 General information classes
In this section of the document we can find the basic information of the scripts used in this project:

3.2.2.1 Created for the project itself

● GameManager: This script is the connection between many scripts. Not only for the

neworking part, but also for the skeleton itself. It is inside an gameObject placed in the

scenery.

● Info: Each bone have this script. It is necessary for storing information about the bone.

● BoneButtons: This script is used in the bones that are placed at first. Its main objective is

showing the buttons for the Medium Mode.

● HandButtons: This script is used in the buttons of the hands. Its main objective is to

manage the spawning of the bones.

● UIButtons: This script is used in the main menu buttons. Its main objective is to give the

GameManager the correct selections of the player.

● Sustitute: This script is used in the bones that are placed at the start in the body. It manages

its behaviour depending on the difficulty. Also, it makes a UI appear when a bone is touched.

● NetworkManager: This script creates the version and room of the network settings. Also, it

manages when a player joins to a room and adds it to a list.

● NetworkPlayer: This script keeps the connection between the player and the server. Also,

makes the movement fluent.

● AgainstTheClock: This script manages the Against the clock game mode. It has a Timer.

Also, it manages the counters in-game.

● Trash: This script is used for destroying a bone when it collides with an specific object.

● DestroyBone: This script is used for destroying a bone after some time.

● Movement: basic movement for the player in multiplayer mode.

 23

Figure 18: UML classes diagram

3.2.2.2 Used from Leap Motion libraries

● InteractionBehaviour: This script manages the interaction between hands and objects.

● InteractionManager: This script manages that the Leap Motion hands are being tracked.

Each object that is interactable needs a reference of this manager in the

InteractionBehaviour component.

● InteractionButton: This script manages that the Leap Motion hands can interact with

buttons.

● SimpleInteractionGlow: This script makes a small animation in order to let the player

know that the button that he is touching is being pressed.

● SimpleFacingCameraCallbacks: This script makes possible to see the hand UI while the

player is looking at the palm of the hand.

3.2.2.3 Used from Photon libraries

● PhotonNetwork: main script that makes possible to create and joint to rooms.

● PhotonServerSeetings: This script stores the settings of the project.

● PhotonView: This script makes the gameObject visible for other players.

3.2.3 Game modes and difficulties

3.2.3.1 Solo

In this game mode the player plays alone.

 24

3.2.3.2 Cooperative

In this game mode the player plays in a cooperative mode. Will be explained in the multiplayer section.

3.2.3.3 Free

The Free mode is thought to be focused on children that want to learn and take time to pay attention to

all the details in the bones and the names.

3.2.3.4 Against the clock

This mode is thought to be a challenging game mode where the player can prove their improvements.

The player has 2 minutes for placing everything in their position, or he will lose.

The script againstTheClock and the function void startCounter() are the managers of this mode.

We have two important gameObjects in this game mode. The first is numberBonesText, that shows

up a string with how many bones are placed in that moment. The second gameObject is counterText,

that shows up a string that contains the timer.

numberBonesText is updated in changeNumberBonesText() function, whereas counterText

is updated in startCounter() function.

In addition, when the player loses, the game will show up a “You lose!” in the numberbonesText

gameObject.

3.2.3.5 Easy

In the Easy mode, the player can place the bones in their places without penalty. If he tries to place it

in a wrong place, the bone will not collide and will not be replaced. If he tries to place it in the correct

place, the definitive bone will appear and the base bone will disappear.

To achieve this, each time that the function detects that a gameObject is colliding and it is the correct

one, it deactivates the base bone and activates the definitive bone.

The script used for replacing bones in both difficulties is Sustitute. With an void

OnCollisionEnter(Collision other), we check if something is trying to collide with the body.

Before leaving the function, we call the void insertBone() function in GameManager script. This

function adds the bone to a List bones and incrementates the variable value of numberBones by

one. Also, it calls void changeNumberBonesText() that changes the numberBonesText

variable in the AgainstTheClock script.

To finish the process, the bone spawned is destroyed.

