
DESIGN AND DEVELOPMENT OF AN
EDUCATIONAL GAME ABOUT LOGIC

CIRCUITS AND COMPUTER
ARCHITECTURE

Author: Antonio López Ruiz
Tutor: Sergio Barrachina Mir

Andornot

Gracias.

A mi madre y a mi padre,
por haberme apoyado
 siempre y haber dado

todo por mi.

A Cristian Montoya,
 el hermano que nunca tuve.

A Maria del Olmo,

por hacer que los días
sean menos grises.

A todos los NH,

porque un minuto con vosotros
hacen que mis penas
sean más pequeñas.

Que haya sobrevivido ha sido gracias a vosotros.

1

Andornot

Summary

The following document constitutes the Final Degree Project’s Technical

Report of the Video Games Design and Development degree carried out by

the University Jaume I. The objective of the project is to provide to future

Design and Development of Video Games students a gamified experience in

the process of learning Computer Architecture.

The game has been developed with the game engine Unity 3D[​1​], custom

art and non-copyrighted music.

2

Andornot

Index

1. Technical proposal 8

1.1. Final Degree Work Summary 8

1.2. Introduction and motivation of work 8

1.3. Related Subjects 9

1.4. Final Degree Work Goals 9

1.5. Planning 9

1.6. Expected Outcome 10

1.7. Tools 10

2. Game Design Document (GDD) 12

2.1. Introduction 12

2.1.1. Game concept 12

2.1.2. Genre 12

2.1.3. Purpose and target audience 12

2.1.4. Gameplay 13

2.1.5. Visual style 13

2.1.6. Reach 13

2.2. Game mechanics 13

2.2.1. Gameplay 13

2.2.2. Game flow 14

2.2.3. Mechanics and communication between elements 15

2.3. Interface 15

2.3.1. Flux diagram 15

2.3.2. Main Menu 16

2.3.3. Level Selection 17

2.3.4. Topic Selection 18

2.3.5. Test Level 19

2.3.6. Level End 20

2.3.7. Free Mode 21

3. Project Development 22

3.1. Computer Architecture and Logic Circuit analysis 22

3.2. Game Design 22

3.2.1. Test Level 23

3.2.2. Logic Circuits 25

3.3. Programming and code 29

3.3.1. Test Levels 29

3.3.2. Logic Circuits 29

3

Andornot

3.3.2.1. Logic Circuit Interactions 29

3.3.2.2. Logic Gates Components 32

3.3.2.2. Logic Gates Types 34

3.3.2.3. Logic Gates Extras 37

3.4. Art 38

3.4.1. Main Menu 38

3.4.2. Topic 39

3.4.3. Level Selection 40

3.4.4. Quiz Test 40

3.4.5. Logic Circuits 41

3.4.6. External assets 42

3.5. Testing 45

3.5.1. Testing Mechanics 45

3.5.2. Testing Levels 45

3.5.3. Balance Testing 45

4. Results 46

4.1. Andornot 46

4.2. Creation of levels 46

5. Conclusions 47

5.1. Project Balance 47

5.2. Objectives 50

5.3. Project and Executable 50

6. Annex 51

4

Andornot

List of Figures

Figure 1: Initial Planning

Figure 2: Flux Diagram

Figure 3: Main Menu

Figure 4: Subject

Figure 5: Level Selection

Figure 6: Test Level

Figure 7: Logic Circuit Test

Figure 8: Level End

Figure 9: Free Play

Figure 10: NOT

Figure 11: OR

Figure 12: AND

Figure 13: NAND

Figure 14: NOR

Figure 15: XOR

Figure 16: Test()

Figure 17: OnMouseUp()

Figure 18: AndLogicalElement

Figure 19: XorLogicalElement

Figure 20: Splitter

Figure 21: Button

Figure 22: Main Menu Art

Figure 23: Subject Matter Art

Figure 24: Level Selection Art

Figure 25: Test Art

Figure 26: Logic Gates Art

5

Andornot

List of Tables:

Table 1: Introduction

Table 2: Processor

Table 3: Memory

Table 4: Logic Gates

Table 5: Art of the game

Table 6: Game Analysis Work

Table 7: Level Design Work

Table 8: Programming Work

Table 9: Assembling Levels

Table 10: Art Work

Table 11: Testing Work

Table 12: Memory Work

Table 13: Total

6

Andornot

7

Andornot

1. Technical proposal

1.1. Final Degree Work Summary

The following document contains the technical proposal concerning the Final
Degree Work of Design and Development of Videogames. This essay is about the
development of a didactic game for the subject ​Basic Informatics​[​2​] that must run
in Linux[​3​] computers and that is focused in the teaching and practising of the
different components of a computer, and how these elements interact. The
videogame consist in both a series of test and a logic circuits simulator, that allow
the student to build from simple circuits to a more complex association. This
game pretends to make the Computer Architecture lessons more interactive and
more visual.
It is a simulator/quiz game, in which the player has to accomplish several
missions to advance through the game and learn the basics of Computer
Architecture, it will be developed in Unity 3D.
Keywords:​ simulation, computer architecture, logic circuit, ARM, subject.

1.2. Introduction and motivation of work

The main goal is to develop a game that works as a reinforcer to ​Basic Infomatics​,
that allows the student to complement the information given at class by playing
and experimenting with different levels of the game. To accomplish this, the
game has to formulate a series of tests and recreate the different Logic Circuits in
Unity 3D, it has to simulate from the very basics of Logic Circuits[​4​] to the more
complex ones at a code level, using C#[​5​], one of the main programming
languages of Unity 3D. The the games has to visually the different circuitry in 3D
models or drawings and implementing them into Unity 3D. The final goal is to
organize the resulting simulator and tests in a series of levels and problems to
make the learning process progressive and intuitive.

I think that educational games[​6​] have a great potential, and in my opinion in the
future, interactive systems will have a greater impact in the educational process.
Since I discovered this alternative use of videogames I have wanted to make one,
or get involved in the development of one of the kind, so I think this Final Degree

8

Andornot

Work will be a good chance to get involved and make a functional educational
game.

1.3. Related Subjects

● VJ1227 - Game Engines
● VJ1223 - Videogames Art
● VJ1222 - Conceptual Design of Videogames
● VJ1202 - Basic Informatics
● Vj1214 - Consoles and Videogame Devices

1.4. Final Degree Work Goals

● Develop a game which can be used to learn Computer Architecture[​7​].
● Create tests about the Computer Architecture.
● Create an original game with own animation and models, where they

handle a series of test and visually recreate the use and interaction of Logic
Gates.

● Use and the different Logic Gates, to “recreate” more and more complex
Logic Circuits and understand its implementation.

● Make the Tests and Logic Circuits the key mechanic of the game, making it
the key to solve the different levels and problems in the game.

1.5. Planning

The original planning is shown in Figure 1.

Figure 1

9

Andornot

1.6. Expected Outcome

The expected outcome is a game programmed in C#, that test the students
knowledge about Computer Architecture and that can recreate the logic gates, its
use and its combinations. Also a visual representation of it, that allows to
distinguish without a doubt the different parts and how they connect.
The outcome of this project is a game that can work as a pure simulator of Logic
Circuitry, and as a tool to learn and understand it. The project must be able to
work in Linux and Copyright free.

1.7. Tools

● Unity 3D,
● Adobe Photoshop[​8​],
● Adobe Illustrator[​9​],
● C#
● GitHub[​10​]

10

Andornot

11

Andornot

2. Game Design Document (GDD)

2.1. Introduction

This is the Game Design Document of ​Andornot​. This game is for Linux (PC)
Operative System that exemplifies and gamifies the content about Computer
Architecture, in the subject ​Basic Informatics​, of the Design and Development of
Videogames degree ​in Jaume I University. This document has as a goal to point
out the elements that ​Andornot ​must include, and to serve as a guide in case the
game needs correction and/or further development.

2.1.1. Game concept
Andornot ​is a combination of a series of tests about Computer Architecture and
simplified circuits design simulator, that presents the digital enginery in a more
accessible way, where the student completes its education with tutorials and
several challenges.

2.1.2. Genre
Andornot ​is the union of two genres,​ ​Simulation Game ​and ​Quiz Game​:

● Simulator: This genre consists in the total, partial or adapted simulation of
an action and/or phenomenon of the real world. In ​Andornot ​the working
process of logic circuitry is being simulated and its represented in a way
that each of the elements is easily identifiable.

● Educational game: A quiz is a form of game or mind sport, in which the
players (as individuals or in teams) attempt to answer questions correctly.
It is a game to test your knowledge about a certain subject. In some
countries, a quiz is also a brief assessment used in education and similar
fields to measure growth in knowledge, abilities, and/or skills.. In
Andornot ​the quiz its manifested in the tests and in the sequence of the
different challenges and levels.

2.1.3. Purpose and target audience
The main goal of ​Andornot ​is to offer the students and the teachers of the subject
Basic Informatic ​a 2D Game developed in the Unity3D game engine for Linux. The
game is meant to act as a complement for the subject matter. Its interest must lay
down in the educational content.

12

Andornot

The game is mainly directed to the students in the ​Basic Informatics ​subject to
reinforce the information exposed in class and offer an interactive system that
visually represents the different tests and logic gates.

2.1.4. Gameplay
Each level of ​Andornot ​offers a problem that the student must solve. To do it, the
student must use its knowledge to solve the test or to identify several logical
gates and combine them.

2.1.5. Visual style
Andornot ​will have a simple style, almost minimalist, to reinforce the
importance of each element and make the game mechanics the main element of
the game. The visual style that fits the best with this style is the “Programming
Framework” or “Blank Workspace”

2.1.6. Reach
The main goal is to develop a solid game that can work on itself, and that is able
to be expanded in the future with no problem, in case game must be modified (by
adding mechanics of levels)​.

2.2. Game mechanics

In this section the different mechanics in which ​Andornot is ​based, are further
detailed. The gameplay and the actions that the played can execute are detailed.

2.2.1. Gameplay
The different elements of the gameplay are described in this section:

● Topic: Andornot ​is divided in four differentiated parts that will divide the
game:

○ Introduction: This part will be a series of test about basic Computer
Architecture.

○ Logic Gates: This part will introduce Logic Gates and a few problems
about them.

○ Processor[​11​]: This part will be focused in the Processor and its
parts and functionality.

○ Memory[​12​]: This part will be focused in the Memory, its parts and
its functionality

13

Andornot

● Levels: ​Each of the levels of ​Andornot ​is a problem or and exercise related
to the subject that must be solved by the students. The main goal will be
determined by the Topic.

● Elements: ​To reach the main goal the player has at its disposal different
logic gates (AND, OR, XOR, NOT) and the answers to the tests.

● Intensity: ​The difficulty of ​Andornot ​is progressive and its marked by the
advance of the subject at class. The different levels are distributed to be
played in sequential order, but the player is allowed to play any level at
any time, to reinforce his knowledge or to catch up the class.

● Progression: ​In the first levels the amount of available elements is very
reduced and then, as the game increases its difficulty and complexity more
items will be available. This way the player learns how to use them
progressively.

2.2.2. Game flow
And now the course of a game of ​Andornot ​will be detailed. The steps that a
player must follow from the beginning of the game to when the level is
concluded. In this section the mechanics are described, further the content of
each section will be described.
The player starts ​Andornot ​and the ​Main Menu is displayed. If he wants to start a
game the player will select ​Play​. Next, the player will select the ​Subject ​that he
wants to play in the​ Topic ​Section.

Once in the ​Topic Section the levels are displayed and organised in a sequential
way to be played in this order, but in order to improve the flow of the game and
the subject, every level is available from the start.

When the player starts a ​Level, ​depending on which ​Topic ​he chose, two different
levels can be selected:

● A test, with a question and multiple possible answers that the player must
select if he thinks that are good answers. Once he has selected the answers
he considers to be right he can check the results.

● An empty workplace, and a goal that the player must complete are shown.
The player will only complete the level if he beats the established goal. To
do that the player can use several elements that are in the superior right
part of the screen, that can use and connect within them. He will only be
allowed to use the elements available for that level. The player is allowed
to put these elements anywhere in the workplace and connect them.