Bones can be destroyed in two ways: placing them in a destroyer item, calling destroyBone()

function in DestroyBone script, or waiting a minute after its creation, with destroyBone()

function in HandButtons script.

3.2.3.6 Medium

The Medium mode works in a pretty similar way. The player can make mistakes and place bones in

every position allowed. To achieve this, each time a bone collides with another, five possibilities are

checked and the activated elements in the hierarchy (See Figure 17) are changed.

- The base bone is activated and the bone spawned is correct: the base bone (first in

hierarchy) is deactivated and the definitive bone (second in hierarchy) is activated.

numberBonesCorrect and numberBones is incremented, and a bone is added to the

bones List.

 25

- The base bone is activated and the bone spawned is incorrect: the base bone is

deactivated and the error bone (fourth in hierarchy) is activated. The mesh of the error bone

changes.

- The definitive bone is activated and the bone spawned is incorrect: the base bone is

deactivated and the error bone is activated. numberBonesCorrect is decremented.

- The error bone is activated and the bone spawned is correct: the definitive bone is

activated and the error bone is deactivated. numberBonesCorrect is incremented.

- The error bone is activated and the bone spawned is incorrect: the mesh of the error

bone changes.

All this comparisons are checked with the collider in the collider element (fifth in the hierarchy) and

the id in the Info script in the parent (skull in the example of the Figure 17).

Figure 19: Game Object Skeleton

This hierarchy and this way to proceed, enabling and disabling gameObjects or rendering components

could be complex to understand, but it is the best way that I found for keeping the positions, rotations,

meshes and components in the objects. Its a solid system once it is completed.

The game is easier for the player if he has a tool that allows to him to lock bones that are correct for

him. Also, if this tool allows to expulse bones that he thinks that is not correct. That is why we need to

spawn two buttons in each bone. This issue will be explained later.

3.2.4 User interfaces
In this project we find three user interfaces that are the bridge between the game and the player. All of

them are made in 3D, with some labels on the top.

3.2.4.1 UI Main menu

At the start of the game we find a menu where the player can choose the mode that he wants to play

(See figure 18).

Figure 20: Starting game modes

This menu is programmed in the script UIButtons, and the call of the functions is made in the

InteractionButton component (See Figure 19).

Figure 21: UIButtons

 26

In all the cases the code works the same. When a button is pressed, a function is called. This function

deactivates the buttons, and activates the next two with a coroutine.

In addition, the function sends to the GameManager the information given by the player. For

achieving this, the button pressed gives its id to the GameManager.

There is a specific function in this Script, called void callMenu(). This function is the responsible

for calling back the menu when necessary, that is, when the user presses the main menu button on his

right hand or when the player finishes a level.

I found a problem developing this part of the project. When I pressed a button, the next two were

pressed immediately too. That is why it was impossible to select the options I needed. The solution

that I found was making the next two buttons wait three seconds to appear in the coroutines functions

dissapearButtons().

3.2.4.1.1 Solo - Cooperative

In this first decision the player can decide if he want to play alone or with a friend. The functions called

in each case are void TouchButtonSoloCoop().

For making these buttons disappear, we call IEnumerator dissapearButtonsSoloCoop().

3.2.4.1.2 Free - Against the clock

In this decision the player can decide to play the “Free” game mode or the “Against the clock” game

mode. The functions called in each case are void TouchButtonFreeTime().

For making these buttons disappear, we call IEnumerator dissapearButtonsFreeTime().

3.2.4.1.3 Easy - Medium

In this last decision the player can decide to play in the easy mode or the medium mode. These

functions called in each case are void TouchButtonEasyMedium().

These buttons do not need a coroutine for calling new buttons.

In this function we also check if the gamemode selected in the “Free” / “AgainstTheClock” decision was

“AgainstTheClock”. If that is the case, we call the function void startCounter() in

againstTheClock script.

Also, if the difficulty decided is “Easy” the buttons help and unlock are activated.

3.2.4.2 UI Bones

When we touch a bone in the Medium mode, a UI shows up with two buttons.