14

Andornot

There is no losing in this game, or a time limit. The only options are to complete a
level or to exit to the ​Level Selection Menu​. He can also repeat a level as many
times as he desires.
When a player finishes a ​Level ​a “Completed” sign is showed, to point out that the
level is concluded, and now the player can continue to the next level or return to
level selection.
At any moment the player can return to previous ​Levels​.

2.2.3. Mechanics and communication between elements
As ​Andornot ​has two different kind of mechanics, one for the tests that consists
in a question with multiple answers, some of the good and some of them bad.
Every interaction will be made by the mouse, by clicking the correct answers.
The other kind of mechanic is the ​Logic Circuits one. Logic Levels are played over
a flat workplace, and the player can put, displace and delete as he wants every
element of his choosing. Each element will have one or more ways IN, and one or
more ways OUT, that the player can connect if the elements are compatible.
Every interaction will be made with the mouse, by clicking the different elements
of the game, and drag it or the connections along the screen.

2.3. Interface

In this section each one of the screens that form ​Andornot ​are specified and
described with more detail. In addition, the transitions between them are further
specified, as well as each element of the GUI (Graphical User Interface). The
attached images are sketches that illustrate what is showed in each screen.

2.3.1. Flux diagram
The following diagram (Figure 2) of states shows the available screens through
Andornot ​and the transition between them.

15

Andornot

Figure 2

2.3.2. Main Menu
The sketch of the​ Main Menu ​screen is shown in Figure 3:

Figure 3

List and description of its components:
● PLAY: ​when clicked it takes to the ​Topic Menu​ screen
● MODO LIBRE: ​when clicked it changes the scene to ​FreeMode
● SETTINGS: ​it activates the ​Settings Menu
● EXIT: ​when clicked it exits into the Operative System

16

Andornot

2.3.3. Level Selection
The sketch of the ​Level Selection​ screen:

Figure 4

List and description of its components:

● Main menu: ​it changes the scene to Main Menu
● First Steps: ​it changes the scene to Level 1 Level Selection
● Logic Circuits: ​it changes the scene to Level 2 Level Selection
● Processor: ​it changes the scene to Level 3 Level Selection
● Memory:​it changes the scene to Level 4 Level Selection

17

Andornot

2.3.4. Topic Selection
The following image (Figure 6) represents the Level Selection scene.

Figure 5

List and description of its components:
● Topic Selection: ​changes the scene to the chosen ​Topic
● Level List: ​a list that shows all the playable levels

18

Andornot

2.3.5. Test Level
Test Level (Figure 6). List and description of its components:

● Question: ​The question that must be solved.
● Answers: ​Possible answers.
● Task & Hints​: clues and tips that can help to solve the level and a

description of the task to be done

Figure 6

Logic circuit level (Figure 7). List and description of its components:

● Components:​ components available and with which the player can
interact

● Components interaction: ​options to interact with the components
● Scenario 2D:​ game panel
● Level Selection:​ when pressed, it returns to the Level Selection screen
● Task & Hints​: clues and tips that can help to solve the level and a

description of the task to be done
● Test:​ checking the circuit status

19

Andornot

Figure 7

2.3.6. Level End
The following image (Figure 8) represents the Level End

Figure 8

List and description of all its components:

● Next Level Button:​ pressing it starts the next level
● Level Selection Button​: pressing it starts the Level Selection screen

20

Andornot

2.3.7. Free Mode
The following image (Figure 9) represents the Free Mode

Figure 9

List and description of all its components:

● Components: all the logic gates are available to use them. The input and
output value can be modified by the player

● Components interaction: ​options to interact with the components
● Scenario 2D:​ game panel
● Level Selection:​ when pressed, it returns to the Level Selection screen
● Task & Hints​: clues and tips that can help to solve the level and a

description of the task to be done
● Change Bit Value: ​Panel where the player can change the value of the

input/output

21

Andornot

3. Project Development

3.1. Computer Architecture and Logic Circuit analysis

In order to develop the game idea the first step was to study and understand the
Educational Games genre and how to apply them to this subject-matter. There
are many educational games, and they are usually very different, depending of
what subject or matter or study it focus is on, so my tutor and I checked for other
games that are Logic Circuit focused. There are not many in the mainstream
platform services but we found a few in Steam:

● SHENZEN IO[​13​]
● Hardware Engineering[​14​]
● Ones and Zeroes[​15​]

These games helped me structuring the game canvas and the game progression.

Some information was needed to formulate the questions and answers to create
the tests, therefore the information needed was gathered using the textbook
Introducción a la arquitectura de computadores con QtARMSim y Arduino​.
The information stored will be detailed in the ​Test Level Game Design

The next stop was to understand the different components of basic logic circuits
and how they interact with each other. To achieve this goal, the information used
was the subject-matter ​Computer Architectures given in the subject ​VJ1214 -
Consoles and Videogame ​Devices ​and the different exercises proposed there. In
the end the following logical components of circuits: AND, OR, NOT, XOR, NOR &
NAND, where chosen. Their features and characteristics are explained in the
Logic Circuit Level Design​.

3.2. Game Design

After analyzing the information stored and playing Hardware Engineering, an
idea about the game design was formed. Two different kind of mechanics would
be established. One focused to a test simulator and the other mechanics would be

22

Andornot

focused towards simulating a Logic Circuit. The main focus is to act as a
reinforcement to the students progress.