The first button is called Lock: it makes the bone not interactable anymore. For achieving this, it

changes the variable isLocked in Info script. Everytime we collide a bone with a hand or with a bone,

we check if the variable isLocked is not false for continuing the process. After pressing Lock, we make

the UI inactive again. The second one is Expulse, it makes the bone recover its base form. After

pressing the Expulse button, we make the UI inactive too.

To achieve this, we have a function called void TouchButtonBone() in the BoneButtons script.

This function is called in the component InteractionButton, inside of each button, and makes the

info and the behaviour of the bone change.

This UI had problems at the beginning, because more than one UI was activated at the same time and

it was confusing for the player. This is why I created a isActive bool in GameManager, that checks if an

UI is activated when other UI is called.

These buttons disappear automatically with dissapearButtons() function in Sustitute script.

 27

In the case that a player decided to lock a bone, and regrets it later, he can press the unlock button in

the right hand, that will be explained later.

3.2.4.3. UI Hands

3.2.4.3.1 Spawning buttons

These buttons can spawn bones and are in the left hand. There are twenty five kinds of spawned bones

in this project, and fifteen of them are different. That is why we have twenty five kind of spawn bones.

At first, this kind of organization was decided (See figure 20):

Figure 22: First design of bone spawn buttons

This two models were not very useful because the buttons on the left part of the hand are hard to press

with the right hand. It is necessary to cross arms and it is not comfortable.

Also, due to Leap motion works with infrared, if we cross hands the left hand sometimes disappears.

That is why I decided to place the buttons in the left part of the hand (See figure 21). It is less beautiful

to the eye, because it is concentrated, but is the most useful and intuitive way to play the game.

With the right hand, I followed the same schema (See Figure 21)

Figure 23: Final design of bone spawn buttons

When we touch a button in our right hand, a bone spawn up in a specific spawning position, in a

gameObject transform called SpawnBonePoint. There, we call the function void

TouchButtonHand(), located in the HandButtons script and we instantiate the correct bone

depending on the identificator of the button itself.

At the beginning I found an issue related with these new bones spawned. The InteractionManager

was not automatically placed, because it was public and dragged to the inspector. But it seems that

when Unity instances a prefab it loses its dependencies. That is why I placed the component of the

InteractionManager in the script just after creating the bone in running time.

Other issue found with this buttons was that everytime that the game was running, lots of bones were

spawned without reason. I realized that the bones were spawning by the left hand itself. After checking

some documentation, I found that it was possible to make these buttons only interactable for one of

both hands, and I solved the problem.

 28

3.2.4.3.2 Menu button

This button returns you to the main menu. You can press it anytime you want and find it in the right

hand. We call the function void callMenu() in the UiButtons script.

With the script GameManager and the function restartAll() we restart the variables, players,

gamemode and difficulty, and we clean the bones List.

3.2.4.3.3 Unlock button

Sometimes the player can decide that a bone is well placed, and lock it. But maybe later he changes his

mind. He can press the unlock button, unset those bones that are incorrect, and press again the unset

button to go back to the normal mode.

You can find it in the right hand. For achieving this result, we use the component

InteractionButton in the button itself. There, we call the function TouchButtonUnlock(),

located in the HandButtons script, that calls the unlockBones() function in the GameManager

script. There, we check with a loop all the elements in bone list and we change the color of the bones

locked with void ChangeColorsRed() function in GameManager script.

After that, if the player press again the Unlock button, the bones are changed to white with

unlockBonesBack() in GameManager script

3.2.4.3.4 Help button

Sometimes the player may need help. This is why we make the correct buttons change to blue, in

order to give a clue to them.

You can find that button in the right hand. We use the component InteractionButton in the

button itself. There, we call the function TouchButtonHelp(), located in the HandButtons

script, that calls the helpBones() function in the GameManager script. There, we check with a

loop all the elements and we change to color blue the correct bones, calling the

ChangeColorsBlue() function in GameManager script.

3.2.5 Multiplayer and network connection
This game is designed to be player in a multiplayer mode. Both of the players have an own HTC Vive

[5] visor and Leap Motion [4] controller, and are playing in different PC.