3.2.1. Test Level
In this type of level the player must respond correctly to the question posed by
the game. For that matter he will be able to choose between some answers (also
given by the game). Once the player has choose the answers he considers, he can
check the results and if the outcome is correct he can go to the next level.
The Subject-Matter Scenes that belong to this type of level are:

INTRODUCTION: ​In this scene the content covered is basic information
about Computer Architecture. The different levels that belong to
Introduction and its content are displayed in the following table (Table 1):

Level Information

1 Von Neumann Architecture

2 Digital Signal

3 Definition of a program

4 Fundamental parts of a computer

5 Processor

6 Memory

7 Von Neumann/ Harvard

8 Exit/Entry

Table 1

PROCESSOR: ​In this scene the main focus of information is about the
Processor, the functionalities of it and how is it formed. All the levels and
its contents are displayed in the following table (Table 2):

Level Information

1 El procesador

2 Instrucciones

3 Tipos de procesadores

4 Tipos de procesadores II

23

Andornot

5 Componentes del procesador

6 Elementos estructurales

7 Registros

8 Registros II

9 Unidades de transformación

10 Circuitos digitales y

11 Buses

12 Instrucciones

13 Orden de la instrucción

14 Lectura de la instrucción

15 Decodificación de la instrucción

16 Incremento del contador

17 Ejecución de la instrucción

18 Transformación de datos

19 Transferencia de datos

20 Control de flujo

21 Control de procesador

Table 2

MEMORY: ​In this scene the main focus of information is about the
Memory, its functionalities and how is it formed. All the levels and its
contents are displayed in the following table (Table 3):

Level Information

1 Confusiones con la memoria

2 La memoria

3 Escritura/Lectura

24

Andornot

4 Instrucciones y Registros

5 Transferencia de información

6 Transferencia de información II

7 Little Endian/Big Endian

8 Direcciones de memoria

9 Tipos de memoria

10 Combinaciones

11 Combinaciones II

12 Memoria Caché

13 Ordenadores Modernos

Table 3

3.2.2. Logic Circuits
The information used to form and design this level is the following:

Digital Signals

There are many signals and ways of communication, but in the digital world, the
most basic form of information is a binary number which uses 0 and 1 as its
options.

Digital Electronics

Digital electronics or digital circuits are electronics that operate on digital
signals. They are usually made from large assemblies of logic gates, simple
electronic representations of Boolean logic functions.

Boolean Logic
Boolean algebra is the branch of algebra in which the values of the variables are
the truth values ​true and ​false​, usually denoted 1 and 0 respectively. Instead of
elementary algebra where the values of the variables are numbers, and the prime
operations are addition and multiplication.
The main operations of Boolean algebra are the conjunction ​and​, the disjunction
or​, and the negation ​not​.

25

Andornot

NOT
The logic gate NOT performs the boolean negation. Which returns the opposite
number of the one inputted.

Figure 10

OR
The OR logic gate performs the boolean addition. Which return 1 (true) if any of
two components in the addition is 1, or 0 (false) if both are 0.

Figure 11

AND
The logic gate AND performs the boolean multiplication. Which only returns 1
(true) if both components of the multiplication are 1, in the other cases the result
is always 0.

Figure 12

26

Andornot

NAND
A NAND gate is an inverted AND gate. A NAND gate is a universal gate, meaning
that any other gate can be represented as a combination of NAND gates.

Figure 13

NOR
A NOR gate is a logic gate which gives a positive output only when both inputs
are negative. Like NAND gates, NOR gates are so-called "universal gates" that can
be combined to form any other kind of logic gate.

Figure 14

XOR
XOR gate is a digital logic gate that gives a true (1) output when the number of
true inputs is odd.

Figure 15

27

Andornot

Once the performance of the Logic Gates is established, the level design is the
following:
In this type of level the player must respond solve the logic circuit posed by the
game. For that matter he will be able to choose between some logic gates given
by the game. Then the player must connect them to get the final logic circuit.
Once the player has completed the logic circuit, he can check the results and if the
outcome is correct he can go to the next level.
The only Subject-Matter that belong to this level is Logic Gates. The following
table represents its levels and content (Table 4).

Level Content

1 Logic Gate: NOT

2 Logic Gate: OR

3 Logic Gate: AND

4 Exercise 1

5 Exercise 2

6 Logic Gate: NOR

7 Logic Gate: NAND

8 Logic Gate: XOR

9 Exercise 3

10 Exercise 4

Table 4

28

Andornot

3.3. Programming and code
The game has been programmed to run in the Unity Game Engine using C# and
Visual Studio​[16] as an editor. The code uses the Game Objects[​17​] system of
Unity, in which every Game Object which components must be given by the user.
Game Objects can contain other Game Objects. Game Objects may be children of
another Game Objects.

There are two systems designed for the game, one for the Test Levels and other
for the Logic Gates Levels. Both systems control the flux of information in the
scene, what the player is allowed to do and what the winning conditions are.
They are also designed in a way that allows to easily create new levels.

3.3.1. Test Levels
All the interactions and control with the world in Test Levels are managed by a
class called ​QuestionManager.cs​.
This class receives as information an array of booleans, that reflects the correct
answers. When the class is started (Start[​18​]) it generates another boolean array
with the same size, for the purpose of storing the player responses. When the
button[​19​] of an answer is pressed the game changes the created boolean array
value in its right position. Finally, when the player decides to check the answers if
compares both arrays and if they are both equal it means the answers are
correct.

3.3.2. Logic Circuits
In similar way to Test Levels the iterations with the scene in Logic Circuits are
managed by a class called ​CircuitManager.cs​.
This class receives as information several byte[​20​] arrays that consist in the
Truth Table[​21​] of the logic circuit. This class hosts all the different Logical
Elements availables and how the user can interact with them.

3.3.2.1. Logic Circuit Interactions
The following elements form all the different options the user has to use the
different Logical Gates. Each of the options buttons has a different function of
CircuitManager.cs​. attached to them which operation is disclosed in the following
section:

● Delete Element: ​This function deletes the last selected Logical Element
and its connections.

29

Andornot

● Save: As the names points, this function is used to save the game. For this

purpose, the game creates a list that saves every interactable element in
the scene, its position and it assigns and id. Once this is done, FileStream is
used to save the information in an archive.

● Load: ​This function is used to load the last circuit saved. If it is clicked
while there is not saving file it saves the current logic circuit.
It clears the current canvas and then it gets the serialized information, and
it deserialices it. Finally it makes spawn every element saved in its position
and with its connections.

● Clear:
This function is used to clean the canvas by destroying all the Logical
Elements.

● Tool:
This enum determines how to interact with the Logical Elements (​public
enum Tool{ Circuit, Translate, Move}​).

● Edit Circuit:​ ​Circuit
This allows to connect the output of a Logical Element with the
input of another.

● Move Elements:​ ​ ​Translate
The code checks if the Mouse is moved and if it clicks on a element,
and then changes the position of the element until the click is
stopped.

● Move Camera:​ Move

Interaction with the Logical Elements will become unavailable but
the user can now interact with the camera (translate, zoom in, zoom
out...)

● Spawn:

This function makes spawn a Prefab[​22​] that represents a Logical Gate in
the middle of the Camera[​23​].

30

Andornot

● Test:

This function changes the values of the Input Logical Elements with values
given by the Truth Table and checks that the Output Logical Elements are
the same value that the value in the Truth Table. This method is shown in
Figure 15.

31

Andornot

Figure 16

3.3.2.2. Logic Gates Components
Each Logic Gate has its own properties and ways of working, but they all share a
base, they have inputs and outputs, and share a base structure.
So a skeleton of the Logic Gates was created by using three classes,
LogicalElement.cs which acts like a parent for all the Logical Gates and other

32

Andornot

elements, InPoint.cs, which handles the logical gate inputs and OutPoint.cs which
manages the element outputs.

LogicalElement.cs
As stated above, this class sets the base structure of the logical gates, it is
composed by an array of InPoints (the data this logical gate receives) and an
array of OutPoints (the data this logical gives) and an string that stores its type
(and, or , not...).
This class handles the logical element since the moment it starts by starting a
coroutine that checks if the value of the Logical Gate.
This class also handles the Inputs and Output connections when the
LogicalElement is being moved by moving them too as well as when it is deleted.

OutPoints.cs
This is the class that handles the output representation and interactions for each
output of every element. For this purpose each Output is made by the an InPoint,
a LineRenderer that will be the visual representation and its value . When
awaken, its assign a set of values to the LineRenderer[​24​].
It also controls mouse interactions on two phases. Only if CircuitManager is on
Circuit “mode”

·​ ​ ​OnMouseDrag()
While the mouse is dragging the output it sets the Line Renderer start point from
the out point and the finish point to the mouse location.

·​ ​ ​OnMouseUp()
In this code, it checks if the mouse position projection in the camera with a
RaycastHit2D. If the mouse position “hits” with a GameObject, if it is not trying to
connect with itself and it is “hitting” an Input element it connects the output with
the input, it updates the input and output positions if they already have a value to
null and then sets the current values. When completed it calls Draw().
The following figure (Figure 16) shows the OnMouseUp() function.

33

Andornot

Figure 17

InPoints.cs
This a very simple class that is made by the output information that each input
receives, and a LogicalElement class.
It has a function that when called its LogicalElement gets assigned to the Logical
Gate parent element and starts the coroutine in the parent.

3.3.2.2. Logic Gates Types
All Logic gates share an structure and components but each one of the has the
specific part that determines how the value changes through that Logic Gate.
Every Logical Gate is a children from Logical Element but is defined in a separate
class. For every element the byte value is handled in the ValueSet() that every
class has, making the appropriate mathematical operations for each one.

34

Andornot

And
The code checks the input array that receives the class, and checks each value. If
it is not null it returns its own value, and if it is null it returns 1. For each one of
those results, the ending byte is multiplied by the result, this allows to get a
working AND Logical Gate, it only returns 1 if both inputs are 1.
Then when the end byte is obtained, the output is setted to this value. The code
for And is refelected in the Figure

Figure 18

Or
This class works very similar to the AND class, but instead of multiplying each
other input number by the others and by the end byte, we add the inputs with
each other. So we get a working OR Gate, as we get as a result 1 (true), if we have
at least one input that is 1.
Not
As with the previous classes, first it gets the input value and return 0 if it is null
or in the contrary the input value. Once it is obtained, if the result is bigger than 0
it sets the output to 0 or to1 if this condition is not met.
The result is a NOT Gate, that sets the byte value to 0 if the input is 1 and sets the
value to 1 if the input is 0.

35

Andornot

Xor
The code is very simple, and i just assigns the value of the output to 1 if both
values are different. As a result we get a XOR Logical Gate.

Figure 19

Nand
It checks that both input points are equal to 1, if this goal is met sets the value of
the end byte to 0. If the goal it is not met it sets the value of the end byte to 1.
Then it sets the output value to the end byte, and it sets as a result a working
NAND Gate.

Nand
As with the OR class, it adds all of the input values. If the result is bigger than 0
then, the end byte will be 0, if else it will be 1.
This code mimics the working process of the NOR Gate, as it sets the value of the
output to 1 only if both inputs are negative (0).

Equal
It works very similar to XOR Logical Gate, it sets the value of the output to 1 if
both input values are the same and it sets the value of the output to 0 if they are
different.

36

Andornot

3.3.2.3. Logic Gates Extras
To complete the simulator, some other elements must be added to the scene.
Such elements as the input bits, a button than changes its value while its
pressed…
They all are childrens of the LogicalElement as the Logic Gates, so they can
communicate with no problem with each other.

Bit Input
This class handles the inputs. By default the base value is 0, but it can change
during the test and it stores the value given by Truth Table.

Bit Output
As the name suggest this class is responsible to set the result from a circuit or a
piece of it. When awaken it gets the text which prefabs belongs to and changes it
and its value from the input points. As the BIT FIELD it only possess an input
value and not an output one, due that this is the end of the circuit and must test
the result.

Splitter
This is a class that allows an output to be shared with multiple inputs. This is a
Logical Element that has one input element and three output elements, this
allows to distribute the information between three potential inputs.
As stated the class get the byte value from the input, and assigns it to every
output. This class is presented in Figure 19.

37

Andornot

Figure 20

Button
This class works in a similar fashion to the BIT FIELD, but instead of reading the
bit value from a source, it changes its value from 0 to 1 and vice versa everytime
the button is pressed.

Figure 21

3.4. Art

The art of the game is mainly made with Photoshop and Illustrator. Each scene
has been divided in multiple parts and then redistributed in the Unity Scene[​25​].
The objective of the art is to make the scenes understandable and intuitive.
The different elements that compose each scene will be described in each section.