In order to achieve this point, it was investigated how can we make two projects connect each other,

and tried to get a fluent result where lag is not a problem.

The first step was importing the Photon Networking Plugin [3] to the project. Once this is done, the

next step is setting up the server, creating an account in the website and logging in.

In my account, I found an app id, so it was time to add it to the project with the region. Also, at this

point I selected the EU Region and I clicked Save.

At this point I created the two scripts that are necessary for making the communication possible:

NetworkPlayer and NetworkManager.

We added a Photon View to the player and we dragged his transform to the component

ObservedTransforms, so the position will be changing and will be visible for other players.

In the inspector, I created a spawnPoint for creating the players.

The NetworkManager script is not very complex. On the Start(), we called the

ConnectingUsingSeetings(string version) for connecting my project with my settings to my

Photon Server. It uses the version of my game.

 29

In this script we can also find an OnJoinedLobby() function, that creates a room with specific

options. It checks if a room is created, if that is the case, it tries to join the room. If not, it creates one.

We also have a void OnJoinedRoom() function. This one add the players that joins to the room to a

List of players, and instantiate a gameObject PlayerPhoton for each player.

By its side, in the NetworkPlayer script we can find a void

OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info), that is the

responsible for keeping the position and rotation updated all the time in the server. For doing that, it

uses an stream object.

We also have other function, Alive(), that checks if the user is still in the room. Once all of this was

prepared, the player was ready for communicating with other players through internet. It worked, and

I saw how two players can move and rotate in the same scene.

The problem came when I tried to add this functionality to Leap motion hands. Due to Leap motion

being created procedurally, it is not easy to add this component to it. It is not formed for different

parts with differents transforms, as other gameObjects.

On internet I found that many people had the same problem as me. I tried to use other hands, that

were supposed to be more prepared for physics projects, but it did not work either. It seems that it is

not as easy issue at it seems and needs more time to be fixed, changing some code from the libraries of

Leap Motion.

For finishing this part of the project, I realized that the gameObjects that were moving through

internet were not very fluent. This is due to the information not being transferred constantly, it has a

small delay being received. I investigated on internet how other games solve this problem and I found

that some of them create an interpolation between the last reception of information and the last one

before that one. That is how with a Lerp() function I can make a more fluent communication between

gameObjects.

3.3 Art

3.3.1 2D Art

In this section of the document I will talk about how the textures, 2d animations, and walls were made.

All of them were created with Krita or Photoshop.

3.3.1.1 Tileable textures

To create this textures, Krita was a important factor. Tileable textures should be well created if we

want to simulate a texture that can be connected in all of his parts.

In this example, we can see a bad tileable texture (See Figure 22). When we place it repeatedly, it is not

well connected and the result is not satisfying.

Figure 24: Bad tileable texture

 30

This is due to the ending part of the lines are not connecting to the beginning of the other ones.

Krita have a tool that makes this easy to do, so the artist do not have to worry about the final result a

lot (See Figure 23). He can see the progression of the texture in real time.

Figure 25: Example of how the tileable tool works

Using this tool with some patience, this texture was made for the desk (See Figure 24):

Figure 26: Good tileable texture

As we can see, the result is well connected. If we add it in a 3D model, we give it a extra point to

stylized style (See Figure 25).

Figure 27: 3D Result of tileable texture

3.3.1.2 Handmade textures

Other textures were made by hand, for a specific model. That is the case of the bed, where we can see

that the stars are different from each other.

For doing this texture, the first step were creating a good topology for the object and extracting a UV

Map. After that, we add it to a painting program (Photoshop in this case, but Krita is good too) and

paint it by hand (See Figure 26).

 31

Figure 28: Handmade textures

In the last step, we added it to the model in Blender. When the result is good and well placed, the

model is ready to be exported in FBX to Unity.

Other 3D models with custom textures were made with the same basis.

It is important to mention the textures created for the walls, because they have a lot of details and are

made for faking painted paper (See Figure 27).

Figure 29: Handmade texture for a wall

The furniture close to those walls are similar to the wall color palette.