3.4.1. Main Menu
This scene is made by a big image that acts as background (a white image that
simulates an used paper), the game logo and 4 other images assigned to the
button. All the components are shown in Figure 21.

38

Andornot

Figure 22

The background and logo are not playable but the 4 images are each one linked
to one of the buttons in the scene.

3.4.2. Topic
This scene is composed by the same background as Main Menu, two images to
form the place to hold the subject matters, four images that are linked to buttons,
each one of these images give information about the Topic that represents and
another image that acts as button but for returning to Main Menu.

39

Andornot

Figure 23
3.4.3. Level Selection
This scene has 4 images: the same background as before, an image that
represents a selection field and an image that represents a button to go to the
Topic scene.

Figure 24

3.4.4. Quiz Test
This scene has a multitude of images:

- The same background,
- One to post the questions by Text in the scene,
- One to post the answers,
- An image that represents a button that goes to the Main Menu,
- One to post the Task & Hints,
- An image that represents a button that checks the answers
- One image that shows when the answer is correct
- One image that shows when the answer is incorrect

These parts are reflected in the Figure 24

40

Andornot

Figure 25

3.4.5. Logic Circuits
This scene has a multitude of images:

- Some of them represent the Logic Gates available
- Some of them represent the Logic Gates mode
- An image that represents a button that goes to the Main Menu,
- One to post the Task & Hints,

Figure 26

41

Andornot

3.4.6. External assets
All the images in the game are copyright free due that they are original, but some
of the assets in the game are external.

As Soundtrack for the game a Copyright Free song has been placed to be in loop:
Chill Lofi Hip Hop Instrumental Music - Days Like These[​26​].

Also two Copyright Free text fonts:

- Azonix Font[​27​]
- Trench [​28​]

3.4.7. Art Table
The following Table (Table 5) portrays all the art made for the game and a link to
the image.

Image Name Link

And Gate https://imgur.com/GRdeqMp

Equal Gate https://imgur.com/fLpfKaz

Bit A In Gate https://imgur.com/mk9kTAr

Bit B In Gate https://imgur.com/AsfNytt

Bit C In Gate https://imgur.com/BMkvOhM

Bit D In Gate https://imgur.com/IsnUK8e

Background https://imgur.com/rjgfhQZ

Bit Out Gate https://imgur.com/46jFEnX

Bit A Out Gate https://imgur.com/CW7ti89

Bit B Out Gate https://imgur.com/MjKVAwA

Nand Gate https://imgur.com/UVtfOV2

Nor Gate https://imgur.com/fBamOP8

Not Gate https://imgur.com/rSlDfwX

Or Gate https://imgur.com/A2uTejX

And Button https://imgur.com/MqvdujE

42

https://imgur.com/GRdeqMp
https://imgur.com/fLpfKaz
https://imgur.com/mk9kTAr
https://imgur.com/AsfNytt
https://imgur.com/BMkvOhM
https://imgur.com/IsnUK8e
https://imgur.com/rjgfhQZ
https://imgur.com/46jFEnX
https://imgur.com/CW7ti89
https://imgur.com/MjKVAwA
https://imgur.com/UVtfOV2
https://imgur.com/fBamOP8
https://imgur.com/rSlDfwX
https://imgur.com/A2uTejX
https://imgur.com/MqvdujE

Andornot

Delete Button https://imgur.com/0xDZX4R

Equal Button https://imgur.com/wIISGLT

Bit In Button https://imgur.com/UOXAeix

Bit A In Button https://imgur.com/CliQPXt

Bit B In Button https://imgur.com/sQUACZS

Bit C In Button https://imgur.com/u2PjP45

Bit D In Button https://imgur.com/lfMqclP

Nand Button https://imgur.com/NXdJ7ne

Nor Button https://imgur.com/0fvFwoe

Not Button https://imgur.com/GISoHYd

Settings Button https://imgur.com/6uc2ZaD

Or Button https://imgur.com/NkfiUio

Bit Out Button https://imgur.com/8xFkmas

Bit A Out Button https://imgur.com/AyH4zh8

Bit B Out Button https://imgur.com/8xNQsaa

Split Button https://imgur.com/PgT1m0e

Binary Button https://imgur.com/fWj0btC

Load Button https://imgur.com/X712Ofh

Save Button https://imgur.com/Qe5Wj9w

Move Elements Button https://imgur.com/4uEW2V9

Move Camera Button https://imgur.com/Mi79csX

Clear Button https://imgur.com/LXrx33u

Edit Circuit https://imgur.com/8eDzRnr

Xor Button https://imgur.com/KnbfFdj

Main Menu Button https://imgur.com/aZnrFla

Level Selection Button https://imgur.com/s39MqaB

Next Level Button https://imgur.com/vkHpTMa

43

https://imgur.com/0xDZX4R
https://imgur.com/wIISGLT
https://imgur.com/UOXAeix
https://imgur.com/CliQPXt
https://imgur.com/sQUACZS
https://imgur.com/u2PjP45
https://imgur.com/lfMqclP
https://imgur.com/NXdJ7ne
https://imgur.com/0fvFwoe
https://imgur.com/GISoHYd
https://imgur.com/6uc2ZaD
https://imgur.com/NkfiUio
https://imgur.com/8xFkmas
https://imgur.com/AyH4zh8
https://imgur.com/8xNQsaa
https://imgur.com/PgT1m0e
https://imgur.com/fWj0btC
https://imgur.com/X712Ofh
https://imgur.com/Qe5Wj9w
https://imgur.com/4uEW2V9
https://imgur.com/Mi79csX
https://imgur.com/LXrx33u
https://imgur.com/8eDzRnr
https://imgur.com/KnbfFdj
https://imgur.com/aZnrFla
https://imgur.com/s39MqaB
https://imgur.com/vkHpTMa

Andornot

Test Button https://imgur.com/k5lute3

Change Bit Value Panel https://imgur.com/zUcBC3M

Check Answers Button https://imgur.com/8eDzRnr

Exit Game Button https://imgur.com/fjTkMjv

Free Play Button https://imgur.com/jtd8dkQ

Change Task&Hints Page Button https://imgur.com/W7trDrx

Task & Hints Panel https://imgur.com/AYwZyvE

Logic Completed Panel https://imgur.com/7YYNJ1n

Options Menu https://imgur.com/PFfASTh

Next Level Button 2 https://imgur.com/gkbZRoU

Level Accomplished https://imgur.com/Pja2kt1

Main menu settings button https://imgur.com/J204y4z

Main menu play button https://imgur.com/pHrrst3

Element placer panel https://imgur.com/OITAd4T

Topic placer panel https://imgur.com/NOGwORQ

Level placer panel https://imgur.com/9owpUwJ

Correct answer image https://imgur.com/H56s9F1

Wrong answer image https://imgur.com/HNJKyl7

Question holder panel https://imgur.com/JTk1ExY

Topic holder panel https://imgur.com/jYVvwqM

Level title image https://imgur.com/fryNGkQ

Topic title image https://imgur.com/7AAheC3

Answer chosen image https://imgur.com/MNNDhvl

Processor Level Finished https://imgur.com/ptoTya9

Memory Level Finished https://imgur.com/mverL4r

Topic 1 Button https://imgur.com/AVPFpLs

Topic 2 Button https://imgur.com/mwwfZpt

44

https://imgur.com/k5lute3
https://imgur.com/zUcBC3M
https://imgur.com/8eDzRnr
https://imgur.com/fjTkMjv
https://imgur.com/jtd8dkQ
https://imgur.com/W7trDrx
https://imgur.com/AYwZyvE
https://imgur.com/7YYNJ1n
https://imgur.com/PFfASTh
https://imgur.com/gkbZRoU
https://imgur.com/Pja2kt1
https://imgur.com/J204y4z
https://imgur.com/pHrrst3
https://imgur.com/OITAd4T
https://imgur.com/NOGwORQ
https://imgur.com/9owpUwJ
https://imgur.com/H56s9F1
https://imgur.com/HNJKyl7
https://imgur.com/JTk1ExY
https://imgur.com/jYVvwqM
https://imgur.com/fryNGkQ
https://imgur.com/7AAheC3
https://imgur.com/MNNDhvl
https://imgur.com/ptoTya9
https://imgur.com/mverL4r
https://imgur.com/AVPFpLs
https://imgur.com/mwwfZpt

Andornot

Topic 3 Button https://imgur.com/wGqNRFV

Topic 4 Button https://imgur.com/84tJbm8

Question Holder Panel https://imgur.com/o4fPVok

Check Circuit Button https://imgur.com/0DHlmhS

Table 5

3.5. Testing

Testing each level and mechanic is a key task for the correct result of the project.
In the following sections, the testing process is described.

3.5.1. Testing Mechanics
At its most basic level the different mechanics have been tested, this includes: the
Bit Field, the Button, the different logical gates (AND, OR, NOT, NAND, NOR, XOR,
EQUAL), the Splitter and the Bit Display.

Once the individual elements are checked to work correctly, i created more
complex circuits that i copied from a college assignment , and which Table of
Truth i posses, so i could check that every result is correct.

Also the Test mechanic have been tested with every combination of answers.

3.5.2. Testing Levels
All the test have been tested, and all the expected results have been correct. The
levels have been tested in a linear way (Level 1 -> Level 2 -> Level 3….), and also
in a not linear way, by selecting every level from his menu.

3.5.3. Balance Testing
As this game is oriented towards the students of Basic Informatics, one of the
biggest problems is the difficulty and the lack of references he might experience
playing the game. To solve this, all questions have been placed in a progressive
order so the student goes step by step.

45

https://imgur.com/wGqNRFV
https://imgur.com/84tJbm8
https://imgur.com/o4fPVok
https://imgur.com/0DHlmhS

Andornot

4. Results

In this section the results obtained with the project are summarized

4.1. Andornot
One of the results is the game per se. An executable game in multiplatform, 4
differentiated Topics with more than 10 levels each.

4.2. Creation of levels
The Andornot Unity project can also be used to create more levels. Two scenes in
the game are set up as Templates, one for the quiz and one for the Logic Gates.

Quiz Template: User can determine the number of questions and in the scene, as
well as formulate them and select the correct ones.

Logic Gates Template: User can establish as far as 4 Input Bit and 2 Output Bit, as
well as the Truth Table that would solve the problem.

In both scenes the user can determine what is shown up in the Task & Hints
object.

46

Andornot

5. Conclusions

5.1. Project Balance

At the beginning of the project one of the barriers that made me fear the most
was been unable to represent the logic gates on the game properly. The next
tables show the total work executed.

The following table (Table 5) shows the Game Analysis Work

Work Time (h)

Computer Architecture 4

Processor 3

Memory 3

Logic Circuits 4

Total 14

Table 6

The following table (Table 6) shows the Level Design Work by Subject Matter

Work Time (h)

Level 1 (Basic Computer Architecture) 7

Level 2 (Logic Gates) 16

Level 3 (Processor) 10

Level 4 (Memory) 10

Total 43

Table 7

47

Andornot

The following table (Table 7) shows the Programming Work

Work Time (h)

Circuit Manager 33

Question Manager 12

Logical Element 17

InPoint/Outpoint 11

Logic Gates (AND, OR, NOT...) 15

Total 88

Table 8

The following table (Table 8) shows the Assembling Levels Work by Subject

Work Time (h)

Computer Architecture 6

Processor 12

Memory 10

Logic Circuits 8

Total 36

Table 9

The following table (Table 9) shows the Art Work by Scenes

Work Time (h)

Main Menu 4

Subject-Matter Scene 5

Level Selection Scene 4

Test Scene 12

Logic Gates Scene 12

Total 37

Table 10

48

Andornot

The following table (Table 10) shows the Testing Work by Subject

Work Time (h)

Level 1 (Basic Computer Architecture) 7

Level 2 (Logic Gates) 10

Level 3 (Processor) 7

Level 4 (Memory) 7

Total 31

Table 11

The following table (Table 11) shows the Memory Work

Work Time (h)

Technical Proposal 5

Game Design Document 5

Final Memory 45

Total 55

Table 12

The following table (Table 12) shows the Total amount of work

Work Time (h)

Game Analysis 14

Level Design 43

Programming 88

Assembly Levels 36

Art 37

Testing 31

Memory 55

Total 304

Table 13

49

Andornot

On the personal level this project has allowed me to get the study the educational
games and replicate how they work. This made me understand a little bit better
the position of a teacher toward the students.