3.3.1.3 UI Sprites

Here we can see the art created for the buttons of the game, created with Photoshop:

 32

Table 9: UI Button Sprites

3.3.2 3D Art

All the 3D models in this project has been made with the open source program Blender. This program

is useful to model organic and not organic models.

As explained in the GDD, as this scenery is designated to be for a child, furniture follows simple

designs, with patterns and without prominences. Also, I don't want to make it for a girl of a boy. That

is why I decided to use different colors depending on the wall. Furniture close to the wall had the same

palette color than the walls itself

The process for modelling a 3D element for the scenery was the following:

 33

3.3.2.1 Previous design

Before 3d could be modeled, a previous design was demanded (See Figure 28).

Figure 30: Handmade bed design

In this example you can see the different elements that the bed have. The mattress, the protection wall,

the stairs and the drawers.

In case of organic or difficult models, differents points of view were mandatory too (See Figure 29):

Figure 31: Preliminary bunny draw

In the organic 3D objects, a preliminary study were demanded for each bone. Not only for the shape,

but also for knowing how the bone is created and can interact with other bones.

3.3.2.2 First steps of modelling

At first, 3D models were created without thinking a lot about the correct topology, and number of

triangles. The high number of triangles can be a performance issue that has to be solved in a close

future.

The big number of triangles created lag moments in-game: a single heavy model is not a problem, but

when a lot of them where in the scenery, the framerate goes down. And, as I have said before, changes

in the framerate could make the player dizzy.

3.3.2.3 Fixing the topology

To solve this problems, I investigated in Retopology. This technique consists on recreating an existing

surface with more optimal geometry. It is a hard and slow technique but with good results.

If the model were not very complex, the topology could be fixed by hand. This technique was not very

effective with organic elements, because it took me many time and the result were not as good as with

Retopology techniques.

 34

Related to the bad topology, when the ambient occlusion was activated in Unity, topology shown how

the models were really created. Ugly lines crossed supposedly plain surfaces, and made shadows that

were not necessary and strange to the eye.

For that reason, some edges and faces had to be removed. With a more logical topology and deleting

the unnecessary polygons we achieve a more polish result.

Other problem found when I was modelling was the order of the normals. Usually, the models have all

the normals in the same direction, and it is not a problem. But sometimes, due to the order of the

polygons is not understood by Blender, the model in Unity showed up the reality: some polygons were

flipped (See figure 30).

Figure 32: Bone model

This could be easily fixed flipping the normals. The problem was that sometimes, even when I flipped

those polygons, the problem was not fixed. This issue made me lose a lot of time, until I discovered a

way to fix it, deleting the closer polygons and recreating that part of the mesh.

The last models done had less problems that the first ones, because I took care of the order of the

polygons and the exceed of triangles since the first moment.

3.3.2.4. Unwrapping the models

At first, I thought that only some parts of some models were being unwrapped, specifically, that ones

with patterns of textures. But, when ambient occlusion was activated in Unity, the reality was shown

up: it is necessary to have an UW MAP to create a bake with ambient occlusion.

This issue made me fix again all the models.

 35

https://www.linguee.es/ingles-espanol/traduccion/supposedly.html

3.3.2.5 Scenery

The scenery has different elements:

Vertical shelf Chest Window

Bird house Diana Book shelf

Bed Closet Rabbit

Desk Night table Dresser

Cube toys Mannequin

Table 10: Scenery

 36

3.3.2.6 Organic models

Two organic models were created for this project.

3.3.2.6.1 Rabbit

The model is rigged and have an internal skeleton (See Figure 31).

For achieving this result, it was necessary to create a good mesh where vertex had a similar distance

between others.

Also, it was important to have in mind the weights between elements. At the beginning, the ear and the

head was not well weighted. This made an ugly effect, each time the ear moved, the head was

influenced by it too.

That is why it is important to check the automatic weights that Blender sets to a rigged object.

Figure 33: Rabbit rigged

3.3.2.6.2 Skeleton

This model is formed by twenty five bones, fifteen of them are different from each other. In addition to

those bones, we can find twenty five pieces that are the base bones, before the player places each bone

in its place.

The bones are:

Skull Vertebras Sternum

 37

Humerus Ribs Ulna

Pelvis Scapula Radius

Femur Hand Tibia

Patella Fibula Foot

Table 11: Bones

 38

3.4 Testing
While this project was in an alpha phase, many problems were shown up in the first testing sessions.

Thanks to the results, some issues could be solved, specially those that could not be easily predicted a

intuitive.

Other issues more related with game programming were also shown up during the sessions.

I realized that many of this problems were not found by myself because I always play in the same way,

and I did not took in mind that, for example, people not used to virtual reality tends to try everything

they have in their minds, and not only those actions said by the game.

Because people who tested my game are not game testers, and some of them, even are not gamers, I

recorded their experience, to not lose any detail of their thoughts.

Also, while virtual reality is not comfortable to test (you have to put on and put off the headset

everytime you want to report something) I accompanied the players during their test, trying not to

answer any of their needs until strictly necessary, and writing down myself the reports with their

opinions.

After finishing the testing, I checked the video recorded and I fixed the document I wrote before, if it

was necessary.

The testing process has three steps:

3.4.1 Sanity check
In these first steps the tester checked very simple issues related with technical aspects of the

videogame. Even if those issues seems to be not important, they are: testing the game in the wrong

version or not having the Leap Motion correctly configured could result in a failed test.

Here you can see one of the tests filled:

Table 12: Test Results 1

In general, all the Sanity checks were successful. Only the last one had a “Wrong” in the Leap Motion

field. It was not well connected and it was necessary to reconnect the hardware.

3.4.2 Functional test
In this second step I asked the player for specific issues of the game that I knew that were problematic,

or in the case of the second and third testing session, I asked for issues that other players had found

and were supposed to be solved.

This test is more complicated and sometimes the players got stressed if they did not understand

exactly what they had to reproduce, or if they were reproducing the bug correctly. That is why, for the

third testing, I provided my testers with some footage where the old bug was shown.

 39

Comparing that footage with their own experience in real time made the functional test easier to do.

Here you can see one of the tests filled:

Table 13: Test Results 2

In general, most of the issues noted in this test were similar between players. Majority of the issues

were fixed when checked (70% Ok, 20% Need fix, 10% Wrong), and, when something was wrong, most

of the players found it easily (90%). In those questions that were more personal, like “Is the

environment well illuminated” or “Is the game well explained” the results variated more.

3.4.3 Free testing
This third step was not exactly sequential. Sometimes the players, from the first minute, started to

complain or compliment the game, so every comment they gave as feedback was recorded for this step.

After finishing the first two steps, I gave the players some time for exploring the game. At this point,

some interesting feedback was showing up, the players tried to do many things that were not expected:

walking to cross the walls, touch the environment, creating bones in crazy places, lay down in the

ground…

That is why in the beginning of the game you can see a list of advices for security.

Here you can see one of the tests solved:

Table 14: Test Results 3

The most interesting points in this testing were:

- Bugs not found by myself: bones moving automatically, bones that were not working

properly, counters not working properly...

- User experience issues: make the buttons disappear when the hand is not in the screen,

create a button for rotating the skeleton, moving the spawning buttons…

- Artistic issues: change colors of some elements, add or remove elements, switch

furniture position...

 40

RESULTS OBTAINED

Contents

4.1 Game Development 53

4.2 Art 53

4.3 Testing 54

4.4 Documentation 54

4.5 Final planification 55

In this section the results obtained in the different aspects of this project will be exposed. Also, a

general overview of the objectives accomplished will be shown.

4.1 Game Development

4.1.1 Game modes

All the games work properly. In the objectives of the Technical Report it was promised to create one

game mode, and two were implemented, with two variations in each case of difficulty.

The hardest part of these modes were not to overlap one to other. At the beginning all the modes were

mixed in one script and the behaviour was not good.

Many problems related with collisions and interaction with Leap Motion and Unity objects were

found. All of them were solved.