One the biggest problems in my planning was that the project was more complex
than I expected. This was because implementing the logic gates, thus the final
solution was simple, was very hard to structure in my mind and reflect that in the
game.

Nonetheless Andornot is a game that include 4 different block with multiple
levels each one, and a Logic Circuit Simulator. And at the same time, a system that
allows anyone to create more levels. For the future of the project I would like to
get more images into to Task & Hints so everything becomes more visual.

5.2. Objectives

Objective 1: Analyse and understand the Computer Architecture
Objective 2: Determine which of this content is worth asking in a Test
Objective 3: Create a Logic Gate simulator
Objective 4: Design and implement levels and block of the videogame based in
the previous Objectives.

In my opinion I think I have accomplished the goals, I have gathered information
about Computer Architecture, decided what were the most important parts and
based on that constructed multiple levels. I have also implemented a Logic Circuit
Simulator that is also included in some other levels.

5.3. Project and Executable

- Unity Project:
https://github.com/AntonioLopezRuiz/TFGLopezRuiz_Antonio

- Video:
 ​https://youtu.be/-n6kIL8XDcE

- Executable:
https://drive.google.com/drive/folders/1HfpiclML1FSzo6MMZbJVLK1MALO1qrTV?usp
=sharing

- Art of the game with source docs:
https://drive.google.com/drive/u/1/folders/1JXM9zrzGOr3VpLVxvr8At9RnzXvGLnte

50

https://github.com/AntonioLopezRuiz/TFGLopezRuiz_Antonio
https://youtu.be/-n6kIL8XDcE
https://drive.google.com/drive/folders/1HfpiclML1FSzo6MMZbJVLK1MALO1qrTV?usp=sharing
https://drive.google.com/drive/folders/1HfpiclML1FSzo6MMZbJVLK1MALO1qrTV?usp=sharing
https://drive.google.com/drive/u/1/folders/1JXM9zrzGOr3VpLVxvr8At9RnzXvGLnte

Andornot

6. Annex

[1] Unity 3D: ​https://unity.com/es
[2] Basic Informatics:
https://ujiapps.uji.es/sia/rest/publicacion/2018/estudio/231/asignatura/VJ1202
[3] Linux: ​https://www.linux.org/
[4] Logic Circuits: ​https://en.wikipedia.org/wiki/Logic_gate
[5] C#: ​https://es.wikipedia.org/wiki/C_Sharp
[6] Educational Game: ​https://en.wikipedia.org/wiki/Educational_game
[7] Computer Architecture: ​https://en.wikipedia.org/wiki/Computer_architecture
[8] Adobe Photoshop: ​https://www.photoshop.com/
[9] Adobe Illustrator:
https://www.adobe.com/es/products/illustrator/free-trial-download.html
[10] GitHub: ​https://github.com/
[11] Processor: ​https://en.wikipedia.org/wiki/Processor
[12] Memory: ​https://es.wikipedia.org/wiki/Memoria_(inform%C3%A1tica)
[13] Hardware Engineering:
https://store.steampowered.com/app/525610/Hardware_Engineering/
[14] Shenzen IO: ​https://store.steampowered.com/app/504210/SHENZHEN_IO/
[15] One and Zeroes: ​https://store.steampowered.com/app/879600/Ones_and_Zeroes/
[16] Visual Studio:
https://visualstudio.microsoft.com/es/?rr=https%3A%2F%2Fwww.google.com%2F
[17] Game Object: ​https://docs.unity3d.com/es/current/Manual/GameObjects.html
[18] Start: ​https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
[19] Button: ​https://docs.unity3d.com/ScriptReference/UI.Button.html
[20] Byte:
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/integral-nu
meric-types
[21] Truth Table: ​https://en.wikipedia.org/wiki/Truth_table
[22] Prefab: ​https://docs.unity3d.com/es/current/Manual/Prefabs.html
[23] Camera: ​https://docs.unity3d.com/ScriptReference/Camera.html
[24] Line Renderer: ​https://docs.unity3d.com/Manual/class-LineRenderer.html
[25] Scene: ​https://docs.unity3d.com/Manual/CreatingScenes.html
[26]Chill Lofi Hip Hop Instrumental Music - Days Like These:
 ​https://www.youtube.com/watch?v=DMyudUrFlQQ
[27] Azonix: ​https://www.dafont.com/azonix.font
[28] Trench: ​https://www.1001fonts.com/trench-font.html

51

https://unity.com/es
https://ujiapps.uji.es/sia/rest/publicacion/2018/estudio/231/asignatura/VJ1202
https://www.linux.org/
https://en.wikipedia.org/wiki/Logic_gate
https://es.wikipedia.org/wiki/C_Sharp
https://en.wikipedia.org/wiki/Educational_game
https://en.wikipedia.org/wiki/Computer_architecture
https://www.photoshop.com/
https://www.adobe.com/es/products/illustrator/free-trial-download.html
https://github.com/
https://en.wikipedia.org/wiki/Processor
https://es.wikipedia.org/wiki/Memoria_(inform%C3%A1tica)
https://store.steampowered.com/app/525610/Hardware_Engineering/
https://store.steampowered.com/app/504210/SHENZHEN_IO/
https://store.steampowered.com/app/879600/Ones_and_Zeroes/
https://visualstudio.microsoft.com/es/?rr=https%3A%2F%2Fwww.google.com%2F
https://docs.unity3d.com/es/current/Manual/GameObjects.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/UI.Button.html
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/integral-numeric-types
https://docs.microsoft.com/es-es/dotnet/csharp/language-reference/builtin-types/integral-numeric-types
https://en.wikipedia.org/wiki/Truth_table
https://docs.unity3d.com/es/current/Manual/Prefabs.html
https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://www.youtube.com/watch?v=DMyudUrFlQQ
https://www.dafont.com/azonix.font
https://www.1001fonts.com/trench-font.html