4.1.2 User Interfaces
The implementation of the Leap Motion and the interfaces are working properly. Players can use this

interfaces easily and do not need to learn a lot how to play.

Respecting to the main menu, it works perfectly. It walls the functions that are necessary and stores in

the GameManager all the information needed.

The hands could spawn bones according to the type. This bones work properly in each game mode.

Also the UI on the bones allows the player to Lock and Expulse bones when needed.

 41

4.1.3 Network
The final result of the networking is successful. Players can share the same virtual room and play

together.

Due to the complexity of making Leap Motion hands being an multiplayer object, and the limited time

for this project, the Leap Motion hands could not being shown through internet. The gameObject is

shared, but not the transform and rotations, due to how the software is implemented.

Respecting to the fluency, part of the rotation and translation is processed locally, and the result is

more accurate that only showing the result of the other player moving through internet.

4.2 Art

4.2.1 2D Art

Hand-painted stylized style was a complete adventure for me. I spent many time learning from

tutorials and other artists. But the result is good. The room and the general environment seems to be

childish and sweet. All the people who checked my game are agree with that and I am happy for

hearing it.

The sprites for the bones buttons are simple, but useful. Testers could recognise easily what they were

spawning.

4.2.2 3D Art
As I am used to model in low poly, this part of the project was not really difficult. But it is true that

took a lot of time to do, because there are many elements in the scenery. Mixing these elements with

their textures created a beautiful environment where the player can feel involved (See Figure 32). That

is something beautiful and I am glad to have achieved it.

Figure 34: Room 3D Art

My skills with Blender related with unwrap and retopology improved a lot. My first models had many

problems with normal flipping, bad topology, wrong unwraps, and other issues. The last ones did not

gave me many bad surprises when I imported the models ingame.

 42

4.3 Testing
The three testing done were very satisfactory and beneficial for this project. Thanks to them, many

issues were discovered that would not had been discovered in other way.

Those test can be checked here: https://bit.ly/2MW82M9

For example, one of them was related with the hands button position. I realized that when I played, I

moved my left hand first and later, with my right hand I pressed the button. In the first testing I did, I

realized that people usually move their right hand, and not the left hand. That is why the design was

changed.

In general, the free testing was the most useful. Sanity checks and functional test did worked as I was

expecting mostly.

Testing this game was more useful than expected. That is why I'm going to continue this practice in my

following projects.

4.4 Documentation
At the beginning of this project the Technical proposal was sent and most of the objectives have been

completed.

At the end of February, Game design document was sent. Some elements have changed, mainly related

with Leap Motion hands. The lack of knowledge about this tool made necessary to change some

organization of the buttons.

This Final Report was sent at the beginning of July with the video, and in the following days the

presentation was finished.

In order to summarize the work done for the project, this table shows a final recount of different

elements done for the project.

Table 15: Element recount

 43

https://bit.ly/2MW82M9

4.5 Final planification

Table 16: Final planification result

As you can see, in the most part of the project the time needed was expanded (See Table 15). This was

related to the learning curve needed for the SDKs employed.

The installation of Leap Motion and HTC Vive took me less time than expected. Leap Motion took me

more time because they update the device frequently and the hands stopped working often because of

this.

Also, the art part has plenty of elements, so it took many time to develop it.

The testing part was not as difficult as I thought, and gave many good feedback that improved my

game.

Writing all the documentation took way more time than expected due to writing in a foreign language

because it is not something I am used to.

 44

NEXT OBJECTIVES

The next objectives for this project are:

- Add the network connection to the hands: I want this game to be completely multiplayer.

This issue is going to take me some time and investigation. A user in Reddit gave me a possible

solution for this problem, but is is very hard to implement and did not work the first time I tried. I

want to try again that solution and improve my project.

- Model my own 3D hands: Now I am using 3D hands that are from Leap Motion itself. I would

like to model a good ones, that could fit better with this project. To achieve this, I will use Blender

again as my main tool and I will investigate the motricity of the human hands.

- Implement other minigames with organs and muscles, or other animals: the options

are unlimited and very attractive. I would like to implement more game modes, so I can expand

this game. The minigames that I would start to implement are the skeleton of a bird and the

organs of a person. That will require many art and more implementation, but will be possible to

do with time, because all the basis is implemented in this project.

- Create other two sceneries: Each scenery could be used for a different minigame. One of

them I would like to be a farm, because it is a good environment for an animal minigame. Other

one could be an orchestra environment, where some musical instruments needs to be built.

- Adapt this project to HTC Vive controllers: very few VR players have Leap Motion at home.

That is why adapting this project to the usual controllers will be a good solution.

 45

This page is left blank intentionally.

 46

CONCLUSIONS

I have learnt that creating a video game from beginning to end with all the different areas could be

very difficult. I have spent a lot of time learning how to deal with different topics of the game: 2D art,

3D art, and programming different objects and technologies. That took a lot of time and effort to do,

but the results are good.

About the art part, I realized that the key to create a beautiful scenery lies in not only the 3D models,

and how are they designed, but also in illumination, textures, shadows and synergy between the

different elements could create a real ambient where a player can feel integrated.

Working with unknown hardware is not as easy as it seems. Sometimes documentation is too hard and

limited for unfamiliar developers. Another times, the best documentation is not in the official website.

Also, trying to understand code that connect software and hardware to create something new can be

really hard. It could be even worse if almost no one in your environment is familiar with the

technology. That is why I crossed many hard moments in this project, and I am glad to see that in the

main result I have a game where I can play from beginning to end using a tool that nobody taught me.

To summarize, I have a game where a player can start playing without help, with an scenery that helps

him to be involved, a technology well implemented that surprises them, and minigames that

challenges them to learn and have fun at the same time.

In general terms, I am satisfied with this project because I have solved the problems that I have found

and I feel that this project could be a good one with some time. Serious games and Virtual Reality are

growing each day and this work is a good beginning for them.

 47

This page is left blank intentionally.

 48

BIBLIOGRAPHY

1. Unity Technologies. Unity User Manual. From

https://docs.unity3d.com/es/current/Manual/UnityManual.html

2. Blender. 3D Creation suite. From https://www.blender.org/

3. Exit Games. Photon SDK API Photon Server, Photon Unity Networking. From

https://doc-api.photonengine.com/

4. Ultrahaptics Ltd. Leap Motion technologies From https://www.leapmotion.com/

5. HTC. HTC VIVE Hardware. from https://www.vive.com/us/

6. Víctor J. Osma-Ruiz, Nicolás Sáenz-Lechon, Juana M. Gutiérrez-Arriola, Irina

Argüelles-Álvarez, Rubén Fraile, Roberto Marcano-Ganzo, . (2015). LEARNING

ENGLISH IS FUN! INCREASING MOTIVATION THROUGH VIDEO GAMES.
SPAIN: Departamento de Teoría de la Señal y Comunicaciones, E.T.S. Ingeniería y

Sistema de Telecomunicación, Universidad Politécnica de Madrid from

http://oa.upm.es/44606/1/INVE_MEM_2015_241732.pdf.
7. Krita Foundation. Krita | Digital Painting. Creative Freedom. From

https://krita.org/es/

8. Frizt Schider. An Atlas of Anatomy for Artists. From

https://www.goodreads.com/book/show/327249.An_Atlas_of_Anatomy_for_Artists

9. Gameplay video, exe and pictures: https://bit.ly/2LumrwB. To play, launch

"Videojuego Anatomía" .exe in the .rar. It is necessary to have Leap motion and HTC Vive

to play.

10. Repository: https://github.com/ikoknight/AnatomyGame

 49

https://docs.unity3d.com/es/current/Manual/UnityManual.html
https://www.blender.org/
https://doc-api.photonengine.com/
https://www.vive.com/us/
http://oa.upm.es/44606/1/INVE_MEM_2015_241732.pdf
https://krita.org/es/
https://www.goodreads.com/book/show/327249.An_Atlas_of_Anatomy_for_Artists
https://bit.ly/2LumrwB
https://github.com/ikoknight/AnatomyGame

This page is left blank intentionally.

 50

